Supporting Information

Synthesis and characterization of a butyltin Keggin ion with a rare 4coordinate Ca center

Danielle C. Hutchison^[a], Rebecca D. Stern^[b], Lev N. Zakharov^[a], Kristin A. Persson^[b,c], May Nyman^{[a]*}

^[a]Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331 (USA) ^[b]Department of Materials Science and Engineering, University of California Berkeley, Berkeley, California 94720 (USA)

^[c]Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA)

*Corresponding Author Email: may.nyman@oregonstate.edu

Table of Contents

Table S 1: Bond Valence Sum for β -CaSn ₁₂
Table S 2: Atomic percentages for selected elements in β -CaSn ₁₂ determined by SEM-EDX4
Figure S 1: Single crystal x-ray structure of the β -CaSn ₁₂ [(BuSn) ₁₂ (CaO ₄)(OCH ₃) ₁₂ (O) ₄ (OH) ₈] ²⁺ molecule with complete butyl ligands. Gray and blue polyhedra represent Sn; Ca is shown in teal, O in red, C in black, and H in white.
Figure S 2: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $[(BuSn)_{12}(CaO_4)(O)_{11}(OH)_6]^{2+}$. One component of overlapping peak centered at 1259.85 m/z
Figure S 3: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $[(BuSn)_{12}(CaO_4)(O)_{10}(OH)_8]^{2+}$. One component of overlapping peak centered at 1259.85 m/z
Figure S 4: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $[(BuSn)_{12}(CaO_4)(O)_{11}(OH)_4(OCH_3)_2]^{2+}$. One component of overlapping peak centered at 1259.85 m/z6
Figure S 5: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $[(BuSn)_{12}(CaO_4)(O)_{11}(OH)_3(OCH_3)_3]^{2+}$. One component of overlapping peak centered at 1259.85 m/z6
Figure S 6: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $[(BuSn)_{12}(CaO_4)(O)_8(OH)_4(OCH_3)]^{2+}$. One component of overlapping peak centered at 1282.83 m/z7
Figure S 7: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $[(BuSn)_{12}(CaO_4)(O)_{10}(OH)_4(OCH_3)_4]^{2+}$. One component of overlapping peak centered at 1282.83 m/z7
Figure S 8: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $[(BuSn)_{12}(CaO_4)(O)_8(OH)_{10}(OCH_3)_2]^{2+}$. One component of overlapping peak centered at 1282.83 m/z8
Figure S 9: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $[(BuSn)_{12}(CaO_4)(O)_{10}(OH)_3(OCH_3)_5]^{2+}$. One component of overlapping peak centered at 1282.83 m/z8
Figure S 10: Full ¹ H NMR spectrum of β -CaSn ₁₂ in C ₆ D ₆ (red) and β , γ -NaSn ₁₂ (blue) in C ₆ D ₆ 9
Figure S 11: Full ¹¹⁹ Sn NMR spectrum of β -CaSn ₁₂ (red) and β , γ -NaSn ₁₂ (blue) in C ₆ D ₆ 9
Figure S 12: ¹³ C NMR spectrum of β -CaSn ₁₂ (red) and β , γ -NaSn ₁₂ (blue) in C ₆ D ₆ 10
Figure S 13: Scattering curve of β -CaSn ₁₂ in THF (red) and spherical model of the data (gray). The model gives a cluster radius of 4.9Å, a center-to-center distance between clusters of 8.6Å, and 0.87 nearest neighbors.
Figure S 14: (a) Aging of β -CaSn ₁₂ in CDCl ₃ monitored by ¹ H NMR. (b) Aging of β -CaSn ₁₂ in 90% CDCl ₃ /10% MeOD monitored by ¹ H NMR
Figure S 15: Full FT-IR spectra of β -CaSn ₁₂ from 1 to 28 days after isolation11

Figure S 16: ¹¹⁹Sn NMR spectrum of cooled β -CaSn₁₂ solution after heating.12

Assignment	Atom 1	Atom 2	d (Å)	BV	BVS
Ca ²⁺	Cal	01	2.288(19)	0.4	1.71
	Cal	O3	2.263(16)	0.4	
	Cal	03	2.263(16)	0.4	
	Cal	02	2.31(2)	0.4	
O ²⁻	01	Sn1	2.096(11)	0.6	2.16
	01	Sn1	2.096(11)	0.6	
	01	Sn2	2.129(19)	0.5	
	01	Cal	2.288(19)	0.4	
	O2	Sn3	2.097(13)	0.6	-
O ²⁻	O2	Sn3	2.097(13)	0.6	2.14
0-	O2	Sn6	2.12(2)	0.6	2.11
	O2	Cal	2.31(2)	0.4	
	O3	Sn4	2.118(16)	0.6	_
O ²⁻	O3	Sn5	2.100(16)	0.6	2.16
0	O3	Sn4	2.118(16)	0.6	2.10
	O3	Cal	2.263(16)	0.4	
OH-	O4	Sn1	2.075(16)	0.6	1.34
ОН	O4	Sn5	2.031(17)	0.7	
OIL	05	Sn1	2.039(16)	0.7	1.35
OH-	05	Sn1	2.061(17)	0.7	
0	08	Sn2	2.039(17)	0.7	1.37
O ²⁻	08	Sn3	2.050(16)	0.7	
011	011	Sn5	2.106(8)	0.6	1.16
OH-	011	Sn5	2.106(8)	0.6	
	O14	Sn6	2.02(2)	0.7	1.41
O ²⁻	O14	Sn7	2.047(19)	0.7	
	015	Sn7	2.050(9)	0.7	1.35
OH-	015	Sn7	2.050(9)	0.7	
OH-	017	Sn3	2.071(19)	0.6	1.26
	017	Sn4	2.08(2)	0.6	
OMe-	06	Sn1	2.171(16)	0.5	2.15
	06	Sn2	2.139(18)	0.5	
	06	C52	1.34(3)	1.1	
	07	Sn1	2.161(13)	0.5	1.74
OMe-	07	Sn1	2.161(13)	0.5	
01/10	07	C51	1.50(4)	0.7	

