

CSSI Element: A high performance suite of SVD related solvers for machine learning PI: Andreas Stathopoulos, Co-PIs: <u>Zhenming Liu</u> Institutions: College of William & Mary

1.SVD methods in distance-based learning

> Introduction

Singular value decomposition (SVD) has been used for a wide range of applications:

- \circ Recommender system
- \circ Pattern (text/image) recognition
- Signal processing (adaptive beamforming modeling)

>Current stage

 $\,\circ\,$ ML researchers use SVD solvers as black boxes :

- unaware of the properties for each SVD solvers
- choose inappropriate solvers for tackling their own problems
- ML researchers develop tailor-made randomized algorithms (often sketches based) for solving SVD
 - not mature SVD solvers an
 - unlikely to beat carefully chosen SVD solvers

2. Low-Rank Stopping Criteria for Block Parallel SVD

Introduction

Low rank approximation problem:

minimize
$$||Z||_*$$

subject to $\sum_{(i,j)\in\Omega} (A_{ij} - Z_{ij})^2 < \delta_i$

where A is the $m \times n$ true data matrix, Z is an approximation, and Ω is set of the observed entries

Motivation

- Most SVD algorithms only provide a residual stopping criterion iterative method is to limit
 - the number of total iterations,
 - matrix vector multiplications,
 - its execution time
- Lack guarantee on the accuracy

Motivation

- Interplay between SVD solvers and ML algorithm
- Clarify the best practice guidelines
- Propose new algorithms
- Improve the current existing SVD related algorithms.

>Our contribution : we examine 3 categories

1. Kernel ridge regression and speedup methods

Our goal:

1. Identify the termination conditions with ML performance?

Assume $[\lambda_1, \lambda_2 ... \lambda_n]$ is the eigenvalues

- * Use a hard threshold: keep the eigenvectors where $\lambda_i > \eta$ (η is around noise level)
- Keep the eigenvectors where gap
 - $(\lambda_{i+1} \lambda_{i+1}) > \sigma$
- Use the tail sum: $\sum_{i=1}^{k} \lambda_i > \Delta$
- By rank, use the first k eigenvectors

2. Speed up the kernel ridge regression for big and dense data ?

2. Matrix completion

- Increased attention in recommender system
- Filling in the missing entries of a partially observed matrix

- > New stopping criteria for block parallel SVD algorithms
- Provide heuristics for dynamically changing both block and restart sizes when necessary
- Show their performance in both synthetic and real-world applications

Algorithm 2.1

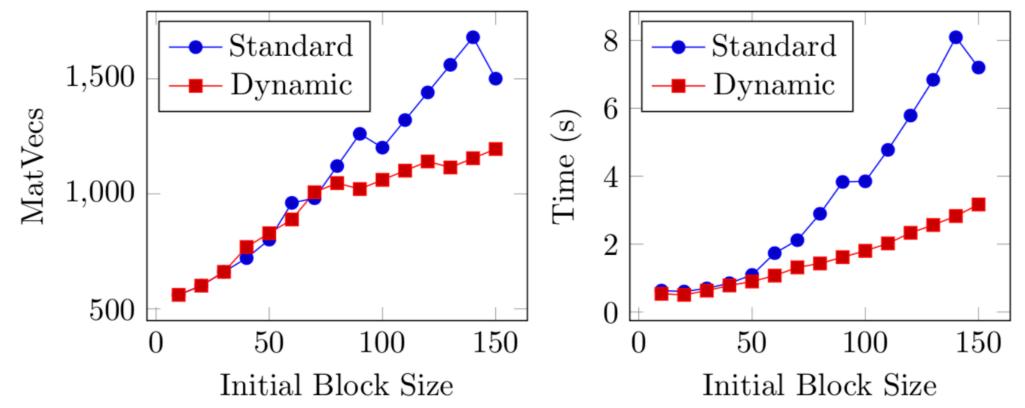
Current Basis Size = c, Max Basis = m, Restart Size = s, Block Size = b. if i > 2 then if $1.5\tilde{k} > c$ then $m = \max(1.3\tilde{k}, \tilde{k} + 4b)$ $s = \tilde{k} + b$ if $4b > \tilde{k}$ then $b = \lfloor \tilde{k}/4 \rfloor$ end if end if end if

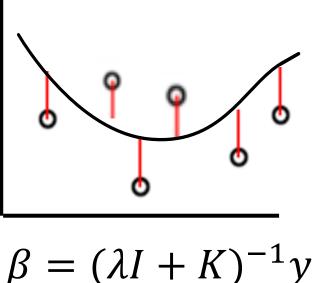
- Dynamic control is done with the heuristics given in Algorithm 2.1
- Choose to target the largest values that are unconverged to a residual tolerance of 1e-6
- Require all values above θ to converge to a residual tolerance of 1e-6

Results

Comparing time and matrix vector multiplications

 $Dynamic\ Stopping\ Criteria\ on\ Bates/Chem97ZtZ$





• with $O(N^3)$ training

3

?

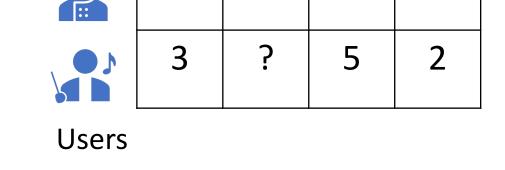
?

1

• Hard for big data

• More flexible

Movies



4

Our goal:

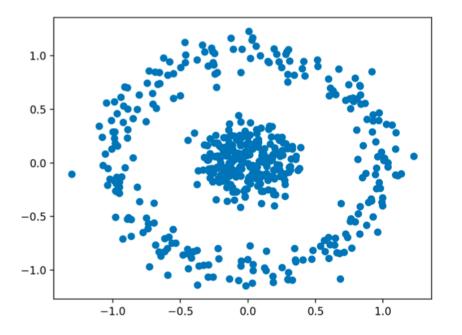
How to explore the limitations of these common terminal conditions ?
How to design dynamic terminal condition/ or improve the existing works with varying decay rates?

</>

1

?

3. Spectral clustering



1.0 0.5 0.0 -0.5 -1.0 Spectral clustering results

Kmeans is not appropriate

- Our goal:
- 1. Compare the properties of different graph Laplacians (unnormalized and normalized) and categorize all these algorithms.
- 2. Summarize the usage of SVD in different categorize

Comparing various SVD tolerances

Hard Impute with Varying SVD Tolerance

