Appendix

Let $F_{r, s, \delta}(\cdot)$ denote the noncentral F-distribution with degrees of freedom r and s and noncentrality parameter δ, and let $F_{r, s}(\cdot)=F_{r, s, 0}(\cdot)$. The mean and variance of $F_{r, s, \delta} \delta(\cdot)$ are

$$
\begin{equation*}
\frac{s(r+\delta)}{r(s-2)} \text { and } 2 \frac{(r+\delta)^{2}+(r+2 \delta)(s-2)}{(s-2)^{2}(s-4)} \tag{11}
\end{equation*}
$$

assuming that $s>2$ and $s>4$, respectively.
We use the following representation of these distributions (Johnson et al. (1995), eq. (30.10)),

$$
\begin{align*}
F_{r, s, \delta}(u) & =\sum_{l=0}^{\infty} \frac{e^{-\frac{\delta}{2}\left(\frac{\delta}{2}\right)^{l}}}{l!} F_{r+2 l, s}\left(\frac{r u}{r+2 l}\right) \tag{12}\\
F_{r, s}(u) & =I_{\frac{r u}{r u+s}}\left(\frac{r}{2}, \frac{s}{2}\right) \tag{13}
\end{align*}
$$

where $I_{u}(a, b)$ is the regularized incomplete beta function (i.e., beta distribution function) given by

$$
\begin{equation*}
I_{u}(a, b)=\frac{1}{B(a, b)} \int_{0}^{u} t^{a-1}(1-t)^{b-1} d t \tag{14}
\end{equation*}
$$

where $B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}$ is the usual beta function.

Proof of Lemma 1. The conditional distribution of the projected data matrix $X \mathbb{R}$ and $Y \mathbb{R}$, given \mathbb{R}, are independent $N_{k}\left(\mathbb{R}^{\prime} \mu_{1}, \mathbb{R}^{\prime} \Sigma \mathbb{R}\right)$ and $N_{k}\left(\mathbb{R}^{\prime} \mu_{2}, \mathbb{R}^{\prime} \Sigma \mathbb{R}\right)$, respectively. Note that $S_{\mathbb{R}}=\mathbb{R}^{\prime} S \mathbb{R}$, given \mathbb{R}, is distributed as Wishart $W_{k}\left(\frac{1}{n_{1}+n_{2}-1} \mathbb{R}^{\prime} \Sigma \mathbb{R}, n_{1}+n_{2}-2\right)$. According to Theorem 3.4.8 of Mardia et al. (1979),

$$
\begin{equation*}
\left|S_{\mathbb{R}}\right|=\left|\mathbb{R}^{\prime} \Sigma \mathbb{R}\right| \prod_{j=1}^{k} \chi_{n_{1}+n_{2}-j-1}^{2} \tag{15}
\end{equation*}
$$

where $\chi_{n_{1}+n_{2}-j-1}^{2}$ for $j=1, \ldots, k$ are independent χ^{2} random variables. From expression (15), the proof is completed by showing that $\lambda_{\min }\left(\mathbb{R}^{\prime} \Sigma \mathbb{R}\right)>0$ with probability 1 , where $\lambda_{\min }(A)$ is the minimum eigenvalue of the matrix A. Now, observe that

$$
\begin{aligned}
\lambda_{\min }\left(\mathbb{R}^{\prime} \Sigma \mathbb{R}\right) & =\inf _{\|u\|_{2=1}} u^{\prime} \mathbb{R}^{\prime} \Sigma \mathbb{R} u \\
& \geq \inf _{\|v\|_{2}=1} v^{\prime} \Sigma v \inf _{\|u\|_{2}=1}\|\mathbb{R} u\|^{2}=\lambda_{\min }(\Sigma)>0
\end{aligned}
$$

Proof of Theorem 1

Part (a). Note that

$$
\begin{equation*}
E\left[\phi\left(T_{\mathbb{R}}^{2}\right)\right]=E_{\mathbb{R}}\left\{E_{\mathbf{x}, \mathbf{Y}}\left[\phi\left(T_{\mathbb{R}}^{2}\right) \mid \mathbb{R}\right]\right\}=E_{\mathbb{R}}\left\{P_{\mathbf{x}, \mathbf{Y}}\left[\left.\frac{n-k+1}{k} \cdot \frac{T_{\mathbb{R}}^{2}}{n}>c_{\alpha} \right\rvert\, \mathbb{R}\right]\right\} \tag{16}
\end{equation*}
$$

