Supporting Information for

Enhanced Reactivity Results in Reduced Catalytic Performance. Unexpected Ligand Reactivity of a Bis(*N*-2,6-diisopropylphenylperflourophenyl-amidate)titaniumbis(diethylamido) Hydroamination Precatalyst.

Jason A. Bexrud, Chunyu Li and Laurel L. Schafer*

Department of Chemistry, University of British Columbia, 6174 University Boulevard, Vancouver, B.C., Canada, V6T 1Z1.

Crystallographic data for 3

```
ls032/ls032.cif
100644
           765
                    60
                            56220 10640776145
                                                  6446
data_ls032
_audit_creation_method
                                  SHELXL-97
_chemical_name_systematic
;
 ?
;
_chemical_name_common
                                  ?
_chemical_melting_point
                                  ?
_chemical_formula_moiety
                                  'C58 H66 F10 N4 O2 Ti'
_chemical_formula_sum
 'C58 H66 F10 N4 O2 Ti'
_chemical_formula_weight
                                  1245.26
loop_
 _atom_type_symbol
 _atom_type_description
_atom_type_scat_dispersion_real
 _atom_type_scat_dispersion_imag
 _atom_type_scat_source
 'C' 'C' 0.0033
                   0.0016
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'H' 'H'
          0.0000
                   0.0000
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'N' 'N'
           0.0061 0.0033
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
                   0.0060
 '0' '0'
            0.0106
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'F' 'F' 0.0171 0.0103
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'Ti' 'Ti' 0.2776 0.4457
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting
                                  monoclinic
                                  'C2/c'
_symmetry_space_group_name_H-M
loop_
 _symmetry_equiv_pos_as_xyz
 'x, y, z'
 '-x, y, -z+1/2'
 'x+1/2, y+1/2, z'
 '-x+1/2, y+1/2, -z+1/2'
 '-x, -y, -z'
 'x, -y, z-1/2'
 '-x+1/2, -y+1/2, -z'
 'x+1/2, -y+1/2, z-1/2'
_cell_length_a
                                  29.207(3)
_cell_length_b
                                  10.8442(9)
_cell_length_c
                                  22.707(2)
_cell_angle_alpha
                                  90.00
```

```
_cell_angle_beta
                                   115.209(4)
_cell_angle_gamma
                                   90.00
_cell_volume
                                   6507.0(10)
_cell_formula_units_Z
                                   4
_cell_measurement_temperature
                                   293(2)
cell measurement reflns used
                                   7703
cell measurement theta min
                                   1.54
_cell_measurement_theta_max
                                   28.02
_exptl_crystal_description
                                   irregular
_exptl_crystal_colour
                                   red
_exptl_crystal_size_max
                                   0.40
_exptl_crystal_size_mid
                                   0.40
_exptl_crystal_size_min
                                   0.20
_exptl_crystal_density_meas
                                   'not measured'
_exptl_crystal_density_diffrn
                                   1.271
_exptl_crystal_density_method
                                   'not measured'
_exptl_crystal_F_000
                                   2616
_exptl_absorpt_coefficient_mu
                                   0.207
_exptl_absorpt_correction_type
                                   'multi-scan'
_exptl_absorpt_correction_T_min
                                   ?
_exptl_absorpt_correction_T_max
                                   ?
                                   ?
_exptl_absorpt_process_details
_exptl_special_details
;
 ?
;
_diffrn_ambient_temperature
                                   293(2)
_diffrn_radiation_wavelength
                                   0.71073
_diffrn_radiation_type
                                   MoK∖a
_diffrn_radiation_source
                                   'fine-focus sealed tube'
_diffrn_radiation_monochromator
                                   graphite
_diffrn_measurement_device_type
                                   ?
_diffrn_measurement_method
                                   ?
_diffrn_detector_area_resol_mean
                                   ?
_diffrn_standards_number
                                   ?
_diffrn_standards_interval_count
                                   ?
_diffrn_standards_interval_time
                                   ?
_diffrn_standards_decay_%
                                   ?
_diffrn_reflns_number
                                   72029
_diffrn_reflns_av_R_equivalents
                                   0.0426
_diffrn_reflns_av_sigmaI/netI
                                   0.0308
_diffrn_reflns_limit_h_min
                                   -38
_diffrn_reflns_limit_h_max
                                   38
                                   -13
_diffrn_reflns_limit_k_min
_diffrn_reflns_limit_k_max
                                   14
_diffrn_reflns_limit_l_min
                                   -29
_diffrn_reflns_limit_l_max
                                   29
_diffrn_reflns_theta_min
                                   1.54
_diffrn_reflns_theta_max
                                   28.02
reflns number total
                                   7703
reflns number qt
                                   5879
reflns threshold expression
                                   >2siqma(I)
_computing_data_collection
                                   'APEX'
```

