
Supplementary 
 

Text S1. Description of the two models used in this study. 

Urban growth scenarios were simulated by an autologistic regression–Markov chain–
based cellular automata model, which integrates the auto logistic regression, Markov 
chain with cellular automata (Xu et al., 2019). In this model, the growth of settlement 
areas was simulated according to the following steps. First, considering the 
characteristics of the study area and the nature of the model, potential driving factors of 
urban growth were collected (including environmental factors, neighborhood factors, 
spatial characteristic factors, and socioeconomic factors). Based on these driving factors, 
local transition probabilities were calculated by the autologistic regression that is capable 
of addressing the spatial dependency that existed in the pattern of urban growth. 
Meanwhile, a transition probability matrix, which recorded the probability of each land-
use type to change into the urban settlement, was obtained from the Markov chain 
analysis. Afterward, a final transition probability map was generated by combining the 
local transition probabilities with the transition probability matrix. Finally, according to 
the final transition probability map, settlement growth was allocated using the cellular 
automata under certain neighborhood rules. Please refer to Xu et al. (2019) for more 
details of this urban growth model. 

Noteworthily, urban shrinkage has become another path of urban development 
worldwide (Haase et al., 2012). Urban shrinkage models have been developed for 
predicting the shrinkage of urban areas (Lauf et al., 2012). However, common urban 
shrinkage models were not applicable in this study because of lacking empirical evidence 
of urban shrinkage in this region (Xu et al., 2018). As highlighted in the previous study, 
the vacant land resulting from urban shrinkage offers an opportunity for the development 
of green spaces that can improve the quality of living environment (Hollander et al., 
2009). Accordingly, an integer programming based urban green space optimization 
model built in the GAMS software environment was applied for simulating the urban 
shrinking scenarios (Pribadi and Xu, 2017). Based on previous studies, the provision of 
nearby green spaces is regarded to be more beneficial to residents in terms of daily short-
time recreational services (Kabisch et al., 2016; Lauf et al., 2014). Thereby, the minimum 
size and the maximum service radius of the new green spaces to be developed were set at 
2 ha and 300 meters, respectively. In this model, new green spaces were developed in the 
low-density settlement patches that had no green space (≥ 2 ha) available within 300 m. 
Besides, the beneficial areas (i.e., settlement areas within 300 m of these new green 
spaces) were maximized. Please refer to Pribadi and Xu (2017) for more details of this 
urban growth model. 



Table S1. Descriptions of the landscape metrics used in this study. 

Landscape metrics Description (McGarigal and Marks, 1995; Wu et al., 2002) 

Patch complexity 

Largest Patch Index (LPI) The percentage of total landscape area comprised by the largest patch 

Total Edge (TE) The sum of the lengths (m) of all edge segments in the landscape 

Edge Density (ED) The sum of the lengths (m) of all edge segments in the landscape, divided by the total landscape area 
(m2) 

Landscape Shape Index (LSI) A standardized measure of total edge or edge density that adjusts for the size of the landscape. It 
measures the shape complexity of the entire landscape 

Mean Patch Size (AREA_MN) The sum, across all patches in the landscape, of the area (m2) of each patch, divided by the total number 
of patches 

Area-Weighted Mean Patch Size 
(AREA_AM) 

The sum, across all patches in the landscape, of the area (m2) of each patch multiplied by the proportional 
abundance of the patch 

Perimeter-Area Fractal Dimension 
(PAFRAC) 

The fractal dimension of the whole landscape which equals 2 divided by the slope of regression line 
between the logarithm of patch area (m2) and the logarithm of patch perimeter (m) 

Mean Patch Shape Index 
(SHAPE_MN) 

The sum, across all patches in the landscape, of the patch-level shape index, divided by the total number 
of patches. Shape index equals patch perimeter (m) divided by the square root of patch area (m2) 

Mean Fractal Dimension Index 
(FRAC_MN) 

The patch-level fractal dimension averaged over all patches in the landscape. Patch fractal dimension 
index equals 2 times the logarithm of patch perimeter (m) divided by the logarithm of patch area (m2) 

Aggregation 

Contagion (CONTAG) Measures the extent to which patches are spatially aggregated by computing the probability that two 
randomly selected adjacent pixels belong to the same patch type 

Interspersion and Juxtaposition Index 
(IJI) 

Measures the distribution of adjacencies among unique patch types 

Percentage of Like Adjacencies 
(PLADj) 

Measures the degree of aggregation of patch types by considering only dispersion and not interspersion 



Table S1. Descriptions of the landscape metrics used in this study (continued). 

 

Landscape metrics Description (McGarigal and Marks, 1995; Wu et al., 2002) 

Aggregation Index (AI) The area weighted mean class-level aggregation index which equals the number of like adjacencies 
divided by the maximum possible number of like adjacencies involving the corresponding class  

Landscape Division Index (DIVISION) The probability that two randomly chosen pixels in the landscape are not situated in the same patch 

Splitting Index (SPLIT) The total landscape area (m2) squared divided by the sum of patch area (m2) squared, summed across all 
patches in the landscape 

Effective Mesh Size (MESH) The size of the patches when the landscape is subdivided into S patches, where S is the value of the 
splitting index 

Diversity 

Patch Richness (PR) The number of different patch types in the landscape 

Patch Richness Density (PRD) The number of different patch types divided by total landscape area (m2) 

Shannon’s Diversity Index (SHDI) The proportional abundance of each patch type 

Simpson’s Diversity Index (SIDI) The probability that any 2 pixels selected at random would be different patch types 

Modified Simpson’s Diversity Index 
(MSIDI) 

Eliminates the intuitive interpretation of Simpson's index as a probability 

Shannon’s Evenness Index (SHEI) The observed SHDI divided by the maximum SHDI for that number of patch types. It measures the 
degree of evenness as the complement of dominance 

Simpson’s Evenness Index (SIEI) The observed SIDI divided by the maximum SIDI for that number of patch types. It measures the degree 
of evenness as the complement of dominance 

Modified Simpson’s Evenness Index 
(MSIEI) 

The observed modified MSIDI divided by the maximum MSIDI for that number of patch types. It 
measures the degree of evenness as the complement of dominance 



 
Figure S1. The spatial distribution of settlement growth in the selected scenarios (* indicates the shrinking scenarios. Figure continued on next 
page). 



 
Figure S1. (continued). 
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