## Supporting Information

## Synthesis and characterization of a butyltin Keggin ion with a rare 4coordinate Ca center

Danielle C. Hutchison ${ }^{[a]}$, Rebecca D. Stern ${ }^{[b]}$, Lev N. Zakharov ${ }^{[a]}$, Kristin A. Persson ${ }^{[b, c]}$, May Nyman ${ }^{[\text {[] }}{ }^{\text { }}$
${ }^{[a]}$ Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331 (USA)
${ }^{[b]}$ Department of Materials Science and Engineering, University of California Berkeley, Berkeley, California 94720 (USA)
${ }^{[c]}$ Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA)
*Corresponding Author Email: may.nyman@oregonstate.edu

## Table of Contents

Table S 1: Bond Valence Sum for $\beta-\mathrm{CaSn}_{12}$
Table S 2: Atomic percentages for selected elements in $\beta-\mathrm{CaSn}_{12}$ determined by SEM-EDX .4
Figure S 1: Single crystal x-ray structure of the $\beta-\mathrm{CaSn}_{12}\left[(\mathrm{BuSn})_{12}\left(\mathrm{CaO}_{4}\right)\left(\mathrm{OCH}_{3}\right)_{12}(\mathrm{O})_{4}(\mathrm{OH})_{8}\right]^{2+}$ molecule with complete butyl ligands. Gray and blue polyhedra represent $\mathrm{Sn} ; \mathrm{Ca}$ is shown in teal, O in red, C in black, and H in white.

Figure S 2: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $\left[(\mathrm{BuSn})_{12}\left(\mathrm{CaO}_{4}\right)(\mathrm{O})_{11}(\mathrm{OH})_{6}\right]^{2+}$. One component of overlapping peak centered at $1259.85 \mathrm{~m} / \mathrm{z}$.

Figure S 3: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $\left[(\mathrm{BuSn})_{12}\left(\mathrm{CaO}_{4}\right)(\mathrm{O})_{10}(\mathrm{OH})_{8}\right]^{2+}$. One component of overlapping peak centered at $1259.85 \mathrm{~m} / \mathrm{z}$.

Figure S 4: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $\left[(\mathrm{BuSn})_{12}\left(\mathrm{CaO}_{4}\right)(\mathrm{O})_{11}(\mathrm{OH})_{4}\left(\mathrm{OCH}_{3}\right)_{2}\right]^{2+}$. One component of overlapping peak centered at $1259.85 \mathrm{~m} / \mathrm{z}$. .... 6

Figure S 5: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $\left[(\mathrm{BuSn})_{12}\left(\mathrm{CaO}_{4}\right)(\mathrm{O})_{11}(\mathrm{OH})_{3}\left(\mathrm{OCH}_{3}\right)_{3}\right]^{2+}$. One component of overlapping peak centered at $1259.85 \mathrm{~m} / \mathrm{z}$. 6

Figure S 6: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $\left[(\mathrm{BuSn})_{12}\left(\mathrm{CaO}_{4}\right)(\mathrm{O})_{8}(\mathrm{OH})_{4}\left(\mathrm{OCH}_{3}\right)\right]^{2+}$. One component of overlapping peak centered at $1282.83 \mathrm{~m} / \mathrm{z}$. .. 7

Figure S 7: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $\left[(\mathrm{BuSn})_{12}\left(\mathrm{CaO}_{4}\right)(\mathrm{O})_{10}(\mathrm{OH})_{4}\left(\mathrm{OCH}_{3}\right)_{4}\right]^{2+}$. One component of overlapping peak centered at $1282.83 \mathrm{~m} / \mathrm{z}$. 7

Figure S 8: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $\left[(\mathrm{BuSn})_{12}\left(\mathrm{CaO}_{4}\right)(\mathrm{O})_{8}(\mathrm{OH})_{10}\left(\mathrm{OCH}_{3}\right)_{2}\right]^{2+}$. One component of overlapping peak centered at $1282.83 \mathrm{~m} / \mathrm{z}$. 8

Figure S 9: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $\left[(\mathrm{BuSn})_{12}\left(\mathrm{CaO}_{4}\right)(\mathrm{O})_{10}(\mathrm{OH})_{3}\left(\mathrm{OCH}_{3}\right)_{5}\right]^{2+}$. One component of overlapping peak centered at $1282.83 \mathrm{~m} / \mathrm{z}$. .... 8