_computing_cell_refinement 'APEX' _computing_data_reduction 'APEX' _computing_structure_solution 'SIR-92' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' computing molecular graphics 'ORTEP-3 (Farrugia, 1997)' computing publication material 'PLATON (Spek, 1990)' _refine_special_details Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on $F^{2^{+}}$, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2 > 2sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0500P)^2^+3.7432P] where $P=(Fo^2^+2Fc^2^)/3'$ _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom refine ls hydrogen treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 7703 _refine_ls_number_parameters 393 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0586 _refine_ls_R_factor_gt 0.0390 _refine_ls_wR_factor_ref 0.1069 _refine_ls_wR_factor_gt 0.0980 refine ls goodness of fit ref 1.027 _refine_ls_restrained_S_all 1.027 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag atom site refinement flags atom site disorder assembly atom site disorder group Til Ti 0.0000 0.09317(3) 0.2500 0.02221(9) Uani 1 2 d S . . F3 F -0.19728(4) -0.39339(9) 0.29280(5) 0.0463(2) Uani 1 1 d . . .

F2 F -0.21993(3) -0.14794(9) 0.27840(5) 0.0477(2) Uani 1 1 d . . . F5 F -0.05339(3) -0.32004(8) 0.25490(5) 0.0436(2) Uani 1 1 d . . . F1 F -0.15962(3) 0.01027(8) 0.25301(5) 0.0406(2) Uani 1 1 d . . . F4 F -0.11462(4) -0.47839(8) 0.28017(5) 0.0501(3) Uani 1 1 d . . . 01 0 -0.02357(3) -0.05953(9) 0.29243(4) 0.0264(2) Uani 1 1 d . . . N1 N -0.07769(4) 0.02220(10) 0.19916(5) 0.0231(2) Uani 1 1 d . . . N3 N -0.00211(4) 0.20162(11) 0.31467(5) 0.0272(2) Uani 1 1 d . . . C1 C -0.06807(5) -0.05952(12) 0.24571(6) 0.0230(3) Uani 1 1 d . . . C3 C -0.12304(5) 0.01989(13) 0.13895(6) 0.0249(3) Uani 1 1 d . . . C4 C -0.15856(5) 0.11745(13) 0.12455(7) 0.0281(3) Uani 1 1 d . . . C8 C -0.13044(5) -0.07573(14) 0.09323(7) 0.0296(3) Uani 1 1 d . . . C15 C -0.10537(5) -0.14988(12) 0.25133(6) 0.0246(3) Uani 1 1 d . . . C17 C -0.17928(5) -0.19043(14) 0.27168(7) 0.0315(3) Uani 1 1 d . . . C18 C -0.16772(5) -0.31428(14) 0.27939(7) 0.0325(3) Uani 1 1 d . . . C16 C -0.14834(5) -0.11041(13) 0.25773(7) 0.0279(3) Uani 1 1 d . . C19 C -0.12553(6) -0.35688(14) 0.27299(7) 0.0333(3) Uani 1 1 d . . . C20 C -0.09468(5) -0.27525(13) 0.25982(7) 0.0297(3) Uani 1 1 d . . . C5 C -0.20175(6) 0.11403(15) 0.06546(7) 0.0364(3) Uani 1 1 d . . . H5 H -0.2258 0.1763 0.0559 0.044 Uiso 1 1 calc R . . C103 C 0.08623(15) 0.4044(3) 0.53862(13) 0.0990(10) Uani 1 1 d . . . H103 H 0.0791 0.4879 0.5305 0.119 Uiso 1 1 calc R . . C10 C -0.13424(6) 0.33867(15) 0.13898(8) 0.0419(4) Uani 1 1 d . . . H10A H -0.1287 0.4094 0.1666 0.063 Uiso 1 1 calc R . . H10B H -0.1606 0.3565 0.0967 0.063 Uiso 1 1 calc R . . H10C H -0.1036 0.3190 0.1350 0.063 Uiso 1 1 calc R . . C9 C -0.15000(5) 0.22855(14) 0.16870(7) 0.0315(3) Uani 1 1 d . . . H9 H -0.1220 0.2095 0.2108 0.038 Uiso 1 1 calc R . . C12 C -0.09334(6) -0.18178(15) 0.10323(8) 0.0363(3) Uani 1 1 d . . . H12 H -0.0657 -0.1744 0.1469 0.044 Uiso 1 1 calc R . . C025 C 0.01636(6) 0.15767(14) 0.38259(7) 0.0329(3) Uani 1 1 d . . . H02A H 0.0400 0.2177 0.4113 0.040 Uiso 1 1 calc R . . H02B H 0.0346 0.0809 0.3869 0.040 Uiso 1 1 calc R . . C026 C -0.02740(6) 0.32260(14) 0.30363(7) 0.0344(3) Uani 1 1 d . . . H02C H -0.0579 0.3142 0.3103 0.041 Uiso 1 1 calc R . . H02D H -0.0376 0.3458 0.2585 0.041 Uiso 1 1 calc R . . C7 C -0.17421(6) -0.07258(16) 0.03436(7) 0.0385(4) Uani 1 1 d . . . H7 H -0.1795 -0.1344 0.0038 0.046 Uiso 1 1 calc R . . C6 C -0.20975(6) 0.02036(16) 0.02071(8) 0.0421(4) Uani 1 1 d . . . H6 H -0.2388 0.0199 -0.0183 0.051 Uiso 1 1 calc R . . C029 C -0.02587(7) 0.13676(18) 0.40444(8) 0.0473(4) Uani 1 1 d . . . H02E H -0.0115 0.1081 0.4486 0.071 Uiso 1 1 calc R . . H02F H -0.0491 0.0762 0.3769 0.071 Uiso 1 1 calc R . . H02G H -0.0435 0.2129 0.4015 0.071 Uiso 1 1 calc R . . C106 C 0.10506(10) 0.1586(3) 0.56221(11) 0.0851(8) Uani 1 1 d . . . H106 H 0.1112 0.0748 0.5704 0.102 Uiso 1 1 calc R . . Cl4 C -0.11895(7) -0.30802(16) 0.09796(9) 0.0466(4) Uani 1 1 d . . . H14A H -0.0947 -0.3725 0.1046 0.070 Uiso 1 1 calc R . . H14B H -0.1464 -0.3164 0.0555 0.070 Uiso 1 1 calc R . . H14C H -0.1317 -0.3139 0.1305 0.070 Uiso 1 1 calc R . Cll C -0.19641(6) 0.26351(16) 0.18057(9) 0.0434(4) Uani 1 1 d . . . H11A H -0.1885 0.3339 0.2088 0.065 Uiso 1 1 calc R . . H11B H -0.2055 0.1954 0.2005 0.065 Uiso 1 1 calc R . . H11C H -0.2243 0.2830 0.1398 0.065 Uiso 1 1 calc R . . C109 C 0.74947(8) 0.6694(2) 0.12608(9) 0.0630(6) Uani 1 1 d . . . H109 H 0.7744 0.6165 0.1257 0.076 Uiso 1 1 calc R . . C102 C 0.05789(9) 0.3334(3) 0.55957(11) 0.0759(7) Uani 1 1 d . . . H102 H 0.0315 0.3693 0.5662 0.091 Uiso 1 1 calc R . .

