
A Report on the Ziggurat Method

Daniel de Souza Severo
Dept. of Electrical and Computer Engineering

University of Toronto

July, 2014

Abstract

This report outlines, as well as provides a mathematical proof of functionality, of
a highly efficient pseudo-random number generator: The Ziggurat Method. A simple
ready-to-use code has been provided by previous authors. We contribute to this with
a speed test on a modern Intel processor, as well as a Python script that generates all
the necessary information to implement a specific version of the algorithm.

1 Introduction

Pseudo-random number generators (PRNG’s) are crucial in the context of simulating noise in commu-
nication channels. We present a report on an efficient method for generating pseudo-random samples
from any decreasing probability distribution called the Ziggurat Method. The initial idea was devel-
oped by [1], but has been enhanced by Marsaglia, Tsang [3] and others. Specifically, we will show the
latest and most efficient version presented by McFarland [4]. In the latter paper, the method shows a
speedup of over 3 times compared to traditional algorithms such as Marsaglia’s Polar Method [2]. We
present a speed comparison in C implemented on an Intel i7-4790 clocked at 3.60 GHz. McFarland [4]
provides all the necessary code to implement an ad hoc version of the algorithm, as well as a ready-to-
use C code for a univariate Gaussian. A proof that the samples from this method are truly Gaussian
is also provided.

2 Uniform region sampling

Prior to explaining the method, a prelude into a simple, yet important, mathematical result in proba-
bility theory is due. Most pseudorandom number generators operate on the principle that sampling a
point x directly from the distribution in question, call it g, is equivalent to the following:

1. Divide the region A under g into subregions Ai such that {Ai, · · · , AN} is a partition1 of A.

2. Randomly select a region Ai with probability proportional to it’s area, µ(Ai).

3. Uniformly sample a point p = (x, y) from the selected region Ai.

4. Return x, since it will have distribution g.

The validity of this method can be simply proven. Let I be a random variable with distribution
fI(i) = µ(Ai)/µ(A) = µ(Ai) that represents part 2. of the method presented above. If P = (X,Y)
represents the points uniformly sampled in each region, then fP |I(p|i) = 1{p ∈ Ai}/µ(Ai).

2 We can
now calculate fP (p) = fX,Y (x, y):

fP (p) =
∑
i

fP,I(p, i) =
∑
i

fI(i)fP |I(p|i) =
∑
i

µ(Ai)
1{p ∈ Ai}
µ(Ai)

=
∑
i

1{p ∈ Ai}

1This means that A =
⋃N

i=1 Ai and Ai ∩Aj = ∅ for all i 6= j.
21{x} = 1 if x is true and 0 if it is false.

1

A specific point p can only belong to one subregion, since Ai ∩Aj = ∅,∀i 6= j. Hence, we have that:

fP (p) =
∑
i

1{p ∈ Ai} = 1{p ∈ A1}+ 1{p ∈ A2}+ · · ·+ 1{p ∈ AN} = 1

fX(x) =

∫
y
fX,Y (x, y)dy =

∫ g(x)

0
dy = g(x)

The Ziggurat Method takes advantage of this result, by partitioning the region under g into subregions
that are easier to sample from than g itself. A dataset generated from this method will have distribution
g up to machine precision.

3 The Ziggurat Method

The Ziggurat method uses the result from section 2 to quickly generate pseudorandom numbers from
any decreasing distribution. The density in question, we will denote it as g, is partitioned into small
rectangular layers of equal area such as in figure 1.

y6

y5

y4
y3
y2
y1

x6 x5x4x3 x2 x1

Figure 1. Bins of the Ziggurat algorithm for
area size equal to 1/8 = 0.125 (N = 8).
Only 6 bins can be inserted under the curve
(Lmax = 6), hence the layers occupy 0.75 of

the total area.

Initially we must choose a number N of layers each with area 1/N . Given that the total area the
layers occupy is equal to the area under g, we can not fit all of them under the curve g. We now define
Lmax as the total number of layers that can be inserted under g. The leftover regions to the right of
each layer, including the cap and tail of the distribution, now represent 1−Lmax/N of the area under
the distribution.

In the light of section 2, we may now think of this problem as region sampling under a defined
distribution g, with Lmax rectangular regions, R1, · · · , RLmax and one residual region AR representing
all regions that remain outside the rectangles, such that:

AR =

Lmax+1⋃
i=1

Ai

where Ai are the actual leftover regions (one for each rectangular region), cap included. The method
then has 2 levels, first it randomly chooses to sample either from a layer or from the residual region. If
a rectangular layer is chosen, it returns a uniform sample. If the residual region is select, it then must
first randomly pick a leftover region to sample from. For these regions, with the exception of the tail,

2

rejection sampling is applied (see Appendix 5.1) to generate a uniform sample. If the tail is chosen,
we use a fallback algorithm.