Table S 1: Bond Valence Sum for β -CaSn₁₂

OMe-	09	Sn3	2.110(18)	0.6	
	09	Sn3	2.110(18)	0.6	1.99
	09	C54	1.45(5)	0.8	
OMe-	O10	Sn3	2.170(19)	0.5	
	O10	Sn6	2.16(2)	0.5	1.74
	O10	C53	1.49(4)	0.8	
OMe-	O12	Sn4	2.11(2)	0.6	
	O12	Sn5	2.17(2)	0.5	1.90
	O12	C50	1.45(4)	0.8	
OMe-	O13	Sn7	2.130(19)	0.5	1.76
	O13	Sn5	2.162(18)	0.5	
	O13	C56	1.51(3)	0.7	
OMe-	016	Sn4	2.158(16)	0.5	1.92
	016	Sn7	2.20(2)	0.4	
	016	C55	1.40(3)	1.0	

Table S 2: Atomic percentages for selected elements in β -CaSn₁₂ determined by SEM-EDX

	Na At%	Cl At%	Sn At%	Ca At%	Sn:Ca
Area 1	2.40	1.35	78.81	17.44	4.5
Area 2	1.54	1.83	81.67	14.96	5.5
Area 3	2.44	3.02	77.89	16.65	4.7

Figure S 1: Single crystal x-ray structure of the β -CaSn₁₂ [(BuSn)₁₂(CaO₄)(OCH₃)₁₂(O)₄(OH)₈]²⁺ molecule with complete butyl ligands. Gray and blue polyhedra represent Sn; Ca is shown in teal, O in red, C in black, and H in white.

Figure S 2: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $[(BuSn)_{12}(CaO_4)(O)_{11}(OH)_6]^{2+}$. One component of overlapping peak centered at 1259.85 m/z.

Figure S 3: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $[(BuSn)_{12}(CaO_4)(O)_{10}(OH)_8]^{2+}$. One component of overlapping peak centered at 1259.85 m/z.

Figure S 4: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $[(BuSn)_{12}(CaO_4)(O)_{11}(OH)_4(OCH_3)_2]^{2+}$. One component of overlapping peak centered at 1259.85 m/z.

Figure S 5: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $[(BuSn)_{12}(CaO_4)(O)_{11}(OH)_3(OCH_3)_3]^{2+}$. One component of overlapping peak centered at 1259.85 m/z.

Figure S 6: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $[(BuSn)_{12}(CaO_4)(O)_8(OH)_4(OCH_3)]^{2+}$. One component of overlapping peak centered at 1282.83 m/z.

Figure S 7: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $[(BuSn)_{12}(CaO_4)(O)_{10}(OH)_4(OCH_3)_4]^{2+}$. One component of overlapping peak centered at 1282.83 m/z.

Figure S 8: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $[(BuSn)_{12}(CaO_4)(O)_8(OH)_{10}(OCH_3)_2]^{2+}$. One component of overlapping peak centered at 1282.83 m/z.

Figure S 9: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $[(BuSn)_{12}(CaO_4)(O)_{10}(OH)_3(OCH_3)_5]^{2+}$. One component of overlapping peak centered at 1282.83 m/z.

Figure S 10: Full ¹H NMR spectrum of β -CaSn₁₂ in C₆D₆ (red) and β , γ -NaSn₁₂ (blue) in C₆D₆.

Figure S 11: Full ¹¹⁹Sn NMR spectrum of β -CaSn₁₂ (red) and β , γ -NaSn₁₂ (blue) in C₆D₆.

Figure S 12: ¹³C NMR spectrum of β -CaSn₁₂ (red) and β , γ -NaSn₁₂ (blue) in C₆D₆.

Figure S 13: Scattering curve of β -CaSn₁₂ in THF (red) and spherical model of the data (gray). The model gives a cluster radius of 4.9Å, a center-to-center distance between clusters of 8.6Å, and 0.87 nearest neighbors.

Figure S 14: (a) Aging of β -CaSn₁₂ in CDCl₃ monitored by ¹H NMR. (b) Aging of β -CaSn₁₂ in 90% CDCl₃/10% MeOD monitored by ¹H NMR.

Figure S 15: Full FT-IR spectra of β -CaSn₁₂ from 1 to 28 days after isolation.

Figure S 16: ¹¹⁹Sn NMR spectrum of cooled β -CaSn₁₂ solution after heating.