Figure S 10: Full ${ }^{1} \mathrm{H}$ NMR spectrum of $\beta-\mathrm{CaSn}_{12}$ in $\mathrm{C}_{6} \mathrm{D}_{6}($ red $)$ and $\beta, \gamma-\mathrm{NaSn}_{12}$ (blue) in $\mathrm{C}_{6} \mathrm{D}_{6} \ldots . . . . . . . . . . . . . .9$
Figure S 11: Full ${ }^{119} \mathrm{Sn}$ NMR spectrum of $\beta-\mathrm{CaSn}_{12}$ (red) and $\beta, \gamma-\mathrm{NaSn}_{12}$ (blue) in $\mathrm{C}_{6} \mathrm{D}_{6} \ldots . . . . . . . . . . . . . . . . . . . . . . . . ~ 9 ~$

Figure S 13: Scattering curve of $\beta-\mathrm{CaSn}_{12}$ in THF (red) and spherical model of the data (gray). The model gives a cluster radius of $4.9 \AA$, a center-to-center distance between clusters of $8.6 \AA$, and 0.87 nearest neighbors.

Figure S 14: (a) Aging of $\beta-\mathrm{CaSn}_{12}$ in $\mathrm{CDCl}_{3}$ monitored by ${ }^{1} \mathrm{H}$ NMR. (b) Aging of $\beta-\mathrm{CaSn}_{12}$ in $90 \%$ $\mathrm{CDCl}_{3} / 10 \%$ MeOD monitored by ${ }^{1} \mathrm{H}$ NMR11

Figure S 15: Full FT-IR spectra of $\beta-\mathrm{CaSn}_{12}$ from 1 to 28 days after isolation......................................... 11

Figure S 16: ${ }^{119} \mathrm{Sn}$ NMR spectrum of cooled $\beta-\mathrm{CaSn}_{12}$ solution after heating. $\qquad$

Table S 1: Bond Valence Sum for $\beta-\mathrm{CaSn}_{12}$

| Assignment | Atom 1 | Atom 2 | d ( $\AA$ ) | BV | BVS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Ca}^{2+}$ | Ca 1 | O1 | 2.288(19) | 0.4 | 1.71 |
|  | Ca 1 | O3 | 2.263(16) | 0.4 |  |
|  | $\mathrm{Ca1}$ | O3 | 2.263(16) | 0.4 |  |
|  | Ca 1 | O2 | 2.31(2) | 0.4 |  |
| $\mathrm{O}^{2-}$ | O1 | Sn1 | 2.096(11) | 0.6 | 2.16 |
|  | O1 | Sn1 | 2.096(11) | 0.6 |  |
|  | O1 | Sn2 | 2.129(19) | 0.5 |  |
|  | O1 | Ca 1 | 2.288(19) | 0.4 |  |
| $\mathrm{O}^{2-}$ | O2 | Sn3 | 2.097(13) | 0.6 | 2.14 |
|  | O2 | Sn3 | 2.097(13) | 0.6 |  |
|  | O2 | Sn6 | 2.12(2) | 0.6 |  |
|  | O2 | Ca 1 | 2.31(2) | 0.4 |  |
| $\mathrm{O}^{2-}$ | O3 | Sn4 | 2.118(16) | 0.6 | 2.16 |
|  | O3 | Sn5 | 2.100(16) | 0.6 |  |
|  | O3 | Sn4 | $2.118(16)$ | 0.6 |  |
|  | O3 | Ca 1 | 2.263(16) | 0.4 |  |
| $\mathrm{OH}^{-}$ | O4 | Sn1 | 2.075(16) | 0.6 | 1.34 |
|  | O4 | Sn5 | 2.031(17) | 0.7 |  |
| $\mathrm{OH}^{-}$ | O5 | Sn1 | 2.039(16) | 0.7 | 1.35 |
|  | O5 | Sn1 | 2.061(17) | 0.7 |  |
| $\mathrm{O}^{2-}$ | O8 | Sn2 | 2.039(17) | 0.7 | 1.37 |
|  | O8 | Sn3 | 2.050(16) | 0.7 |  |
| $\mathrm{OH}^{-}$ | O 11 | Sn5 | $2.106(8)$ | 0.6 | 1.16 |
|  | 011 | Sn5 | $2.106(8)$ | 0.6 |  |
| $\mathrm{O}^{2-}$ | O14 | Sn6 | 2.02(2) | 0.7 | 1.41 |
|  | O14 | Sn7 | 2.047(19) | 0.7 |  |
| $\mathrm{OH}^{-}$ | O15 | Sn7 | 2.050(9) | 0.7 | 1.35 |
|  | O15 | Sn7 | 2.050(9) | 0.7 |  |
| $\mathrm{OH}^{-}$ | O17 | Sn3 | 2.071(19) | 0.6 | 1.26 |
|  | O17 | Sn4 | 2.08(2) | 0.6 |  |
| OMe- | O6 | Sn1 | 2.171(16) | 0.5 | 2.15 |
|  | O6 | Sn2 | 2.139(18) | 0.5 |  |
|  | O6 | C52 | 1.34(3) | 1.1 |  |
| OMe- | O7 | Sn1 | 2.161(13) | 0.5 | 1.74 |
|  | O7 | Sn1 | 2.161(13) | 0.5 |  |
|  | O7 | C51 | 1.50(4) | 0.7 |  |


