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DNA copy number motifs are strong and
independent predictors of survival in breast cancer
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Somatic copy number alterations are a frequent sign of genome instability in cancer. A
precise characterization of the genome architecture would reveal underlying instability
mechanisms and provide an instrument for outcome prediction and treatment guidance. Here
we show that the local spatial behavior of copy number profiles conveys important infor-
mation about this architecture. Six filters were defined to characterize regional traits in copy
number profiles, and the resulting Copy Aberration Regional Mapping Analysis (CARMA)
algorithm was applied to tumors in four breast cancer cohorts (n = 2919). The derived motifs
represent a layer of information that complements established molecular classifications of
breast cancer. A score reflecting presence or absence of motifs provided a highly significant
independent prognostic predictor. Results were consistent between cohorts. The nonsite-
specific occurrence of the detected patterns suggests that CARMA captures underlying
replication and repair defects and could have a future potential in treatment stratification.
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window into its past history and its future evolutionary

potential!=3. In general, we may consider a copy number
profile as the accumulated result of a series of genomic events*~7.
Specific DNA replication and repair errors may leave particular
traces throughout the genome in the form of recurring local
patterns, or motifs®-1!, We hypothesized that such motifs
represent a substantial proportion of the copy number variation
in a tumor, and that they partly explain the high intertumor copy
number heterogeneity frequently observed in cancer. We further
hypothesized that the presence or absence of specific motifs is
informative of a tumor’s past and future evolutionary trajectory.
Detailed characterization of such features would thus allow pre-
diction of disease behavior and could potentially direct choice of
treatment.

Here, we present an analysis of regional nonsite-specific motifs
from allele-specific DNA copy number profiles in breast cancer.
The core of this framework is the Copy Aberration Regional
Mapping Analysis (CARMA) algorithm, which creates a compact
representation of the aberration architecture. Conceptually, the
algorithm represents copy number profiles as real-valued func-
tions over the genomic domain and derives a small set of scores
representing distinct regional features. The proposed method
takes into account copy number amplitude, spatial distribution of
copy number break points and allelic imbalance, and captures
regional fluctuations in copy number, a signature feature of
chromothripsis and chromoplexy. By generating a low-
dimensional representation of the copy number data, the pro-
posed algorithm also avoids the curse of dimensionality.

CARMA is related to multiple algorithms designed to detect
specific copy number aberration patterns in tumors. The chro-
mosomal instability index (CINdex)!? and the genomic instability
index (GII)!3 both quantify the total amount of genomic aber-
rations. Other algorithms have been proposed for detection of
simplex and complex copy number events® and structural rear-
rangement patterns!4, for example the complex arm-wise aber-
ration index (CAAI). An algorithm identifying the presence of
multiple aberration patterns with application to ovarian cancer
was recently proposed!!. In addition, several methods have been
proposed to identify copy number features recurring across
tumors, such as GISTIC!>16,

We applied CARMA to four breast cancer patient cohorts
(METABRIC, Oslo2, Oslo-Val, and ICGC; see “Methods” for
details). An integrated score was derived and shown to have
superior prediction performance for breast cancer specific survi-
val compared with other available clinical and molecular strati-
fications. The relation between copy number motifs and
established driver gene based classifications of breast cancer was
investigated. The analysis described in the paper is applicable to
allele-specific copy number data from all types of cancer and any
type of platform, including SNP arrays and high-throughput
sequencing.

T he allele-specific DNA copy number profile of a tumor is a

Results

Brief outline of the analysis approach. CARMA is applicable to
allele-specific copy number profiles from one or several tumors,
obtained from SNP array analysis or DNA high-throughput
sequencing. The algorithm extracts multiple local features which
are accumulated across genomic regions by numerical integration
to form six regional scores. These scores reflect the degree of
amplification (AMP), deletion (DEL), complexity (STP and
CRV), such as chromothripsis and chromoplexy, loss of hetero-
zygosity (LOH) and allelic imbalance or asymmetry (ASM). More
details and precise mathematical definitions are deferred to
“Methods.” The analysis pipeline is depicted in Fig. la-d. An

application of the algorithm to three breast tumor samples in the
Oslo2 cohort and with chromosome arms as regions is shown in
Fig. le. Specific regional features are discernible, illustrating how
CARMA can be used to perform between-sample comparison of
copy number features that are not locus specific.

