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Appendix A

Theorem 1. The best efficiency ranking for any DMU is one; that is, for any DMUd (d=1,…,n), the optimal objective function of model (6) is exactly one, 
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Proof: (i) First, it is clear that for any 
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 under consideration, the objective function of model (6) is no less than one, as the decision variable 
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 is a binary variable being zero or one. Hence, it holds 
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 (ii) Then we show that it is possible for the objective function of model (6) to reach one when a particular 
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 is under consideration. To this end, let us consider a solution 
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 is a feasible solution of model (6) as it can satisfy all constraints of model (6) such that
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Accomplishing with the nonnegative requirement and binary requirement on decision variables, it is easy to verify that 
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 is a feasible solution of model (6) when 
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 is under consideration. Therefore, the optimal objective function of model (6) would be no more than of that with the feasible solution 
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Together with both (i) 
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, we know that the optimal objective function of model (6) is one when 
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 is under consideration. In addition, it is notable that the subscript “s” in the feasible solution 
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 is randomly labelled among multiple outputs, therefore we can conclude that the optimal objective function of model (6) would be exactly one for any 
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 will always be one. This completes the proof of Theorem 1.

Appendix B

Theorem 2. The worst efficiency ranking for any DMU is n; that is, for any DMUd (d=1,…,n), the optimal objective function of model (7) is exactly n, 
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Proof: (i) First, it is clear that for any 
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 the objective function of model (7) is no more than n (the number of DMUs), as the decision variable 
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(ii) Then we show that it is possible for the objective function of model (7) to reach the maximum n when a particular 
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 is under consideration. To this end, let us consider again the solution 
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 in the proof of Theorem 1, but let 
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 is also a feasible solution of model (7) as it can satisfy all constraints of model (7) such that
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Accomplishing with the nonnegative requirement and binary requirement on decision variables, it is easy to verify that 
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 is a feasible solution of model (7) when 
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 is under consideration. Therefore, the optimal objective function of model (7) would be no less than of that with the feasible solution 
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Together with both (i) 
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, we have that the optimal objective function of model (7) is n when 
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 is under consideration. In addition, it is notable that the subscript “s” in the feasible solution 
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 is randomly labelled among multiple outputs, therefore we can conclude that the optimal objective function of model (7) would be exactly n for any 
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 will always be n. This completes the proof of Theorem 2.

Appendix C

Proposition 1. The constraints of system (8) are feasible.

Proof. Consider 
[image: image51.wmf](

)

01

,,,,,,,

rimj

uwuwRrij

x

------

+

="

 where 
[image: image52.wmf]1

n

ssj

j

uRy

-

=

=

å

, 
[image: image53.wmf](

)

0

0

r

uurs

--

=="¹

, 
[image: image54.wmf](

)

0

i

wi

-

="

, 
[image: image55.wmf]1

1

m

w

-

+

=

 and 
[image: image56.wmf](

)

1

n

jsjsj

j

RRyyj

-

=

="

å

. Obviously, 
[image: image57.wmf](

)

01

,,,,,,,

rimj

uwuwRrij

x

------

+

="

 is a feasible solution of system (8). This completes the proof of Proposition 1.
Appendix D

Theorem 3. There exist fixed cost allocation schemes that can determine a best efficiency ranking of one for each individual DMU simultaneously under a set of common weights, and these schemes can be given by the following formula (9):
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Proof: Consider the solution 
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 is under consideration, as it can satisfy all constraints of model (5) such that
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Also, 
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 satisfies the 0-1 requirement, non-negative and positive requirements on according variables, hence, 
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Further, it is easy to verify that the optimal objective function of model (5) is no less than one, and the objective function value reaches one with the feasible solution 
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 achieves one. Since the output labelled as s is randomly selected, that is, there exists at least one feasible allocation scheme that can achieve the optimal objective function model (5) of one and determine a best efficiency ranking of one. Therefore, we have
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By submitting 
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By simple arrangement, (D6) is equivalent to the following (D7).
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Hence, (D7) can achieve a best efficiency ranking of one for each DMU with a set of common weights 
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