Supplementary Information

Bimetallic Doped RuO₂ with Manganese and Iron as Electrocatalyst for Favorable Oxygen Evolution Reaction Performance

Yiyi Wu^a; Muhammad Tariq^a; Waqas Qamar Zaman^b; Wei Sun^a; Zhenhua Zhou^a; Ji Yang^{a,c*}

^a State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China.

yangji@ecust.edu.cn

^b Institute of Environmental Science and Engineering, School of civil and Environmental Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan.

^c Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092,
P.R. China

Experimental Section

Electrochemical Surface Areas (ECSAs)

The employed CV measurement helps evaluating electrochemical surface areas (ECSAs) of prepared catalysts by extracting double layer capacitance C_d . The calculation method of ECSA and C_d can be described as the equation: ECSA = C_d / C_s . A potential range of 0.25–0.45 V was selected with no faradic response when subjected under scan rates of 25 mV/s, 50 mV/s, 75 mV/s and 100 mV/s. C_s , the specific capacitance of electrode, was considered as 0.035 mF cm⁻² based on previously reported value.¹

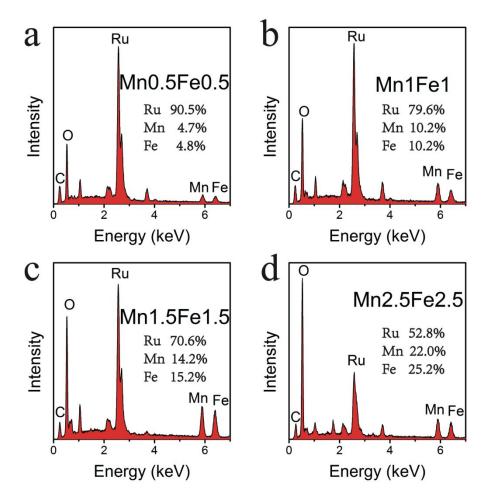


Figure S1 EDS spectra of (a) MnFeRu-90, (b) MnFeRu-80, (c) MnFeRu-70, (d) MnFeRu-50. Atomic percent of all elements tested by ICP are shown in the specific spectra.

Catalysts	Tafel slope	Electrolyte	Reference
	/ mV*dec ⁻¹		
MnFeRu-90	41	0.1 M	This work
		HClO ₄	
RuO ₂	64	0.1 M	This work
		HClO ₄	
RuO ₂ (110)	59	0.5 M	Mechanism and Tafel Lines of
		H_2SO_4	Electro-Oxidation of Water to
			Oxygen on $RuO_2(110)^2$
RuO ₂ after	50	0.5 M	Surface modification of RuO ₂
laser		H_2SO_4	electrodes by laser irradiation and ion
treatment			implantation: Evidence of
			electrocatalytic effects ³
RuO ₂ @IrO ₂	60	0.5 M	Reaction mechanism for oxygen
		H_2SO_4	evolution on RuO ₂ , IrO ₂ , and
			RuO ₂ @IrO ₂ core-shell nanocatalysts ⁴
RuO ₂ (100)	60	0.1 M	Orientation-Dependent Oxygen
		КОН	Evolution Activities of Rutile IrO2
			and RuO_2^5
RuO ₂ /Co ₃ O ₄	69	1 M KOH	MOF-derived RuO ₂ /Co ₃ O ₄
			heterojunctions as highly efficient
			bifunctional electrocatalysts for HER
			and OER in alkaline solutions ⁶

Table S1 The electrochemical performance comparison of MnFeRu-90 against other Ru oxide-based catalysts.



Figure S2 iR-uncorrected linear sweep voltammetery curves for the OER process of all codoped composites relative to RuO_2 in the acidic solution (0.1 M HClO₄).

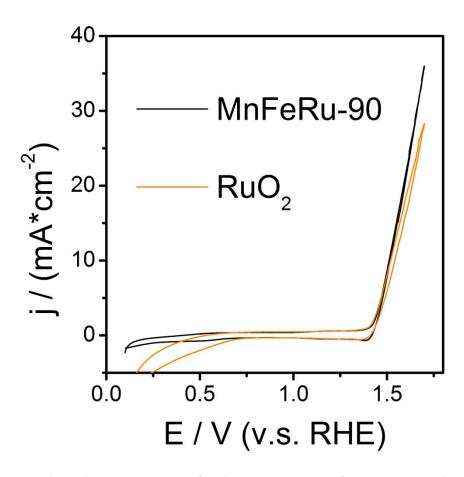


Figure S3 The polarization curves for the OER process of MnFeRu-90 relative to RuO_2 in the acidic solution (0.1 M HClO₄).