Relation to other methods. CARMA was compared with two
methods for detection of nonsite specific copy number aberra-
tions in single samples: CAAI® and CINdex!2. The CAAI algo-
rithm identifies chromosome arms with complex rearrangements,
while CINdex detects regional gains and losses. We also com-
pared CARMA with GISTIC, a well-established method for
detection of regions with significant copy number change across
multiple samples!16, Figure 2a shows circos plots of CARMA
profiles for two selected samples in the METABRIC cohort,
together with the results from GISTIC, CINdex, and CAAL

As expected, CAAI correlates with the two CARMA complex-
ity scores STP and CRYV, but the relative sizes of STP and CRV
provide additional detail (e.g., on chromosome 16 in the sample
MB-0010). CINdex captures both gains and losses, but in the two
selected samples it correlates stronger with DEL than with AMP.
This is not unexpected, since the CINdex algorithm includes a
relative weighting of gains and losses, while CARMA does not.
The use of six distinct measure of copy number distortion in
CARMA generally provides more detail than CINdex. For
example, in a region with loss of one allele and gain of the other
(i.e. a uniparental disomy), such as chromosome 22 in MB-0010,
CARMA reports LOH and ASM, while CINdex reports no
alteration (Fig. 2a). Observe also that the complex aberration on
chromosome 11p in MB-0028 which is reported by CINdex is
positive for all six CARMA scores including STP and CRV.

For GISTIC, regions of significant gain or loss were identified
based on all METABRIC samples; a binary score is subsequently
assigned to each sample in each such region based on the
presence or absence of a loss or gain. Regions with significant loss
or gain according to GISTIC partially overlap with DEL and
AMP, respectively. Next, we investigated the distribution of
CARMA scores within each region identified by GISTIC (Fig. 2b).
A strong overlap is observed between GISTIC gain and high AMP
score, and between GISTIC loss and high DEL score. In addition,
there is considerable diversity in the CARMA spectrum within
regions called as gains or losses according to GISTIC. For
example, the relative contribution of LOH is highly variable
across GISTIC loss regions. Similarly, the relative contribution of
complex aberrations captured by STP and CRV varies across
GISTIC gain regions.

Molecular subgroups have distinct CARMA signatures. We
next considered the distribution of CARMA scores within
established molecular stratifications of breast carcinomas
(PAM50 and IntClust). PAM5017:18 is an expression based clas-
sification system defining five distinct subgroups of breast tumors
based on the correlation to a set of 50 genes. IntClust!!° identifies
ten different subtypes based on the pattern of copy number
aberrations exerting an effect on gene expression in cis. The
distribution of CARMA scores within these classification systems
were explored in four different breast cancer data sets of varying
sample size (n=1943, n=276, n=165, and n=>553). The
percentage of tumors with scores exceeding a median threshold
was plotted for all arm scores and for each PAM50 and IntClust
subtype separately (Fig. 3a and Supplementary Figs. 1-4). The
CARMA scores consistently reflect differences in the landscapes
of genomic architecture in the different biological and clinical
patient groups. This visual overview of aberration patterns
highlights subtype specific features such as frequent allelic loss on
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Fig. 1 Outline of the CARMA algorithm. a Complete analysis pipeline. b Steps included in the CARMA analysis. The input is one or more allele-specific
copy number profiles. The algorithm extracts local features and accumulates these across genomic regions to form six regional scores. ¢ Calculation of
CARMA scores within a specified region. d Prototype patterns captured by each of the six CARMA scores. e An application of the algorithm to three breast
tumor samples in the Oslo2 cohort. Lower panel: total copy number and allele fraction as a function of genomic locus. Upper panel: circos plots of regional

(arm-wise) CARMA scores.

