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Abstract
In this thesis I study the precision of exoplanetary characteristics, in particular their
masses and radii, by using di�erent methods. I highlight the supposed improvements
provided by asteroseismic studies.

To calculate the exoplanetary parameters, I use five di�erent calculation meth-
ods for the model systems Kepler-10, 21 and 22. The distinctions are set in the
computation of the required stellar parameters.

I show that the precision increases with the use of asteroseismology, though
only asteroseismic modeling improves the exoplanet parameters significantly. Other
methods used in this thesis refine the accuracy only under certain conditions.

At last I give a short prospect on future possibilites with planned spacemissions.

Zusammenfassung
Diese Bachelorarbeit befasst sich mit der Präzision der Parameterbestimmung von
extrasolaren Planeten bei Nutzung unterschiedlicher Herangehensweisen. Ein beson-
derer Fokus wird dabei auf die gemutmaßten Verbesserungen durch Asteroseismo-
logie gelegt.

Es werden fünf unterschiedliche numerische Berechnungen durchgeführt, um eini-
ge Eigenschaften, insbesondere die Masse und den Radius, der drei Modellsysteme
Kepler-10, 21 und 22 zu bestimmen. Die Unterschiede liegen dabei in der Berechnung
der dafür nötigen Sternparameter.

Es kann gezeigt werden, dass die Genauigkeit durch Asteroseismologie grund-
sätzlich gesteigert werden kann, ein wirklich nutzbringender E�ekt aber erst mit
durchgeführter Modelierung zu erkennen ist. Die in dieser Arbeit genutzte Methode
bringt nur unter gewissen Umständen Vorteile.

Zum Schluss wird noch ein Ausblick auf zukünftige Möglichkeiten mit voll gege-
bener asteroseismischer Präzision gegeben.
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Nomenclature

Parameters

Variable (Physical) Parameter Unit

M Mass kg
R Radius m
fl Density kg/m3

P Orbital period s
a Orbital semi-major axis m
i Orbital inclination degree
�‹ Asteroseismic large frequency separation µHz
”‹ Asteroseismic small frequency separation µHz
Te� Stellar e�ective Temperature K
mv Apparent magnitude mag
fi Stellar parallax arcsecond
BC Bolometric correction mag
K Radial velocity semi-amplitude m/s

g Surface gravity m/s2

Frequent indices

Index Meaning

ı Star
§ Sun
ü Earth
p (Exo-)Planet
as Asteroseismic
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Nomenclature

Index Meaning

cl ’Classical’

Constants

Constant Meaning Value

G Gravitational constant 6.674 · 10≠11 m3/kg·s2

M§ Mass of the Sun 1.989 · 1030 kg
MJ Mass of Jupiter 1.8986 · 1027 kg
Mü Mass of the Earth 5.9736 · 1024 kg
R§ Radius of the Sun 696 · 106 m
RJ Radius of Jupiter 71492 · 103 m
Rü Radius of the Earth 6378 · 103 m
fl§ Mean density of the Earth 1.408 g/cm3

�‹§ Large separation of the Sun (mean) 135 µHz
Te�,§ E�ective temperature of the Sun 5778 K
g§ Surface gravity of the Sun 274 m/s2

Mbol,§ Absolute magnitude of the Sun 4.74 mag
L§ Luminosity of the Sun 3.846 · 1026 W

Acronyms

Acronym Meaning

AS Asteroseismology/asteroseismic
HZ Habitable zone
HR Hertzsprung-Russell (diagram)
K-10 Kepler-10
K-21 Kepler-21
K-22 Kepler-22
KIC Kepler Input Catalog
RV Radial velocity
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1. Introduction

Since the detection of the first exoplanet orbiting a main-sequence star, 51 Pegasi b,
by Mayor & Queloz (1995) the astronomical e�orts in detecting and characterizing
further exoplanetary systems increased rapidly. Since today exoplanets got detected
around a wide variety of stars (e.g., main sequence stars, M dwarfs, ” Scu variables,
giants) and in di�erent classes of systems (e.g., binaries). Up to August 6, 2012, 777
exoplanets got detected (Schneider, 2012) using various types of techniques, e.g.,
doppler spectroscopy or transit photometry.

Besides the scientific interest in exoplanet systems to gain knowledge about, e.g.,
bulk composition, planetary system formation, planetary classes and population, it
is one major goal to detect habitable planets. Alongside the scientific sensation,
such a discovery would cause wide consequences, grazing mankind’s perception of
life itself.

Fullfilling these ambitious goals we need to improve our observation and analysis
methods to reduce uncertainties in exoplanet parameters. Precise estimates of the
fundamental stellar properties (stellar mass, radius and age) are required to con-
strain planetary characteristics. As we will see in the upcoming chapters, in most of
the cases exoplanets get detected indirectly. The proof of their existence comes from
observations of the stars. Thus, the derived planetary parameters depend directly
on the known stellar properties.

If possible, properties of the stars are derived from a combined analysis of available
data. The quality of the measured quantities depends on the accuracy of the obser-
vation and analysis methods. Usually stellar parameters are derived from observa-
tions with astrometric, spectroscopic or photometric techniques. Since the launch of
spacecraft missions, capable of performing special uninterrupted runs, it is possible
to combine these classical methods with asteroseismic analysis, i.e., studying the
internal structure of pulsating stars by the interpretation of their frequency spectra.
This can provide more precise knowledge about the host star, which translates into
better knowledge about the exoplanet.

1



1. Introduction

In this thesis I will compare the results obtained from classical studies with those
including asteroseismic studies. I will emphasize the improvement in the precision
of exoplanet parameters provided by asteroseismology. To get an idea what will
be possible in the upcoming years, we also include two (possibly) launching space
missions, i.e., Gaia and PLATO. Those will provide better data that allows to con-
strain exoplanet systems and their host stars even more precise. Due to the need of
suitable data, I do the analysis for three Kepler planets: Kepler-10b, Kepler-21b and
Kepler-22b. For all systems and di�erent analysis methods I compare the derived
uncertainties to weight the possible refinements.
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2. Observing and modeling stars

In this chapter I introduce basic concepts about stellar observations and modeling.
In Section 2.1 I describe the classical methods used in astrophysics and introduce
the basic concepts of asteroseismology of Sun-like stars in Section 2.2.

2.1. Classical observations

2.1.1. Astrometry
Astrometric techniques involve measurements of the position of stars and their move-
ments in the celestial plane. The most important astrometric measurement is the
stellar parallax

p[ÕÕ] = 1/d[pc] , (2.1)

where d is the distance of the star (see Figure 2.1).
Today the most important sources for parallaxes and proper motions of stars are

the Hipparcos (Perryman & ESA, 1997, van Leeuwen, 2007) and Tycho-2 (Høg,
2000) catalogues, providing high-accuracy data. The Hipparcos data is limited in
completeness from 7.3 mag and downwards. Usual uncertainties in the Hipparcos
data are around 1 mas (Perryman & ESA, 1997).

2.1.2. Photometry and Spectroscopy
By photometric measurements the flux of a stellar object can be obtained. The
measured brightness of a star is called the apparent magnitude m. With knowledge
of the distance d to the object or its parallax p this quantity translates to the absolute
magnitude M :

m ≠ M = 5 log
A

d

10 pc

B

= ≠5 log(p) ≠ 5 . (2.2)

3



2. Observing and modeling stars

Figure 2.1.: STScI/NASA (2008) - Measuring trigonometric parallaxes.

Due to convention the absolute magnitude is equivalent to the apparent magnitude
an object would have if it were 10 pc away from the observer and interstellar ex-
tinction were ignored. The total energy integrated over all wavelengths is called the
bolometric magnitude Mbol (e.g., Gray, 2000). To transform absolute or apparent
magnitudes in a specific bandpass (e.g., the V band around 540 nm) to bolometric
magnitudes, a bolometric correction BC (e.g., Flower, 1996) is used. The zero point
of the BC scale is set by reference to the Sun:

BC © Mbol,§ ≠ M . (2.3)

For Hipparcos data there exist associated bolometric corrections, given by Bessell
(2007). The luminosity Lı of a star can be derived directly from the known stellar
magnitude (Valenti & Fischer, 2005):

log
A

Lı

L§

B

= ≠0.4[MV + BC ≠ (MV,§ + BC§)] , (2.4)

where MV means the absolute magnitude in visual bandpass and the index § denotes
solar values. To determine the radius and mass of a specific star I need as well its
e�ective temperature Te�, which is defined via the Stefan-Boltzmann law as the
temperature of a blackbody radiator:

Lı = 4fi‡R2
ıT 4

e� , (2.5)

with Boltzmann’s constant ‡. Valenti & Fischer (2005) use a spectrum-matching
technique to estimate Te�, as well as the surface gravity log gı. Typical uncertainties
for e�ective temperatures are around 40-70 K, but higher precision can be achieved
(e.g., Kovtyukh et al., 2003). With these parameters I can now derive the radius
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2.2. Asteroseismology of solar-like stars

and mass of the star (e.g., Valenti & Fischer, 2005) using:

Rı

R§
=

Û
Lı

L§

3
T§

Tı

42
, (2.6)

Mı

M§
=

A
Rı

R§

B2

10log( gı
g§

)
. (2.7)

2.2. Asteroseismology of solar-like stars

2.2.1. Introduction

Asteroseismology is the study of waves propagating through the stellar interior.
Stars can be penetrated by sound and gravity waves. By observing and interpreting
the resulting oscillations of the stars’ lightcurves it is possible to carry information
about the properties of stellar interiors and provide direct constraints on fundamen-
tal stellar parameters, e.g., stellar radii, masses, ages and inital chemical composi-
tion. Basic information of the theory of stellar oscillations can be found in, e.g., Cox
(1980), Unno et al. (1989) or Aerts et al. (2010). Figure 2.2 illustrates which stars
can be investigated with asteroseismology.

The description of stellar oscillations is separated into a spherical and a radial part.
There are threee "‘quantum numbers"’ to describe the oscillations. The overtone n

is the number of radial nodes. The spherical part of the oscillations is described in
terms of spherical harmonics with the angular degree l and the azimuthal order m,
where l specifies the number of spherical nodes and |m| describes how many of the
horizontal nodes are lines of longitude. Todays observations of distant stars with
ground- and space-based instruments are surface-averaged, due to the huge distance.
Therefore they are essentially sensitive only to modes of the lowest degree, for solar-
like oscillations up to l = 2 ≠ 3 (Christensen-Dalsgaard, 2008).

2.2.2. Basic properties of stellar oscillations

In solar-like stars the observed modes are acoustic modes, i.e., acoustic waves
trapped in spherical-shell cavities. They are known as p modes (pressure modes)
and propagate with the speed of sound c =

Ò
“p/fl (with “ the first adiabatic expo-

nent, p the pressure and fl the density), which increases towards the centre of the
star. For an assumed ideal gas law, it is p/fl = TR/µ, with T the temperature, R
the gas constant and µ the mean molecular weight. The modes are trapped between

5



2. Observing and modeling stars

Figure 2.2.: Christensen-Dalsgaard & Thompson (2011) - Hertzsprung–Russell dia-
gram for di�erent classes of pulsating stars, which can be probed with
asteroseismology. The hatching of the di�erent zones classifies the exci-
ation mechanism: slanted lines from lower right to upper left for heat-
engine excitation of p modes, slanted lines from lower left to upper right
for heat-engine exciation of g modes, and horizontal lines for stochastic
excitation.

the near-surface region and an inner turning point rt:

c(rt)
rt

= Ê
Ò

l(l + 1)
, (2.8)

where rt is the distance from the centre and Ê the angular frequency of the mode.
Figure 2.3 shows an example for acoustic modes with their turning points.