| OMe- | O9 | Sn3 | 2.110(18) | 0.6 | 1.99 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | O9 | Sn3 | $2.110(18)$ | 0.6 |  |
|  | O9 | C54 | $1.45(5)$ | 0.8 |  |
| OMe- | O10 | Sn3 | 2.170(19) | 0.5 | 1.74 |
|  | O10 | Sn6 | 2.16 (2) | 0.5 |  |
|  | O10 | C53 | 1.49(4) | 0.8 |  |
| OMe- | O12 | Sn4 | 2.11(2) | 0.6 | 1.90 |
|  | O 12 | Sn5 | 2.17(2) | 0.5 |  |
|  | O 12 | C50 | 1.45(4) | 0.8 |  |
| OMe- | O13 | Sn7 | 2.130 (19) | 0.5 | 1.76 |
|  | O13 | Sn5 | $2.162(18)$ | 0.5 |  |
|  | O13 | C56 | 1.51(3) | 0.7 |  |
| OMe- | O16 | Sn4 | 2.158(16) | 0.5 | 1.92 |
|  | O16 | Sn7 | 2.20(2) | 0.4 |  |
|  | O16 | C55 | 1.40(3) | 1.0 |  |

Table S 2: Atomic percentages for selected elements in $\boldsymbol{\beta}-\mathrm{CaSn}_{12}$ determined by SEM-EDX

|  | $\mathrm{Na} \mathrm{At} \%$ | $\mathrm{Cl} \mathrm{At} \%$ | $\mathrm{Sn} \mathrm{At} \%$ | $\mathrm{Ca} \mathrm{At} \%$ | $\mathrm{Sn}: \mathrm{Ca}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Area 1 | 2.40 | 1.35 | 78.81 | 17.44 | 4.5 |
| Area 2 | 1.54 | 1.83 | 81.67 | 14.96 | 5.5 |
| Area 3 | 2.44 | 3.02 | 77.89 | 16.65 | 4.7 |



Figure S 1: Single crystal x-ray structure of the $\beta-\mathrm{CaSn}_{12}\left[(\mathrm{BuSn})_{12}\left(\mathrm{CaO}_{4}\right)\left(\mathrm{OCH}_{3}\right)_{12}(\mathrm{O})_{4}(\mathrm{OH})_{8}\right]^{2+}$ molecule with complete butyl ligands. Gray and blue polyhedra represent $\mathrm{Sn} ; \mathrm{Ca}$ is shown in teal, O in red, C in black, and H in white.

## Complete ESI-MS Peak Assignments



Figure S 2: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $\left[(\mathrm{BuSn})_{12}\left(\mathrm{CaO}_{4}\right)(\mathrm{O})_{11}(\mathrm{OH})_{6}\right]^{2+}$. One component of overlapping peak centered at $1259.85 \mathrm{~m} / \mathrm{z}$.


Figure S 3: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $\left[(\mathrm{BuSn})_{12}\left(\mathrm{CaO}_{4}\right)(\mathrm{O})_{10}(\mathrm{OH})_{8}\right]^{2+}$. One component of overlapping peak centered at $1259.85 \mathrm{~m} / \mathrm{z}$.


