A Report on the Ziggurat Method

Daniel de Souza Severo
Dept. of Electrical and Computer Engineering
University of Toronto

July, 2014

Abstract

This report outlines, as well as provides a mathematical proof of functionality, of a highly efficient pseudo-random number generator: The Ziggurat Method. A simple ready-to-use code has been provided by previous authors. We contribute to this with a speed test on a modern Intel processor, as well as a Python script that generates all the necessary information to implement a specific version of the algorithm.

1 Introduction

Pseudo-random number generators (PRNG's) are crucial in the context of simulating noise in communication channels. We present a report on an efficient method for generating pseudo-random samples from any decreasing probability distribution called the Ziggurat Method. The initial idea was developed by [1], but has been enhanced by Marsaglia, Tsang [3] and others. Specifically, we will show the latest and most efficient version presented by McFarland [4. In the latter paper, the method shows a speedup of over 3 times compared to traditional algorithms such as Marsaglia's Polar Method [2]. We present a speed comparison in C implemented on an Intel i7-4790 clocked at 3.60 GHz . McFarland [4] provides all the necessary code to implement an ad hoc version of the algorithm, as well as a ready-touse C code for a univariate Gaussian. A proof that the samples from this method are truly Gaussian is also provided.

2 Uniform region sampling

Prior to explaining the method, a prelude into a simple, yet important, mathematical result in probability theory is due. Most pseudorandom number generators operate on the principle that sampling a point x directly from the distribution in question, call it g, is equivalent to the following:

1. Divide the region A under g into subregions A_{i} such that $\left\{A_{i}, \cdots, A_{N}\right\}$ is a partition ${ }^{11}$ of A.
2. Randomly select a region A_{i} with probability proportional to it's area, $\mu\left(A_{i}\right)$.
3. Uniformly sample a point $p=(x, y)$ from the selected region A_{i}.
4. Return x, since it will have distribution g.

The validity of this method can be simply proven. Let I be a random variable with distribution $f_{I}(i)=\mu\left(A_{i}\right) / \mu(A)=\mu\left(A_{i}\right)$ that represents part 2 . of the method presented above. If $P=(X, Y)$ represents the points uniformly sampled in each region, then $f_{P \mid I}(p \mid i)=\mathbb{1}\left\{p \in A_{i}\right\} / \mu\left(A_{i}\right) \cdot{ }^{2}$ We can now calculate $f_{P}(p)=f_{X, Y}(x, y)$:

$$
f_{P}(p)=\sum_{i} f_{P, I}(p, i)=\sum_{i} f_{I}(i) f_{P \mid I}(p \mid i)=\sum_{i} \mu\left(A_{i}\right) \frac{\mathbb{1}\left\{p \in A_{i}\right\}}{\mu\left(A_{i}\right)}=\sum_{i} \mathbb{1}\left\{p \in A_{i}\right\}
$$

[^0]A specific point p can only belong to one subregion, since $A_{i} \cap A_{j}=\emptyset, \forall i \neq j$. Hence, we have that:

$$
\begin{gathered}
f_{P}(p)=\sum_{i} \mathbb{1}\left\{p \in A_{i}\right\}=\mathbb{1}\left\{p \in A_{1}\right\}+\mathbb{1}\left\{p \in A_{2}\right\}+\cdots+\mathbb{1}\left\{p \in A_{N}\right\}=1 \\
f_{X}(x)=\int_{y} f_{X, Y}(x, y) d y=\int_{0}^{g(x)} d y=g(x)
\end{gathered}
$$

The Ziggurat Method takes advantage of this result, by partitioning the region under g into subregions that are easier to sample from than g itself. A dataset generated from this method will have distribution g up to machine precision.

3 The Ziggurat Method

The Ziggurat method uses the result from section 2 to quickly generate pseudorandom numbers from any decreasing distribution. The density in question, we will denote it as g, is partitioned into small rectangular layers of equal area such as in figure 1.