Oscillations with turning points near the core carry information about the internal
structure. For low-degree modes in the limit n ∫ l Tassoul (1980) derived an

6



2.2. Asteroseismology of solar-like stars

Figure 2.3.: Cunha et al. (2007) - Wave propagation for p modes in a cross-section
of a solar-like star. We see acoustic ray paths, which are bend by the
increase in sound speed with depth until the inner turning point is
reached. There they undergo total internal refraction. At the surface
the density decreases rapidly, thus the acoustic waves are reflected. The
line passing through the centre illustrates the behaviour of a radial mode
with l = 0.

asymptotic relation very important for the interpretation of solar-like oscillations:

‹nl ƒ �‹(n + l/2 + ‘) ≠ [Al(l + 1) ≠ B]�‹2

‹nl

, (2.9)

where ‹nl = Ênl/(2fi) is the cyclic frequency of a mode with radial order n and
degree l and

A = 1
4fi2�‹

A
c(rt)

rt

≠
⁄ R

0

1
r

dc

dr
dr

B

. (2.10)

‘ = ‘(‹) and B are determined by reflection properties near the surface (Gough,
1986).

According to the first term of Equation (2.9) modes with the same l and subse-
quent n are regularly spaced in frequency by the so called large separation �‹ =

7



2. Observing and modeling stars

Figure 2.4.: Stahn (2011) - Solar power spectrum of a one year observation with
the GOLF instrument on the SOHO spacecraft. The peaks in the
grey-shaded section are shown in the inset, with the regular spacing
(large und small separations) of the individual modes indicated with
red arrows.

‹n≠1l ≠ ‹nl, which is the inverse sound travel time across a stellar diameter:

�‹ =
A

2
⁄ R

0

dr

c

B≠1

. (2.11)

The large separation scales like the dynamical time scale and can be measured from
the power spectrum. From Equation (2.11) follows for the mean density:

�‹ Ã fl1/2 . (2.12)

The second terms of Equations (2.9) and (2.10) yield the small frequency separa-
tion (Gough, 1986)

”‹nl = ‹nl ≠ ‹n≠1l+2 ƒ ≠(4l + 6) �‹

4fi2‹nl

⁄ R

0

1
r

dc

dr
dr , (2.13)

which is sensitive to the properties of the sound speed variations in the core of the
star.

In spherically symmetric stars the frequencies degenerate in m. Departures from

8



2.2. Asteroseismology of solar-like stars

spherical symmetry like rotation lift this degeneracy and lead to approximated fre-
quencies (in first order)

Ênlm ƒ Ênl0 + mÈ�Í , (2.14)

with È�Í an average of the angular velocity, weighted by the energy density of the
mode (Christensen-Dalsgaard, 2008).

2.2.3. Other types of stellar oscillations

Due to the importance of other types of stellar oscillations, I will briefly note a
second type of stellar oscillations.

For gravity (or g) modes the restoring force is buoyancy. A recent review of g
modes can be seen in, e.g., Appourchaux et al. (2010). It is important to say that
the detection of solar g modes is still a matter of debate.

2.2.4. Interpretation of stellar oscillation frequencies

As discussed in section 2.2.2 the large separation is directly linked to the mean
density of a star, i.e., �‹ Ã fl1/2. Similar to this, Equation (2.13) shows a sensitivity
to the sound speed gradient dc/dr near the stellar core. Due to the increase of
the helium fraction and a decrease in the hydrogen content in the core over a star’s
lifetime, caused by nuclear burning, the mean molecular weight µ increases over time.
If one assumes the core temperature not to change much while the star remains on
the main sequence, the sound speed decreases in the core and the ratio dc/dr gives
a positive contribution to Equation (2.13). Hence, the small separation ”‹ decreases
as the star evolves and can be treated as an indicator for the star’s age.

The asteroseismic Hertzsprung-Russell diagram in Figure 2.5 shows stellar evolu-
tionary tracks for models with solar initial chemical composition and various stellar
masses. It is obvious how measurements of the large and the small separation can
be accurately related to mass and core hydrogen abundance. Hence, the evolution-
ary state can be determined. The accuracy of such mapping strongly depends on
proper modeling, which is sensitive to stellar parameters, for instance, the heavy-
element abundance, the initial hydrogen abundance or the mixing length parameter
of convection (e.g., Christensen-Dalsgaard, 1993, Monteiro et al., 2002).

9



2. Observing and modeling stars

Figure 2.5.: Aerts et al. (2010) - Asteroseismic HR diagram. The large separation
�‹ is most sensitive to mass, the small separation ”‹ is most sensitive to
age. The solid, nearly vertical lines indicate stellar evolutionary tracks
for stars with di�erent initial mass, the nearly horizontal dashed lines
are isopleths of constant hydrogen mass fraction in the core.

2.2.5. Classical vs. asteroseismic stellar modeling

Classical modeling, i.e., modeling not including seismic constraints, uses the star’s
location in the HR diagram and compare it with theoretical evolutionary tracks
to determine mass, radius and age. The gain in knowledge by classical modeling
is limited by several contributing factors, e.g., the uncertainties in stellar evolution
theory, mostly due to poor knowledge of the internal mixing processes in stars, or the
fact that the location in the HR diagram does not uniquely determine the properties
of a star. Together with other uncertainties on physical processes like microscopic
di�usion or rotational mixing the precision is strongly limited.

Models based on seismic analysis allow much tighter constraints, due to the precise
measurements of the star’s oscillation frequencies. Two basic approaches to such
an analysis are known: forward and inversion techniques. Among the forward
techniques, model fitting is often used to compare an observed data set with a set of
frequencies predicted from a grid of stellar models. Then the best fit model is selected

10



2.2. Asteroseismology of solar-like stars

and therefore yields seismic mass, radius and age of a star. Inversion techniques often
use model independent methods and try to infer the internal density profile which
is the best fit to the observation data set. By integrating over the stellar radius the
mass can be computed.

Even if it is not possible to achieve individual frequencies for a star, it is at least
possible to obtain average estimates of the large and small frequency separations.
Those mean values can then be used together with Lı, Te�, [Fe/H] and log gı for
the modeling procedure. Thus, seismic modeling improves the precision on stellar
parameters if it is possible to obtain at least rough estimates of the mean frequency
separations. With measured individual frequencies, the seismic constraints may be
even better.

11





3. Detecting and characterizing
exoplanets

In this chapter I will start with an overview of todays detection methods for exoplan-
ets in Section 3.1. I will focus on transit events and radial-velocity measurements,
because those are used in my calculations. For completeness I give a brief introduc-
tion to other possibilities, i.e., astrometric, timing, microlensing and direct imaging
methods.

Section 3.2 presents the model I use to probe the planetary systems studied in
this thesis. I show the combination of RV and transit measurements to obtain the
critical parameters of the exoplanetary systems. To deal with the short time period
of a bachelor’s thesis, several approximations and simplifications are made. The
model depends strongly on the knowledge about the host star, implying Mı and Rı

are already known.

3.1. Detection methods

3.1.1. Transit events

When a planet passes in front of its host star in the line of sight of an observer,
some of the light gets blocked. Thus, the observer can monitor a tiny dip in the
lightcurve. The amount of the dimming depends on the ratio of the areas of the
projected disks of planet and star. This results in the transit depth

�F

F
© Fno transit ≠ Ftransit

Fno transit
=

3
Rp

Rı

42
, (3.1)

where F refers to the measured flux and Rp to the exoplanet radius. A precise
estimate of the planetary radius requires a precise estimate of the radius of the host
star. Figure 3.1 shows an example from the CoRoT mission. In Section 3.2.1 I will

13



3. Detecting and characterizing exoplanets

Figure 3.1.: Léger et al. (2009) - Transit light curve of CoRoT-7b. The dots indicate
the measured flux with corresponding errorbars, the solid lines are two
fits, using di�erent types of light curve models.

present a more analytic approach to the transit light curves.
There are several disadvantages in transit observations (Haswell, 2010). First of

all, the likelihood p that a randomly orientated exoplanet lies in the line of sight of an
observer decreases dramatically with increasing semi-major axis ap of the planetary
orbit:

ptransit = Rı + Rp

ap(1 ≠ e2) ¥ Rı

ap
, (3.2)

which is simplified for Rı ∫ Rp and circular orbits (eccentricity e = 0). The
expected number of planet discoveries for transit search programmes scales like
(Haswell, 2010):

transit detection probability Ã R2
pa≠7/4

p L3/2
ı R≠5/4

ı . (3.3)

These quantified selection e�ects are in favour of large and close-in planets with
luminous and small host stars.

A further disadvantage is a high rate of false detections, which could be caused
by several reasons. The most common sources seem to be:

• blended eclipsing binary systems,

• grazing eclipsing binary systems with equal-mass components,

• transits by planet-sized stars.

Therefore, planet candidates always need independent confirmation to rule out

14



3.1. Detection methods

Figure 3.2.: Perryman (2011) - Exoplanet and its parent star orbiting around their
common barycentre. The Doppler shift of the emitted light from the
star can be used to determine its minimum mass.

false detections. Typically this is done by radial velocity measurements to obtain
the object’s mass.

3.1.2. Doppler spectroscopy

Radial velocity measurements use spectroscopic methods to obtain the projected
motion of a star as it orbits the system’s barycentre, illustrated in Figure 3.2. This
can be done by measuring the Doppler shift of the emitted light which is sensitive
only to the motion along the line of sight.

For my purposes the most important aspect on radial velocities is the RV semi-
amplitude (Perryman, 2011):

K © 2fi

Pı

aı sin iıÒ
1 ≠ e2

ı

, (3.4)

with period Pı, semi-major axis aı, eccentricity eı and inclination iı of the stellar
orbit. A radial-velocity curve can be seen later in Figure 4.1. By combining the
above equation with Kepler’s third law of planetary motion I get an estimate of the
minimum mass of the planet (see Section 3.2.2).

15



3. Detecting and characterizing exoplanets

3.1.3. Other methods

Astrometry

High-accuracy astrometric measurements (like described in Section 2.1.1) can be
used similar to Doppler spectroscopy to calculate the star’s motion in the plane
of the sky around the barycentre. For circular orbits the astrometric signature
(Perryman, 2011)

– = Mp

Mı + Mp
a ƒ Mp

Mı

a ©
3

Mp

Mı

4 3
a

1 AU

4 A
d

1 pc

B≠1

arcsec (3.5)

is particularly sensitive to long orbits. In this technique the motion around the
barycentre must be discerned from the stars proper motion and the reflex motion
(its parallax), due to the Earth’s motion around the Sun. Until today nearly 500
planets got detected using radial velocity or astrometric methods (Schneider, 2012).

Timing

The changes in radial velocity and astrometric position lead to periodic oscillations
of the position of the host star around the system’s barycentre. Due to the light
travel time there can be anomalies in the measured period, from which we can
conclude on an exoplanet. The amplitude

·p = 1
c

aMp sin i

Mı

(3.6)

is related to the displacement of the star and gives an estimate for the planetary
mass. c is the speed of light. Until today around 15 planets go detected this way
(Schneider, 2012).

Microlensing

Due to the distortion of spacetime in general relativity, the light from distant back-
ground stars could be bent by the gravitational potential of a foreground object.
Under certain conditions this could happen to exoplanets, from which several con-
straints on the planetary system can be derived (Perryman, 2011). Until today
around 16 planets got detected this way (Schneider, 2012).

16



3.2. Describing exoplanetary orbits

Imaging

Imaging refers to techniques trying to receive a point source image of the exoplanet.
The planet to star flux ratio is extremely small, hence it is quite hard to receive
resolutions and precisions high enough for such images. Nevertheless it is possibly
the only way in the future to obtain resolved spatial images of exoplanets surfaces
and better spectroscopic investigations. Until today around 30 planets got detected
this way (Schneider, 2012).

3.2. Describing exoplanetary orbits

3.2.1. Inferences from transit light curves

The light curve of a transit event can yield various physical quantities on the plan-
etary system, depending on the precision of the observation and the made assump-
tions. To shorten the procedure, to highlight the main goal of comparing astero-
seismic and classical analysis, and due to the non-availabilty of public Kepler data
of the program stars, I pass over the process of deriving parameters from the light
curves itself. Instead of applying standard modeling of the light curves, I take the
required parameters of the exoplanet systems from the main publications and insert
them in the equations. Tables 4.1, 4.2 and 4.3 reveal the corresponding parameters.

