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Abstract

This document describes the numerical technique implemented to characterize the size of helium

clusters from molecular dynamics simulation, i.e. Chapters 7 and 8 of my thesis.

1 Background

Clustering techniques help one to group a set of points in space by categorizing them
into clusters, i.e. an object consisting few of these points that are closer in space to each
other than to the rest of points. A number of clustering techniques is available in the
literature and generally they can be categorized into two groups: hierarchical clustering
and partitional clustering. The key difference between the two is that in the latter group,
the number of clusters must be known in advance before the analysis is performed.

For the type of analysis required in my thesis, the number of clusters are not known
prior to the analyses, i.e. hierarchical clustering. Furthermore, I have chosen from this
category the Ward’s hierarchical technique [1]. While there are several other hierarchi-
cal clustering techniques (e.g. single-link, complete-link and group average [2]), Ward’s
technique has been shown to have the highest evaluation score among other hierarchical
techniques, i.e. the correlation coefficient (see Section 3.2), when employed for analyzing
several set of data.
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2 Methodology

The following definition is needed in order to explain the clustering technique. A cluster
k of size n is an object containing n number of atoms i. The minimum and maximum
possible size of cluster k are 1 (a single point) to N (all points). The in-cluster variance of
cluster k, σ2

k , is defined as σ2
k = ∑n

i=1 |ri − rk|2 where i is the index of atom that makes up
cluster k, ri is the position of atom i, rk is the center-of-mass of cluster k. A cluster of size
n = 1 (individual atoms), by definition, has σ2

k = 0. The clustering analysis is guided by
the total variance σ2 = ∑k σ2

k .
Each atom is initially labelled as a cluster size one (n = 1). A dissimilarity matrix of

N × N is built, its elements being Dkl, a parameter that is a function of cluster k and l.
In Ward’s algorithm, Dkl is the squared-distance between the center-of-mass of cluster k
and that of cluster l, taking into consideration the periodic boundary conditions. On each
iteration, any two clusters k and l are agglomerated into a larger cluster. This process is
repeated until there is only one cluster consisting all N atoms in the box.

The choice of agglomerating cluster k and cluster l is decided by first comparing the
increase in σ2, or ∆σ2, across all possible situations and choosing one that leads to the most
minimum ∆σ2. The quantity ∆σ2 is a function of Dkl. Using Lance-Williams algorithm
[3], the ∆σ2 and the inter-cluster distance Dkl can be evaluated iteratively.

• The increase in the total in-cluster variance due to agglomerating cluster k and clus-
ter l into cluster j is

∆σ2(k ∪ l) =
1
2

Dkl

• The inter-cluster distance between the newly formed cluster j = k ∪ l and other
cluster h is updated by:

Dhj =
nh + nk

nh + nk + nl
Dhk +

nh + nl
nh + nk + nl

Dhl −
nh

nh + nk + nl
Dkl

where nh, nk, nl are the size of respective clusters.

The iteration is performed until there remains one cluster containing N atoms. A den-
dogram (see Figure 2) can be built to illustrate the grouping of each atom. An arbitrary
cut-off value λc is chosen to limit the cluster size and distribution. In the analysis of he-
lium clusters, several values of λc have been tested. Cluster distribution were insensitive
to λc when λc is between 1.2 to 2.2 nm2. Further analyses employed λc = 1.5 nm2.
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3 Case study

3.1 Iterations

An example of clustering analysis using Ward’s technique with Lance-Williams algorithm
is illustrated. Suppose a data set containing 5 points in two-dimensional space, as shown
in Figure 1.

Fig. 1: A set of points in 2D space

Initially, the dissimilarity matrix is given by

Tab. 1: Dissimilarity matrix at the beginning of analysis

The agglomeration process that leads to the lowest ∆σ2 is grouping point 3 and 5
where4σ2 = 1

2 D35 = 0.25. The updated inter-cluster distance is now:

• D(35)1 = 8.833.

• D(35)2 = 6.167.
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• D(35)4 = 2.167.

The updated dissimilarity matrix is now:

Tab. 2: Dissimilarity matrix at the end of first iteration

At the second iteration, the agglomeration process with the lowest ∆σ2 is grouping
point 1 and 2, ∆σ2 = 0.625. The updated inter-cluster distance is now:

• D(12)(35) = 10.625.

• D(12)4 = 4.417.

The updated dissimilarity matrix is now:

Tab. 3: Dissimilarity matrix at the end of second iteration

At the third iteration, the agglomeration process with the lowest ∆σ2 is grouping clus-
ter (35) with point 4, ∆σ2 = 1.083. The updated inter-cluster distance is now:

• D(12)(345) = 10.283.

The updated dissimilarity matrix is now:

Tab. 4: Dissimilarity matrix at the end of third iteration

At the final iteration, only two clusters left: (12) and (345). The ∆σ2 upon agglomerat-
ing these clusters into a single cluster is ∆σ2 = 5.142.
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3.2 Dendogram and Cophenetic Matrix

A tree diagram (dendogram) can be drawn to illustrate the 4σ2-level at which two clus-
ters are combined, see Figure 2.

Fig. 2: Dendogram of clustering, vertical axis being ∆σ2

Cluster discrimination is performed by assigning an arbitrarily chosen cut-off value
λc, a threshold for the change of the total in-cluster variance ∆σ2 above which two clusters
will not be coalesced into one larger cluster. A good cut-off value is typically obtained
from a range within which cluster distribution does not depend on the chosen cut-off
value. For the case study above, a good cut-off value is between 1.1 and 5.

Additionally, a cophenetic matrix N×N can be built to evaluate the quality of cluster-
ing analysis, the matrix element being the inter-cluster distance at which two individual
points belong to the same cluster for the first time, i.e. twice the ∆σ2 from the dendogram
in Figure 2. For example, the element (1,2) below is 1.25 since this is twice the ∆σ2 at
which atom 1 and atom 2 belong to one cluster for the first time. On the other hand, the
element (1,3) is 10.283 since atom 1 and 3 belong to one cluster for the first time when
∆σ2 = 1

2(10.283) = 5.142 in Figure 2.

Tab. 5: Cophenetic matrix

The quality of clustering analyses is obtained by calculating correlation coefficient R
between the cophenetic matrix (Table 5) and the dissimilarity matrix before clustering
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(Table 1), i.e.

R =
∑(Pt − P)(Qt −Q)√

∑
(

Pt − P
)2
√

∑
(
Qt −Q

)2

where

• Index t represents the element index in the dissimilarity and cophenetic matrix, i.e.
t = (1,2), (1,3), ... , (4,5);

• Pt represents the element in the dissimilarity matrix (Table 1), i.e. P(1,2) = 1.25,
P(1,3) = 7.25, ..., and

• Qt represents the element in the cophenetic matrix (Table 5), i.e. Q(1,2) = 1.25,
P(1,3) = 10.283, ....

The correlation coefficient for the case study here is R = 0.858163.
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