Imputation and QTL Mapping in Multiparental Crop Populations from Low Coverage Sequence Data

Michael F Scott, A Bentley ${ }^{\dagger}$, J Cockram ${ }^{\dagger}$, N Fradgley ${ }^{\dagger}$, K Gardnert, P Howellt, Funmi Ladejobi*, Hei Leung ${ }^{\ddagger}$, I Mackay ${ }^{\dagger}$, A Sanchezt, RK Singh§, R Mott'

"UCL Genetics Institute, London, UK; + NIAB, Cambridge, UK; \#IRRI, Los Baños, Philippines; § ICBA, Dubai, UAE

Multiparental crop populations

- NIAB Diverse MAGIC wheat - 16 founders released between 1935 and 2004 intercrossed in 120 different 'funnels' to produce 504 recombinant inbred lines
- IRRI Heat MAGIC rice - 8 founders selected for variation in tolerance to temperature ${ }^{2}$, 836 recombinant inbred lines

Founders sequenced using exome capture to 20x (wheat) ${ }^{3}$ or WGS to 13.5x (rice) ${ }^{4}$

Low Coverage WGS of MAGIC lines to $\sim 0.3 \mathrm{x}$ (wheat) or 1.4 x (rice) used to infer recombination mosaics ${ }^{5}$

direct call rate
 direct call accuracy
with founder information - without founder information
High imputation accuracy with or without founder information ${ }^{6}$ Downsampling indicates coverage as low as 0.1 x is sufficient

Phenotyping and QTL Mapping

- Wheat phenotyped for >50 agronomic traits (yield, phenology, size, seed traits, growth habit, colour, resistance) in replicated yield trials in 2017 and 2018
Rice phenotyped for yield, height, tillers, flowering time, and panicle length at IRRI, 249 lines also measured at four further locations to characterize heat tolerance ${ }^{7}$

$\begin{array}{llllllllllllllllllll}1 A & 1 B & 1 D & 2 A & 2 B & 2 D & 3 A & 3 B & 3 D & 4 A & 4 B & 4 D & 5 A & 5 B & 5 D & 6 A & 6 B & 6 D & 7 A & 7 B \\ 7 D\end{array}$

Fine-mapping of known and novel QTLs facilitated by extra generations of recombination in multiparental populations ${ }^{8}$ Associations with imputed SNPs and inferred founder

[^0]
[^0]: ${ }^{1}$ Banco, Bersee, Brigadier, Copain, Cordiale, Flamingo, Gladiator, Holdfast, Kloka, Maris Fundin, Robigus, Slejpner, Soisson, Spark, Steadfast. Stetson.
 ${ }^{2}$ IR64, IR72, Milyang23, Dasan, Hokuriku76, N22, IR72, Giza178
 ${ }^{2}$ IR64, IR72, Milyang23, Dasan, Hokuriku76, N22, IR72, Giza178.
 ${ }^{3}$ genic and promoter captures from Gardiner et al. (2019): 1.2 m SNPs homozygous and non-missing in all founders. 4800,000 SNP sites homozygous and non-missing in all founders.
 ${ }^{5}$ Imputation using STITCH (Davies et al., 2016), filtered to have info score >0.4, MAF $>2,5 \%$, and $<10 \%$ missing
 ${ }^{6}$ Accuracy against Affymetrix Wheat Breeders' 35k SNP genotyping array (Allen et al. 2016)
 ${ }^{7}$ Lalpur, Bangladesh; Tanore, Bangladesh; Kyaukse, Myanmar; Yezin, Myanmar
 ${ }^{8}$ For example, four genes within QTL peak for Awns, including AWNS1, DeWitt et al. (2019)

