Appendix

Let $F_{r,s,\delta}(\cdot)$ denote the noncentral F-distribution with degrees of freedom r and s and noncentrality parameter δ , and let $F_{r,s}(\cdot) = F_{r,s,0}(\cdot)$. The mean and variance of $F_{r,s,\delta}(\cdot)$ are

$$\frac{s(r+\delta)}{r(s-2)} \text{ and } 2\frac{(r+\delta)^2 + (r+2\delta)(s-2)}{(s-2)^2(s-4)},\tag{11}$$

assuming that s > 2 and s > 4, respectively.

We use the following representation of these distributions (Johnson et al. (1995), eq. (30.10)),

$$F_{r,s,\delta}(u) = \sum_{l=0}^{\infty} \frac{e^{-\frac{\delta}{2}} \left(\frac{\delta}{2}\right)^l}{l!} F_{r+2l,s} \left(\frac{ru}{r+2l}\right)$$

$$\tag{12}$$

$$F_{r,s}(u) = I_{\frac{ru}{ru+s}}\left(\frac{r}{2}, \frac{s}{2}\right), \tag{13}$$

where $I_u(a,b)$ is the regularized incomplete beta function (i.e., beta distribution function) given by

$$I_u(a,b) = \frac{1}{B(a,b)} \int_0^u t^{a-1} (1-t)^{b-1} dt, \tag{14}$$

where $B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$ is the usual beta function.

Proof of Lemma 1. The conditional distribution of the projected data matrix $X\mathbb{R}$ and $Y\mathbb{R}$, given \mathbb{R} , are independent $N_k(\mathbb{R}'\mu_1,\mathbb{R}'\Sigma\mathbb{R})$ and $N_k(\mathbb{R}'\mu_2,\mathbb{R}'\Sigma\mathbb{R})$, respectively. Note that $S_{\mathbb{R}}=\mathbb{R}'S\mathbb{R}$, given \mathbb{R} , is distributed as Wishart $W_k\left(\frac{1}{n_1+n_2-1}\mathbb{R}'\Sigma\mathbb{R},n_1+n_2-2\right)$. According to Theorem 3.4.8 of Mardia et al. (1979),

$$|S_{\mathbb{R}}| = |\mathbb{R}' \Sigma \mathbb{R}| \prod_{j=1}^{k} \chi_{n_1 + n_2 - j - 1}^2,$$
 (15)

where $\chi^2_{n_1+n_2-j-1}$ for $j=1,\ldots,k$ are independent χ^2 random variables. From expression (15), the proof is completed by showing that $\lambda_{\min}\left(\mathbb{R}'\Sigma\mathbb{R}\right)>0$ with probability 1, where $\lambda_{\min}(A)$ is the minimum eigenvalue of the matrix A. Now, observe that

$$\lambda_{\min} \left(\mathbb{R}' \Sigma \mathbb{R} \right) = \inf_{\|u\|_2 = 1} u' \mathbb{R}' \Sigma \mathbb{R} u$$

$$\geq \inf_{\|v\|_2 = 1} v' \Sigma v \inf_{\|u\|_2 = 1} \|\mathbb{R} u\|^2 = \lambda_{\min}(\Sigma) > 0.$$

Proof of Theorem 1

Part (a). Note that

$$E[\phi(T_{\mathbb{R}}^2)] = E_{\mathbb{R}} \left\{ E_{\mathbf{x},\mathbf{y}} \left[\phi(T_{\mathbb{R}}^2) \middle| \mathbb{R} \right] \right\} = E_{\mathbb{R}} \left\{ P_{\mathbf{x},\mathbf{y}} \left[\frac{n-k+1}{k} \cdot \frac{T_{\mathbb{R}}^2}{n} > c_{\alpha} \middle| \mathbb{R} \right] \right\}. \tag{16}$$

Under $\mathbf{H_0}$, the conditional distribution of $\frac{n-k+1}{k} \frac{T_{\mathbb{R}}^2}{n}$ is $F_{k,n-k+1}$, independent of \mathbb{R} . By (5), we have $E[\phi(T_{\mathbb{R}}^2)|\mathbf{H_0}] = \mathbf{E}_{\mathbb{R}} \{\alpha\} = \alpha$.