For the following description of the planet and star parameters I use two standard
assumptions:

• The mass of the exoplanet is negligible compared to its host-star (Mp π Mı).

• The planetary orbit is approximated to be circular (eccentricity e = 0).

Figure 3.3 shows the profile of a transit light curve with the basic observables:
orbital period P , transit depth �F and total transit duration tT . The fully occulted
transit duration tF depends strongly on the characteristics of the light curve. In
nearly all exoplanet systems this part is not a flat-bottomed dip. In Equation (3.1)
I implicitly assumed that the stellar disc has a uniform brightness, which is not
strictly valid, as we can see in Figure 3.1. For a correct treatment of this e�ect,
called stellar limb darkening, see, e.g., Haswell (2010). I neglect the limb darkening
in my study and apply Equation (3.1) without further assumptions.
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3. Detecting and characterizing exoplanets

Figure 3.3.: Perryman (2011) - Schematic of a transit, showing the four basic ob-
servables from a transit light curve: The orbital period P is the time
needed for a full circuit by the exoplanet. The transit depth �F gives
the di�erence in flux with and without transit. The total transit dura-
tion tT reaches from the first to the fourth contact of the planetary disk
in front of the host star and finally the fully occulted transit duration
tF means the time between second and third contact. The secondary
eclipse can sometimes be observed when the planet vanishes behind its
star.

Now for setting up an analytic description1 of the planetary parameters, I start
using Kepler’s third law of planetary motion

P 2

a3 = 4fi2

G(Mı + Mp) ƒ 4fi2

GMı

(3.7)

to relate the period P of the exoplanet to the semi-major axis a of its orbit, where
G denotes the gravitational constant.

The impact parameter (see Figure 3.3)

b © a

Rı

cos i (3.8)

1
From now on all non-labeled parameters are planetary parameters.
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3.2. Describing exoplanetary orbits

is geometrically defined as the projected distance between the planet and star centres
during mid-transit in units of Rı and can be deduced from the modeling of the
transit light curve. With Equations (3.7) and (3.8) I calculate the orbital inclination.
Finally, Equation (3.1) trivially converts to the planetary radius.

3.2.2. Combining transit and radial velocity measurements

To obtain an estimate of the planetary mass, I need to combine the measurements
from radial velocity with the outcome from the transit analysis. According to Cum-
ming et al. (1999) the radial velocity semi-amplitude from Equation (3.4) can be
combined with Kepler’s third law to get the following estimate:

Kı =
32fiG

P

41/3 Mp sin i

(Mı + Mp)2/3
1Ô

1 ≠ e2
, (3.9)

which is used to calculate the minimum planetary mass:

Mp sin i ƒ
3

P

2fiG

41/3
KıM

2/3
ı . (3.10)

If a transit can be observed, sin i ¥ 1 and its exact value is known from Equation
(3.8). With this knowledge I convert the lower limit from Equation (3.10) into an
absolute value for the planetary mass.

3.2.3. Habitability of exoplanets

To give some considerations on the important question of the suitability of a planet
for the evolution of life I also check the e�ects on essential parameters. Three crucial
parameters determining the habitability of an exoplanet are its density, the distance
from its host star and its surface temperature.

The density is computed using fl = M/R3 in Earth units and a�ects interior
properties, e.g., the bulk composition.

The distance to the star is crucial for the question whether it lies in the habitable
zone of the host star. I define the habitable zone as the zone around the star where a
planet with the bond albedo of the earth (– = 0.29, Borucki et al., 2012) can habit
liquid water. With this definition the inner boundary of the HZ is the distance
to the star at which the radiative equilibrium temperature Teq of the planet drops
below 373 K. The outer boundary is the distance at which it drops below 273 K.
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3. Detecting and characterizing exoplanets

Following Borucki et al. (2012), this radius is given by:

RHZ =
Û

1 ≠ –

4—
Rı

A
Te�

Teq

B2

. (3.11)

— is defined as the fraction of the surface of the planet that reradiates the absorbed
flux and is set to — = 1.0 for a rapidly rotating body with a strongly advecting
atmosphere (Borucki et al., 2012).

Finally, the surface temperature of the planet is important for liveable condi-
tions on the planet’s surface. It is also computed with Equation (3.11), using the
appropriate semi-major axis of the planetary orbit for the distance to the host star.

3.3. Exoplanet detection programmes

In the following sections I describe observational programmes which are used or
needed for the calculations. For each type I give a current state-of-the-art example.

3.3.1. Radial velocity instruments

Current survey instruments which are used for radial velocity exoplanet searches are
mostly échelle spectrographs. Those spectrographs use special types of di�raction
gratings with relatively low groove densities, optimized for high di�raction orders
(e.g., Nagaoka & Mishima, 1923). As an example for todays state-of-the-art échelle
spectrographs I will give a short description of Keck/HIRES, which is highly used
for follow-up observations of Kepler candidates.

Keck/HIRES

HIRES is the échelle spectrograph at the Keck I 10-m telescope on Mauna Kea,
Hawaii. Its accuracy in the configuration of Vogt et al. (2000) reaches the resolving
power of R = ⁄/�⁄ = 80000. The according spectra span from 390 to 620 nm
in wavelength range. Its precision for radial velocity measurements is up to 1 m/s,
which is required to detect Earth-type planets in the habitable zone around Sun-like
stars.
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3.3. Exoplanet detection programmes

3.3.2. Transit searches from space

For ground-based photometry it is complicated to reach accuracies better than 0.1
% (which is necessary for the detection of small planets) because of several limit-
ing factors like, e.g., atmospheric extinction. Space-based observations lack most of
these problems and additionally o�er the possibility of long uninterruped runs, inde-
pendent of day-night-cycles. The current two most important spacecrafts dedicated
to exoplanet science (and asteroseismology) are the CNES-led mission CoRoT and
the NASA-led mission Kepler. Because I use three Kepler planets in this thesis, I
will only describe the most important characteristics of Kepler.

Kepler

The NASA Kepler satellite (Borucki et al., 2010) was launched on March 6th, 2009
into an heliocentric orbit, compromising a 0.96 m telescope. Like CoRoT it is
dedicated as well to exoplanet science and asteroseismology. It has 42 2k ◊1k CCDs
which cover an observational field of about 115 square degrees. The wavelength
ranges from 430 to 890 nm and it monitores around 150000 main sequence stars in the
magnitude range from 8 to 15. Most of the observed stars range from V ≥ 10.5≠15,
very few are brighter. Until today NASA (2012) lists over 70 confirmed exoplanets
and around 2300 planet candidates, detected by the Kepler spacecraft.

3.3.3. Future observations

In the numerical analysis I give a prospect of possibilities in the upcoming years.
For this reason I introduce two planned missions, dedicated to exoplanet science.

PLATO

PLATO is a mission under consideration by ESA (Catala, 2009). Like CoRoT and
Kepler it will be dedicated to exoplanet observations and asteroseismology. Its
observational field will be significantly wider than those of CoRoT and Kepler and
will focus on brighter stars (around 100000 stars with V ≥ 4 ≠ 11 and around
400000 with V Æ 13) with short-cadence uninterrupted monitoring. The current
plans for PLATO contain a payload constructed of about 28 identical small, very
wide-field telescopes with the same 26¶ diameter field. The main advantages of
PLATO compared to current missions will be its ability to observe significantly
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3. Detecting and characterizing exoplanets

smaller Earth-size exoplanets in the habitable zone of Sun-like stars, as well as
planets orbitting hotter (brighter) stars. Following Catala (2011) the asteroseismic
analysis of the PLATO light curves will be able to provide 1-4 % errors in the stellar
masses, which will lead to an improvement of planetary mass estimates.

Gaia

The Gaia mission of ESA (Lindegren, 2009) is due for launch in 2013 into the
Lissajous-type orbit around L2. It contains 3 di�erent instruments dedicated to as-
trometric, photometric and spectroscopic observations. The telescope consists of two
1.4◊0.5 m2 mirrors. It will survey approximately a billion stars from V ≥ 6≠20 mag
and will provide extremely detailed measurements of distances, parallaxes and an-
nual proper motions with a precision of about 20 µas. Spectrophotometric measure-
ments of luminosity, e�ective temperature, gravity and chemical composition of the
stars will be made, which will give (among other things) estimates of their radii up
to a precision of around 2% (Bailer-Jones, 2002).
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4. Numerical experiment

In this study I am mainly interested in a comparison of the expected precision of
various seismic and non-seismic methods rather than absolute values.

To deal with the numerical calculations, I used the IDL platform (Exelis Visual
Information Solutions, 2012) in version 6.3, licensed by the ’Institut für Astrophysik,
Universität Göttingen’.

In this section I describe the di�erent methods to determine the uncertainties in
exoplanet properties and to understand which factors contribute the most to possible
changes. I firstly present the three studied exoplanet systems in Section 4.1. After
that I explain the di�erent analysis methods in Section 4.2.

4.1. Analyzed exoplanet systems
All three exoplanets I studied are Kepler planets. The reason for this is that I need
exoplanet systems, which got probed with asteroseismic methods. This limits the
number of possible systems dramatically. Furthermore I look for systems with small
planets, preferably around the size of the Earth. The Kepler planets 10b, 21b and
22b suit well to these criteria.

4.1.1. Kepler-21
Kepler-21b (Howell et al., 2012) is the main target of this study and mainly interest-
ing due to its supposed high density and therefore rocky composition. Its host star
is the only of the three exoplanet systems, for which a precise parallax is known from
Hipparcos. Accordingly, it is possible to compare classical methods with asteroseis-
mology in a satisfactory way. Unfortunately, the precision of the RV measurements
is quite bad (see Figure 4.1), which prevents from calculating a good estimate for
the planetary mass. The upper limit of the RV amplitude is K < 3.9 ± 5.4m

s
, hence

the values of planetary mass and density derived in my work are also upper limits.
Basic properties of Kepler-21b and its host star are given in Table 4.1.
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4. Numerical experiment

Parameter [Unit] Value ± Error Procedure Reference

St
ar

mv [mag] 8.3723 ± 0.0018 a/b/c van Leeuwen (2007)

fi [ÕÕ] 0.00886 ± 0.00058 a/b/c van Leeuwen (2007)

BC [mag] -0.021 a/b/c Bessell (2012)

Te� [K] 6250 ± 250 a/b/c Howell et al. (2012)

log gı [log m
s2

] 4.00 ± 0.25 a/b/c Howell et al. (2012)

K [m
s

] 3.9 ± 5.4 a/b/c/d/e Howell et al. (2012)

�‹ [µHz] 60.86 ± 0.55 b/c Howell et al. (2012)

Rı,cl [R§] 1.83 ± 0.19 a/b/c Equation (2.6)

Mı,cl [M§] 1.22 ± 0.75 a/b/c Equation (2.7)

Rı,as [R§] 1.86 ± 0.02 d/e Howell et al. (2012)

Mı,as [M§] 1.34 ± 0.01 d/e Howell et al. (2012)

P
la

ne
t P [days] 2.785755 ± 0.000034 a/b/c/d/e Howell et al. (2012)

Rp/Rı [Rı] 0.00806 ± 0.00019 a/b/c/d/e Howell et al. (2012)

b [Rı] 0.640 ± 0.028 a/b/c/d/e Howell et al. (2012)

Table 4.1.: Stellar and planetary properties for the Kepler-21 system. The entries in
the third column show for which calculation method the di�erent values
are used. See Section 4.2 for details.

Figure 4.1.: Kepler-21 (Howell et al., 2012) - Left panel: Detrended, binned and
phase-folded transit data. The crosses represent individual observations,
circles represent residuals, the red lign shows the overplotted model-fit,
which included stellar limb-darkening. Right panel: RV measurements
(diamonds) for HD 179070 (Kepler-21) from Keck/HIRES. The error
bars are composed of internal errors of ≥ 2 m s≠1, which are added in
quadrature to 5 m s≠1 to account for the large uncertainties. The solid
line is a fit of a Keplerian orbit to the measured velocities.

