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Problem & Goal

Recent years have withessed the rise of various omics technologies, including but not limited to high-throughput sequencing of DNA (genomics) and RNA (transcriptomics), DNA microarrays
(transcriptomics), nuclear magnetic resonance (NMR) and direct infusion Fourier-transformm mass spectrometry (metabolomics) and protein sequencing by mass spectrometry (proteomics).
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Application to Omics Datasets

We applied the summarization, visualization and estimation of the error components to four different omics datasets spanning currently used technologies: 1) genomics by DNA-seq; i)
transcriptomics by DNA microarray, iii) transcriptomics by RNA-seq, and iv) lipid metabolomics by Fourier-transform mass spectrometry.

1) DNA-Seq Drosophila

Based on the underlying analytical methodology inherent in each of these technologies of counting a signal at a detector, we hypothesize that each of these omics technologies suffer from a
proportional variance to different degrees. Proportional variance is detrimental to commonly used statistical methods as it breaks the assumption of variances being identically and

Independently distributed (iid normal).
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Therefore, we have developed a novel graphical method that visualizes separate additive and proportional variance components in a given dataset, making if easier to detect and quantify both 1000 Genomes —— \ 9 - \ s

components. Based on this visualization, we have also developed a method to calculate both the additive and proportional error components. We have applied these new methods to datasets

from four different omics technologies: i) DNA-seq (drosophila 1000 genomes), i) RNA-seq (saccharomyces 48 replicate transcriptomics), iii) DNA microarray (MAQC Affymetrix(®, and iv) Paired end reads from Illumina sequencing of 200 6 T S -

metabolomics FTMS (RCSIRM workshop exosome lipids). Although the degree of proportional variance is different, the resulting graphs clearly show the presence of proportional variance in drosophila samples from the sequence read archive s 0 ¢ ' ,39'
(SRA, 1000 drosophila genomes project [I], - ol ° prop 2.33e-01

each dataset and in a form that is easy to quantify.
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variance with mean signal, with constant relative standard deviation (rsd). Below we demonstrate these properties using simulated data: 1000 points drawn from a uniform distribution with calculated across the 200 replicates.
values 0 - 10000, and then generating 100 replicates for each point with either additive error only (Fig 1, sd = 20), proportional error only (Fig 2, rsd = 0.1), or both (Fig 3).
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i) DNA Microarray Quality Control
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The two summary plots of mean vs sd and mean vs rsd lead to ftwo equations that can be solved using non-linear least squares (see equations above). Practically, initial estimates are e repz e

generated from the sd equation, and then used as starting points in the rsd equation. The ability to estimate the additive and proportional components was tested by varying the additive
component value from 0 - 5000 in increments of 10, and proportional from 0 - 1in increments of 0.01, generating 100 replicates from error free data 20 times, and estimating the errors for each.
Fig 4 shows that as the additive error component is increased, the confidence in the the additive and proportional estimates decrease.

Real vs Estimates

Table 1. Raw and normalized to mean signal additive and proportional
error component values for each of the -omics datasets.

Conclusions and Fufure Work
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how the error components vary at different summary levels, determining how many replicates are required to accurately
estimate the error components, If the error components can be estimated using bootstrap sampling on small sample numbers, M
we should be able to examine large numbers of datasets to see how additive and proportional error components change with Oadd
other measures of dataset quality. Pprop
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