Figure 1. Bins of the Ziggurat algorithm for area size equal to $1 / 8=0.125(N=8)$. Only 6 bins can be inserted under the curve $\left(L_{\max }=6\right)$, hence the layers occupy 0.75 of the total area.

Initially we must choose a number N of layers each with area $1 / N$. Given that the total area the layers occupy is equal to the area under g, we can not fit all of them under the curve g. We now define $L_{\max }$ as the total number of layers that can be inserted under g. The leftover regions to the right of each layer, including the cap and tail of the distribution, now represent $1-L_{\max } / N$ of the area under the distribution.

In the light of section 2, we may now think of this problem as region sampling under a defined distribution g, with $L_{\max }$ rectangular regions, $R_{1}, \cdots, R_{L_{\max }}$ and one residual region A_{R} representing all regions that remain outside the rectangles, such that:

$$
A_{R}=\bigcup_{i=1}^{L_{\max }+1} A_{i}
$$

where A_{i} are the actual leftover regions (one for each rectangular region), cap included. The method then has 2 levels, first it randomly chooses to sample either from a layer or from the residual region. If a rectangular layer is chosen, it returns a uniform sample. If the residual region is select, it then must first randomly pick a leftover region to sample from. For these regions, with the exception of the tail,
rejection sampling is applied (see Appendix 5.1) to generate a uniform sample. If the tail is chosen, we use a fallback algorithm.

For the sake of illustration, we give an example for $N=256$. We will denote the borders of each rectangular layer as x_{i}, where the top layer (under the cap) is $x_{L_{m a x}+1}$ and the one that has the tail to the right of it is x_{1}. The area of each rectangle will be $1 / 256$. From simulations with the code provided in section 4. we know that $L_{\max }=253$, so the total residual area will be $3 / 256$. We now do the following:

1. Sample an integer i uniformly between 1 and $N=256$.
2. If $i \in\left[1, L_{\max }=253\right]$, return x uniformly from region $\left[0, x_{i}\right)$. (This represents the layers).
3. Else, sample an integer $j \in[1,254]$ with probability $p(j)=\mu\left(A_{j}\right) / \mu\left(A_{R}\right)$.
(a) If $j=1$, return a sample x from the tail.
(b) Else, apply Rejection Sampling to get a uniform sample x from region j.

To implement this method we require 3 look-up tables. One for the ziggurat lengths x_{i} and heights $y_{i}=g\left(x_{i}\right)$, as well as the area of leftover regions A_{j}. We also need a uniform generator to output the values of i, j and x.

Since each region is selected with probability proportional to it's area, the method will generate samples x with distribution g, according to section 2 .

4 Implementation and Speed

McFarland [4 has made available all the necessary codes to be used in C, Python and MATLAB. It can be found at https://bitbucket.org/cdmcfarland/fast_prng. We have also uploaded a Python script that generates all the necessary tables $\left(x_{i}, y_{i}=g\left(x_{i}\right)\right.$ and $\left.A_{j}\right)$ for any given bin size N : https:// github.com/dsevero/A-Report-on-the-Ziggurat-Method/blob/master/ziggurat/generate_tables. py.

The header file normal. h that has been made available by [4], and is available at the hyperlink above, can be readily inserted into any C code. It provides a function normal_setup() that must be called to initialize the pseudo-random number generator and normal() can be used to sample numbers from a univariate Gaussian distribution ($\mu=0$ and $\sigma^{2}=1$). The area of the bins used to generate this specific code was $1 / 256$.

With respect to speed, the Ziggurat algorithm implemented in C for $N=256$, is over 4 times faster than the tradition polar method [1], running on an Intel i7-4790 clocked at 3.60 GHz with 16 GB of RAM. Since normal() generates a univariate Gaussian, we compared the speed of computing $\sigma * \operatorname{normal}()+\mu($ also in C$)$ to the one of reapplying the Ziggurat algorithm to a μ, σ Gaussian. No significant performance improvements were seen. McFarland [4 provides other speed comparisons in different programming languages.