4.1.2. Kepler-10 and Kepler-22

Kepler-10 (Batalha et al., 2011) and Kepler-22 (Borucki et al., 2012) also suit to the
criteria and are interesting due to the small planetary radius of Kepler-10b and the
position of Kepler-22b in the habitable zone.
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4.1. Analyzed exoplanet systems

Parameter [Unit] Value ± Error Procedure Reference
St

ar
log gı [log m

s2

] 4.54 ± 0.10 a/b/c Batalha et al. (2011)

K [m
s

] 3.3 ± 1.0 a/b/c/d/e Batalha et al. (2011)

�‹ [µHz] 118.2 ± 0.2 b/c Batalha et al. (2011)

Rı,cl [R§] 0.98 ± 0.49 a/b/c Kepler Mission Team (2009)

Mı,cl [M§] 1.22 ± 1.25 a/b/c Equation (2.7)

Rı,as [R§] 1.056 ± 0.021 d/e Batalha et al. (2011)

Mı,as [M§] 0.895 ± 0.06 d/e Batalha et al. (2011)

P
la

ne
t P [days] 0.837495 ± 0.000005 a/b/c/d/e Batalha et al. (2011)

Rp/Rı [Rı] 0.01232 ± 0.00016 a/b/c/d/e Batalha et al. (2011)

b [Rı] 0.339 ± 0.079 a/b/c/d/e Batalha et al. (2011)

Table 4.2.: Stellar and planetary properties for the Kepler-10 system. The entries in
the third column show for which calculation method the di�erent values
are used. See Section 4.2 for details.

Figure 4.2.: Kepler-10 (Batalha et al., 2011) - Left panel: Phase-folded light curve
centered on phase zero for Kepler-21b. The blue line shows the modeled
light curve, the green line corresponds to a model of the phase cutout
of the light curve. Right panel: RV signal vs. phase for Kepler-10. The
small points are the individual observations. The larger points with
error bars are derived from the spread in individual points as average
over 0.1 phase bins. At this magnitude level this RV measurement is the
limit for ground based observations and can’t be improved with current
capabilities.

Their corresponding stellar and planetary properties are given in Table 4.2 and
4.3 respectively.

For both stars I couldn’t find estimates on the stellar parallax, as well as on the
stellar magnitude in visual band, which prevents computing the stellar radius and
mass without seismic values. For the non-seismic estimates of the stellar radius I
use data from the Kepler Input Catalog (Kepler Mission Team, 2009) and make a
guess for the corresponding precision (see following subsection).
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4. Numerical experiment

Parameter [Unit] Value ± Error Procedure Reference

St
ar

log gı [log m
s2

] 4.44 ± 0.06 a/b/c Borucki et al. (2012)

K [m
s

] 4.9 ± 7.4 a/b/c/d/e Borucki et al. (2012)

�‹ [µHz] 137.5 ± 1.4 b/c Borucki et al. (2012)

Rı,cl [R§] 1.14 ± 0.57 a/b/c Kepler Mission Team (2009)

Mı,cl [M§] 1.31 ± 1.32 a/b/c Equation (2.7)

Rı,as [R§] 0.979 ± 0.02 d/e Borucki et al. (2012)

Mı,as [M§] 0.97 ± 0.06 d/e Borucki et al. (2012)

P
la

ne
t P [days] 289.8623 ± 0.0020 a/b/c/d/e Borucki et al. (2012)

Rp/Rı [Rı] 0.0222 ± 0.0012 a/b/c/d/e Borucki et al. (2012)

b [Rı] 0.768 ± 0.132 a/b/c/d/e Borucki et al. (2012)

Table 4.3.: Stellar and planetary properties for the Kepler-22 system. The entries in
the third column show for which calculation method the di�erent values
are used. See Section 4.2 for details.

Figure 4.3.: Kepler-22 (Borucki et al., 2012) - Left panel: Folded light curve with
model fit in red. The black dots represent individual observations, dark
blue points represent 30 minute binned data, cyan points represent resid-
uals after fitting. Right panel: RV measurements with a circular orbit
fit for a planetary mass of 19 Mü (solid line) and 27 Mü (dashed line).

For Kepler-10 the RV measurements (see Figure 4.2) are precise enough to allow
realistic mass and mean density estimates with implications on the planetary interior
and bulk composition. For Kepler-22 this is not possible in a satisfactory way, due
to the low precision of the RV measurements (Figure 4.3).

As for Kepler-21b the shown values of the RV measurements are upper limits,
which translates into upper limits for planetary mass and density.
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4.1. Analyzed exoplanet systems

Figure 4.4.: Verner et al. (2011) - Distribution of the di�erence between KIC and
seismic radii. Error bars show the standard deviation in each range when
determined using all possible combinations of model grid and input data.
The dashed line shows the median of the distribution.

Precision of stellar radii from the KIC for K-10 and K-22

Verner et al. (2011) examine the precision of the KIC parameters, including the
radius. Figure 4.4 (adopted by Verner et al., 2011) provides a first estimate on the
precision and reveals that the data su�ers from strong systematic errors. The paper
compares the KIC radius to asteroseismic radii, computed with measured frequency
separations. The median of the distribution is a little less than �Rı

Rı
ƒ 0.25.

Because there is no guarantee on the correctness of this estimate and to in-
clude some statistical informations I imply a second evaluation on the uncertainties.
Valenti & Fischer (2005) computed error estimates for a representative sample of
1040 F, G and K dwarfs on the main-sequence. My calculation of the classical values
for the stellar mass and radius via Equations (2.6) and(2.7) is build on their paper.
Figure 4.5 shows the relative uncertainty of the spectroscopic radius estimate as a
function of magnitude, where the uncertainty increases dramatically towards darker
stars. For stars with V > 11 I expect a relative uncertainty of the radius estimate
of �Rı

Rı
ƒ 0.25.

From a linear summation of the systematic error from Verner et al. (2011) and
the statistical error from Valenti & Fischer (2005) I assume an error of �Rı

Rı
ƒ 0.5

for the radius values of the KIC for Kepler-10 and Kepler-22.
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Figure 4.5.: Visual magnitude of 1040 F, G and K stars versus their relative errors
in radius. With data from Valenti & Fischer (2005).

4.2. Methods of the parameter study

4.2.1. Stellar parameters

I start by calculating the crucial parameters of the host star. This phase is essential
since uncertainties in the stellar properties determine the precision of the inference
of the exoplanet parameters. I compute the stellar mass and radius using di�erent
seismic and non-seismic methods and compare their respective precisions.

In order to compare the influence of the precision of the stellar parameters on the
exoplanet properties and to eliminate inflictions from changing parameters I set the
absolute values of the stellar parameters to the corresponding seismic value at the
end of the stellar calculations. Thus, the absolute values of the stellar mass and
radius (not the corresponding errors!) will be the same for the calculation of the
planetary characteristics for each method. The correctness of this setting will be
discussed and validated in Section 5.1.

Procedure A - Classical approach

The ’classical’ approach serves as basis for procedure B and C. As a starting point
I calculate the stellar luminosity with Equation (2.4). Combined with Equation
(2.6) and (2.7) for the radius and the mass, yields the main stellar parameters.
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4.2. Methods of the parameter study

For Kepler-10 and Kepler-22 there don’t exist precise estimates for the parallax.
Instead, I take the radius for those stars from the Kepler Input Catalog (Kepler
Mission Team, 2009) and compute the mass using Equation (2.7). See Section 4.1.2
for an estimate of the precision of this adoption.

Figure 4.6.: Procedure A - Processing diagram to derive the ’classical’ radius and
mass of the host star.

Procedure B - Asteroseismic mass constraint

From now on I use seismic observables to constrain the stellar properties. In this
first approach the radius of the star is fixed to the classical value from above. The
mass of the star is computed using Equation (2.12):

Mı

M§
=

A
�‹ı

�‹§

B2 A
Rı

R§

B3

. (4.1)

Figure 4.7.: Procedure B - Processing diagram to derive the ’classical’ radius. The
mass is computed using the seismic observable �‹.

Procedure C - Asteroseismic radius constraint

(A)
Figure 4.8.: Procedure C - Processing diagram to derive the stellar radius and mass.

This time all parameters are computed like in Procedure A, then the
mass is combined with the large separation to calculate the radius.

In this approach the mass of the star is fixed to the classical value from Procedure
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4. Numerical experiment

A. The radius of the star is computed using Equation (2.12):

Rı

R§
=

A
Mı/M§

(�‹ı/�‹§)2

B1/3

. (4.2)

Procedure D - Asteroseismic modeling

To reach the highest possible precision, I take the (modeled) asteroseismic values
for the stellar mass and radius from the original publications (Batalha et al., 2011,
Borucki et al., 2012, Howell et al., 2012). With theses values I can check what will
happen in comparison with procedure E.

Procedure E - Future possibilities: Gaia & PLATO

Finally I study the e�ects of planned future missions. I simulate the e�ects of
the high precision radius determination of Gaia (Section 3.3.3), combined with the
observation of brighter stars by PLATO (Section 3.3.3). Thus, I set the upper limit
on the precision of the radius (due to Gaia) and mass (due to PLATO) to 2% and
the precision on the RV semi-amplitude to 1 m/s (highest precision available with
HIRES/Keck, Section 3.3.1).

4.2.2. Exoplanet characteristics

Figure 4.9.: Diagram for the calculation of planetary parameters down to the plan-
etary density.

As described in Section 3.2.1, I use Equation (3.7) for the planetary semi-major
axis, Equation (3.8) for its inclination and finally Equation (3.1) for the planetary
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radius. From the combination with Doppler spectroscopy the exact exoplanet mass
is deduced using Equation (3.10).

For characteristics concerning the habitability of the exoplanet I calculate the
density using the planetary mass and radius. For the inner and outer boundary
of the habitable zone I adopt Equation (3.11). The surface temperature of the
exoplanet can also be constrained with Equation (3.11), rearranged for Teq and using
the corresponding semi-major axis for the planet (see Section 3.2.3 for details).
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5. Results and discussion

In the following sections I present the results of my work. The shown plots and
histograms are always for the Kepler-21 system, its values are listed in Appendix A.
The corresponding figures, as well as a complete summary of the most important
resulting parameters for Kepler-10 and Kepler-22 can be seen in the Appendices B
and C.

5.1. Validation and systematics
As announced in Section 4.2.1 I investigate the deviation of my calculations from
the published parameters for the stellar and planetary radius and mass of the three
program stars. Hence, I use the di�erent methods described in Section 4.2 and
compare the results for each parameter and procedure with the reference values
published by Howell et al. (2012) for K-21 (Kepler-21), Batalha et al. (2011) for
K-10 (Kepler-10) and Borucki et al. (2012) for K-22 (Kepler-22).

The parameters obtained with the various methods are listed in Tables A.1, B.1
and C.1. Figure 5.1 shows the results with corresponding uncertainties compared to
the reference values for K-21.

I find that the absolute values for stellar and planetary radius and mass are in good
agreement and match the reference values. For stellar radius and mass the deviation
of my values to the referenced ones are not smaller than the standard deviation of
the reference. But compared to the corresponding errors the deviation from the
reference values is only marginal. For K-21 the stellar radii for procedures A, B and
C are nearly located within the 1-‡-range. The mass estimates are clearly outside,
but the deviations are small. Additionally the seismic 1-‡-range of the reference
is much smaller than the ones for A, B and C. For the planetary parameters the
absolute values come closer to the reference and for K-21 the planetary radius is
within the error range of the reference. The planetary mass estimates are really
close to the one of Howell et al. (2012).
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Figure 5.1.: Validation of the numerical methods for Kepler-21. The solid black lines
show the reference value for each parameter, the dotted lines indicate
the corresponding 1-‡ error range. Plotted are the parameters for stellar
and planetary radius and mass for each procedure. The errors show the
quality of the specific estimate. For the planetary mass the absolute
value is just a rough estimate and Howell et al. (2012) don’t state a
specific uncertainty. All reference values are from Howell et al. (2012).

