
Appendix

Let Fr,s,δ(·) denote the noncentralF -distribution with degrees of freedomr and s and non-

centrality parameterδ, and letFr,s(·) = Fr,s,0(·). The mean and variance ofFr,s,δ(·) are

s(r + δ)

r(s− 2)
and 2

(r + δ)2 + (r + 2δ)(s− 2)

(s− 2)2(s− 4)
, (11)

assuming thats > 2 ands > 4, respectively.

We use the following representation of these distributions(Johnson et al. (1995), eq. (30.10)),

Fr,s,δ(u) =
∞
∑

l=0
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Fr,s(u) = I ru
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2
,
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)

, (13)

whereIu(a, b) is the regularized incomplete beta function (i.e., beta distribution function) given

by

Iu(a, b) =
1

B(a, b)

∫ u

0

ta−1(1− t)b−1dt, (14)

whereB(a, b) = Γ(a)Γ(b)
Γ(a+b)

is the usual beta function.

Proof of Lemma 1. The conditional distribution of the projected data matrixXR andYR, given

R, are independentNk(R
′µ1,R

′ΣR) andNk(R
′µ2,R

′ΣR), respectively. Note thatSR = R
′SR,

given R, is distributed as WishartWk

(

1
n1+n2−1

R
′ΣR, n1 + n2 − 2

)

. According to Theorem

3.4.8 of Mardia et al. (1979),

|SR| = |R′ΣR|
k
∏

j=1

χ2
n1+n2−j−1, (15)

whereχ2
n1+n2−j−1 for j = 1, . . . , k are independentχ2 random variables. From expression (15),

the proof is completed by showing thatλmin (R
′ΣR) > 0 with probability 1, whereλmin(A) is

the minimum eigenvalue of the matrixA. Now, observe that

λmin (R
′ΣR) = inf

||u||2=1
u′
R

′ΣRu

≥ inf
||v||2=1

v′Σv inf
||u||2=1

||Ru||2 = λmin(Σ) > 0.
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Proof of Theorem 1

Part (a). Note that

E[φ(T 2
R
)] = ER

{
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φ(T 2
R
)
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]}
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. (16)

UnderH0, the conditional distribution ofn−k+1
k

T 2
R

n
is Fk,n−k+1, independent ofR. By (5), we

haveE[φ(T 2
R
)|H0] = ER {α} = α.

Part (b). UnderH∗
1

and for fixedR, the conditional distribution ofn−k+1
k

T 2
R

n
isFk,n−k+1,(n−1

1 +n−1
2 )−1∆R

.

(Recall that∆R = (µ1 − µ2)
′
R(R′ΣR)−1

R
′(µ1 − µ2).) By (11) withr = k , s = n− k + 1, and

δ = 0 we have thatcα → 1. By (11) withr = k , s = n− k + 1, andδ = (n−1
1 + n−1

2 )−1∆R we

have underH∗
1
, and for fixedR, that the mean and variance ofn−k+1

k

T 2
R

n
behave asymptotically

ascα + (n−1
1 + n−1

2 )−1∆R/k and2/n, respectively. (We say thata behaves asymptotically asb if

a/b → 1.)

It then follows from (5), (6), (16), and Chebychev’s inequality that

E[φ(T 2
R
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1
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E
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]}

→ 1. (17)

Part (c). Using the property thatIu(a+ 1, b) ≤ Iu(a, b), and (13), we have

I kcα
kcα+n−k+1

(
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≤ I kcα
kcα+n−k+1

(

k

2
,
n− k + 1

2

)

= Fk,n−k+1(cα) = 1− α. (18)

Thus, using (16) and (18), we haveE[φ(T 2
R
)|H1] ≥ α. �

Proof of Theorem 2 By evaluating the conditional probability thatθ̄∗ < u given the data, and

then taking an expectation over the data, we have

P
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whereE
R

(

θ∗1
∣

∣X,Y
)

andV
R

(

θ∗1
∣

∣X,Y
)

are the conditional mean and variance ofθ∗1 given the

data,X,Y. Further, givenX,Y, the random variables{θ∗i , i = 1, 2 . . . , m} are independent and
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identically distributed with finite variance. Now by using the Central Limit Theorem, we have

lim
m→∞
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whereΦ(·) is the standard normal cumulative distribution function. From (7),

E
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wherePR is the probability measure corresponding to random matrixR. We claim that distribu-

tion of E
R
(θ∗1|X,Y) does not depend upon the parametersµ1, µ2 andΣ. To verify this claim, it

suffices to show that
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does not depend upon (µ1, µ2,Σ) for r = 1, 2, . . ., wherePX,Y is the probability measure corre-

sponding to the dataX,Y.

Note that0 ≤ E
R
(θ∗1|X,Y) ≤ 1. Observe that
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where the interchange of integral are permitted by Fubini’stheorem. Now, observe that un-

derH0, the distribution ofFk,n−k+1
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does not depend upon the parameter(µ1, µ2,Σ). This imply that (23) does not depend upon the

parameter for any positive integerr.

Now note that, from (22) and by using Fubini theorem, we have

EX,Y [E
R
(θ∗1|X,Y)]r

=

∫

. . .

∫

[

∫ r
∏

i=1

{

1−Fk,n−k+1

(

n−k+1

k
·

n1n2

n1+n2
(X−Y )′Ri(R

′
iSRi)

−1R′
i(X−Y )

n1+n2−2

)}

dPX,Y

]

r
∏

i=1

dPRi

(25)

In (25), observe thatRi , i = 1, . . . , r, are iid with probability measurePR. By using this and

(24), it follows that
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does not depend upon the parameter(µ1, µ2,Σ) which in turn implies that (22) holds for any
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From (19), (21), (26) and the dominated convergence theorem, we have
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Thus, for anyn1, n2, asm → ∞, the asymptotic distribution of1
m

∑m
i=1 θ

∗
i does not depend on

the parametersµ1, µ2, andΣ. This completes the proof. �

Proof of Theorem 3The power of the test (8) is

E[φ∗|H∗
1
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whereu{α,n1,n2} is such that
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For a givenα, n1, andn2, we have0 < u{α,n1,n2} < 1. Thus, there exists a convergent subse-

quence ofu{α,n1,n2}. With an abuse of the notation, let this subsequence beu{α,n1,n2}, converging

to uα.
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We claim thatuα > 0. To see this, note first that for all(n1, n2),P (θ̄∗ ≤ ǫ|H0) ≤ P (m−1θ1 ≤
ǫ|H0) = ǫm, sinceθi is uniform(0,1) distributed underH0. Thus, there exists a positiveǫ such

thatP (θ̄∗ ≤ ǫ|H0) < α for all (n1, n2). It follows thatuα,n1,n2 ≥ ǫ for all (n1, n2) and therefore

uα ≥ ǫ > 0.

Let ν be positive. Sinceθi is the p-value of the testφ(T 2
R
), it follows from Theorem 1 (b) with

α = ν thatP (θi < ν|H∗
1
) = P (φ(T 2

R
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1
) → 1. Therefore, sincem is fixed and finite,
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1
) → 1 and consequently,P (θ̄∗ < ν|H∗

1
) → 1 . This result holds

for all ν > 0. Sinceu{α,n1,n2} → uα > 0, it follows thatP (θ̄∗ < u{α,n1,n2}|H∗
1
) → 1, that is,

limn1,n2→∞E[φ∗|H∗
1
] = 1.
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