17p and frequent gain and high complexity on 17q in IntClustl;
gain on 1q, frequent asymmetric gain and complex aberrations on
11q and allelic loss on 16q in IntClust2; etc. The signatures of
regional CARMA scores within the PAM50 subtypes highlight
known features, including whole arm 1q gain/16q loss in luminal
A tumors, the more complex copy number aberrations in luminal

B tumors, the 17q alterations dominating Her2-enriched tumors,
and the global instability of basal-like tumors. Three-dimensional
scatter plots of CARMA scores were plotted for all tumors in the
Oslo2 cohort (n=276) and METABRIC cohort (n = 1943) (see
Fig. 3b). Trend curves and subtype centroids both demonstrate
high degree of consistency between the two cohorts.
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Fig. 2 Relation to other methods. a Circos plots of arm-wise CARMA scores for two selected samples in the METABRIC cohort, together with results from
GISTIC, CINdex, and CAAL Only focal aberrations are shown for GISTIC, and scores indicate whether a significant region according to GISTIC is aberrant in
this sample. The color indicates the direction of change (loss or gain). For CINdex and CAAI, continuous scores are shown. b Relative distribution of
CARMA scores within GISTIC regions. Each bar corresponds to a region which is found to be significant across all METABRIC samples according to
GISTIC, and which is called as a gain or loss in the given sample. The colors in each bar represents the relative contributions of the six CARMA scores in
that region, found by dividing the CARMA scores in a region by their sum. Regions are ordered according to decreasing contribution of AMP and then on

increasing contribution of DEL.

Predicting survival from regional scores. To assess the associa-
tion between disease-specific survival (DSS) and genome-wide
CARMA scores, a univariate Cox proportional hazards regression
model was fitted with each score as a covariate (see Supplementary
Table 1). For this purpose, we used the largest cohort (METAB-
RIC set). All scores were associated with survival (P < 10~%; Score
test) and the strongest associations were found for the scores STP
and CRV (P < 10~ 18; Score test).

We next split the METABRIC cohort into a discovery cohort
(n=1295) and a test cohort (n = 648). We fitted a multivariate
Cox regression model to DSS and progression-free survival (PFS)
data in the discovery cohort based on the six predictors. The
predictors were defined by taking an unweighted mean across all
the regional (arm-wise) CARMA scores (Fig. 3c). The fitted
model was next applied to the test set, producing a single
unweighted prognostic value per patient. Thresholds correspond-
ing to the 1/3 and 2/3 percentile were applied to classify samples
into groups of low, intermediate, and high risk, with numerical
values ranging from 1 to 3. This final score was termed the
CARMA Prognostic Index (CPI). An alternative prognostic index
was defined using the 252 arm-wise CARMA scores directly as
predictors and fitting a Cox regression model with Lasso penalty
to the training set. Coefficients derived from the analysis
(Supplementary Fig. 5) were used as weights to calculate a
weighted prognostic index termed CPlLyeighted-

To compare the efficacy of CPI and CPIyeightea to established
clinically and biologically relevant parameters, we fitted a
univariate Cox regression model in the METABRIC test set
using the prognostic indices and the clinical parameters as
covariates (Table 1 and Supplementary Tables 2-3). The P value
for CPI from the analysis was lower than for any of the other
clinical parameters when looking at both DSS (P=1.9 x 10~13;
Score test) and PFS (P=5.7x10"13; Score test), and also

performed better than CPlcightea. However, CPlieightea did
remain strongly significant in the analysis for both DSS (P=
52x 10710, Score test) and PFS (P=3.7x10"7; Score test)
presenting P values lower than many of the other established
parameters. Hazard ratios for CPI and other clinical variables
from univariate Cox regression analysis are shown in Fig. 3d.

Cox regression modeling was also performed to assess the
effect of the prognostic indices with adjustments for other
variables (see Table 1 and Supplementary Tables 2-3). CPI
consistently showed smaller P values than all other clinical
variables. Also CPlyeightea remained significant when adjusting
for other variables (Supplementary Tables 2-3). Hazard ratios
from multivariate Cox regression models where the effect of CPI
is adjusted for the effect of clinical variables are shown in Fig. 3f.

CPI was next used to stratify patients into low, intermediate,
and high-risk groups as described above in the three validation
cohorts with survival data available (METABRIC test set,
OsloVal, and ICGC). A logrank test was performed for the three
groups in each data set (Fig. 3e). P values were significant when
considering both DSS (P < 10712 in METABRIC test, P< 10~ in
OsloVal, and P=0.003 in ICGC) and PFS (P<10-!2 in
METABRIC test; PFS data were not available for OsloVal
or ICGC).