Under $\mathbf{H}_{\mathbf{0}}$, the conditional distribution of $\frac{n-k+1}{k} \frac{T_{\mathrm{R}}^{2}}{n}$ is $F_{k, n-k+1}$, independent of \mathbb{R}. By (5), we have $E\left[\phi\left(T_{\mathbb{R}}^{2}\right) \mid \mathbf{H}_{\mathbf{0}}\right]=\mathbf{E}_{\mathbb{R}}\{\alpha\}=\alpha$.
$\operatorname{Part}(b)$. Under \mathbf{H}_{1}^{*} and for fixed \mathbb{R}, the conditional distribution of $\frac{n-k+1}{k} \frac{T_{\mathbb{R}}^{2}}{n}$ is $F_{k, n-k+1,\left(n_{1}^{-1}+n_{2}^{-1}\right)^{-1} \boldsymbol{\Delta}_{\mathbb{R}}}$. (Recall that $\Delta_{\mathbb{R}}=\left(\mu_{1}-\mu_{2}\right)^{\prime} \mathbb{R}\left(\mathbb{R}^{\prime} \Sigma \mathbb{R}\right)^{-1} \mathbb{R}^{\prime}\left(\mu_{1}-\mu_{2}\right)$.) By (11) with $r=k, s=n-k+1$, and $\delta=0$ we have that $c_{\alpha} \rightarrow 1$. By (11) with $r=k, s=n-k+1$, and $\delta=\left(n_{1}^{-1}+n_{2}^{-1}\right)^{-1} \Delta_{\mathbb{R}}$ we have under $\mathbf{H}_{\mathbf{1}}^{*}$, and for fixed \mathbb{R}, that the mean and variance of $\frac{n-k+1}{k} \frac{T_{\mathbb{R}}^{2}}{n}$ behave asymptotically as $c_{\alpha}+\left(n_{1}^{-1}+n_{2}^{-1}\right)^{-1} \Delta_{\mathbb{R}} / k$ and $2 / n$, respectively. (We say that a behaves asymptotically as b if $a / b \rightarrow 1$.)

It then follows from (5), (6), (16), and Chebychev's inequality that

$$
\begin{equation*}
E\left[\phi\left(T_{\mathbb{R}}^{2}\right) \mid \mathbf{H}_{\mathbf{1}}^{*}\right]=\mathbf{E}_{\mathbb{R}}\left\{\mathbf{E}_{\mathbf{x}, \mathbf{Y}}\left[\phi\left(\mathbf{T}_{\mathbb{R}}^{2}\right) \mid \mathbb{R}, \mathbf{H}_{\mathbf{1}}^{*}\right]\right\} \rightarrow \mathbf{1} \tag{17}
\end{equation*}
$$

Part (c). Using the property that $I_{u}(a+1, b) \leq I_{u}(a, b)$, and (13), we have

$$
\begin{align*}
I_{\overline{k c_{\alpha}+n-k+1}}\left(\frac{k}{2}+l, \frac{n-k+1}{2}\right) & \leq I_{\frac{k c_{\alpha}}{k c_{\alpha}+n-k+1}}\left(\frac{k}{2}, \frac{n-k+1}{2}\right) \\
& =F_{k, n-k+1}\left(c_{\alpha}\right)=1-\alpha . \tag{18}
\end{align*}
$$

Thus, using (16) and (18), we have $E\left[\phi\left(T_{\mathbb{R}}^{2}\right) \mid \mathbf{H}_{\mathbf{1}}\right] \geq \alpha$.
Proof of Theorem 2 By evaluating the conditional probability that $\bar{\theta}^{*}<u$ given the data, and then taking an expectation over the data, we have

$$
\begin{equation*}
P\left[\bar{\theta}^{*}<u\right]=E_{\mathbf{X}, \mathbf{Y}}\left\{P_{\mathbb{R}}\left[\bar{\theta}^{*}<u \mid \mathbf{X}, \mathbf{Y}\right]\right\} . \tag{19}
\end{equation*}
$$

