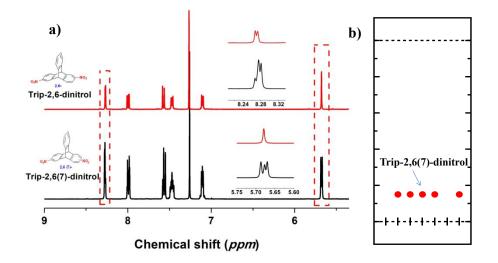
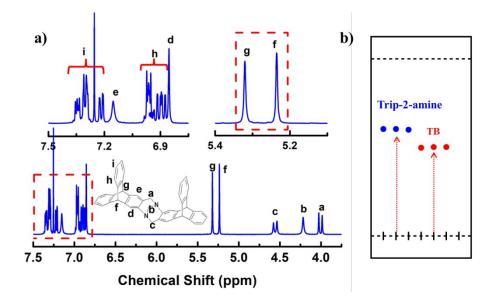
Supporting information for

Enhanced Gas Separation Properties of Tröger's Base Polymer Membranes Derived from Pure Triptycene Diamine Regioisomers


Zhiyang Zhu^{*a b*}, Junjie zhu^{*a b*}, Jianxin Li^{* *a b*}, Xiaohua Ma^{* *a b*}

^{*a*} State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tianjin, 300387, P. R. China


^b School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, P. R. China

Corresponding author: Tel: +86-22-8395-5822;

E-mail: <u>xhuama@126.com</u> (Xiaohua Ma); <u>jxli@tjpu.edu.cn</u> (Jianxin Li)

Figure S1. a) NMR spectra of Trip-2,6-dinitrol and mixture of Trip-2,6(7)-dinitrol, the bridge head proton ~ 5.7 ppm and proton in the ortho position of nitrol group ~ 8.28 ppm was highlighted on the magnified NMR spectra; b) Thin layer chromatography (TLC) point of Trip- 2,6(7)-dinitrol mixed compound, the eluent is dichloromethane/petroleum ether =1/3, $R_f = 0.15$.

Figure S2. a) NMR spectra of model compound triptycene-TB, the bridge head protons ~ 5.3 ppm and aromatic protons ~ 6.9 to 7.3 ppm are highlighted in the magnified figure. b) TLC of the reaction with eluent of dichloromethane/ethyl acetate = 4/1; R_f = 0.5 (red), R_f of the starting material is 0.6 (blue).

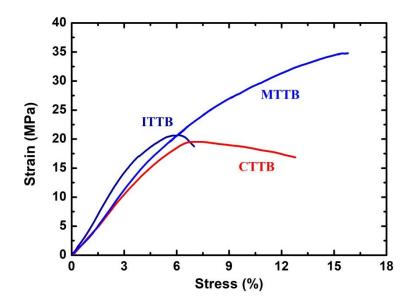


Figure S3. Stress-strain curves of CTTB, ITTB and MTTB, all polymers were fresh

made by soaking in MeOH for 12 h and then air-dried for 3 days.

Membranes				
Polymers	Young's	Strain (Mpa)	Elongation at	yielding
	Modulus (GPa)		break %	
ITTB	0.50	20	6%	Yes (at 5.8%)
СТТВ	0.42	18	13%	Yes (at 6.2%)
MTTB	0.44	35	17%	No

 Table S1.
 Mechanical Properties of the ITTB, CTTB and MTTB Polymer

 Membranes

Young's Modulus is obtained from the Stress-Strain curve in the strain range between 5 to 10 Mpa.

