Massively-Parallel Real-Time TDDFT Modules for Non-Equilibrium Electron Dynamics

NSF: SI2-SSE project

Yi Yao, Alina Kononov, Dillon Yost, Xavier Andrade, Erik Draeger, Andre Schleife, Yosuke Kanai

Real-Time Time-Dependent Density Functional Theory (RT-TDDFT) Simulations

$$\left\{i\hbar\frac{d}{dt}\Big|\phi_{i}\left(t\right)\right\rangle = \hat{H}_{KS}\Big|\phi_{i}\left(t\right)\right\}_{i=1..N} \qquad \hat{H}_{KS} \equiv -\frac{\hbar^{2}}{2m_{e}}\nabla^{2} + \hat{V}_{ext}(t) + \hat{V}_{H}[\{\phi_{i}\left(t\right)\}] + \hat{V}_{XC}[\{\phi_{i}\left(t\right)\}]$$

Coupled non-linear PDEs w/ millions of PWs for representing the single-particle states.

$$\phi_{i}(\mathbf{r},t) = \psi_{n\mathbf{k}}(\mathbf{r},t) = \frac{1}{\sqrt{\Omega}} \sum_{\mathbf{G}}^{\mathbf{G}_{\max}} C_{n}(\mathbf{G},\mathbf{k},t) e^{i(\mathbf{k}+\mathbf{G})\cdot\mathbf{r}}$$

Challenges addressed through development of new modules in Qb@ll code

Highly scalable numerical integrators

Various integrator methods are made available by interfacing the Qb@ll code with the PETSc library, to reduce "time-to-solution".

Advanced and efficient approximation to V_{xc}

Recent XC functionals such as Strongly Constrained and Approximately Normed (SCAN) approximation are implemented in the context of PW-based RT-TDDFT.

Adaptation to various HPC machines

The code is designed to scales over a very large number of cores (>200K) on various HPC architectures, including IBM-BG/Q, Cray Blue Waters, KNL Theta, etc.

HPC Software Infrastructure

>40% peak performance @ 1.6 million cores

- Massively parallel and tailored to modern HPCs with hybrid MPI/open-MP/SIMD.

Scientific Impacts

Simulating electronic excitation dynamics in solvated DNA under proton irradiation.

- > 12.000 electrons
- > 6.000.000 PWs
- > 131.000 cores on BG/Q