C13 C -0.07073(7) -0.17546(19) 0.05324(10) 0.0546(5) Uani 1 1 d . . . H13A H -0.0475 -0.2425 0.0606 0.082 Uiso 1 1 calc R . . H13B H -0.0532 -0.0986 0.0579 0.082 Uiso 1 1 calc R . . H13C H -0.0974 -0.1814 0.0101 0.082 Uiso 1 1 calc R . . C108 C 0.71173(10) 0.6253(2) 0.14176(10) 0.0678(6) Uani 1 1 d . . . H108 H 0.7113 0.5424 0.1521 0.081 Uiso 1 1 calc R . . C101 C 0.06711(8) 0.2127(3) 0.57088(10) 0.0671(6) Uani 1 1 d . . . H101 H 0.0470 0.1658 0.5849 0.081 Uiso 1 1 calc R . C105 C 0.13492(11) 0.2268(5) 0.54124(15) 0.1232(16) Uani 1 1 d . . . H105 H 0.1612 0.1894 0.5350 0.148 Uiso 1 1 calc R . . C107 C 0.67482(9) 0.7036(3) 0.14207(10) 0.0724(7) Uani 1 1 d . . . H107 H 0.6492 0.6735 0.1522 0.087 Uiso 1 1 calc R . . C110 C 0.75003(9) 0.7921(2) 0.11102(10) 0.0686(6) Uani 1 1 d . . . H110 H 0.7753 0.8223 0.1003 0.082 Uiso 1 1 calc R . . C111 C 0.71336(10) 0.8694(2) 0.11190(11) 0.0753(7) Uani 1 1 d . . . H111 H 0.7139 0.9524 0.1019 0.090 Uiso 1 1 calc R . . C112 C 0.67561(9) 0.8256(2) 0.12748(11) 0.0735(6) Uani 1 1 d . . . H112 H 0.6508 0.8787 0.1281 0.088 Uiso 1 1 calc R . . C104 C 0.12549(16) 0.3517(5) 0.52950(14) 0.1270(17) Uani 1 1 d . . . H104 H 0.1455 0.3994 0.5156 0.152 Uiso 1 1 calc R . . C051 C 0.00439(7) 0.42691(16) 0.34693(9) 0.0490(4) Uani 1 1 d . . . H05A H -0.0150 0.5017 0.3364 0.074 Uiso 1 1 calc R . . H05B H 0.0343 0.4382 0.3399 0.074 Uiso 1 1 calc R . . H05C H 0.0139 0.4064 0.3918 0.074 Uiso 1 1 calc R . . loop atom site aniso label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Til 0.01985(16) 0.02325(18) 0.02262(17) 0.000 0.00818(13) 0.000 F3 0.0424(5) 0.0461(6) 0.0542(6) 0.0064(5) 0.0241(5) -0.0151(4) F2 0.0374(5) 0.0513(6) 0.0687(7) 0.0021(5) 0.0363(5) -0.0009(4) F5 0.0398(5) 0.0338(5) 0.0664(6) 0.0088(4) 0.0314(5) 0.0086(4) F1 0.0428(5) 0.0301(5) 0.0613(6) 0.0021(4) 0.0342(5) 0.0044(4) F4 0.0554(6) 0.0268(5) 0.0732(7) 0.0073(5) 0.0324(5) -0.0003(4) $01 \ 0.0216(5) \ 0.0296(5) \ 0.0246(5) \ 0.0022(4) \ 0.0067(4) \ 0.0001(4)$ N1 0.0199(5) 0.0261(6) 0.0230(5) 0.0005(4) 0.0088(4) 0.0008(4) N3 0.0253(6) 0.0271(6) 0.0277(6) -0.0027(5) 0.0100(5) 0.0003(5) C1 0.0213(6) 0.0235(7) 0.0250(6) -0.0026(5) 0.0108(5) 0.0002(5) C3 0.0202(6) 0.0300(7) 0.0239(6) 0.0019(5) 0.0088(5) -0.0006(5) $C4 \quad 0.0240(7) \quad 0.0326(8) \quad 0.0278(7) \quad 0.0035(6) \quad 0.0113(6) \quad 0.0018(6)$ C8 0.0262(7) 0.0337(8) 0.0277(7) -0.0008(6) 0.0105(6) -0.0011(6) $\texttt{C15} \quad \texttt{0.0233(6)} \quad \texttt{0.0273(7)} \quad \texttt{0.0225(6)} \quad \texttt{-0.0001(5)} \quad \texttt{0.0090(5)} \quad \texttt{-0.0024(5)}$ $C17 \ 0.0245(7) \ 0.0397(9) \ 0.0322(7) \ -0.0015(6) \ 0.0140(6) \ -0.0024(6)$ C18 0.0305(7) 0.0357(8) 0.0301(7) 0.0006(6) 0.0119(6) -0.0105(6) $C16 \ 0.0276(7) \ 0.0272(7) \ 0.0284(7) \ -0.0010(6) \ 0.0116(6) \ -0.0003(6)$ C19 0.0369(8) 0.0261(8) 0.0346(8) 0.0017(6) 0.0131(7) -0.0022(6) C20 0.0259(7) 0.0312(8) 0.0324(7) 0.0016(6) 0.0128(6) 0.0014(6) C5 0.0273(7) 0.0396(9) 0.0359(8) 0.0061(7) 0.0072(6) 0.0064(6) $C103 \ 0.130(3) \ 0.0816(19) \ 0.0536(15) \ -0.0108(13) \ 0.0082(17) \ -0.0333(19)$ $C10 \ 0.0441(9) \ 0.0368(9) \ 0.0488(10) \ -0.0001(7) \ 0.0236(8) \ 0.0006(7)$ C9 0.0271(7) 0.0339(8) 0.0336(7) 0.0020(6) 0.0131(6) 0.0062(6) $C12 \ 0.0313(8) \ 0.0392(9) \ 0.0348(8) \ -0.0093(7) \ 0.0106(6) \ 0.0033(6)$