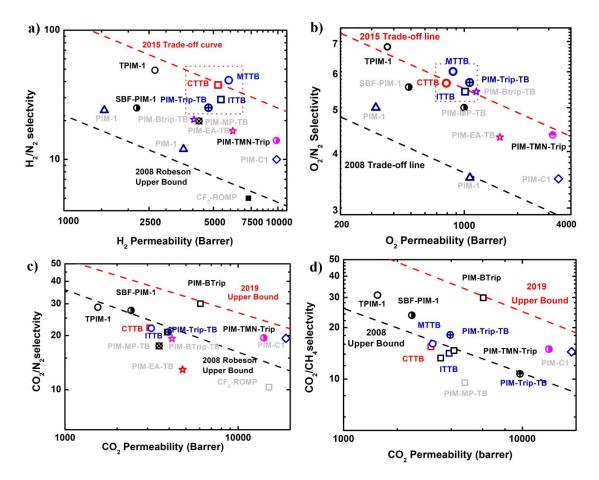


Figure S4. H_2/N_2 (a) and O_2/N_2 (b) CO_2/N_2 (c) and CO_2/CH_4 (d) separation performance of CTTB, MTTB, ITTB and some other reported polymers.

Polymers –	Diffusion coefficient		Solubility coefficient			C /C
	N_2	O ₂	N_2	O_2	$- D_{O2}/D_{N2}$	S_{O2}/S_{N2}
CTTB ^a	20.5	106	6.85	7.49	5.17	1.09
$MTTB^{b}$	20.1	110	7.14	7.87	5.47	1.10
ITTB ^c	22.4	115	8.35	8.8	5.13	1.05

Table S2. Diffusivity and Solubility Coefficient of the Polymers Membranes

^{*a*}CTTB with the thickness of 54 μ m, fresh air-dried membrane. ^{*b*}MTTB with the thickness of 60 μ m, fresh air-dried membrane. ^{*c*}ITTB with the thickness of 54 μ m, fresh air-dried membranes.

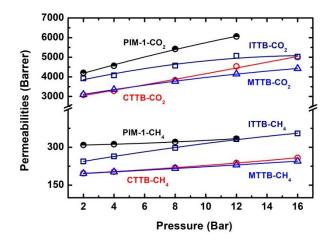


Figure S5: Pressure dependence of CO_2 and CH_4 permeabilities for CTTB, MTTB, ITTB and PIM-1.

Table S3. CO ₂ and CH ₄ Pressure Dependence of CTTH	B, MTTB, ITTB and PIM-1
---	-------------------------

Permeab	ility (Barrer)	2 Bar	4 Bar	8 Bar	12 Bar	16 Bar
CTTB	P _{CH4}	197	203	219	238	258
	P _{CO2}	3080	3284	3821	4535	5008
	$P_{\rm CO2}/\ P_{\rm CH4}$	15.6	16.2	17.4	19.0	19.4
MTTB	P _{CH4}	196	202	216	230	245
	P _{CO2}	3101	3356	3772	4146	4427
	$P_{\rm CO2}/\ P_{\rm CH4}$	15.8	16.6	17.4	18.0	18.1
ITTB	P _{CH4}	244	264	297	332	355
	P _{CO2}	3923	4078	4573	5074	5031
	$P_{\rm CO2}/P_{\rm CH4}$	16.1	15.4	15.4	15.3	14.2
PIM-1	P _{CH4}	309	312	321	334	
	P _{CO2}	4208	4563	5421	6060	
	P_{CO2}/P_{CH4}	13.6	14.6	16.9	18.1	

The thickness of the above membranes was $\sim 60 \ \mu m$ and the polymer membranes were soaked in methanol for 12h and then air-dried for 3 days before testing.

Polymer		Slop	R ²	ΔE_P (Kcal/mol)
CTTB a	O ₂	-0.94	0.975	0.0575
	N_2	-1.33	0.973	0.0814
MTTB ^b	O ₂	-1.21	0.996	0.0740
	N_2	-1.93	0.983	0.1181
ITTB ^c	O ₂	-0.66	0.997	0.0404
	N_2	-0.84	0.998	0.0513

Table S4. Activation Energy of the CTTB, MTTB and ITTB for O_2 and N_2 .

^{*a*}CTTB with the thickness of 54 μ m, fresh air-dried membrane. ^{*b*}MTTB with the thickness of 60 μ m, fresh air-dried membrane. ^{*c*}ITTB with the thickness of 54 μ m, fresh air-dried membranes.