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2. Low-Rank Stopping Criteria for Block Parallel SVD

Ø Introduction
Low rank approximation problem:

where 𝐴 is the 𝑚 × 𝑛 true data matrix, 𝑍 is an approximation, 
and Ω is set of the observed entries

Ø Motivation
o Most SVD algorithms only provide a residual stopping criterion -

- iterative method is to limit 
• the number of total iterations,
• matrix vector multiplications,
• its execution time

o Lack  guarantee on the accuracy 

Ø Our contribution 
Ø New stopping criteria for block parallel SVD algorithms 
Ø Provide heuristics for dynamically changing both block and 

restart sizes when necessary
Ø Show their performance in both synthetic and real-world 

applications

3. Spectral clustering 

Kmeans is not appropriate Spectral clustering results

2. Matrix completion

1 ? 3 ?

? 4 ? 1

3 ? 5 2

Movies

Users

o Increased attention in 
recommender system 

o Filling in the missing entries 
of a partially observed matrix

1. Kernel ridge regression and speedup methods

ØMotivation
• Interplay between SVD solvers and ML algorithm
• Clarify the best practice guidelines 
• Propose new algorithms
• Improve the current existing SVD related algorithms.

ØCurrent stage 
o ML researchers use SVD solvers as black boxes :

• unaware of the properties for each SVD solvers 
• choose inappropriate solvers for tackling their own problems 

o ML researchers develop tailor-made randomized algorithms (often sketches 
based) for solving SVD 
• not mature SVD solvers an
• unlikely to beat carefully chosen SVD solvers

1.SVD methods in distance-based learning

Ø Introduction
Singular value decomposition (SVD)  has been used for 
a wide range of applications: 

o Recommender system
o Pattern (text/image) recognition
o Signal processing (adaptive beamforming modeling)

ØOur contribution : we examine 3 categories 

𝛽 = (𝜆𝐼 + 𝐾)/0𝑦

o More flexible 
o with 𝑂(𝑁4) training
o Hard for big data

Our goal:
1. Identify the termination conditions with ML 
performance?
Assume [𝜆0, 𝜆6… 𝜆7] is the eigenvalues 

v Use a hard threshold: keep the eigenvectors 
where  𝜆8 > 𝜂 (𝜂 is around noise level)

v Keep the eigenvectors where gap
(𝜆8;0−𝜆8;0) > 𝜎

v Use the tail sum: ∑8?0@ 𝜆8 > ∆
v By rank, use the first 𝑘 eigenvectors 

2. Speed up the kernel ridge regression for big 
and dense data ?

Our goal:
1. How to explore the limitations of these common terminal conditions ?
2. How to design dynamic terminal condition/ or improve the existing 
works with varying decay rates? 

Our goal:
1.  Compare  the properties of different graph Laplacians
(unnormalized and normalized)  and categorize all these algorithms.
2.  Summarize the usage of SVD in different categorize 

v Comparing various SVD tolerances 

vComparing time and matrix vector multiplications 

ØResults

• Dynamic control is done with the heuristics given in Algorithm 2.1
• Choose to target the largest values that are unconverged to a residual 

tolerance of 1e-6 
• Require all values above 𝜃 to converge to a residual tolerance of 1e-6 