Part (b). Under \mathbf{H}_1^* and for fixed \mathbb{R} , the conditional distribution of $\frac{n-k+1}{k}\frac{T_{\mathbb{R}}^2}{n}$ is $F_{k,n-k+1,(n_1^{-1}+n_2^{-1})^{-1}\Delta_{\mathbb{R}}}$. (Recall that $\Delta_{\mathbb{R}}=(\mu_1-\mu_2)'\mathbb{R}(\mathbb{R}'\Sigma\mathbb{R})^{-1}\mathbb{R}'(\mu_1-\mu_2)$.) By (11) with r=k, s=n-k+1, and $\delta=0$ we have that $c_{\alpha}\to 1$. By (11) with r=k, s=n-k+1, and $\delta=(n_1^{-1}+n_2^{-1})^{-1}\Delta_{\mathbb{R}}$ we have under \mathbf{H}_1^* , and for fixed \mathbb{R} , that the mean and variance of $\frac{n-k+1}{k}\frac{T_{\mathbb{R}}^2}{n}$ behave asymptotically as $c_{\alpha}+(n_1^{-1}+n_2^{-1})^{-1}\Delta_{\mathbb{R}}/k$ and 2/n, respectively. (We say that a behaves asymptotically as b if $a/b\to 1$.)

It then follows from (5), (6), (16), and Chebychev's inequality that

$$E[\phi(T_{\mathbb{R}}^2)|\mathbf{H}_1^*] = \mathbf{E}_{\mathbb{R}}\left\{\mathbf{E}_{\mathbf{X},\mathbf{Y}}\left[\phi(\mathbf{T}_{\mathbb{R}}^2)\big|\mathbb{R},\mathbf{H}_1^*\right]\right\} \to \mathbf{1}.$$
(17)

Part (c). Using the property that $I_u(a+1,b) \leq I_u(a,b)$, and (13), we have

$$I_{\frac{kc_{\alpha}}{kc_{\alpha}+n-k+1}}\left(\frac{k}{2}+l,\frac{n-k+1}{2}\right) \leq I_{\frac{kc_{\alpha}}{kc_{\alpha}+n-k+1}}\left(\frac{k}{2},\frac{n-k+1}{2}\right)$$

$$= F_{k,n-k+1}(c_{\alpha}) = 1-\alpha. \tag{18}$$

Thus, using (16) and (18), we have $E[\phi(T_{\mathbb{R}}^2)|\mathbf{H_1}] \geq \alpha$.

Proof of Theorem 2 By evaluating the conditional probability that $\bar{\theta}^* < u$ given the data, and then taking an expectation over the data, we have

$$P\left[\bar{\theta}^* < u\right] = E_{\mathbf{X},\mathbf{Y}} \left\{ P_{\mathbb{R}} \left[\bar{\theta}^* < u \middle| \mathbf{X}, \mathbf{Y} \right] \right\}. \tag{19}$$

Note that

$$P_{\mathbb{R}}\left[\bar{\theta}^{*} < u \middle| \mathbf{X}, \mathbf{Y}\right] = P_{\mathbb{R}}\left[\frac{\bar{\theta}^{*} - E_{\mathbb{R}}\left(\theta_{1}^{*}\middle| \mathbf{X}, \mathbf{Y}\right)}{\sqrt{V_{\mathbb{R}}\left(\theta_{1}^{*}\middle| \mathbf{X}, \mathbf{Y}\right)/m}} < \frac{u - E_{\mathbb{R}}\left(\theta_{1}^{*}\middle| \mathbf{X}, \mathbf{Y}\right)}{\sqrt{V_{\mathbb{R}}\left(\theta_{1}^{*}\middle| \mathbf{X}, \mathbf{Y}\right)/m}} \middle| \mathbf{X}, \mathbf{Y}\right], \quad (20)$$

where $E_{\mathbb{R}}\left(\theta_1^*|\mathbf{X},\mathbf{Y}\right)$ and $V_{\mathbb{R}}\left(\theta_1^*|\mathbf{X},\mathbf{Y}\right)$ are the conditional mean and variance of θ_1^* given the data, \mathbf{X},\mathbf{Y} . Further, given \mathbf{X},\mathbf{Y} , the random variables $\{\theta_i^*,\ i=1,2\ldots,m\}$ are independent and

identically distributed with finite variance. Now by using the Central Limit Theorem, we have

$$\lim_{m \to \infty} \left\{ P_{\mathbb{R}} \left[\bar{\theta}^* < u \middle| \mathbf{X}, \mathbf{Y} \right] - \Phi \left(\frac{u - E_{\mathbb{R}} \left(\theta_1^* \middle| \mathbf{X}, \mathbf{Y} \right)}{\sqrt{V_{\mathbb{R}} \left(\theta_1^* \middle| \mathbf{X}, \mathbf{Y} \right) / m}} \right) \right\} = 0, \tag{21}$$

where $\Phi(\cdot)$ is the standard normal cumulative distribution function. From (7),

$$E_{\mathbb{R}}(\theta_{1}^{*}|\mathbf{X},\mathbf{Y})$$

$$= E_{\mathbb{R}}\left[1 - F_{k,n-k+1}\left(\frac{n-k+1}{k} \cdot \frac{T_{\mathbb{R}_{1}}^{2}}{n}\right) \middle| \mathbf{X},\mathbf{Y}\right]$$