C025 0.0343(8) 0.0357(8) 0.0269(7) -0.0031(6) 0.0112(6) -0.0007(6) $\texttt{C026} \ \texttt{0.0320(8)} \ \texttt{0.0335(8)} \ \texttt{0.0349(8)} \ -\texttt{0.0020(6)} \ \texttt{0.0115(6)} \ \texttt{0.0053(6)}$ C7 0.0377(8) 0.0424(9) 0.0276(7) -0.0055(7) 0.0065(6) -0.0035(7) C6 0.0330(8) 0.0485(10) 0.0290(8) 0.0039(7) -0.0020(6) 0.0000(7) $C029 \ 0.0536(10) \ 0.0575(11) \ 0.0381(9) \ -0.0032(8) \ 0.0265(8) \ -0.0035(9)$ $C106 \ 0.0709(16) \ 0.102(2) \ 0.0548(14) \ -0.0233(13) \ -0.0001(12) \ 0.0181(15)$ $C14 \ 0.0464(10) \ 0.0367(9) \ 0.0477(10) \ -0.0062(8) \ 0.0116(8) \ 0.0048(7)$ C11 0.0383(9) 0.0457(10) 0.0529(10) 0.0015(8) 0.0258(8) 0.0113(7) $\texttt{C109} \ \texttt{0.0572(12)} \ \texttt{0.0757(15)} \ \texttt{0.0383(10)} \ \texttt{-0.0135(10)} \ \texttt{0.0033(9)} \ \texttt{-0.0045(11)}$ $C102 \ 0.0655(14) \ 0.095(2) \ 0.0557(13) \ -0.0234(13) \ 0.0147(11) \ 0.0027(14)$ C13 0.0500(10) 0.0611(12) 0.0617(12) -0.0221(10) 0.0325(9) -0.0050(9) C108 0.0804(16) 0.0559(13) 0.0429(11) 0.0042(9) 0.0030(11) -0.0225(12) C101 0.0598(13) 0.0882(18) 0.0439(11) -0.0099(11) 0.0129(10) -0.0107(12) $C105 \ 0.0569(16) \ 0.237(5) \ 0.0703(19) \ -0.073(3) \ 0.0223(14) \ 0.001(3)$ C107 0.0656(14) 0.0987(19) 0.0493(12) 0.0070(12) 0.0208(11) -0.0235(14)C110 0.0584(13) 0.0928(18) 0.0458(11) 0.0020(11) 0.0138(10) -0.0272(13) C111 0.0834(17) 0.0590(14) 0.0653(14) 0.0112(11) 0.0140(13) -0.0169(13) C112 0.0702(15) 0.0837(18) 0.0600(13) -0.0001(12) 0.0215(12) 0.0036(13) $C104 \ 0.120(3) \ 0.214(5) \ 0.0549(16) \ -0.043(2) \ 0.0439(19) \ -0.098(3)$ C051 0.0456(10) 0.0334(9) 0.0573(11) -0.0102(8) 0.0114(8) 0.0049(7)