Finally, the unweighted continuous prognostic score that was
used to obtain the CPI, was utilized to calculate a Harrell’s C score
in the METABRIC test set. The C scores obtained from the
analysis were 0.65 (95% CI: 0.62-0.69) and 0.64 (95% CI:
0.61-0.68) based on DSS and PFS, respectively.

Discussion

Structural DNA distortions are a result of deregulated DNA
repair and maintenance, and mutagenic processes operating in
the cells. The conventional focus in studies of DNA copy number
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Fig. 3 Stratification and outcome prediction with CARMA. a CARMA score distribution in METABRIC within the IntClust subtypes defined in Curtis et al.l.
The height of each bar represents the proportion of samples in the subgroup with arm score above the median, calculated across all arms within each
CARMA score and ignoring zeros. b Three-dimensional scatter plots of tumors using three of the CARMA scores designed to detect three major categories
of copy number aberration patterns in tumors (amplifications AMP, allelic loss LOH, complex rearrangements CRV). Colors indicate PAM50 subtype (see
legend at bottom) and large spheres show subtype centroids. Upper panel: Oslo2 (n=276); Lower panel: METABRIC (n =1943). ¢ Flow chart depicting
the construction of prognostic indices from the arm-wise CARMA scores, using the METABRIC discovery cohort. Upper panel: construction of CPIl. Arm-
wise scores are collapsed using an unweighted average, and the resulting genome-wide scores are combined by multivariate Cox regression. Thresholds
corresponding to the 1/3 and 2/3 percentiles were applied to classify samples into groups of low, intermediate and high risk. Lower panel: construction of
CPlyeighted- Arm-wise scores are combined by cross-validated multivariate Cox-Lasso regression, resulting in one genome-wide score. Thresholds
corresponding to the 1/3 and 2/3 percentiles were applied as above to classify samples into three risk groups. d Hazard ratios and 95% confidence
intervals (CI) for clinical variables, CPI scores, and the genomic instability index (GII). Shown are unadjusted estimates for disease-specific survival (DSS)
and progression-free survival (PFS). e Survival prediction using CPI stratified into low, intermediate, and high risk. Kaplan-Meier plots of DSS for the three
risk groups in the METABRIC test set, OsloVal set, and ICGC set as well as for PFS within the METABRIC test set. f Hazard ratios and 95% Cl for clinical
variables, CPI, and GlI. Shown are adjusted estimates for DSS and PFS.
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Table 1 Prognostic value of CPl and other variables.
Disease-specific survival Progression-free survival
Type Covariate P value HR P value HR
Unadjusted Age (<60 vs >60 years) 2.2e—01 119 5.3e—02 1.29
Unadjusted T-status (pT1, pT2, >pT3) 9.2e—07 1.76 2.9e—05 1.59
Unadjusted N-status (positive vs negative) 5.5e—09 2.28 8.2e—07 1.94
Unadjusted Histological grade (1-3) 5.9e—-08 2.01 3.2e—-06 174
Unadjusted Estrogen receptor (negative vs positive) 2.0e—06 2.00 2.3e—03 157
Unadjusted HER2 receptor (positive vs negative) 1.6e—09 2.79 7.0e—06 219
Unadjusted Tp53 status (mutated vs wildtype) 7.2e—08 2.44 1.0e—04 1.90
Unadjusted Gl (+1SD) 1.1e—09 1.52 3.6e—08 1.43
Unadjusted CPI (low, intermediate, high risk) 1.9e-13 1.96 57e-13 1.87
Adjusted CPI (low, intermediate, high risk) 3.4e—13 1.95 1.5e—12 1.85
Age (<60 vs >60 years) 5.6e—01 1.08 1.8e—01 119
Adjusted CPI (low, intermediate, high risk) 5.5e—12 1.89 9.0e—12 1.83
T-status (pT1, pT2, >pT3) 1.1e—05 1.68 4.6e—04 1.49
Adjusted CPI (low, intermediate, high risk) 5.6e—13 1.94 1.9e-12 1.86
N-status (positive vs negative) 1.8e—08 2.22 3.1e—-06 1.87
Adjusted CPI (low, intermediate, high risk) 2.2e—08 173 4.2e—09 176
Histological grade (1-3) 1.5e—03 1.54 3.7e—02 1.30
Adjusted CPI (low, intermediate, high risk) 2.0e—-1 1.87 1.5e—-11 1.83
Estrogen receptor (negative vs positive) 1.2e—03 1.62 1.6e—01 1.23
Adjusted CPI (low, intermediate, high risk) 6.7e—10 1.80 1.9e-10 178
HER2 receptor (positive vs negative) 4.6e—04 1.87 3.4e—02 1.47
Adjusted CPI (low, intermediate, high risk) 3.1e—05 1.64 5.6e—06 1.69
Tp53 status (mutated vs wildtype) 3.7e-03 172 1.7e—01 1.28
Adjusted CPI (low, intermediate, high risk) 1.2e—06 176 4.5e—-07 1.81
Gl (+1SD) 1.3e—-01 114 6.6e—01 1.04
The first part of the table shows results from univariate Cox regression analyses to assess the association between survival and clinical variables, Gll, and CPI. Results are shown for both DSS and PFS and
for the METABRIC test cohort (n = 648). The second part of the table shows results from multivariate Cox regression analyses on the sample samples to assess the association between CPI and survival,
with adjustment for the effect of other variables.
HR hazard ratio.