Note that

$$
\begin{equation*}
P_{\mathbb{R}}\left[\bar{\theta}^{*}<u \mid \mathbf{X}, \mathbf{Y}\right]=P_{\mathbb{R}}\left[\left.\frac{\bar{\theta}^{*}-E_{\mathbb{R}}\left(\theta_{1}^{*} \mid \mathbf{X}, \mathbf{Y}\right)}{\sqrt{V_{\mathbb{R}}\left(\theta_{1}^{*} \mid \mathbf{X}, \mathbf{Y}\right) / m}}<\frac{u-E_{\mathbb{R}}\left(\theta_{1}^{*} \mid \mathbf{X}, \mathbf{Y}\right)}{\sqrt{V_{\mathbb{R}}\left(\theta_{1}^{*} \mid \mathbf{X}, \mathbf{Y}\right) / m}} \right\rvert\, \mathbf{X}, \mathbf{Y}\right], \tag{20}
\end{equation*}
$$

where $E_{\mathbb{R}}\left(\theta_{1}^{*} \mid \mathbf{X}, \mathbf{Y}\right)$ and $V_{\mathbb{R}}\left(\theta_{1}^{*} \mid \mathbf{X}, \mathbf{Y}\right)$ are the conditional mean and variance of θ_{1}^{*} given the data, \mathbf{X}, \mathbf{Y}. Further, given \mathbf{X}, \mathbf{Y}, the random variables $\left\{\theta_{i}^{*}, i=1,2 \ldots, m\right\}$ are independent and
identically distributed with finite variance. Now by using the Central Limit Theorem, we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\{P_{\mathbb{R}}\left[\bar{\theta}^{*}<u \mid \mathbf{X}, \mathbf{Y}\right]-\Phi\left(\frac{u-E_{\mathbb{R}}\left(\theta_{1}^{*} \mid \mathbf{X}, \mathbf{Y}\right)}{\sqrt{V_{\mathbb{R}}\left(\theta_{1}^{*} \mid \mathbf{X}, \mathbf{Y}\right) / m}}\right)\right\}=0 \tag{21}
\end{equation*}
$$

where $\Phi(\cdot)$ is the standard normal cumulative distribution function. From (7),

$$
\begin{aligned}
& E_{\mathbb{R}}\left(\theta_{1}^{*} \mid \mathbf{X}, \mathbf{Y}\right) \\
& =E_{\mathbb{R}}\left[\left.1-F_{k, n-k+1}\left(\frac{n-k+1}{k} \cdot \frac{T_{\mathbb{R}_{1}}^{2}}{n}\right) \right\rvert\, \mathbf{X}, \mathbf{Y}\right] \\
& =\int\left\{1-F_{k, n-k+1}\left(\frac{n-k+1}{k} \cdot \frac{\frac{n_{1} n_{2}}{n_{1}+n_{2}}(\bar{X}-\bar{Y})^{\prime} R\left(R^{\prime} S R\right)^{-1} R^{\prime}(\bar{X}-\bar{Y})}{n_{1}+n_{2}-2}\right)\right\} d \mathbf{P}_{R},
\end{aligned}
$$

where \mathbf{P}_{R} is the probability measure corresponding to random matrix \mathbb{R}. We claim that distribution of $E_{\mathbb{R}}\left(\theta_{1}^{*} \mid \mathbf{X}, \mathbf{Y}\right)$ does not depend upon the parameters μ_{1}, μ_{2} and Σ. To verify this claim, it suffices to show that

$$
\begin{align*}
& E_{\mathbf{X}, \mathbf{Y}}\left[E_{\mathbb{R}}\left(\theta_{1}^{*} \mid \mathbf{X}, \mathbf{Y}\right)\right]^{r} \\
= & \int\left[\int\left\{1-F_{k, n-k+1}\left(\frac{n-k+1}{k} \cdot \frac{\frac{n_{1} n_{2}}{n_{1}+n_{2}}(\bar{X}-\bar{Y})^{\prime} R\left(R^{\prime} S R\right)^{-1} R^{\prime}(\bar{X}-\bar{Y})}{n_{1}+n_{2}-2}\right)\right\} d \mathbf{P}_{R}\right]^{r} d \mathbf{P}_{\mathbf{X}, \mathbf{Y}} \tag{22}
\end{align*}
$$

does not depend upon $\left(\mu_{1}, \mu_{2}, \Sigma\right)$ for $r=1,2, \ldots$, where $\mathbf{P}_{\mathbf{X}, \mathbf{Y}}$ is the probability measure corresponding to the data \mathbf{X}, \mathbf{Y}.