For the sake of illustration, we give an example for N = 256. We will denote the borders of each
rectangular layer as xi, where the top layer (under the cap) is xLmax+1 and the one that has the tail
to the right of it is x1. The area of each rectangle will be 1/256. From simulations with the code
provided in section 4. we know that Lmax = 253, so the total residual area will be 3/256. We now do
the following:

1. Sample an integer i uniformly between 1 and N = 256.

2. If i ∈ [1, Lmax = 253], return x uniformly from region [0, xi). (This represents the layers).

3. Else, sample an integer j ∈ [1, 254] with probability p(j) = µ(Aj)/µ(AR).

(a) If j = 1, return a sample x from the tail.

(b) Else, apply Rejection Sampling to get a uniform sample x from region j.

To implement this method we require 3 look-up tables. One for the ziggurat lengths xi and heights
yi = g(xi), as well as the area of leftover regions Aj . We also need a uniform generator to output the
values of i, j and x.

Since each region is selected with probability proportional to it’s area, the method will generate
samples x with distribution g, according to section 2.

4 Implementation and Speed

McFarland [4] has made available all the necessary codes to be used in C, Python and MATLAB. It
can be found at https://bitbucket.org/cdmcfarland/fast_prng. We have also uploaded a Python
script that generates all the necessary tables (xi, yi = g(xi) and Aj) for any given bin size N : https://
github.com/dsevero/A-Report-on-the-Ziggurat-Method/blob/master/ziggurat/generate_tables.

py.
The header file normal.h that has been made available by [4], and is available at the hyperlink

above, can be readily inserted into any C code. It provides a function normal setup() that must be
called to initialize the pseudo-random number generator and normal() can be used to sample numbers
from a univariate Gaussian distribution (µ = 0 and σ2 = 1). The area of the bins used to generate
this specific code was 1/256.

With respect to speed, the Ziggurat algorithm implemented in C for N = 256, is over 4 times
faster than the tradition polar method [1], running on an Intel i7-4790 clocked at 3.60 GHz with 16
GB of RAM. Since normal() generates a univariate Gaussian, we compared the speed of computing
σ ∗ normal() + µ (also in C) to the one of reapplying the Ziggurat algorithm to a µ,σ Gaussian. No
significant performance improvements were seen. McFarland [4] provides other speed comparisons in
different programming languages.

5 Appendix

Here we present some useful results, with proofs, related to Rejection Sampling and hand-picked
probability distributions. We assume that the reader is familiar with introductory level calculus and
probability theory.

5.1 Rejection Sampling

Theorem 1. Given two known distributions g and h defined over the same interval A ⊆ R. We can
create a dataset distributed according to h, by sampling only from g, if the following is done:

1. Choose a number k ∈ R+ such that kg(a) ≥ h(a), ∀a ∈ A.

3

https://bitbucket.org/cdmcfarland/fast_prng
https://github.com/dsevero/A-Report-on-the-Ziggurat-Method/blob/master/ziggurat/generate_tables.py
https://github.com/dsevero/A-Report-on-the-Ziggurat-Method/blob/master/ziggurat/generate_tables.py
https://github.com/dsevero/A-Report-on-the-Ziggurat-Method/blob/master/ziggurat/generate_tables.py

kg(x)

y

x

Figure 2. RSA rejection/acceptance regions.
After sampling x from g () if y falls under
curve h (green) then it is stored, otherwise if

it is above h (red) it is rejected.

2. Sample a point x from g.

3. Sample a number y from the distribution Uniform[0, kg(x)].

4. If y < h(x) add it to the dataset, otherwise discard it.

We will call this the Rejection Sampling Algorithm (RSA).

Proof. To show that the resulting dataset is distributed according to h, we may represent the sample
points previously mentioned, x and y, by the random variables X ∼ fX(x) ≡ g(x) and Y , defined over a
conditional distribution fY |X(y|x) = Uniform[0, kg(x)], respectively. Also, define Z = 1{Y < h(X)}
such that if the sample y is under the curve h, then Z takes on the value 1, otherwise 0. Now, since
Y obeys a uniform distribution, we have that:

fZ|X(z = 1|x) =
h(x)

kg(x)

Consider now the pair (X,Z) where (X,Z = 1) represents the sample points X that we will keep
according to the RSA. Looking at the joint distribution:

fX,Z(x, z = 1) = fX(x)fZ|X(z = 1|x) = g(x)
h(x)

kg(x)
=

1

k
h(x)

we find that it distributes according to a multiple of h(x), hence the dataset will have distribution
h.