$$= \int \left\{1 - F_{k,n-k+1}\left(\frac{n-k+1}{k} \cdot \frac{\frac{n_{1}n_{2}}{n_{1}+n_{2}}(\overline{X} - \overline{Y})'R(R'SR)^{-1}R'(\overline{X} - \overline{Y})}{n_{1}+n_{2}-2}\right)\right\} d\mathbf{P}_{R},$$

where \mathbf{P}_R is the probability measure corresponding to random matrix \mathbb{R} . We claim that distribution of $E_{\mathbb{R}}(\theta_1^*|\mathbf{X},\mathbf{Y})$ does not depend upon the parameters μ_1 , μ_2 and Σ . To verify this claim, it suffices to show that

$$E_{\mathbf{X},\mathbf{Y}} \left[E_{\mathbb{R}}(\theta_{1}^{*}|\mathbf{X},\mathbf{Y}) \right]^{r}$$

$$= \int \left[\int \left\{ 1 - F_{k,n-k+1} \left(\frac{n-k+1}{k} \cdot \frac{\frac{n_{1}n_{2}}{n_{1}+n_{2}} (\overline{X} - \overline{Y})' R(R'SR)^{-1} R'(\overline{X} - \overline{Y})}{n_{1}+n_{2}-2} \right) \right\} d\mathbf{P}_{R} \right]^{r} d\mathbf{P}_{\mathbf{X},\mathbf{Y}}$$
(22)

does not depend upon (μ_1, μ_2, Σ) for r = 1, 2, ..., where $\mathbf{P}_{\mathbf{X}, \mathbf{Y}}$ is the probability measure corresponding to the data \mathbf{X}, \mathbf{Y} .

Note that $0 \leq E_{\mathbb{R}}(\theta_1^*|\mathbf{X},\mathbf{Y}) \leq 1$. Observe that

$$\int \int \left\{ 1 - F_{k,n-k+1} \left(\frac{n-k+1}{k} \cdot \frac{\frac{n_1 n_2}{n_1 + n_2} (\overline{X} - \overline{Y})' R (R'SR)^{-1} R' (\overline{X} - \overline{Y})}{n_1 + n_2 - 2} \right) \right\}^r d\mathbf{P}_R d\mathbf{P}_{\mathbf{X},\mathbf{Y}} \tag{23}$$

$$= \int \left[\int \left\{ 1 - F_{k,n-k+1} \left(\frac{n-k+1}{k} \cdot \frac{\frac{n_1 n_2}{n_1 + n_2} (\overline{X} - \overline{Y})' R (R'SR)^{-1} R' (\overline{X} - \overline{Y})}{n_1 + n_2 - 2} \right) \right\}^r d\mathbf{P}_{\mathbf{X},\mathbf{Y}} \right] d\mathbf{P}_R,$$

where the interchange of integral are permitted by Fubini's theorem. Now, observe that under $\mathbf{H_0}$, the distribution of $F_{k,n-k+1}\left(\frac{n-k+1}{k}\cdot\frac{\frac{n_1n_2}{n_1+n_2}(\overline{X}-\overline{Y})'R(R'SR)^{-1}R'(\overline{X}-\overline{Y})}{n_1+n_2-2}\right)$ is U(0,1) for any given Projection matrix R. Therefore, the inner integral

$$\int \left\{ 1 - F_{k,n-k+1} \left(\frac{n-k+1}{k} \cdot \frac{\frac{n_1 n_2}{n_1 + n_2} (\overline{X} - \overline{Y})' R (R'SR)^{-1} R'(\overline{X} - \overline{Y})}{n_1 + n_2 - 2} \right) \right\}^r d\mathbf{P}_{\mathbf{X},\mathbf{Y}} \tag{24}$$

does not depend upon the parameter (μ_1, μ_2, Σ) . This imply that (23) does not depend upon the parameter for any positive integer r.

Now note that, from (22) and by using Fubini theorem, we have

$$E_{\mathbf{X},\mathbf{Y}}\left[E_{\mathbb{R}}(\theta_{1}^{*}|\mathbf{X},\mathbf{Y})\right]^{r} = \int \dots \int \left[\int \prod_{i=1}^{r} \left\{1 - F_{k,n-k+1}\left(\frac{n-k+1}{k} \cdot \frac{\frac{n_{1}n_{2}}{n_{1}+n_{2}}(\overline{X}-\overline{Y})'R_{i}(R_{i}'SR_{i})^{-1}R_{i}'(\overline{X}-\overline{Y})}{n_{1}+n_{2}-2}\right)\right\} d\mathbf{P}_{\mathbf{X},\mathbf{Y}}\right] \prod_{i=1}^{r} d\mathbf{P}_{R_{i}}$$
(25)

