
NSF CSSI PI Meeting, Seattle, WA, Feb. 13-14, 2020

Award #: OAC-1533581

CSSI Element: Fast Dynamic Load Balancing
Tools for Extreme Scale Systems
PI: Mark S. Shephard, Co-PI: Cameron W. Smith, Ph.D. Student: Gerrett Diamond
Scientific Computation Research Center (SCOREC) at Rensselaer Polytechnic Institute, Troy, NY, USA

Motivation and Focus

GPUs provide >90% of the compute power on
leadership systems.
Simulations with regions of physical interest that
change can have
• complex relational structures,
• irregular forms of computational &
communication costs, and
• evolving imbalance of work characterized by
multiple criteria.

Provide fast dynamic load balancing on GPUs
where simulation data exists.

XGC fusion plasma physics (left) and MFEM Laghos Sedov
blast (right).

What is EnGPar?

• Provides a diffusive load balancing algorithm for
partition improvement and supports multi-criteria
partitioning.
• Complements existing multi-level and geometric
methods.
• Utilizes a weighted multi(hyper)graph structure to
represent data dependencies.
• Implemented to support efficient data parallel
operations on accelerators

Multiple diffusive iterations (left to right) biased to mi-
grate entities in order of descending distance (red to
blue) from the topological center of the part (blue).

Unstructured Mesh Partition
Improvement

Problem setup
• Billion element mesh of vertical tail structure.
• Run on the Mira BG/Q with one process per
hardware thread.
• Target imbalance of 1.05.
• The imbalance of a given type (vtx, edge, face, or
region) is defined as the max part weight divided by
the avg part weight.

Initial partitions are built using:
• Global ParMETIS part k-way to 8Ki(8 ∗ 210) parts.
• Local ParMETIS part k-way from 8Ki to 128Ki,
256Ki, and 512Ki parts.

Element Partition: Mesh Vertex
Imbalance Reduction

The partitions before using EnGPar:
Number of Parts 128Ki 256Ki 512Ki
Elements per part 9,836 4,918 2,459
Vertex imbalance 1.13 1.18 1.53
Element imbalance 1.02 1.02 1.02

Mesh vertex imbalances are reduced from 13% to 5%
for 128Ki, 18% to 5% for 256Ki, and 53% to 6% for
512Ki. Edge cut is increased by 1%.

Diffusive Partitioning

Algorithm 1 Diffusive Load Balancing Framework
1: procedure Balance(ngraph,entity_types)
2: for all t ∈ entity_types do
3: while imbalance of t > tolerance do Run-

Step(ngraph,t)
4: if Balancing Stagnates then
5: break
6: procedure RunStep(ngraph,t)
7: sides = makeSides(ngraph)
8: weights = makeWeights(ngraph, sides, t)
9: targets = makeTargets(ngraph, sides, weights)

10: queue = makeQueue(ngraph)
11: plan = select(ngraph, targets, queue)
12: ngraph.migrate(plan)

Queue
One inward BFS and one outward BFS to compute
graph distance; the traversal order.

(left) The distance from each vertex to the boundary
and (right) the distance from the core vertex (marked
with a zero near the bottom left corner).

Sell-C-Sigma structure (Besta and Merending, et al.)

Accelerating BFS
Hypergraphs created from unstructured tet mesh of au-
tomotive part
Timing comparison on NVIDIA 1080ti - includes data
transfers, but not JIT; average of three runs shown
scg_int_unroll is 4.78 times faster than csr on 28M
graph and up to 11 times faster than serial push on
Intel Xeon (not shown)
Memory coalescing is critical; csr vs. scg

push: C++ serial push, pull: C++ serial ‘pull’, csr: OpenCL
‘pull’ on CSR, scg: OpenCL ‘pull’ on Sell-C-Sigma, *_int: 4B
int, *_unroll: unroll the vtx-to-hyperedge loop

Selection using Kokkos
Operate on non-overlapping cavities to avoid race; color
the boundary
A cavity is selected for migration if it satisfies color,
target, and size criteria

Speedup of parallel vs. serial coloring and dual
computation on NVIDIA 1080ti Making good

decisions

Initial, GPU Selection, CPU Selection Bias selection
towards cavities with highest topological distance.

Closing Remarks and Future Work

• Using Kokkos for improved portability and ease of
use over OpenCL
• Porting of BFS to Kokkos is underway
• Focused on balancing particles in XGCm
accelerated unstructured mesh PIC

More Info
EnGPar - github.com/SCOREC/EngPar
Mark S. Shephard - shephard@rpi.edu
Cameron W. Smith - smithc11@rpi.edu

github.com/SCOREC/EngPar
shephard@rpi.edu
smithc11@rpi.edu