Because the planetary radius and mass are the two most crucial parameters of
my study I rearranged the results for the validation in Figure 5.2. This plot tells
how the set of parameters changes compared to the set of corresponding errors. The
plots for all systems (K-10 and K-22 are given in Appendix B and C) reveal that
the displacement in values is small compared to the change in uncertainty and that
the errors tend to decrease from Procedure A to E in general.
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Figure 5.2.: Planetary radius vs. mass for all procedures of Kepler-21b with cor-
responding areas of 1 standard deviation (ellipses). The uncertainties
tend to decrease from Procedure A/B to D and E. The increase for the
radius error in Procedure C will be discussed in Section 5.3.3.

Regarding the strong uncertainties in Procedures A, B and C I think that my code
produces values really close to the referenced ones. Therefore the displacement in
the absolute values don’t show strong influences in the propagation of errors. This
means I can fix the stellar parameters to the seismic values from the publications
and the relative di�erences in the computed errors are a�ected only marginal. Under
this assumption it will be easier to compare the real e�ects of the procedures on the
change in planetary uncertainties because the values of stellar mass and radius don’t
inflict the derivative terms in the propagation of errors.

5.2. Constraints on stellar characteristics

5.2.1. Stellar radius

The uncertainty of the radius estimate for the di�erent methods and three program
stars is shown in Figure 5.3. The crucial procedure in this estimate is C, where I
insert the constraint from Equation (2.12).

It is important to note that this procedure somehow spins round: At first I com-
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Figure 5.3.: Error in stellar radius Rı for all systems and procedures. The left panel
shows the error in units of solar radii R§, the right panel illustrates the
relative error ‡R/Rı. The values for K-21 in the right hand panel in
Procedure D and E are below 0.02, because the estimate for this value
from seismic modeling in Procedure D is already below this value and
is therefore not set to 0.02 for Procedure E.

pute a classical estimate for stellar mass from the classical stellar radius and then
combine it with the large separation to induce a ’seismic’ constraint. Therefore the
uncertainty for the ’seismic’ stellar radius is directly a�ected by the uncertainty es-
timate for the classical stellar radius and especially the stellar mass. As I will show
in Section 5.2.2 the precision of Mı is quite bad and this dependency influences the
determination of the error in stellar radius in Procedure C.

Remarkably the errors go down for K-10 and K-22 in Procedure C and the one
for K-21 does not. This is due to the chosen errors in stellar radius for the K-10 and
K-22 systems in Procedure A and B, which I guessed using estimates from Verner
et al. (2011) and Valenti & Fischer (2005) (see Section 4.1.2). These estimates are
quite pessimistic and as it can be seen from K-21 the errors would be smaller with
available parallaxes. Thus, the errors for Procedure A and B (where the values
are the same) for K-10 and K-22 are worse, even if the estimate for Procedure C,
influenced by the large uncertainty in stellar mass, is quite bad as well.

In contrast, for K-21 I compute the radius error myself, receive smaller estimates in
Procedure A/B and hence, the error is worse in Procedure C, due to the dependency
on the error in stellar mass. Figure 5.4 shows the variance of the stellar radius for K-
21, including the dependencies from basic input parameters. This clearly shows, that
from Procedure A to Procedure C the change in variance (and hence uncertainty) is
due to the contribution of the mass error, which is mainly dominated by the error
in log gı.

For all three systems the step from Procedures A/B to Procedure D and E is
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Figure 5.4.: Variance of Rı for Kepler-21 and Procedure A, B, respective C. The
di�erent colors indicate the contributions from the propagated errors of
various parameters used for the calculation.

really huge. The modeling and future scenario boost the precision by a factor of
10 for K-21 and even 20 for K-10 and K-22. However, it is possible that in the
modeling case for the Kepler systems there can exist some systematic errors, which
are not weighted and named in the publications and consequently not included in
my calculation.

5.2.2. Stellar mass

Figure 5.5 illustrates the absolute and relative uncertainties in stellar mass for all
procedures. As for the radius, the expected improvement of Procedure B works fine
for two systems, this time for K-10 and K-21. In contrast, the mass uncertainty gets
worse for K-22. To get an idea what happens, I look at the error propagation terms
and compare the formulas used in procedure A and B:

‡Mı(A) =
Ò

‡2
log gı

(R2
ı10log gı log (10))2 + ‡2

Rı
(2Rı10log gı)2, (5.1)

‡Mı(B) =
Ò

‡2
�‹ı

(2�‹ıR3
ı)2 + ‡2

Rı
(3�‹ıR2

ı)2. (5.2)

In both formulas the contributions from the uncertainty in Rı (second terms under
the square root) are dominant. This term depends mainly on the absolute values for
the large separation and the radius of the star. This explains, why the uncertainty
increases for K-22. In this system both of these parameters are bigger compared
to K-10, hence the error increases for K-22. For K-21 the large separation and the
uncertainty in stellar radius are very small, which rules out the large absolute value
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error ‡M/Mı. As in Figure 5.4, the relative error for K-21 in Procedure
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Figure 5.6.: Variance of Mı for Kepler-21 and Procedure A, B, respective C. The
di�erent colors indicate the contributions from the propagated errors of
various parameters used for the calculation.

for Rı. Again, the precision achieves improvements of a factor ≥ 15 in Procedure D.
For K-10 and K-22 Procedure E even shows improvements of the factor ≥ 40 ≠ 50,
compared to A. For K-21 there is no improvement from D to E, because the estimates
of K-21 from the seismic modeling are below 2%, therefore the precision does not
change.

5.3. Constraints on exoplanet characteristics

Now I start with the exoplanet parameters. Note again that the plots shown here
are from K-21. The ones for K-10 and K-22 can be seen in Appendices B and C.
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Figure 5.7.: Variance of a for all procedures of Kepler-21b. The left hand panel shows
the total variance, the right hand panel shows the variance normalized
to one. Green indicates contributions of Mı. Note that the contribution
of the uncertainty of P is tiny, compared to the contribution of the mass
uncertainty, such that it is not visible in the plots.

5.3.1. Planetary semi-major axis and inclination

The semi-major axis a of the planetary orbit is generally sensitive to the stellar mass
and the orbital period, due to Kepler’s third law. However, the uncertainty in a is
strongly dominated by the uncertainty in Mı (as shown in Figure 5.7) because the
measurement of the orbital period is very precise.

The inclination of the systems is more interesting, according to Equation (3.8).
It depends strongly on the uncertainties of both the stellar radius and the mass
(through the semi-major axis a).

In K-21 the improvement in stellar mass for Procedure B leads to higher precision,
whereas the high uncertainty for the inclination in Procedure C can be explained
with the high error in Rı. In K-10 the uncertainty in inclination goes down from
Procedure A to C, as a result of the generally decreasing errors for stellar radius
and mass. Due to the dependency on the uncertainty of Mı the uncertainty in
inclination for K-22 increases in Procedure B and decreases in C.

The uncertainty in the impact parameter b, usually a free parameter of the mod-
eling, doesn’t change its absolute value because I deal with it as a constant and take
its values from the corresponding publications. Thus, for proper modeling (Proce-
dure D and E) the uncertainty of the inclination is dominated by the uncertainty in
the impact parameter.
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Figure 5.8.: Variance of i for all procedures of Kepler-21b. The left panel shows the
contributions of individual parameters to the variance. The right panel
shows the contributions normalized to one.

5.3.2. Planetary mass

Now I take a look at the two most crucial exoplanet parameters, the mass and radius.
The uncertainties in planetary mass are calculated using Equation (3.10) and are
therefore sensitive to the the orbital period, the inclination, the RV semi-amplitude
and the stellar mass.

In Figure 5.9 the error of the planet mass is dominated by the RV semi-amplitude
K and little by the stellar mass Mı. Figure 5.9 could be misunderstood easily. The
problem with this histogram is the correlation between Mı and K. For a full inter-
pretation of the planet mass uncertainty I would have to investigate the correlation
between those two parameters with a specific interest for the cross-correlations for
the propagation of errors. Such an analysis is beyond the scope of this thesis. In
the corresponding papers the values are gained independently and therefore I don’t
have further information. Hence I use the non-correlated gaussian distribution for
the error, treating both variables independently.

Under this premise the most crucial aspect for getting a precise estimate for the
mass is to make high-precision RV observations possible. Here Procedure E with
Plato shows his full potential and I achieve a precision ≥ 6 times better than for
Procedure A to D for K-21 and K-22. For K-10 the improvement of a factor ≥ 4
can already be seen in Procedure D, because its RV measurements are quite good.
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Figure 5.9.: Variance of Mp for all procedures of Kepler-21b. The left panel shows
again the contributions to the variance for the various parameters, the
right panel the variance normalized to one. The orbital period P and
the inclination i are negligable compared to the stellar mass Mı and the
RV semi-amplitude K and can not be seen in the plot. The variance
of K depends on the quality of the RV measurements, which leads to a
huge improvement in Procedure E (PLATO case).

5.3.3. Planetary radius

The uncertainty of the radius is calculated using Equation (3.1) and shows the
expected behaviour (see Figure 5.10). Due to the high precision of todays transit
observations the exoplanet radius is mainly a function of the uncertainty in stellar
radius. For Kepler-10b and Kepler-22b the seismic constraint in Procedure C works
very well and I receive increased precison of a few percent. In contrast, for K-21
the precision decreases because of the increase in the error of the stellar radius (see
Section 5.2.1).

The dependency of the uncertainty in the change of flux �F becomes important
in Procedures D and E, since I assume the same precision for PLATO as for Kepler
observations. In these procedures the error is mainly a function of the uncertainty in
transit depth and further refinements have to come from more accurate photometric
measurements (which may be achievable with PLATO with the investigation of
brighter stars and may change the exact relations, but is not included here). This
shows again the strong influences of asteroseismic constraints of stellar parameters
on the body parameter estimation for the exoplanets.
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Figure 5.10.: Variance of Rp for all procedures of Kepler-21b. The left panel shows
the contributions to the variance for the stellar radius and the transit
depth, the right panel the variance normalized to one. The uncertainty
in the estimation of the stellar radius dominates the uncertainty for the
planetary radius, due to precise flux measurements of the correspond-
ing stars.

5.3.4. Planetary density

The density evaluation is illustrated in Figure 5.11 and shows the same trends as
Mp, since the stellar mass Mı also a�ects the planet density flp the most. The
e�ect of the stellar radius Rı can be seen, but is small compared to the e�ect of the
mass. Taking into account the strong influence of the RV measurements on Mı (see
Section 5.3.2) it becomes obvious that also for the density the precision of the RV
semi-amplitude K is the most important parameter. This is why the observation of
brighter stars is extremely important for investigating the planetary interior.

5.3.5. Habitable zone

The minimum (Teq = 373K) and maximum radii (Teq = 273K) of the HZ are
computed using Equation (3.11) and the corresponding uncertainties are therefore
dependent on the values for stellar radius and e�ective temperature. Its variances
can be seen in Figure 5.12. The uncertainties for both the inner and outer boundary
radii of the HZ are mainly dominated by the error of the stellar radius. Since the
e�ective temperatures of K-10 and K-22 are better characterized than for K-21, the
dependency on Te� is negligable in these systems. As Procedure C in histogram 5.12
reveals, the HZ is very sensitive to increasing uncertainties in Rı, therefore the error
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Figure 5.11.: Variance of flp for all procedures of Kepler-21b. The left panel shows
the contributions to the variance, the right panel the variance normal-
ized to one. The uncertainty is dominated mainly by the contribution
of the planetary mass. Thus, precise RV measurements are important
to obtain informations about the planetary interior (see Section 5.3.2).

doubles for K-21, due to the growth of the stellar mass error in this Procedure (see
Section 5.2.1).