Figure S 4: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $\left[(\mathrm{BuSn})_{12}\left(\mathrm{CaO}_{4}\right)(\mathrm{O})_{11}(\mathrm{OH})_{4}\left(\mathrm{OCH}_{3}\right)_{2}\right]^{2+}$. One component of overlapping peak centered at $1259.85 \mathrm{~m} / \mathrm{z}$.


Figure S 5: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $\left[(\mathrm{BuSn})_{12}\left(\mathrm{CaO}_{4}\right)(\mathrm{O})_{11}(\mathrm{OH})_{3}\left(\mathrm{OCH}_{3}\right)_{3}\right]^{2+}$. One component of overlapping peak centered at $1259.85 \mathrm{~m} / \mathrm{z}$.


Figure S 6: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $\left[(\mathrm{BuSn})_{12}\left(\mathrm{CaO}_{4}\right)(\mathrm{O})_{8}(\mathrm{OH})_{4}\left(\mathrm{OCH}_{3}\right)\right]^{2+}$. One component of overlapping peak centered at $1282.83 \mathrm{~m} / \mathrm{z}$.


Figure S 7: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $\left[(\mathrm{BuSn})_{12}\left(\mathrm{CaO}_{4}\right)(\mathrm{O})_{10}(\mathrm{OH})_{4}\left(\mathrm{OCH}_{3}\right)_{4}\right]^{++}$. One component of overlapping peak centered at $1282.83 \mathrm{~m} / \mathrm{z}$.


Figure S 8: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $\left[(\mathrm{BuSn})_{12}\left(\mathrm{CaO}_{4}\right)(\mathrm{O})_{8}(\mathrm{OH})_{10}\left(\mathrm{OCH}_{3}\right)_{2}\right]^{2+}$. One component of overlapping peak centered at $1282.83 \mathrm{~m} / \mathrm{z}$.


Figure S 9: Experimental ESI MS (+, blue spectrum) and calculated peak positions (red) for $\left[(\mathrm{BuSn})_{12}\left(\mathrm{CaO}_{4}\right)(\mathrm{O})_{10}(\mathrm{OH})_{3}\left(\mathrm{OCH}_{3}\right)_{5}\right]^{2+}$. One component of overlapping peak centered at $1282.83 \mathrm{~m} / \mathrm{z}$.


Figure S 10: Full ${ }^{1} \mathrm{H}$ NMR spectrum of $\beta-\mathrm{CaSn}_{12}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ (red) and $\beta, \gamma-\mathrm{NaSn}_{12}$ (blue) in $\mathrm{C}_{6} \mathrm{D}_{6}$.


Figure S 11: Full ${ }^{119} \mathrm{Sn}$ NMR spectrum of $\beta-\mathrm{CaSn}_{12}$ (red) and $\beta, \gamma-\mathrm{NaSn}_{12}$ (blue) in $\mathrm{C}_{6} \mathrm{D}_{6}$.


Figure S 12: ${ }^{13} \mathrm{C}$ NMR spectrum of $\beta-\mathrm{CaSn}_{12}$ (red) and $\beta, \gamma-\mathrm{NaSn}_{12}$ (blue) in $\mathrm{C}_{6} \mathrm{D}_{6}$.


Figure S 13: Scattering curve of $\beta-\mathrm{CaSn}_{12}$ in THF (red) and spherical model of the data (gray). The model gives a cluster radius of $4.9 \AA$, a center-to-center distance between clusters of $8.6 \AA$, and 0.87 nearest neighbors.


Figure S 14: (a) Aging of $\beta-\mathrm{CaSn}_{12}$ in $\mathrm{CDCl}_{3}$ monitored by ${ }^{1} \mathrm{H}$ NMR. (b) Aging of $\beta-\mathrm{CaSn}_{12}$ in $90 \%$ $\mathrm{CDCl}_{3} / 10 \%$ MeOD monitored by ${ }^{1} \mathrm{H}$ NMR.


Figure S 15: Full FT-IR spectra of $\beta-\mathrm{CaSn}_{12}$ from 1 to 28 days after isolation.

## $\beta-\mathrm{CaSn}_{12}$ after heating



Figure S 16: ${ }^{119} \mathrm{Sn}$ NMR spectrum of cooled $\beta-\mathrm{CaSn}_{12}$ solution after heating.