Note that $0 \leq E_{\mathbb{R}}\left(\theta_{1}^{*} \mid \mathbf{X}, \mathbf{Y}\right) \leq 1$. Observe that

$$
\begin{align*}
& \iint\left\{1-F_{k, n-k+1}\left(\frac{n-k+1}{k} \cdot \frac{\frac{n_{1} n_{2}}{n_{1}+n_{2}}(\bar{X}-\bar{Y})^{\prime} R\left(R^{\prime} S R\right)^{-1} R^{\prime}(\bar{X}-\bar{Y})}{n_{1}+n_{2}-2}\right)\right\}^{r} d \mathbf{P}_{R} d \mathbf{P}_{\mathbf{X}, \mathbf{Y}} \tag{23}\\
= & \int\left[\int\left\{1-F_{k, n-k+1}\left(\frac{n-k+1}{k} \cdot \frac{\frac{n_{1} n_{2}}{n_{1}+n_{2}}(\bar{X}-\bar{Y})^{\prime} R\left(R^{\prime} S R\right)^{-1} R^{\prime}(\bar{X}-\bar{Y})}{n_{1}+n_{2}-2}\right)\right\}^{r} d \mathbf{P}_{\mathbf{X}, \mathbf{Y}}\right] d \mathbf{P}_{R},
\end{align*}
$$

where the interchange of integral are permitted by Fubini's theorem. Now, observe that under $\mathbf{H}_{\mathbf{0}}$, the distribution of $F_{k, n-k+1}\left(\frac{n-k+1}{k} \cdot \frac{\frac{n_{1} n_{2}}{n_{1}+n_{2}}(\bar{X}-\bar{Y})^{\prime} R\left(R^{\prime} S R\right)^{-1} R^{\prime}(\bar{X}-\bar{Y})}{n_{1}+n_{2}-2}\right)$ is $U(0,1)$ for any given Projection matrix R. Therefore, the inner integral

$$
\begin{equation*}
\int\left\{1-F_{k, n-k+1}\left(\frac{n-k+1}{k} \cdot \frac{\frac{n_{1} n_{2}}{n_{1}+n_{2}}(\bar{X}-\bar{Y})^{\prime} R\left(R^{\prime} S R\right)^{-1} R^{\prime}(\bar{X}-\bar{Y})}{n_{1}+n_{2}-2}\right)\right\}^{r} d \mathbf{P}_{\mathbf{X}, \mathbf{Y}} \tag{24}
\end{equation*}
$$

does not depend upon the parameter $\left(\mu_{1}, \mu_{2}, \Sigma\right)$. This imply that (23) does not depend upon the parameter for any positive integer r.

Now note that, from (22) and by using Fubini theorem, we have

$$
\begin{align*}
& E_{\mathbf{X}, \mathbf{Y}}\left[E_{\mathbb{R}}\left(\theta_{1}^{*} \mid \mathbf{X}, \mathbf{Y}\right)\right]^{r} \\
& =\int \ldots \int\left[\int \prod_{i=1}^{r}\left\{1-F_{k, n-k+1}\left(\frac{n-k+1}{k} \cdot \frac{\frac{n_{1} n_{2}}{n_{1}+n_{2}}(\bar{X}-\bar{Y})^{\prime} R_{i}\left(R_{i}^{\prime} S R_{i}\right)^{-1} R_{i}^{\prime}(\bar{X}-\bar{Y})}{n_{1}+n_{2}-2}\right)\right\} d \mathbf{P}_{\mathbf{X}, \mathbf{Y}}\right] \prod_{i=1}^{r} d \mathbf{P}_{R_{i}} \tag{25}
\end{align*}
$$

In (25), observe that $R_{i}, i=1, \ldots, r$, are iid with probability measure P_{R}. By using this and (24), it follows that

$$
\int \prod_{i=1}^{r}\left\{1-F_{k, n-k+1}\left(\frac{n-k+1}{k} \cdot \frac{\frac{n_{1} n_{2}}{n_{1}+n_{2}}(\bar{X}-\bar{Y})^{\prime} R_{i}\left(R_{i}^{\prime} S R_{i}\right)^{-1} R_{i}^{\prime}(\bar{X}-\bar{Y})}{n_{1}+n_{2}-2}\right)\right\} d \mathbf{P}_{\mathbf{X}, \mathbf{Y}}
$$

does not depend upon the parameter $\left(\mu_{1}, \mu_{2}, \Sigma\right)$ which in turn implies that (22) holds for any positive integer r. Similarly, under $\mathbf{H}_{\mathbf{0}}$, the distribution of $V_{\mathbb{R}}\left(\theta_{1}^{*} \mid \mathbf{X}, \mathbf{Y}\right)$ also does not depend on the parameters. Now note that

$$
\begin{equation*}
\left|P_{\mathbb{R}}\left[\bar{\theta}^{*}<u \mid \mathbf{X}, \mathbf{Y}\right]-\Phi\left(\frac{u-E_{\mathbb{R}}\left(\theta_{1}^{*} \mid \mathbf{X}, \mathbf{Y}\right)}{\sqrt{V_{\mathbb{R}}\left(\theta_{1}^{*} \mid \mathbf{X}, \mathbf{Y}\right) / m}}\right)\right|<2 \tag{26}
\end{equation*}
$$