In (25), observe that R_i , $i=1,\ldots,r$, are iid with probability measure P_R . By using this and (24), it follows that

$$\int \prod_{i=1}^{r} \left\{ 1 - F_{k,n-k+1} \left(\frac{n-k+1}{k} \cdot \frac{\frac{n_1 n_2}{n_1 + n_2} (\overline{X} - \overline{Y})' R_i (R_i' S R_i)^{-1} R_i' (\overline{X} - \overline{Y})}{n_1 + n_2 - 2} \right) \right\} d\mathbf{P}_{\mathbf{X},\mathbf{Y}},$$

does not depend upon the parameter (μ_1, μ_2, Σ) which in turn implies that (22) holds for any positive integer r. Similarly, under $\mathbf{H_0}$, the distribution of $V_{\mathbb{R}}\left(\theta_1^* \big| \mathbf{X}, \mathbf{Y}\right)$ also does not depend on the parameters. Now note that

$$\left| P_{\mathbb{R}} \left[\bar{\theta}^* < u \middle| \mathbf{X}, \mathbf{Y} \right] - \Phi \left(\frac{u - E_{\mathbb{R}} \left(\theta_1^* \middle| \mathbf{X}, \mathbf{Y} \right)}{\sqrt{V_{\mathbb{R}} \left(\theta_1^* \middle| \mathbf{X}, \mathbf{Y} \right) / m}} \right) \right| < 2.$$
 (26)

From (19), (21), (26) and the dominated convergence theorem, we have

$$\lim_{m \to \infty} \left\{ P\left[\bar{\theta}^* < u\right] - E_{\mathbf{X}, \mathbf{Y}} \left[\Phi\left(\frac{u - E_{\mathbb{R}}\left(\theta_1^* | \mathbf{X}, \mathbf{Y}\right)}{\sqrt{V_{\mathbb{R}}\left(\theta_1^* | \mathbf{X}, \mathbf{Y}\right)/m}}\right) \right] \right\} = 0$$

Thus, for any n_1, n_2 , as $m \to \infty$, the asymptotic distribution of $\frac{1}{m} \sum_{i=1}^m \theta_i^*$ does not depend on the parameters μ_1, μ_2 , and Σ . This completes the proof.

Proof of Theorem 3 The power of the test (8) is

$$E[\phi^*|\mathbf{H_1^*}] = P\left[\bar{\theta}^* < u_{\{\alpha,n_1,n_2\}} \middle| \mathbf{H_1^*} \right],$$

where $u_{\{\alpha,n_1,n_2\}}$ is such that

$$P\left[\bar{\theta}^* < u_{\{\alpha, n_1, n_2\}} \middle| \mathbf{H_0} \right] = \alpha.$$

For a given α , n_1 , and n_2 , we have $0 < u_{\{\alpha,n_1,n_2\}} < 1$. Thus, there exists a convergent subsequence of $u_{\{\alpha,n_1,n_2\}}$. With an abuse of the notation, let this subsequence be $u_{\{\alpha,n_1,n_2\}}$, converging to u_{α} .

We claim that $u_{\alpha} > 0$. To see this, note first that for all (n_1, n_2) , $P(\bar{\theta}^* \leq \epsilon | \mathbf{H_0}) \leq P(m^{-1}\theta_1 \leq \epsilon | \mathbf{H_0}) = \epsilon m$, since θ_i is uniform(0,1) distributed under $\mathbf{H_0}$. Thus, there exists a positive ϵ such that $P(\bar{\theta}^* \leq \epsilon | \mathbf{H_0}) < \alpha$ for all (n_1, n_2) . It follows that $u_{\alpha, n_1, n_2} \geq \epsilon$ for all (n_1, n_2) and therefore $u_{\alpha} \geq \epsilon > 0$.

Let ν be positive. Since θ_i is the p-value of the test $\phi(T_{\mathbb{R}}^2)$, it follows from Theorem 1 (b) with $\alpha = \nu$ that $P(\theta_i < \nu | \mathbf{H_1^*}) = P(\phi(T_{\mathbb{R}}^2) = 1 | \mathbf{H_1^*}) \to 1$. Therefore, since m is fixed and finite, $P(\theta_i < \nu, \ i = 1, \dots, m | \mathbf{H_1^*}) \to 1$ and consequently, $P(\bar{\theta}^* < \nu | \mathbf{H_1^*}) \to 1$. This result holds for all $\nu > 0$. Since $u_{\{\alpha, n_1, n_2\}} \to u_{\alpha} > 0$, it follows that $P(\bar{\theta}^* < u_{\{\alpha, n_1, n_2\}} | \mathbf{H_1^*}) \to 1$, that is, $\lim_{n_1, n_2 \to \infty} E[\phi^* | \mathbf{H_1^*}] = 1$.