5.3.6. Planetary surface temperature
Rearranging Equation (3.11), involving the planetary semi-major axis a as RHZ

and solving for Teq I compute the planet surface temperatures and corresponding
uncertainties. The uncertainty of the surface temperature is sensitive to the e�ective
temperature of the host star, the stellar radius and the semi-major axis. The two
last values dominate the errors. Taking Section 5.3.1 into account, a is dominated by
the stellar mass, hence the precision of the planetary surface temperature is strongly
correlated to both stellar values. For K-10 and K-22, the dependency on Te� is again
small, due to the high precision of this estimate.
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Figure 5.12.: Variance of inner and outer boundaries of the HZ for all procedures of
Kepler-21b. The left panel shows the contributions to the variance, the
right panel the variance normalized to one. The uncertainty is dom-
inated mainly by the contributions of the stellar radius and e�ective
temperature of the corresponding star. It is important to note that
the variances, as well as the dependencies, are the same for inner and
outer boundary. Just the absolute values di�er.
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Figure 5.13.: Variance of surface temperature for all procedures of Kepler-21b. The
left panel shows the contributions to the variance, the right panel the
variance normalized to one. The uncertainty depends on the values for
the radius, mass and the e�ective temperature of the host star.
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In this thesis I tested the dependence of the precision of exoplanet properties on the
precision of the stellar radius and mass. I compared di�erent computation methods,
including ’classical’ calculations, simple assumptions from asteroseismology, the re-
sults of state-of-the-art modeling presented in current papers and even assumptions
on future possibilities with planned space missions.

Concerning the constraints for the stellar parameters I couldn’t achieve high pre-
cisions on Rı and Mı with procedures A, B and C, i.e., classical methods and simple
assumptions from asteroseismology. Especially for Procedures B and C where the
AS density constraints are used, I expected higher precisions or improvements com-
pared to Procedure A. Studying the results I conclude that if the quantities Te�,
log g, mv and fi are precisely measured, good constraints on the stellar characteris-
tics are possible. Generally the simple seismic assumptions from Procedure B and
C can provide a rough idea on the parameters but they do not improve the precision
on Rı and Mı significantly and are sometimes even less precise (e.g., the stellar
radius in Procedure C for K-21).

The propagation of the uncertainties from the stars to the planets works quite
well and the trends for the stellar parameters a�ect the uncertainties in the plane-
tary errors, i.e., the uncertainties of planetary parameters show correct behaviours
according to their dependency on the stellar characteristics. Generally the accura-
cies improve from Procedure A to D and E. In Procedures B and C there are some
anomalies, which are explained in the corresponding paragraphs of Section 5.3.

Concerning the semi-major axis and the inclination of the exoplanets I reach very
high precisions with errors down to < 1 % for Procedures D and E. The relative
uncertainties for a and i in Procedures A, B and C are really good, compared to
other planet parameters like mass or radius in this procedure, but they can even be
improved by using the modeling (D) and future (E) methods. Regarding the semi-
major axis it is important to note that I assume circular orbits, hence I can’t be sure
on the correct values regarding possible eccentricities. Nevertheless the errors in a
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and i are satisfactory and with these it would be possible to derive tight constraints
on celestial astronomy in exoplanetary systems.

The planetary radius can be constrained quite well and the precision improves a
lot from Procedure A to D and E. Procedure C produces a bit odd results, which is
explained in Section 5.2.1. The error is dominated by the error in stellar radius and
I showed that improvements can be expected from seismic constraints.

The mass and density constraints don’t work well with procedures A, B and C.
The relative uncertainties are quite big. The limiting factor in the determination of
the planet mass and density is the precision of the RV measurements. Significant
improvements are expected by the observation of brighter stars, for instance with
PLATO.

Overall I clearly proved the high value of proper asteroseismic modeling, all pa-
rameters benefit this way. Especially the precise estimates on the radius and the
mass of the exoplanet in procedure D and E allow a good characterisation of the
planetary system. Procedure E demonstrates impressively how missions like Gaia
and PLATO may allow us to characterize exoplanet systems in the future.

Prospects

In this last section I introduce some future possibilities, which may be achieved with
high precision data. This summary isn’t meant to be complete but it shows some
extremely interesting aspects of future exoplanet science, which couldn’t be included
in this thesis.

Concerning the planetary body itself we have seen so far, that the it is possible
to obtain very accurate estimates on mass and radius with AS constraints, which
will allow us to distinguish di�erent bulk compositions and structures, e.g., for the
core, mantle and crust for rocky planets or gas envelope for giant planets. Figure
6.1 shows a scheme for compositions and the positions of known exoplanets in it.

Modeling the composition and the interior structure of terrestrial planets requires
postulating reasonable assumptions about their composition. For better constrained
masses and radii we can then model the planetary interior, which is directly linked
to geophysical processes, e.g., convection, tectonics and magnetic field generation.
Those have strong influence on the planetary conditions concerning habitability on
rocky planets.

Figure 6.2 shows the link between the core-mantle ratio and possible convection
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Figure 6.1.: Fressin et al. (2011) - Mass-radius diagram for various planets. The
colored lines denote di�erent compositions: water ice (blue), rocky (red)
and iron (magenta). The orange and green areas mark the parameter
range for Kepler 20 e and f.

patterns in the mantle of an exoplanet, which a�ects the outgassing and recycling
of volatiles on planets with an earth-like atmosphere and is therefore important for
stable conditions to faciliate possible extraterrestrial life.

With the help of asteroseismology it will be possible to test current planetary
formation theories. For example, as stated in Section 2.2.4, it is possible to estimate
a precise seismic age for the host star, which directly constrains the age of the
associated planet. Comparing the inclination of the planet orbit (known from the
transit measurement) and the inclination of the stellar rotation axis (known from
asteroseismology, e.g., Gizon & Solanki, 2003) may allow to test di�erent formation
scenarios of exoplanet systems.

By obtaining a broad characterization of exoplanet and stellar parameters for
many systems, e.g., mass, radius, gravitational acceleration, atmospheres and age,
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Figure 6.2.: Courtesy of L. Noack, D. Breuer (DLR) - Illustration of Earth-mass
planets with di�erent core-mantle ratio and possible mantle convection
patterns. All three examples fit the same radius within ± 5 % accuracy
and can therefore not be distinguished without improved measurements.

it will even be possible to gain statistical conclusions.
All these constraints on planetary parameters are only achievable with tight con-

straints on the exoplant’s mass. To achieve such high precision it will be necessary
to improve the RV resolution to its best accuracy. This is possible by observing
brighter stars as it is planned with the PLATO spacecraft, which is a candidate for
an ESA M-class mission and is considered for a possible launch around 2022. As
indicated by Procedure E of my work PLATO would lift exoplanet science to the
next level. Together with Gaia, which is planned to be launched in 2013, future
observations will improve human’s insight in this exciting new research area and we
will possibly be able to classify our own solar system and the Earth in the Universe’s
evolution.
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A. Tables for Kepler-21b

Table A.1.: Resulting parameters for Kepler-21b. Values below the single lines indi-
cate the contributions to the variance of the corresponding parameter.

K-21 Parameter A B C D E

Rı [R§] 1.86E+00 1.86E+00 1.86E+00 1.86E+00 1.86E+00
‡Rı [R§] 1.89E-01 1.89E-01 3.71E-01 2.00E-02 2.00E-02
Te�,CL [R2

§] 2.14E-02 2.14E-02 2.14E-02 - -
mv,CL [R2

§] 2.30E-06 2.30E-06 2.30E-06 - -
fiCL [R2

§] 1.43E-02 1.43E-02 1.43E-02 - -
�‹AS [R2

§] - - 1.20E-04 - -
log gı,AS [R2

§] - - 1.22E-01 - -
Te�,AS [R2

§] - - 9.40E-03 - -
mv,AS [R2

§] - - 1.01E-06 - -
fiAS [R2

§] - - 6.29E-03 - -

Mı [M§] 1.34E+00 1.34E+00 1.34E+00 1.34E+00 1.34E+00
‡Mı [M§] 7.46E-01 3.86E-01 7.46E-01 1.00E-02 1.00E-02
Rı,CL [M2

§] 6.36E-02 - 6.36E-02 - -
log gı,CL [M2

§] 4.93E-01 - 4.93E-01 - -
�‹AS [M2

§] - 1.51E-04 - - -
Te�,AS [M2

§] - 8.89E-02 - - -
mv,AS [M2

§] - 9.55E-06 - - -
fiAS [M2

§] - 5.95E-02 - - -

a [AU ] 4.27E-02 4.27E-02 4.27E-02 4.27E-02 4.27E-02
‡a [AU ] 7.93E-03 4.10E-03 7.93E-03 1.06E-04 1.06E-04
‡a/a 1.86E-01 9.59E-02 1.86E-01 2.49E-03 2.49E-03
P [AU2] 1.21E-13 1.21E-13 1.21E-13 1.21E-13 1.21E-13
Mı [AU2] 6.29E-05 1.68E-05 6.29E-05 1.13E-08 1.13E-08
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Table A.1.: Resulting parameters for Kepler-21b. Values below the single lines indi-
cate the contributions to the variance of the corresponding parameter.

K-21 Parameter A B C D E

i [¶] 8.26E+01 8.26E+01 8.26E+01 8.26E+01 8.26E+01
‡i [¶] 1.62E+00 1.10E+00 2.07E+00 3.38E-01 3.38E-01
‡i/i 1.96E-02 1.33E-02 2.50E-02 4.09E-03 4.09E-03
b [¶2] 1.07E-01 1.07E-01 1.07E-01 1.07E-01 1.07E-01
Rı [¶2] 5.80E-01 5.80E-01 2.23E+00 6.49E-03 6.49E-03
P [¶2] 3.72E-09 3.72E-09 3.72E-09 3.72E-09 3.72E-09
Mı [¶2] 1.93E+00 5.17E-01 1.93E+00 3.47E-04 3.47E-04

Mp [Mü] 1.05E+01 1.05E+01 1.05E+01 1.05E+01 1.05E+01
‡M

p

[Mü] 1.51E+01 1.47E+01 1.51E+01 1.46E+01 2.70E+00
‡M

p

/Mp 1.43E+00 1.40E+00 1.43E+00 1.38E+00 2.56E-01
K [M2

ü] 2.12E+02 2.12E+02 2.12E+02 2.12E+02 7.27E+00
P [M2

ü] 1.71E-09 1.71E-09 1.71E-09 1.71E-09 1.71E-09
Mı [Mü2 ] 1.50E+01 4.01E+00 1.50E+01 2.69E-03 2.69E-03
Rı [Mü2 ] 3.34E-04 3.34E-04 1.28E-03 3.74E-06 3.74E-06
b [Mü2 ] 6.19E-05 6.19E-05 6.19E-05 6.19E-05 6.19E-05

Rp [Rü] 1.64E+00 1.64E+00 1.64E+00 1.64E+00 1.64E+00
‡R

p

[Rü] 1.71E-01 1.71E-01 3.28E-01 4.24E-02 4.24E-02
‡R

p

/Rp 1.04E-01 1.04E-01 2.01E-01 2.59E-02 2.59E-02
Rı [Rü2 ] 2.76E-02 2.76E-02 1.06E-01 3.09E-04 3.09E-04
Mı [Mü2 ] 1.49E-03 1.49E-03 1.49E-03 1.49E-03 1.49E-03

flp [flü] 2.40E+00 2.40E+00 2.40E+00 2.40E+00 2.40E+00
‡fl

p

[flü] 3.52E+00 3.44E+00 3.73E+00 3.33E+00 6.44E-01
‡fl

p

/flp 1.47E+00 1.43E+00 1.55E+00 1.39E+00 2.68E-01
Mp [fl2

ü] 1.18E+01 1.13E+01 1.18E+01 1.11E+01 3.80E-01
Rp [fl2

ü] 5.65E-01 5.65E-01 2.09E+00 3.49E-02 3.49E-02

HZinner [AU ] 1.02E+00 1.02E+00 1.02E+00 1.02E+00 1.02E+00
‡HZ

inner

[AU ] 1.32E-01 1.32E-01 2.20E-01 8.26E-02 8.26E-02
‡HZ

inner

/HZinner 1.29E-01 1.29E-01 2.15E-01 8.07E-02 8.07E-02
Rı [AU2] 1.08E-02 1.08E-02 4.16E-02 1.21E-04 1.21E-04
Te� [AU2] 6.71E-03 6.71E-03 6.71E-03 6.71E-03 6.71E-03
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Table A.1.: Resulting parameters for Kepler-21b. Values below the single lines indi-
cate the contributions to the variance of the corresponding parameter.