From (19), (21), (26) and the dominated convergence theorem, we have

$$
\lim _{m \rightarrow \infty}\left\{P\left[\bar{\theta}^{*}<u\right]-E_{\mathbf{X}, \mathbf{Y}}\left[\Phi\left(\frac{u-E_{\mathbb{R}}\left(\theta_{1}^{*} \mid \mathbf{X}, \mathbf{Y}\right)}{\sqrt{V_{\mathbb{R}}\left(\theta_{1}^{*} \mid \mathbf{X}, \mathbf{Y}\right) / m}}\right)\right]\right\}=0
$$

Thus, for any n_{1}, n_{2}, as $m \rightarrow \infty$, the asymptotic distribution of $\frac{1}{m} \sum_{i=1}^{m} \theta_{i}^{*}$ does not depend on the parameters μ_{1}, μ_{2}, and Σ. This completes the proof.

Proof of Theorem 3 The power of the test (8) is

$$
E\left[\phi^{*} \mid \mathbf{H}_{\mathbf{1}}^{*}\right]=P\left[\bar{\theta}^{*}<u_{\left\{\alpha, n_{1}, n_{2}\right\}} \mid \mathbf{H}_{\mathbf{1}}^{*}\right]
$$

where $u_{\left\{\alpha, n_{1}, n_{2}\right\}}$ is such that

$$
P\left[\bar{\theta}^{*}<u_{\left\{\alpha, n_{1}, n_{2}\right\}} \mid \mathbf{H}_{\mathbf{0}}\right]=\alpha .
$$

For a given α, n_{1}, and n_{2}, we have $0<u_{\left\{\alpha, n_{1}, n_{2}\right\}}<1$. Thus, there exists a convergent subsequence of $u_{\left\{\alpha, n_{1}, n_{2}\right\}}$. With an abuse of the notation, let this subsequence be $u_{\left\{\alpha, n_{1}, n_{2}\right\}}$, converging to u_{α}.

We claim that $u_{\alpha}>0$. To see this, note first that for all $\left(n_{1}, n_{2}\right), P\left(\bar{\theta}^{*} \leq \epsilon \mid \mathbf{H}_{\mathbf{0}}\right) \leq P\left(m^{-1} \theta_{1} \leq\right.$ $\left.\epsilon \mid \mathbf{H}_{\mathbf{0}}\right)=\epsilon m$, since θ_{i} is uniform $(0,1)$ distributed under $\mathbf{H}_{\mathbf{0}}$. Thus, there exists a positive ϵ such that $P\left(\bar{\theta}^{*} \leq \epsilon \mid \mathbf{H}_{\mathbf{0}}\right)<\alpha$ for all $\left(n_{1}, n_{2}\right)$. It follows that $u_{\alpha, n_{1}, n_{2}} \geq \epsilon$ for all $\left(n_{1}, n_{2}\right)$ and therefore $u_{\alpha} \geq \epsilon>0$.

Let ν be positive. Since θ_{i} is the p -value of the test $\phi\left(T_{\mathbb{R}}^{2}\right)$, it follows from Theorem 1 (b) with $\alpha=\nu$ that $P\left(\theta_{i}<\nu \mid \mathbf{H}_{\mathbf{1}}^{*}\right)=P\left(\phi\left(T_{\mathbb{R}}^{2}\right)=1 \mid \mathbf{H}_{\mathbf{1}}^{*}\right) \rightarrow 1$. Therefore, since m is fixed and finite, $P\left(\theta_{i}<\nu, i=1, \ldots, m \mid \mathbf{H}_{\mathbf{1}}^{*}\right) \rightarrow 1$ and consequently, $P\left(\bar{\theta}^{*}<\nu \mid \mathbf{H}_{\mathbf{1}}^{*}\right) \rightarrow 1$. This result holds for all $\nu>0$. Since $u_{\left\{\alpha, n_{1}, n_{2}\right\}} \rightarrow u_{\alpha}>0$, it follows that $P\left(\bar{\theta}^{*}<u_{\left\{\alpha, n_{1}, n_{2}\right\}} \mid \mathbf{H}_{1}^{*}\right) \rightarrow 1$, that is, $\lim _{n_{1}, n_{2} \rightarrow \infty} E\left[\phi^{*} \mid \mathbf{H}_{\mathbf{1}}^{*}\right]=1$.