We may now discuss some interesting observations related to the Rejection Sampling Algorithm.
Consider first the probability of keeping a generated value:

fZ(z = 1) =

∫
A
fX,Z(x, z = 1)dx =

1

k

∫
A
h(x)dx =

1

k

Knowing this, it is interesting to define k = minκ∈R+(κg(a) ≥ h(a), ∀a ∈ A), i.e. as the smallest k ∈ R+

such that g is still above h. This way, we maximize the probability of keeping a generated value, thus
minimizing computational efforts.

4

Let P = (X,Y) be a random variable taking on values p ∈ A × [0, kg(x)], i.e. P takes on values
under curve g (union of red and green regions of figure 2). The joint distribution of P is:

fP (p) = fX,Y (x, y) = fX(x)fY |X(y|x) = g(x)
1

kg(x)
=

1

k

from which we conclude that the RSA is equivalent to uniformly sampling points (x, y) under g and
keeping only those that also fall under h. The x coordinates of the stored points will have distribution
h.

5.2 Piecewise sampling

Consider the following problem statement: given a distribution g, is it possible to divide g into functions
g1, ..., gN such that sampling from these functions (in a specific way) is equivalent to sampling from g?
Initially we will consider that g =

∑N
i=1 gi and we denote each region as Ai ⊆ A as well as the area

under each curve gi as πi. Also the support of g is A =
⋃N
i=1Ai.

1 2 · · · N − 1N

Figure 3. A general distribution g being di-
vided into N regions, each with it’s corre-
sponding function gi, region Ai ⊆ A and area

of region
∫
Ai
gi(x)dx = πi.

We propose that the following algorithm solves the problem in question:

1. Sample ω from g

2. For ω ∈ Ai, sample x from gi/πi.

If the above algorithm is followed, then X will have distribution g. To prove that this is so, we
define a random variable Z taking on values z ∈ {1, · · · , N} such that if ω ∈ Ai then z = i. In other
words, Z indicates to which region ω belongs to. Now, we know that:

fZ(z) = P [ω ∈ Az] =

∫
Az

g(x)dx =

∫
Az

gz(x)dx = πz

Also, the joint distribution of Z and X is:

fZ,X(z, x) = fZ(z)fX|Z(x|z) = πz
gz(x)

πz
= gz(x)

Since X is what we are interested in, we now investigate it’s distribution:

fX(x) =
∑
z

fZ,X(z, x) =
N∑
z=1

gz(x) = g(x)

5

This result shows that we may sample from the decompositions g1, · · · , gN and still obtain a dataset
with distribution g. Although this result is general, it says nothing of how it could be used to efficiently
generate numbers from g since part 1. of the algorithm requires that we sample from g itself. This can
be solved by considering the particular case in which the areas πi all have the same value. This area
can be trivially calculated in the following way: since g is a distribution we know that:∫

A
g(x)dx =

∫
A

N∑
i=1

gi(x)dx =
N∑
i=1

∫
Ai

gi(x)dx = N

∫
Ai

gi(x)dx = 1

∫
Ai

gi(x)dx =
1

N

Since each region now has equal area, sampling y from g and checking the region in which y has fallen
into is equivalent to randomly generating an integer from the set {1, · · · , N} and using it as z. We can
now rewrite the original algorithm as:

1. Sample z uniformly from {1, · · · , N}.

2. Sample x from Ngz

The formal verification of this algorithm is straightforward:

fZ(z) =
1

N

fX|Z(x|z) = Ngz(x)

fX(x) =
∑
z

fX,Z(x, z) =
∑
z

fZ(z)fX|Z(x|z) =
∑
z

1

N
Ngz(x) = g(x)

This result is useful as long as it is easier to sample from g1, · · · , gN than it is from g. The Ziggurat
method takes advantage of this and the fact that very efficient uniform pseudorandom number gener-
ators are available in most programming languages to create a simple algorithm to quickly generate
samples from any decreasing density [3].

6

References

[1] George Marsaglia, ”A convenient method for generating normal variables.”, SIAM Rev. 6, 260-264,
1964.

[2] George Marsaglia, Wai Wan Tsang, ”A fast, easily implemented method for sampling from de-
creasing or symmetric unimodal density functions”, SIAM Journ. Scient. and Statis. Computing,
5, 349-359, 1984.

[3] George Marsaglia, Wai Wan Tsang, ”The Ziggurat Method for Generating Random Variables”,
Journal of Statistical Software, 2000.

[4] Christopher D. McFarland, ”A modified ziggurat algorithm for generating exponentially- and
normally-distributed pseudorandom numbers.”, Apr. 2014.

7

	Introduction
	Uniform region sampling
	The Ziggurat Method
	Implementation and Speed
	Appendix
	Rejection Sampling
	Piecewise sampling