K-21 Parameter A B C D E

HZouter [AU ] 1.91E+00 1.91E+00 1.91E+00 1.91E+00 1.91E+00
‡HZ

outer

[AU ] 2.47E-01 2.47E-01 4.10E-01 1.54E-01 1.54E-01
‡HZ

outer

/HZouter 1.29E-01 1.29E-01 2.15E-01 8.07E-02 8.07E-02
Rı [AU2] 3.77E-02 3.77E-02 1.45E-01 4.22E-04 4.22E-04
Te� [AU2] 2.34E-02 2.34E-02 2.34E-02 2.34E-02 2.34E-02

Tsurface [K] 1.83E+03 1.83E+03 1.83E+03 1.83E+03 1.83E+03
‡T

surface

[K] 2.07E+02 1.47E+02 2.59E+02 7.37E+01 7.37E+01
‡T

surface

/Tsurface 1.13E-01 8.05E-02 1.42E-01 4.04E-02 4.04E-02
Rı [K2] 8.61E+03 8.61E+03 3.31E+07 9.64E+01 9.64E+01
Te� [K2] 5.33E+03 5.33E+03 5.33E+03 5.33E+03 5.33E+03
P [K2] 5.52E-05 5.52E-05 5.52E-05 5.52E-05 5.52E-05
Mı [K2] 2.87E+07 7.66E+03 2.87E+07 5.16E+00 5.16E+00
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A. Tables for Kepler-21b

Table A.2.: Validation of the numerical methods for the Kepler-21 system. The last
two rows are dimensionless. Reference values from Howell et al. (2012).

Procedure Value x ‡x x ≠ xRef. ‡x/x x≠x
Ref.

x
Ref.

R
ı

[R
§

]

Ref. 1.860 0.020 - 0.011 -
A 1.829 0.189 -0.031 0.103 -0.017
B 1.829 0.189 -0.031 0.103 -0.017
C 1.818 0.371 -0.031 0.103 -0.017
D 1.860 0.020 0.000 0.011 0.000
E 1.860 0.020 -0.042 0.204 -0.023

M
ı

[M
§

]

Ref. 1.340 0.010 - 0.007 -
A 1.220 0.746 -0.120 0.011 -0.089
B 1.243 0.386 -0.097 0.311 -0.073
C 1.220 0.746 -0.120 0.011 -0.089
D 1.340 0.010 0.000 0.007 0.000
E 1.340 0.010 0.000 0.612 0.000

a
p

[R
ı
]

Ref. 4.912 0.014 - 0.003 -
A 4.867 1.113 -0.045 0.007 -0.009
B 4.897 0.716 -0.015 0.146 -0.003
C 4.897 1.412 -0.015 0.007 -0.003
D 4.937 0.054 0.025 0.011 0.005
E 4.937 0.054 0.025 0.288 0.005

i p
[¶ ]

Ref. 82.580 0.310 - 0.004 -
A 82.445 1.769 -0.135 0.011 -0.002
B 82.490 1.153 -0.090 0.014 -0.001
C 82.490 2.203 -0.090 0.011 -0.001
D 82.551 0.338 -0.029 0.004 0.000
E 82.551 0.338 -0.029 0.027 0.000

R
p

[R
ü

]

Ref. 1.635 0.043 - 0.026 -
A 1.608 0.171 -0.027 0.004 -0.017
B 1.608 0.171 -0.027 0.106 -0.017
C 1.599 0.328 -0.037 0.004 -0.022
D 1.636 0.042 0.001 0.026 0.000
E 1.636 0.042 0.001 0.026 0.000

M
p

[M
ü

]

Ref. 10.400 - - 0.000 -
A 9.885 14.268 -0.515 1.443 -0.050
B 10.004 14.005 -0.396 1.400 -0.038
C 9.884 14.267 -0.396 1.400 -0.038
D 10.519 14.565 0.119 1.385 0.011
E 10.519 2.698 -0.516 1.443 -0.050
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B. Tables and Figures for Kepler-10b

Table B.1.: Resulting parameters for Kepler-10b. Values below the single lines indi-
cate the contributions to the variance of the corresponding parameter.

Kepler-10 A B C D E

Rı [R§] 1.06E+00 1.06E+00 1.06E+00 1.06E+00 1.06E+00
‡Rı [R§] 4.90E-01 4.90E-01 3.99E-01 2.10E-02 2.10E-02
�‹AS [R2

§] - - 1.73E-06 - -
Mı,AS [R2

§] - - 1.59E-01 - -

Mı [M§] 8.95E-01 8.95E-01 8.95E-01 8.95E-01 8.95E-01
‡Mı [M§] 1.25E+00 1.08E+00 1.25E+00 6.00E-02 1.79E-02
Rı,CL [M2

§] 1.48E+00 - 1.48E+00 - -
log gı,CL [M2

§] 7.83E-02 - 7.83E-02 - -
�‹AS [M2

§] - 5.96E-06 - - -
Rı,AS [M2

§] - 1.17E+00 - - -

a [AU ] 1.68E-02 1.68E-02 1.68E-02 1.68E-02 1.68E-02
‡a [AU ] 7.78E-03 6.76E-03 7.78E-03 3.74E-04 1.12E-04
‡a/a 4.64E-01 4.03E-01 4.64E-01 2.23E-02 6.67E-03
P [AU2] 4.45E-15 4.45E-15 4.45E-15 4.45E-15 4.45E-15
Mı [AU2] 6.06E-05 4.56E-05 6.06E-05 1.40E-07 1.25E-08

i [¶] 8.43E+01 8.43E+01 8.43E+01 8.43E+01 8.43E+01
‡i [¶] 3.99E+00 3.76E+00 3.68E+00 1.34E+00 1.34E+00
‡i/i 4.73E-02 4.46E-02 4.36E-02 1.59E-02 1.59E-02
b [¶2] 1.78E+00 1.78E+00 1.78E+00 1.78E+00 1.78E+00
Rı [¶2] 7.05E+00 7.05E+00 4.67E+00 1.30E-02 1.30E-02
P [¶2] 5.19E-10 5.19E-10 5.19E-10 5.19E-10 5.19E-10
Mı [¶2] 7.07E+00 5.32E+00 7.07E+00 1.64E-02 1.46E-03

Mp [Mü] 4.54E+00 4.54E+00 4.54E+00 4.54E+00 4.54E+00
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B. Tables and Figures for Kepler-10b

Table B.1.: Resulting parameters for Kepler-10b. Values below the single lines indi-
cate the contributions to the variance of the corresponding parameter.

Kepler-10 A B C D E

‡M
p

[Mü] 4.42E+00 3.89E+00 4.42E+00 1.39E+00 1.38E+00
‡M

p

/Mp 9.73E-01 8.57E-01 9.73E-01 3.06E-01 3.03E-01
K [M2

ü] 1.89E+00 1.89E+00 1.89E+00 1.89E+00 1.89E+00
P [M2

ü] 7.84E-11 7.84E-11 7.84E-11 7.84E-11 7.84E-11
Mı [Mü2 ] 1.76E+01 1.33E+01 1.76E+01 4.08E-02 3.63E-03
Rı [Mü2 ] 4.42E-04 4.42E-04 2.93E-04 8.11E-07 8.11E-07
b [Mü2 ] 1.11E-04 1.11E-04 1.11E-04 1.11E-04 1.11E-04

Rp [Rü] 1.42E+00 1.42E+00 1.42E+00 1.42E+00 1.42E+00
‡R

p

[Rü] 6.59E-01 6.59E-01 5.37E-01 3.37E-02 3.37E-02
‡R

p

/Rp 4.64E-01 4.64E-01 3.78E-01 2.38E-02 2.38E-02
Rı [Rü2 ] 4.34E-01 4.34E-01 2.88E-01 7.97E-04 7.97E-04
Mı [Mü2 ] 3.40E-04 3.40E-04 3.40E-04 3.40E-04 3.40E-04

flp [flü] 1.59E+00 1.59E+00 1.59E+00 1.59E+00 1.59E+00
‡fl

p

[flü] 2.70E+00 2.59E+00 2.37E+00 4.99E-01 4.94E-01
‡fl

p

/flp 1.70E+00 1.64E+00 1.49E+00 3.14E-01 3.12E-01
Mp [fl2

ü] 2.38E+00 1.85E+00 2.38E+00 2.36E-01 2.32E-01
Rp [fl2

ü] 4.88E+00 4.88E+00 3.24E+00 1.28E-02 1.28E-02

HZinner [AU ] 4.84E-01 4.84E-01 4.84E-01 4.84E-01 4.84E-01
‡HZ

inner

[AU ] 2.26E-01 2.26E-01 1.85E-01 2.72E-02 2.72E-02
‡HZ

inner

/HZinner 4.67E-01 4.67E-01 3.81E-01 5.62E-02 5.62E-02
Rı [AU2] 5.05E-02 5.05E-02 3.34E-02 9.27E-05 9.27E-05
Te� [AU2] 6.48E-04 6.48E-04 6.48E-04 6.48E-04 6.48E-04

HZouter[AU ] 9.04E-01 9.04E-01 9.04E-01 9.04E-01 9.04E-01
‡HZ

outer

[AU ] 4.22E-01 4.22E-01 3.45E-01 5.08E-02 5.08E-02
‡HZ

outer

/HZouter 4.67E-01 4.67E-01 3.81E-01 5.62E-02 5.62E-02
Rı [AU2] 1.76E-01 1.76E-01 1.17E-01 3.23E-04 3.23E-04
Te� [AU2] 2.26E-03 2.26E-03 2.26E-03 2.26E-03 2.26E-03

Tsurface [K] 2.00E+03 2.00E+03 2.00E+03 2.00E+03 2.00E+03
‡T

surface

[K] 6.60E+02 6.18E+02 6.02E+02 6.06E+01 5.68E+01
‡T

surface

/Tsurface 3.29E-01 3.08E-01 3.00E-01 3.02E-02 2.83E-02
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Table B.1.: Resulting parameters for Kepler-10b. Values below the single lines indi-
cate the contributions to the variance of the corresponding parameter.

Kepler-10 A B C D E

Rı [K2] 2.16E+05 2.16E+05 1.43E+05 3.97E+02 3.97E+02
Te� [K2] 2.78E+03 2.78E+03 2.78E+03 2.78E+03 2.78E+03
P [K2] 1.59E-05 1.59E-05 1.59E-05 1.59E-05 1.59E-05
Mı [K2] 2.17E+05 1.63E+05 2.17E+05 5.02E+02 4.47E+01
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B. Tables and Figures for Kepler-10b

Table B.2.: Validation of the numerical methods for the Kepler-10 system. The last
two rows are dimensionless. Reference values from Batalha et al. (2011).

Procedure Value x ‡x x ≠ xRef. ‡x/x x≠x
Ref.

x
Ref.

