Human behavior in contextual multi-armed bandits

Hrvoje Stojic,
Pantelis Pipergias Analytis and Maarten Speekenbrink

Pompeu Fabra University,
Max Planck Institute for Human Development, University College London

August 20, 2015

Multi-armed bandit (MAB) problem

Option 1

?

Option 2

$N\left(\mu_{2}, \sigma_{2}\right)$

Blind product testing

Realistic decision problem...

Contextual multi-armed bandit (CMAB) problem

Option 1

?

$$
N\left(f(\cdot), \sigma_{1}\right)
$$

$$
N\left(f(\cdot), \sigma_{2}\right)
$$

$N\left(\omega_{1} x_{1}+\omega_{2} x_{2}, \sigma\right) \quad N\left(\omega_{1} x_{1}+\omega_{2} x_{2}, \sigma\right)$

Really realistic decision problem...

Our CMAB task

Total number of rounds: 100
Running total: 20
Current round: 1

Click on a square to choose an option. Press ENTER to continue to the next round.

Why is CMAB problem interesting?

Highlights:

1. Closer to realistic situations rich in features.
2. $T D(\lambda)$ heavily affected by the curse of dimensionality structure learning might be a solution.
3. Function learning changes the exploration-exploitation problem!
4. We can study generalization, transfer of learning, novelty...

Goal of this study:

1. Provide characterization of human behavior in CMAB problems.
2. Develop function learning based reinforcement learning models to explain the behavior.

Experimental Design

Experiment 1 - High noise

- Training phase - between subject design:
- Contextual multi-armed bandit (CMAB) task - two informative features are visually displayed
- Classic multi-armed bandit (MAB) task - control group, features are not visible
- 20 alternatives, 100 trials
- Test phase - one shot choices between 3 arms in 70 trials, without outcome feedback
- 145 participants - Amazon Turk - monetary payoffs

Experiment 2 - Low noise

- Reduced standard deviation of the error term
- 143 participants - Amazon Turk - monetary payoffs

Experimental Task

The task in all conditions

- For each arm j in trial t, the payoffs $R_{j}(t)$ were computed as:

$$
R_{j}(t)=2 \times x_{1, j}+1 \times x_{2, j}+\epsilon_{j}(t)
$$

- $\epsilon_{j}(t)$ drawn independently for each arm in every trial, from $N(0,1)$ in Experiment 1 and from $N(0,0.25)$ in Experiment 2.
- Task was to maximize the cumulative reward.

Screenshot - CMAB

Total number of rounds: 100
Running total: 20
Current round: 1

Click on a square to choose an option. Press ENTER to continue to the next round.

Screenshot - MAB

Total number of rounds: 100
Running total: 20
Current round: 1

Click on a square to choose an option. Press ENTER to continue to the next round.

Behavior: Average choice rank

Behavior: Average choice rank - High noise

- Main effects significant, but interaction NOT.

Behavior: Average choice rank - Low noise

- Only block effect significant.

Behavior: One-shot choices in the test phase

Three alternatives:

- Dominating - highest function value.
- Neutral - middle function value.
- Dominated - lowest function value.

One shot choices, 70 trials, no feedback!

Total number of rounds: 70
Current round: 5

Click on a square to choose an option. Press ENTER to continue to the next round.

Behavior: One-shot choices in the test phase

Behavior: One-shot choices in the test phase

Behavior: Ranks after switching in first 50 trials

Exploration guided by functional knowledge should be:

- Skewed toward highly ranked alternatives.
- Should include the extremes.

Behavior: Ranks after switching in first 50 trials

Exploration guided by functional knowledge should be:

- Skewed toward highly ranked alternatives.
- Should include the extremes.

Choice rule - Softmax

- All models used the softmax choice rule

$$
P(C(t)=j)=\frac{\exp \left(\theta E_{j}(t)\right)}{\sum_{k=1}^{K} \exp \left(\theta E_{k}(t)\right)}
$$

- θ is a parameter for sensitivity to expected value differences.

Naïve RL - Mean tracing

- The delta rule (Sutton \& Barto, 1998):

$$
E_{j}(t)=E_{j}(t-1)+\delta_{j}(t) \eta\left[R_{j}(t)-E_{j}(t-1)\right]
$$

where $\delta_{j}(t)$ is an indicator variable (1 if alternative j was chosen on trial $t, 0$ otherwise) and fixed learning rate, $0 \leq \eta \leq 1$.

- The decay rule (Ahn et al, 2008) where expected values of the unchosen alternatives decay towards 0 :

$$
E_{j}(t)=\eta E_{j}(t-1)+\delta_{j}(t) R_{j}(t)
$$

with decay parameter $0 \leq \eta \leq 1$.

Function learning based RL - LMS

- The least-mean-squares (LMS) network model (Gluck \& Bower, 1987)

$$
E_{j}(t)=\mathbf{x}_{j} \hat{\mathbf{w}}(t)
$$

where $\hat{\mathbf{w}}(t)$ is a vector of estimated connection weights (identical for each alternative) and \mathbf{x} is a feature vector.

- Updated through the delta rule

$$
\hat{\mathbf{w}}(t+1)=\hat{\mathbf{w}}(t)+\eta\left(R_{j}(t)-E_{j}(t)\right) \mathbf{x}_{j}^{T}
$$

where η is a learning rate. Weights are initialized as $\hat{\mathbf{w}}(0)=(0,0)^{T}$.

Function learning based RL - LMS Decay/Delta

Expected values are weighted combination of:

1. expected values produced by the LMS network model with an addition of an intercept variable that learns average payoff, $E_{j}^{L M S}(t)$
2. expected values from either Decay or Delta mean tracing rule that learns average payoff of each alternative, $E_{j}^{\text {Mean }}(t)$

$$
E_{j}(t)=\pi E_{j}^{L M S}(t)+(1-\pi) E_{j}^{M e a n}(t)
$$

where π is a mixture parameter regulating how much person relies on function learning vs learning specific payoffs in making predictions.

Model fits: Training phase - CMAB conditions

Model fits: Training phase - CMAB conditions

Model fits: Test phase - CMAB conditions

Training phase model fits and earnings - Different types of participants?

Models ranked according to the BIC score

Summary

- CMAB - a promising new paradigm developed.
- Closer to the decisions in the wild.
- Initial modeling, but much room for improvement - Active learning!
- Distinguish classical and function based exploration - Need smarter experimental designs.
- Choice overload might be beneficial!
- Parallel modes or switching?

Acknowledgments

Hrvoje Stojic and Pantelis P. Analytis are on the job market! Interested in working with us?

Let us know at:
hrvoje.stojic@upf.edu
analytis@mpib-berlin.mpg.de

Funding:

- FPU grant, Ministry of Education, Culture and Sports, Spain
- Barcelona Graduate School of Economics
- Max Planck Institute for Human Development, Berlin