5 Appendix

Here we present some useful results, with proofs, related to Rejection Sampling and hand-picked probability distributions. We assume that the reader is familiar with introductory level calculus and probability theory.

5.1 Rejection Sampling

Theorem 1. Given two known distributions g and h defined over the same interval $A \subseteq \mathbb{R}$. We can create a dataset distributed according to h, by sampling only from g, if the following is done:

1. Choose a number $k \in \mathbb{R}^{+}$such that $\operatorname{kg}(a) \geq h(a), \forall a \in A$.

Figure 2. RSA rejection/acceptance regions. After sampling x from $g(\cdots \cdots \cdots)$ if y falls under curve h (green) then it is stored, otherwise if it is above h (red) it is rejected.
2. Sample a point x from g.
3. Sample a number y from the distribution Uniform $[0, \mathrm{~kg}(x)]$.
4. If $y<h(x)$ add it to the dataset, otherwise discard it.

We will call this the Rejection Sampling Algorithm (RSA).
Proof. To show that the resulting dataset is distributed according to h, we may represent the sample points previously mentioned, x and y, by the random variables $X \sim f_{X}(x) \equiv g(x)$ and Y, defined over a conditional distribution $f_{Y \mid X}(y \mid x)=\operatorname{Uniform}[0, k g(x)]$, respectively. Also, define $Z=\mathbb{1}\{Y<h(X)\}$ such that if the sample y is under the curve h, then Z takes on the value 1 , otherwise 0 . Now, since Y obeys a uniform distribution, we have that:

$$
f_{Z \mid X}(z=1 \mid x)=\frac{h(x)}{k g(x)}
$$

Consider now the pair (X, Z) where $(X, Z=1)$ represents the sample points X that we will keep according to the RSA. Looking at the joint distribution:

$$
f_{X, Z}(x, z=1)=f_{X}(x) f_{Z \mid X}(z=1 \mid x)=g(x) \frac{h(x)}{k g(x)}=\frac{1}{k} h(x)
$$

we find that it distributes according to a multiple of $h(x)$, hence the dataset will have distribution h.

We may now discuss some interesting observations related to the Rejection Sampling Algorithm. Consider first the probability of keeping a generated value:

$$
f_{Z}(z=1)=\int_{A} f_{X, Z}(x, z=1) d x=\frac{1}{k} \int_{A} h(x) d x=\frac{1}{k}
$$

Knowing this, it is interesting to define $k=\min _{\kappa \in \mathbb{R}^{+}}(\kappa g(a) \geq h(a), \forall a \in A)$, i.e. as the smallest $k \in \mathbb{R}^{+}$ such that g is still above h. This way, we maximize the probability of keeping a generated value, thus minimizing computational efforts.

Let $P=(X, Y)$ be a random variable taking on values $p \in A \times[0, k g(x)]$, i.e. P takes on values under curve g (union of red and green regions of figure 2). The joint distribution of P is:

$$
f_{P}(p)=f_{X, Y}(x, y)=f_{X}(x) f_{Y \mid X}(y \mid x)=g(x) \frac{1}{k g(x)}=\frac{1}{k}
$$

from which we conclude that the RSA is equivalent to uniformly sampling points (x, y) under g and keeping only those that also fall under h. The x coordinates of the stored points will have distribution h.

5.2 Piecewise sampling

Consider the following problem statement: given a distribution g, is it possible to divide g into functions g_{1}, \ldots, g_{N} such that sampling from these functions (in a specific way) is equivalent to sampling from g ? Initially we will consider that $g=\sum_{i=1}^{N} g_{i}$ and we denote each region as $A_{i} \subseteq A$ as well as the area under each curve g_{i} as π_{i}. Also the support of g is $A=\bigcup_{i=1}^{N} A_{i}$.

Figure 3. A general distribution g being divided into N regions, each with it's corresponding function g_{i}, region $A_{i} \subseteq A$ and area of region $\int_{A_{i}} g_{i}(x) d x=\pi_{i}$.

