

A theoretical study of the nuclear structure in the even-even Yb isotopes

A. Zyriliou*, T.J. Mertzimekis, A. Khaliel and E. Mavrommatis

Department of Physics, University of Athens, Zografou Campus, GR-15784, Athens, Greece * Contact author: kzyriliou@phys.uoa.gr

Motivation

The medium–to–heavy mass Ytterbium (Yb, Z=70) isotopes located in the rare–earth mass region are well– deformed nuclei that can be populated to very high spin. Spectroscopic information becomes scarcer as the neutron number increases impeding the understanding of nuclear structure in this mass region, where interesting phenomena, such as shape coexistence, have been predicted.

In this work, energy levels, β_2 , B(E2) and transition quadrupole moments Q_2 for even–even Yb isotopes with $94 \leq N \leq 108$ have been calculated using different theoretical models. The results are compared to available experimental data [1] and can serve as guide for future experimental studies in the neutron–rich Yb isotopes.

Figure 1: Experimental energy levels and lifetimes for the g.s. bands of $^{164-178}$ Yb [2].

Theoretical Models

The following models have been employed in this study:

- ► Rotational Model (**ROT**)
- ▶ Phenomenological Model (**PhM**) [3]
- \blacktriangleright Finite–Range Droplet Model (**FRDM**) [4]
- \blacktriangleright Hartree–Fock BCS Model (HFBCS) [5]

Energy Levels - PhM

The rotating-core energy:
$$E_{rot}(I) = \frac{1}{2} j_0 \omega_{rot}^2(I) + \frac{3}{4} j_1 \omega_{rot}^4(I)$$

where j_0 and j_1 are the inertial parameters of the rotational core. The rotational frequency of the core $\omega_{rot}(I)$ is found by solving the equation (1) where $\tilde{I} = \sqrt{I(I+1)}$.

$$\omega_{rot} = \left[\frac{\tilde{I}}{2j_1} + \left[(\frac{j_0}{3j_1})^3 + (\frac{\tilde{I}}{2j_1})^2\right]^{1/2}\right]^{1/3} + \left[\frac{\tilde{I}}{2j_1} - \left[(\frac{j_0}{3j_1})^3 + (\frac{\tilde{I}}{2j_1})^2\right]^{1/2}\right]^{1/3}$$
(2)

	1	Yb-164	Yb-166	Yb-168	Yb-170	Yb-172	Yb-174	Yb-176	Yb-178
Energy [keV]	3500	16 16	16 16		16	16 16		16 16	
	3000	14	14 14		_		16 16		14 34
	2500	12 12	12 12	34 34	14 14	14 14	14 14	14 14	
	2000	10 10	10 10	12 12	12 12	12 12	12 12	12 12	12 12
	1500	8 8	8 8	10 10	10 10	10 10	10 10	20 10	10 10
	1000	6 6	6 6	6 6	6 6	<u> </u>	8 8	6 6	6 6
	500	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4
	0.	2 2	2 2	2 2	2 2	2 2	2 2	2 2	2 2
		Exp. Theory (PIM)	Exp. Theory (PhM)						

Figure 2: PhM [3] energy levels after fitting the experimental data (Exp) [1].

Results

Yb	Deformation Parameter β_2				Transition Probability B(E2) (e ² b ²)						Quadrupole Moment (b)			
А	β _{2 (ROT)}	$\beta_{2 \text{ PhM}}$	$\beta_{2 FRDM}$	β _{2 HFBCS}	B(E2) _{exp}	B(E2)(ROT)	B(E2) _{PhM}	B(E2) _{FRDM}	B(E2) _{HFBCS}	Q (ROT)	Q PhM	Q _{FRDM}	Q _{HFBCS}	
164	0.289	0.289	0.262	0.270	4.330	4.356	4.351	3.568	3.790	1.891	1.890	1.711	1.764	
166	0.315	0.315	0.274	0.280	5.200	5.241	5.230	3.966	4.142	2.074	2.072	1.804	1.844	
168	0.328	0.322	0.286	0.280	5.750	5.792	5.574	4.391	4.209	2.180	2.139	1.898	1.858	
170	0.325	0.325	0.287	0.280	5.721	5.768	5.743	4.492	4.276	2.176	2.171	1.920	1.873	
172	0.333	0.333	0.300	0.320	6.090	6.134	6.152	4.985	5.672	2.244	2.247	2.023	2.158	
174	0.324	0.322	0.289	0.310	5.850	5.898	5.828	4.698	5.406	2.200	2.187	1.964	2.106	
176	0.302	0.300	0.289	0.290	5.189	5.225	5.157	4.770	4.803	2.071	2.057	1.979	1.985	
178	0.299	0.302	0.278	0.280	-	5.179	5.301	4.481	4.546	2.062	2.086	1.918	1.931	
180	0.273	-	0.278	0.260	-	4.379	-	4.548	3.979	1.896		1.932	1.807	

Table 1: Experimental B(E2)s taken from [1], (ROT) values extracted from experimental energies and lifetimes [1] and extrapolated lifetimes (fig. 3) through equations [1], (PhM) values obtained from theoretical energies (eq. 1), (FRDM) and (HFBCS) values calculated from β_2 [4,5].

FRDM: β_2 parameters extracted from the radius vector in ε parameterization via

$$\beta_2 = \sqrt{4\pi} \frac{\int r(\theta, \phi) Y_2^0(\theta, \phi) d\Omega}{\int r(\theta, \phi) Y_0^0(\theta, \phi) d\Omega}$$
(3)

HFBCS: Skyrme MSk7 used for this model and β_2 calculated from Q_2, Q_4 .

Figure 3: Extrapolated values of $\tau(2_1^+)$ and $E(2_1^+)$ for ${}^{178,180}\mathrm{Yb}$

Conclusion & Future Directions

An overall good agreement was found between experimental results [1] and theoretical predictions. The latter can prove useful in an upcoming experiment to study the structure of the neutron–rich ¹⁷⁸Yb at IFIN–HH using the fast–timing technique. In addition, calculations with the IBM [6] and the proxy–SU(3) [7] models are in progress.

Acknowledgments

Work is supported under the HFRI PhD Fellowship grant (No 101742/2019). Support by ENSAR2 is acknowledged.

References

(1)

B. Pritychenko et al., At. Data Nucl. Data Tables 107, 1 (2016)
B. Nitychenko et al., Chin Churk Churk, Chure, Churk, Churk, Churk, Churk, Churk, Churk, Churk, Churk, Ch