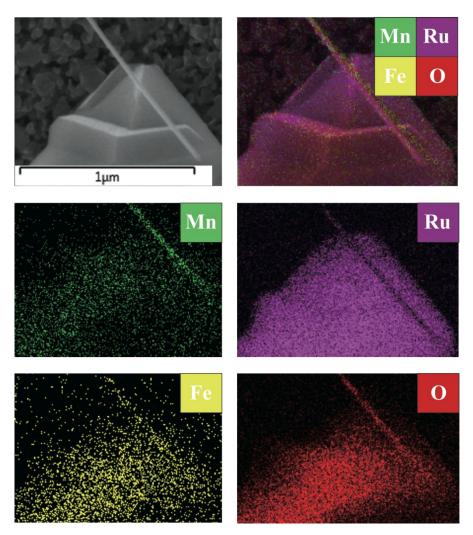


Figure S4 FESEM and EDX element mappings for MnFeRu-50. The needle shown in the spectra is mixture of manganese and iron oxides.

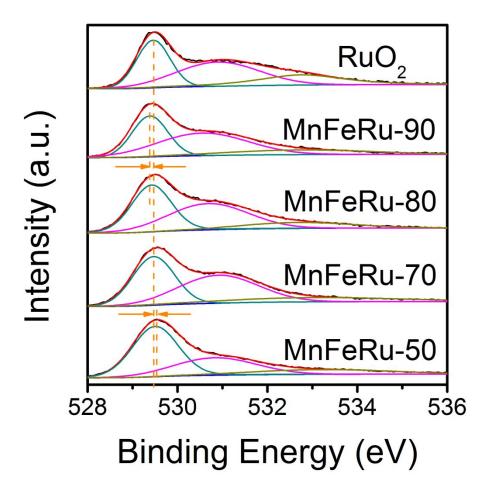


Figure S5 XPS spectra of O-1s in MnFeRu series with decreasing ruthenium up to 50% mol fraction.



Figure S6 XPS spectra of Ru-3d in NiCoRu series with decreasing ruthenium up to 50% mol fraction. The red peaks correspond to C-1s for calibration.

References

(1) McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. *Journal of the American Chemical Society* **2013**, *135* (45), 16977-16987, DOI: 10.1021/ja407115p.

(2) Fang, Y.-H.; Liu, Z.-P. Mechanism and Tafel Lines of Electro-Oxidation of Water to Oxygen on RuO2(110). *Journal of the American Chemical Society* **2010**, *132* (51), 18214-18222, DOI: 10.1021/ja1069272.

(3) Guerrini, E.; Colombo, A.; Trasatti, S. Surface modification of RuO2 electrodes by laser irradiation and ion implantation: Evidence of electrocatalytic effects. *Journal of Chemical Sciences* **2009**, *121* (5), 639, DOI: 10.1007/s12039-009-0077-9.

(4) Ma, Z.; Zhang, Y.; Liu, S.; Xu, W.; Wu, L.; Hsieh, Y.-C.; Liu, P.; Zhu, Y.; Sasaki, K.; Renner, J. N.; Ayers, K. E.; Adzic, R. R.; Wang, J. X. Reaction mechanism for oxygen evolution on RuO2, IrO2, and RuO2@IrO2 core-shell nanocatalysts. *Journal of Electroanalytical Chemistry* **2018**, *819*, 296-305, DOI: https://doi.org/10.1016/j.jelechem.2017.10.062.

(5) Stoerzinger, K. A.; Qiao, L.; Biegalski, M. D.; Shao-Horn, Y. Orientation-Dependent Oxygen Evolution Activities of Rutile IrO2 and RuO2. *The Journal of Physical Chemistry Letters* **2014**, *5* (10), 1636-1641, DOI: 10.1021/jz500610u.

(6) Liu, H.; Xia, G.; Zhang, R.; Jiang, P.; Chen, J.; Chen, Q. *MOF-derived RuO 2 /Co 3 O 4 heterojunctions as highly efficient bifunctional electrocatalysts for HER and OER in alkaline solutions*, 2017; Vol. 7, p 3686-3694.