_geom_special_details

;

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ;

loop_

_geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 geom bond publ flag Til N3 1.9028(11) 2 ? Til N3 1.9028(11) . ? Til 01 2.1700(10) 2 ? Til 01 2.1700(10) . ? Til N1 2.2007(11) 2 ? Til N1 2.2007(11) . ? Til Cl 2.5572(13) 2 ? Til Cl 2.5572(13) . ? F3 C18 1.3409(16) . ? F2 C17 1.3413(16) . ? F5 C20 1.3483(16) . ? F1 C16 1.3426(16) . ? F4 C19 1.3491(17) . ? O1 C1 1.2808(15) . ? N1 C1 1.3147(17) . ? N1 C3 1.4427(16) . ? N3 C026 1.4737(18) . ? N3 C025 1.4791(18) . ? C1 C15 1.5105(18) . ? C3 C8 1.4172(19) . ?

C3 C4 C4 C8 C15 C17 C17 C17 C17 C17 C17 C17 C17 C17 C17	C4 C5 C9 C7 C12 C7 C12 C7 C12 C1 C1 C1 C1 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	1.41 1.39 1.51 1.40 1.5 0 1. 6 1. 8 1. 6 1. 9 1. 1.38 104 1.5 3 1. 4 1. 0 29 051 1.38 101	L91()7(2 L8(2))2(2	19 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2)) · · · · · · · · · · · · ·	(?(()()))))))))))))))))))))))))))	· · · · · · · · · · · · · · · · · · ·	5 5 5 5 5 5 5
C10 C10)6 C)9 C	105 110	1.3	874 875	(5) (5) (3)))		? ?
C10 C10)9 C)2 C	108 101	1.3	881 840	(3)))		?
C10 C10)8 C)5 C)7 C	107 104 112	1.3 1.3	875 886 866	(3 (6 (4)))	•	? ?
C11 C11	.0 C .1 C	111 112	1.3 1.3	867 878	(4 (3))		?
	bb [–] leow leow	_ang _ang _ang _ang _ang _ang	yle_ yle_ yle yle yle_ yle_	_at _at _at _si	om om te		sit sit syn	e_label_1 e_label_2 e_label_3 metry_1 metry_3
 N3	Jeom Til	_ang N3	103 00	_pu 8.6	bi 5(_± 7)	:la 2	g
N3	Til	01	159	40 9.2	(4 3() 4) 4)	ے ۔	2?
N3	Til Til	01	90. 80	48 53	(4) (5)))	- - 2	· · · · · ?
N3	Til Til	N1 N1	104	1 1 1	() 2(6(, 4) 4)	2	2?
01	Til Til	N1 N1	60. 87	98 22	(4)	2	2 ? 2 ?
N3 N3	Til Til	N1 N1	100).1	6(2(, 4) 4)	2	. ?
01 01	Til Til	N1 N1	87. 60	22 98	、 (4 (4)	2	.?
N1 N3	Til Til	N1 C1	139 98).0 59	6((4	, 6))	· 2 2	2 ?
N3	Ti1	C1	130).6	2 (, 4)		2 ?

O1 Ti1 C1 30.04(4) 2 2 ? O1 Ti1 C1 82.96(4) . 2 ? N1 Til C1 30.94(4) 2 2 ? N1 Til C1 113.88(4) . 2 ? N3 Til Cl 130.62(4) 2 . ? N3 Til Cl 98.59(4) . . ? O1 Til C1 82.96(4) 2 . ? O1 Ti1 C1 30.04(4) . . ? N1 Til C1 113.88(4) 2 . ? N1 Til C1 30.94(4) . . ? C1 Ti1 C1 99.29(6) 2 . ? C1 O1 Ti1 91.96(8) . . ? C1 N1 C3 123.08(11) . . ? C1 N1 Til 89.68(8) . . ? C3 N1 Til 145.94(8) . . ? C026 N3 C025 113.46(11) . . ? C026 N3 Til 126.70(9) . . ? C025 N3 Til 119.22(9) . . ? O1 C1 N1 117.38(12) . . ? 