Imputation and QTL Mapping in Multiparental Crop Populations from Low Coverage Sequence Data

<u>Michael F Scott</u>^{*}, A Bentley[†], J Cockram[†], N Fradgley[†], K Gardner[†], P Howell[†], Funmi Ladejobi^{*}, Hei Leung[‡], I Mackay[†], A Sanchez[†], RK Singh[§], R Mott^{*}

* UCL Genetics Institute, London, UK; ⁺ NIAB, Cambridge, UK; [‡] IRRI, Los Baños, Philippines; [§] ICBA, Dubai, UAE

Multiparental crop populations

- NIAB Diverse MAGIC wheat 16 founders released between 1935 and 2004 intercrossed in 120 different 'funnels' to produce 504 recombinant inbred lines
- IRRI Heat MAGIC rice 8 founders selected for variation in tolerance to temperature², 836 recombinant inbred lines

capture to 20x (wheat)³ or WGS to 13.5x (rice)⁴

Founders sequenced using exome

Low Coverage WGS of MAGIC lines to ~0.3x (wheat) or 1.4x (rice) used to infer recombination mosaics⁵

 High imputation accuracy with or without founder information⁶
Downsampling indicates coverage as low as 0.1x is sufficient

Phenotyping and QTL Mapping

- Wheat phenotyped for >50 agronomic traits (yield, phenology, size, seed traits, growth habit, colour, resistance) in replicated yield trials in 2017 and 2018
- Rice phenotyped for yield, height, tillers, flowering time, and panicle length at IRRI, 249 lines also measured at four further locations to characterize heat tolerance⁷

Fine-mapping of known and novel QTLs facilitated by extra generations of recombination in multiparental populations⁸
Associations with imputed SNPs and inferred founder

InternationalInternationalRice ResearchInstitute

¹Banco, Bersee, Brigadier, Copain, Cordiale, Flamingo, Gladiator, Holdfast, Kloka, Maris Fundin, Robigus, Slejpner, Soisson, Spark, Steadfast, Stetson.
²IR64, IR72, Milyang23, Dasan, Hokuriku76, N22, IR72, Giza178.
³genic and promoter captures from Gardiner et al. (2019): 1.2m SNPs homozygous and non-missing in all founders.

⁴800,000 SNP sites homozygous and non-missing in all founders.

⁵Imputation using STITCH (Davies et al., 2016), filtered to have info score >0.4, MAF>2,5%, and <10% missing

⁶Accuracy against Affymetrix Wheat Breeders' 35k SNP genotyping array (Allen et al. 2016)

⁷Lalpur, Bangladesh; Tanore, Bangladesh; Kyaukse, Myanmar; Yezin, Myanmar

⁸For example, four genes within QTL peak for Awns, including AWNS1, DeWitt et al. (2019)