We propose that the following algorithm solves the problem in question:

1. Sample ω from g
2. For $\omega \in A_{i}$, sample x from g_{i} / π_{i}.

If the above algorithm is followed, then X will have distribution g. To prove that this is so, we define a random variable Z taking on values $z \in\{1, \cdots, N\}$ such that if $\omega \in A_{i}$ then $z=i$. In other words, Z indicates to which region ω belongs to. Now, we know that:

$$
f_{Z}(z)=P\left[\omega \in A_{z}\right]=\int_{A_{z}} g(x) d x=\int_{A_{z}} g_{z}(x) d x=\pi_{z}
$$

Also, the joint distribution of Z and X is:

$$
f_{Z, X}(z, x)=f_{Z}(z) f_{X \mid Z}(x \mid z)=\pi_{z} \frac{g_{z}(x)}{\pi_{z}}=g_{z}(x)
$$

Since X is what we are interested in, we now investigate it's distribution:

$$
f_{X}(x)=\sum_{z} f_{Z, X}(z, x)=\sum_{z=1}^{N} g_{z}(x)=g(x)
$$

This result shows that we may sample from the decompositions g_{1}, \cdots, g_{N} and still obtain a dataset with distribution g. Although this result is general, it says nothing of how it could be used to efficiently generate numbers from g since part 1 . of the algorithm requires that we sample from g itself. This can be solved by considering the particular case in which the areas π_{i} all have the same value. This area can be trivially calculated in the following way: since g is a distribution we know that:

$$
\begin{gathered}
\int_{A} g(x) d x=\int_{A} \sum_{i=1}^{N} g_{i}(x) d x=\sum_{i=1}^{N} \int_{A_{i}} g_{i}(x) d x=N \int_{A_{i}} g_{i}(x) d x=1 \\
\int_{A_{i}} g_{i}(x) d x=\frac{1}{N}
\end{gathered}
$$

Since each region now has equal area, sampling y from g and checking the region in which y has fallen into is equivalent to randomly generating an integer from the set $\{1, \cdots, N\}$ and using it as z. We can now rewrite the original algorithm as:

1. Sample z uniformly from $\{1, \cdots, N\}$.
2. Sample x from $N g_{z}$

The formal verification of this algorithm is straightforward:

$$
\begin{gathered}
f_{Z}(z)=\frac{1}{N} \\
f_{X \mid Z}(x \mid z)=N g_{z}(x) \\
f_{X}(x)=\sum_{z} f_{X, Z}(x, z)=\sum_{z} f_{Z}(z) f_{X \mid Z}(x \mid z)=\sum_{z} \frac{1}{N} N g_{z}(x)=g(x)
\end{gathered}
$$

This result is useful as long as it is easier to sample from g_{1}, \cdots, g_{N} than it is from g. The Ziggurat method takes advantage of this and the fact that very efficient uniform pseudorandom number generators are available in most programming languages to create a simple algorithm to quickly generate samples from any decreasing density [3].

References

[1] George Marsaglia, " A convenient method for generating normal variables.", SIAM Rev. 6, 260-264, 1964.
[2] George Marsaglia, Wai Wan Tsang, "A fast, easily implemented method for sampling from decreasing or symmetric unimodal density functions", SIAM Journ. Scient. and Statis. Computing, 5, 349-359, 1984.
[3] George Marsaglia, Wai Wan Tsang, "The Ziggurat Method for Generating Random Variables", Journal of Statistical Software, 2000.
[4] Christopher D. McFarland, "A modified ziggurat algorithm for generating exponentially- and normally-distributed pseudorandom numbers.", Apr. 2014.

[^0]: ${ }^{1}$ This means that $A=\bigcup_{i=1}^{N} A_{i}$ and $A_{i} \cap A_{j}=\emptyset$ for all $i \neq j$.
 ${ }^{2} \mathbb{1}\{x\}=1$ if x is true and 0 if it is false.