01 C1 C15 116.36(11) . . ? N1 C1 C15 126.18(12) . . ? O1 C1 Ti1 58.00(6) . . ? N1 C1 Ti1 59.38(7) . . ? C15 C1 Til 173.64(9) . . ? C8 C3 C4 120.54(12) . . ? C8 C3 N1 119.93(12) . . ? C4 C3 N1 119.43(12) . . ? C5 C4 C3 118.30(13) . . ? C5 C4 C9 118.87(13) . . ? C3 C4 C9 122.73(12) . . ? C7 C8 C3 118.24(13) . . ? C7 C8 C12 117.42(13) . . ? C3 C8 C12 124.34(12) . . ? C20 C15 C16 116.47(12) . . ? C20 C15 C1 121.26(12) . . ? C16 C15 C1 121.63(12) . . ? F2 C17 C18 120.09(13) . . ? F2 C17 C16 120.45(14) . . ? C18 C17 C16 119.46(13) . . ? F3 C18 C17 120.38(13) . . ? F3 C18 C19 119.99(14) . . ? C17 C18 C19 119.63(13) . . ? F1 C16 C17 117.89(12) . . ? F1 C16 C15 119.55(12) . . ? C17 C16 C15 122.51(13) . . ? F4 C19 C18 119.31(13) . . ? F4 C19 C20 120.60(13) . . ? C18 C19 C20 120.09(14) . . ? F5 C20 C19 118.38(13) . . ? F5 C20 C15 119.79(12) . . ? C19 C20 C15 121.83(13) . . ? C6 C5 C4 121.71(14) . . ? C102 C103 C104 119.4(3) . . ? C4 C9 C10 108.83(12) . . ? C4 C9 C11 113.68(13) . . ? C10 C9 C11 109.68(13) . . ? C8 C12 C13 110.89(14) . . ?

```
C8 C12 C14 111.53(12) . . ?
C13 C12 C14 109.21(13) . . ?
N3 C025 C029 113.54(13) . . ?
N3 C026 C051 115.26(12) . . ?
C6 C7 C8 121.57(14) . . ?
C7 C6 C5 119.60(14) . . ?
C101 C106 C105 120.2(3) . . ?
C110 C109 C108 119.7(2) . . ?
C101 C102 C103 121.3(3) . . ?
C107 C108 C109 120.1(2) . . ?
C102 C101 C106 120.7(3) . . ?
C106 C105 C104 119.3(3) . . ?
C112 C107 C108 120.2(2) . . ?
C111 C110 C109 119.8(2) . . ?
C110 C111 C112 120.7(2) . . ?
C107 C112 C111 119.6(2) . . ?
C103 C104 C105 119.2(3) . . ?
loop_
 _geom_torsion_atom_site label 1
 _geom_torsion_atom_site_label_2
 _geom_torsion_atom_site_label_3
 _geom_torsion_atom_site_label_4
 _geom_torsion
 _geom_torsion_site_symmetry_1
 _geom_torsion_site_symmetry_2
 geom torsion site symmetry 3
 _geom_torsion_site_symmetry_4
 _geom_torsion_publ_flag
N3 Til Ol Cl -26.90(16) 2 . . . ?
N3 Til O1 C1 106.50(8) . . . ?
O1 Til O1 C1 -92.31(8) 2 . . . ?
N1 Til O1 C1 -153.35(8) 2 . . . ?
N1 Til O1 C1 -0.24(7) . . . ?
C1 Ti1 O1 C1 -122.58(8) 2 . . . ?
N3 Til N1 C1 170.92(8) 2 . . . ?
N3 Til N1 C1 -81.90(8) . . . .
                               ?
O1 Ti1 N1 C1 80.94(8) 2 . . ?
O1 Ti1 N1 C1 0.23(7) . . . ?
N1 Til N1 C1 43.81(7) 2 . . ?
C1 Til N1 C1 66.72(10) 2 . . . ?
N3 Til N1 C3 5.84(16) 2 . . . ?
N3 Til N1 C3 113.02(15) . . . .
                                ?
O1 Ti1 N1 C3 -84.15(15) 2 . . . ?
O1 Ti1 N1 C3 -164.86(17) . . . ?
N1 Til N1 C3 -121.27(16) 2 . . . ?
C1 Til N1 C3 -98.36(16) 2 . . . ?
C1 Til N1 C3 -165.1(2) . . . ?
N3 Til N3 C026 34.27(10) 2 . . . ?
O1 Ti1 N3 C026 165.89(11) 2 . . . ?
O1 Til N3 C026 -130.35(11) . . . ?
N1 Til N3 C026 142.39(11) 2 . . . ?
N1 Til N3 C026 -70.33(12) . . . ?
C1 Til N3 C026 148.53(10) 2 . . . ?
C1 Til N3 C026 -101.31(11) . . . ?
N3 Til N3 C025 -155.42(12) 2 . . . ?
O1 Ti1 N3 C025 -23.81(19) 2 . . . ?
```