R
ı

[R
§

]

Ref. 1,056 0,021 - 1,989 -
A 0.980 0.490 -0.076 0.500 -0.072
B 0.980 0.490 -0.076 0.500 -0.072
C 1.166 0.399 0.110 0.342 0.104
D 1.056 0.021 0.000 0.020 0.000
E 1.056 0.021 0.000 0.020 0.000

M
ı

[M
§

]

Ref. 0.895 0.060 - 0.067 -
A 1.215 1.247 0.320 1.026 0.358
B 0.722 1.082 -0.173 1.500 -0.194
C 1.215 1.247 0.320 1.026 0.358
D 0.895 0.060 0.000 0.067 0.000
E 0.895 0.018 0.000 0.020 0.000

a
p

[R
ı
]

Ref. 3.436 0.092 - 0.027 -
A 4.070 2.466 0.634 0.606 0.185
B 3.421 2.419 -0.015 0.707 -0.004
C 3.421 1.655 -0.015 0.484 -0.004
D 3.411 0.102 -0.025 0.030 -0.007
E 3.411 0.072 -0.025 0.021 -0.007

i p
[¶ ]

Ref. 84.400 0.079 - 0.001 -
A 85.222 3.108 0.822 0.036 0.010
B 84.313 4.248 -0.087 0.050 -0.001
C 84.313 3.064 -0.087 0.036 -0.001
D 84.296 1.345 -0.104 0.016 -0.001
E 84.296 1.339 -0.104 0.016 -0.001

R
p

[R
ü

]

Ref. 1.416 0.036 - 0.025 -
A 1.318 0.659 -0.098 0.500 -0.070
B 1.318 0.659 -0.098 0.500 -0.070
C 1.568 0.537 0.152 0.342 0.107
D 1.420 0.034 0.004 0.024 0.003
E 1.420 0.034 0.004 0.024 0.003

M
p

[M
ü

]

Ref. 4.560 1.290 - 0.283 -
A 5.559 4.159 0.999 0.748 0.219
B 3.932 4.109 -0.628 1.045 -0.138
C 5.567 4.165 1.007 0.748 0.221
D 4.540 1.391 -0.020 0.306 -0.004
E 4.540 1.377 -0.020 0.303 -0.004
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Figure B.1.: Validation of the numerical methods for Kepler-10. For a description
see Figure 5.1. Reference values from Batalha et al. (2011).
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B. Tables and Figures for Kepler-10b
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Figure B.2.: Planetary radius vs. mass for all procedures of Kepler-10b with corre-
sponding areas of 1 standard deviation (ellipses).
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Figure B.3.: Variance of a for all procedures of Kepler-10b.
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Figure B.4.: Variance of i for all procedures of Kepler-10b.
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Figure B.5.: Variance of Mp for all procedures of Kepler-10b.

0

0.2

0.4

0.6

0.8

1

1.2

A B C D E
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

A B C D E

Planetary radius (Kepler-10b)

Contributions:

Figure B.6.: Variance of Rp for all procedures of Kepler-10b.
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B. Tables and Figures for Kepler-10b
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Figure B.7.: Variance of flp for all procedures of Kepler-10b.
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Figure B.8.: Variance of the boundaries of the HZ for all procedures of Kepler-10b.
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Figure B.9.: Variance of planetary surface temperature for all procedures of Kepler-
10b.
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C. Tables and Figures for Kepler-22b

Table C.1.: Resulting parameters for Kepler-22b. Values below the single lines indi-
cate the contributions to the variance of the corresponding parameter.

Kepler-22 A B C D E

Rı [R§] 9.79E-01 9.79E-01 9.79E-01 9.79E-01 9.79E-01
‡Rı [R§] 5.70E-01 5.70E-01 3.63E-01 2.00E-02 1.96E-02
�‹AS [R2

§] - - 5.37E-05 - -
Mı,AS [R2

§] - - 1.32E-01 - -

Mı [M§] 9.70E-01 9.70E-01 9.70E-01 9.70E-01 9.70E-01
‡Mı [M§] 1.32E+00 2.31E+00 1.32E+00 6.00E-02 1.94E-02
Rı,AS [M2

§] 1.71E+00 - 1.71E+00 - -
log gı,AS [M2

§] 3.26E-02 - 3.26E-02 - -
�‹AS [M2

§] - 9.80E-04 - - -
Rı,AS [M2

§] - 5.31E+00 - - -

a [AU ] 8.49E-01 8.49E-01 8.49E-01 8.49E-01 8.49E-01
‡a [AU ] 3.85E-01 6.72E-01 3.85E-01 1.75E-02 5.66E-03
‡a/a 4.53E-01 7.92E-01 4.53E-01 2.06E-02 6.67E-03
P [AU2] 1.52E-11 1.52E-11 1.52E-11 1.52E-11 1.52E-11
Mı [AU2] 1.48E-01 4.52E-01 1.48E-01 3.06E-04 3.20E-05

i [¶] 8.98E+01 8.98E+01 8.98E+01 8.98E+01 8.98E+01
‡i [¶] 1.79E-01 2.36E-01 1.44E-01 4.12E-02 4.09E-02
‡i/i 1.99E-03 2.63E-03 1.61E-03 4.59E-04 4.56E-04
‡̃2

b [¶2] 1.65E-03 1.65E-03 1.65E-03 1.65E-03 1.65E-03
Rı [¶2] 1.89E-02 1.89E-02 7.69E-03 2.33E-05 2.23E-05
P [¶2] 1.18E-12 1.18E-12 1.18E-12 1.18E-12 1.18E-12
Mı [¶2] 1.15E-02 3.50E-02 1.15E-02 2.37E-05 2.48E-06

Mp [Mü] 4.97E+01 4.97E+01 4.97E+01 4.97E+01 4.97E+01
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C. Tables and Figures for Kepler-22b

Table C.1.: Resulting parameters for Kepler-22b. Values below the single lines indi-
cate the contributions to the variance of the corresponding parameter.

Kepler-22 A B C D E

‡M
p

[Mü] 8.75E+01 1.09E+02 8.75E+01 7.51E+01 1.02E+01
‡M

p

/Mp 1.76E+00 2.19E+00 1.76E+00 1.51E+00 2.05E-01
K [M2

ü] 5.63E+03 5.63E+03 5.63E+03 5.63E+03 1.03E+02
P [M2

ü] 1.31E-08 1.31E-08 1.31E-08 1.31E-08 1.31E-08
Mı [Mü2 ] 2.03E+03 6.20E+03 2.03E+03 4.20E+00 4.39E-01
Rı [Mü2 ] 2.42E-07 2.42E-07 9.83E-08 2.98E-10 2.85E-10
b [Mü2 ] 2.11E-08 2.11E-08 2.11E-08 2.11E-08 2.11E-08

Rp [Rü] 2.37E+00 2.37E+00 2.37E+00 2.37E+00 2.37E+00
‡R

p

[Rü] 1.39E+00 1.39E+00 8.90E-01 1.37E-01 1.37E-01
‡R

p

/Rp 5.85E-01 5.85E-01 3.75E-01 5.78E-02 5.76E-02
Rı [Rü2 ] 1.91E+00 1.91E+00 7.75E-01 2.35E-03 2.25E-03
Mı [Mü2 ] 1.64E-02 1.64E-02 1.64E-02 1.64E-02 1.64E-02

flp [flü] 3.72E+00 3.72E+00 3.72E+00 3.72E+00 3.72E+00
‡fl

p

[flü] 9.26E+00 1.04E+01 7.79E+00 5.66E+00 9.98E-01
‡fl

p

/flp 2.49E+00 2.81E+00 2.09E+00 1.52E+00 2.68E-01
Mp [fl2

ü] 4.30E+01 6.65E+01 4.30E+01 3.17E+01 5.80E-01
Rp [fl2

ü] 4.27E+01 4.27E+01 1.76E+01 4.17E-01 4.15E-01

HZinner [AU ] 4.20E-01 4.20E-01 4.20E-01 4.20E-01 4.20E-01
‡HZ

inner

[AU ] 2.45E-01 2.45E-01 1.56E-01 1.09E-02 1.07E-02
‡HZ

inner

/HZinner 5.82E-01 5.82E-01 3.72E-01 2.59E-02 2.56E-02
Rı [AU2] 5.98E-02 5.98E-02 2.43E-02 7.36E-05 7.05E-05
Te� [AU2] 4.49E-05 4.49E-05 4.49E-05 4.49E-05 4.49E-05

HZouter [AU ] 7.84E-01 7.84E-01 7.84E-01 7.84E-01 7.84E-01
‡HZ

outer

[AU ] 4.57E-01 4.57E-01 2.91E-01 2.03E-02 2.01E-02
‡HZ

outer

/HZouter 5.82E-01 5.82E-01 3.72E-01 2.59E-02 2.56E-02
Rı [AU2] 2.08E-01 2.08E-01 8.47E-02 2.57E-04 2.46E-04
Te� [AU2] 1.56E-04 1.56E-04 1.56E-04 1.56E-04 1.56E-04

Tsurface [K] 2.62E+02 2.62E+02 2.62E+02 2.62E+02 2.62E+02
‡T

surface

[K] 9.68E+01 1.29E+02 7.69E+01 4.35E+00 3.47E+00
‡T

surface

/Tsurface 3.69E-01 4.92E-01 2.93E-01 1.66E-02 1.32E-02
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Table C.1.: Resulting parameters for Kepler-22b. Values below the single lines indi-
cate the contributions to the variance of the corresponding parameter.

Kepler-22 A B C D E

Rı [K2] 5.84E+03 5.84E+03 2.37E+03 7.18E+00 6.89E+00
Te� [K2] 4.38E+00 4.38E+00 4.38E+00 4.38E+00 4.38E+00
P [K2] 3.64E-07 3.64E-07 3.64E-07 3.64E-07 3.64E-07
Mı [K2] 3.54E+03 1.08E+04 3.54E+03 7.32E+00 7.65E-01
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Table C.2.: Validation of the numerical methods for the Kepler-22 system. The last
two rows are dimensionless. Reference values from Borucki et al. (2012).
Procedure Value x ‡x x ≠ xRef. ‡x/x x≠x

Ref.

x
Ref.

R
ı

[R
§

]
Ref. 0.979 0.020 - 0.020 -
A 1.140 0.570 0.161 0.500 0.164
B 1.140 0.570 0.161 0.500 0.164
C 1.080 0.363 0.161 0.500 0.164
D 0.979 0.020 0.000 0.020 0.000
E 0.979 0.020 0.101 0.337 0.103

M
ı

[M
§

]

Ref. 0.970 0.060 - 0.062 -
A 1.306 1.319 0.336 0.020 0.347
B 1.537 2.306 0.567 1.500 0.584
C 1.306 1.319 0.336 0.020 0.347
D 0.970 0.060 0.000 0.062 0.000
E 0.970 0.019 0.000 1.009 0.000

a
p

[R
ı
]

Ref. 186.400 1.600 - 0.009 -
A 176.684 106.485 -9.716 0.062 -0.052
B 186.521 131.896 0.121 0.707 0.001
C 186.521 88.771 0.121 0.020 0.001
D 186.304 5.408 -0.096 0.029 -0.001
E 186.304 3.928 -0.096 0.476 -0.001

i p
[¶ ]

Ref. 89.764 0.042 - 0.000 -
A 89.751 0.156 -0.013 0.029 0.000
B 89.764 0.172 0.000 0.002 0.000
C 89.764 0.119 0.000 0.021 0.000
D 89.764 0.041 0.000 0.000 0.000
E 89.764 0.041 0.000 0.001 0.000

R
p

[R
ü

]

Ref. 2.380 0.130 - 0.055 -
A 2.762 1.389 0.382 0.000 0.160
B 2.762 1.389 0.382 0.503 0.160
C 2.616 0.892 0.236 0.000 0.099
D 2.372 0.137 -0.008 0.058 -0.003
E 2.372 0.137 -0.008 0.341 -0.003

M
p

[M
ü

]

Ref. 36.000 0.000 - 0.000 -
A 60.600 100.195 24.600 0.058 0.683
B 67.536 122.330 31.536 1.811 0.876
C 60.600 100.195 24.600 0.058 0.683
D 49.691 75.072 13.691 1.511 0.380
E 49.691 10.163 13.691 1.653 0.380
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Figure C.1.: Validation of the numerical methods for Kepler-22. For a description
see Figure 5.1. Again for the error of planetary mass there does not
exist a specific value. Reference values from Borucki et al. (2012).
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Figure C.2.: Planetary radius vs. mass for all procedures of Kepler-22b with corre-
sponding areas of 1 standard deviation (ellipses).
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Figure C.3.: Variance of a for all procedures of Kepler-22b.
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Figure C.4.: Variance of i for all procedures of Kepler-22b.
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Figure C.5.: Variance of Mp for all procedures of Kepler-22b.
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Figure C.6.: Variance of Rp for all procedures of Kepler-22b.
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Figure C.7.: Variance of flp for all procedures of Kepler-22b.
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Figure C.8.: Variance of the boundaries of the HZ for all procedures of Kepler-22b.
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Figure C.9.: Variance of planetary surface temperature for all procedures of Kepler-
22b.
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