O1 Til N3 C025 39.96(10) . . . ? N1 Til N3 C025 -47.30(10) 2 . . . ? N1 Til N3 C025 99.98(10) . . . ? C1 Til N3 C025 -41.17(12) 2 . . . ? C1 Til N3 C025 68.99(10) . . . ? Til Ol Cl N1 0.39(12) . . . ? Til Ol Cl Cl5 -176.61(10) . . . ? C3 N1 C1 O1 169.71(11) . . . ? Til N1 C1 O1 -0.38(12) . . . ? C3 N1 C1 C15 -13.6(2) . . . ? Til N1 C1 C15 176.29(12) . . . ? C3 N1 C1 Ti1 170.09(13) . . . ? N3 Til C1 O1 167.79(7) 2 . . . ? N3 Til Cl Ol -75.85(8) . . . ? O1 Ti1 C1 O1 83.24(8) 2 . . . ? N1 Til C1 O1 29.34(8) 2 . . ? N1 Til C1 O1 179.60(12) ? C1 Ti1 C1 O1 57.93(6) 2 . . ? N3 Til Cl N1 -11.81(10) 2 . . . ? N3 Til C1 N1 104.55(8) . . . ? O1 Ti1 C1 N1 -96.36(8) 2 . . . ? O1 Ti1 C1 N1 -179.60(12) ? N1 Til C1 N1 -150.26(6) 2 . . . ? C1 Til C1 N1 -121.67(8) 2 . . . ? N3 Til Cl Cl5 -163.7(8) 2 . . . ? N3 Til Cl Cl5 -47.3(8) . . . ? O1 Ti1 C1 C15 111.8(8) 2 . . . ? O1 Ti1 C1 C15 28.5(8) . . . ? N1 Ti1 C1 C15 57.9(8) 2 . . . ? N1 Til C1 C15 -151.9(9) ? C1 Ti1 C1 C15 86.5(8) 2 . . . ? C1 N1 C3 C8 -68.78(17) . . . ? Til N1 C3 C8 93.33(18) . . . ? C1 N1 C3 C4 114.67(14) . . . ? Til N1 C3 C4 -83.21(18) . . . ? C8 C3 C4 C5 2.5(2) . . . ? N1 C3 C4 C5 178.98(12) . . . ? C8 C3 C4 C9 -173.80(12) . . . ? N1 C3 C4 C9 2.73(19) . . . ? C4 C3 C8 C7 -1.4(2) . . . ?N1 C3 C8 C7 -177.96(12) . . . ? C4 C3 C8 C12 177.53(13) ? N1 C3 C8 C12 1.0(2) . . . ? O1 C1 C15 C20 -55.48(17) ? N1 C1 C15 C20 127.82(15) . . . ? Til Cl Cl5 C20 -82.4(8) . . . ? 01 C1 C15 C16 115.06(14) . . . ? N1 C1 C15 C16 -61.64(19) ? Til Cl Cl5 Cl6 88.2(8) . . . ? F2 C17 C18 F3 0.9(2) . . . ? C16 C17 C18 F3 -179.88(13) . . . ? F2 C17 C18 C19 -179.37(13) . . . ? C16 C17 C18 C19 -0.1(2) . . . ? F2 C17 C16 F1 1.8(2) . . . ? C18 C17 C16 F1 -177.48(13) ? F2 C17 C16 C15 178.97(12) . . . ? C18 C17 C16 C15 -0.3(2) ?

C20 C15 C16 F1 177.04(12) . . . ? C1 C15 C16 F1 6.08(19) . . . ? C20 C15 C16 C17 -0.1(2) . . . ? C1 C15 C16 C17 -171.08(13) . . . ? F3 C18 C19 F4 0.2(2) . . . ? C17 C18 C19 F4 -179.56(13) ? F3 C18 C19 C20 -179.33(13) . . . ? C17 C18 C19 C20 0.9(2) . . . ? F4 C19 C20 F5 -0.5(2) . . . ? C18 C19 C20 F5 179.00(13) . . . ? F4 C19 C20 C15 179.13(13) . . . ? C18 C19 C20 C15 -1.4(2) . . . ? C16 C15 C20 F5 -179.42(12) . . . ? C1 C15 C20 F5 -8.4(2) . . . ? C16 C15 C20 C19 0.9(2) . . . ? C1 C15 C20 C19 171.94(13) . . . ? C3 C4 C5 C6 -1.7(2) . . . ? C9 C4 C5 C6 174.73(14) . . . ? C5 C4 C9 C10 -73.15(16) . . . ? C3 C4 C9 C10 103.08(15) . . . ? C5 C4 C9 C11 49.40(18) . . . ? C3 C4 C9 C11 -134.37(14) . . . ? C7 C8 C12 C13 63.89(18) . . . ? C3 C8 C12 C13 -115.09(16) ? C7 C8 C12 C14 -58.06(18) . . . ? C3 C8 C12 C14 122.95(15) ? C026 N3 C025 C029 62.62(17) . . . ? Til N3 C025 C029 -108.92(13) . . . ? C025 N3 C026 C051 56.79(18) . . . ? Til N3 C026 C051 -132.43(13) . . . ? C3 C8 C7 C6 -0.4(2) . . . ? C12 C8 C7 C6 -179.45(15) . . . ? C8 C7 C6 C5 1.2(3) . . . ? C4 C5 C6 C7 -0.1(3) . . . ? C104 C103 C102 C101 -0.7(4) . . . ? C110 C109 C108 C107 0.2(3) . . . ? C103 C102 C101 C106 0.5(3) . . . ? C105 C106 C101 C102 -0.3(3) . . . ? C101 C106 C105 C104 0.3(4) . . . ? C109 C108 C107 C112 -0.6(3) . . . ? C108 C109 C110 C111 0.2(3) . . . ? C109 C110 C111 C112 -0.3(3) . . . ? C108 C107 C112 C111 0.6(3) . . . ? C110 C111 C112 C107 -0.1(4) . . . ? C102 C103 C104 C105 0.7(4) . . . ? C106 C105 C104 C103 -0.5(5) . . . ? _diffrn_measured_fraction_theta_max 0.978 28.02 _diffrn_reflns_theta_full _diffrn_measured_fraction_theta_full 0.978 _refine_diff_density_max 0.294 _refine_diff_density_min -0.273 refine diff density rms 0.041

2 mar 10