alterations in tumors is the identification of recurrently deleted
and amplified genes which may define key driver events in car-
cinogenesis or potential targets for treatment. We and others have
previously shown that in addition to this gene centered or locus
centered approach, the structural changes provide important
information for classification and survival prediction®%20, The
methodology presented in this study complements gene specific
analyses by providing a systematic framework to characterize the
information embedded in the copy number profile of a tumor.
CARMA determines the presence and relative contributions of six
distinct copy number features in genomic regions and in the
genome as a whole. By focusing on pervasive patterns or motifs in
the genome rather than locus specific events, the algorithm cap-
tures footprints of past and ongoing segmental DNA alterations.
Known drivers of such alterations are DNA replication and repair
errors8-11,

In this study, we used CARMA to assign scores to individual
chromosome arms and to the whole genome. The CARMA
algorithm is not bound to any particular genomic resolution
though, and the tool supports assignment of individual scores to
whole genomes, chromosomes, chromosome arms, or genomic
bins of any desired width. For a given genomic resolution, scores
for individual genes can also be obtained by inheritance of the
respective regional score. Irrespective of the selection of regions
on which to assign scores, the fact that regions are identical across
tumors allows CARMA scores to be used directly as features in
clustering, regression, and classification. Normally, the number of
features will also be quite small, thus substantially reducing sta-
tistical problems related to high dimensionality.

CARMA reveals a rich spectrum of different copy number
motifs across samples and also between regions within an indi-
vidual sample. By combining six different measures of copy

number aberration, it provides a more detailed picture of geno-
mic architecture than GII, CAAI, and CINdex. CARMA and
GISTIC represent complementary tools with different aims.
Combining CARMA with GISTIC offers the possibility of pro-
viding a detailed picture of the aberration spectrum restricted to
regions that are significantly altered across many samples.
Molecular taxonomy of breast cancer based on gene expression
has proved important for the biological understanding of the
disease!”. IntClust! is a more recent driver-based classification of
breast cancer and has been shown to also reflect degree of che-
mosensitivity?!. The CARMA scores revealed distinct aberration
signatures for the ten IntClust groups, suggesting that the copy
number motifs reflect a driver-based classification of tumors. As
seen from the Manhattan plots, the expression signatures defining
the IntClust subtypes are to a large degree correlated to focal copy
number aberrations, representing driver alterations in these
subtypes. The copy number aberrations in these driver regions
also exhibit differences in their pattern. This is for instance illu-
strated by the different types of copy number gains found on the
1q arm in the IntClust 8 subtype, as compared with the gains
found on the 11q arm in the IntClust2 group. The first type of
gain represents noncomplex low-amplicon whole arm transloca-
tions captured by the AMP and ASM scores, while the latter
represents more complex rearrangements with high-amplicon
gains?? captured by all of the CARMA scores. Even though both
of the observed patterns represent copy number gains, the
underlying mechanisms causing these patterns are fundamentally
different. The CARMA scores manage to capture these nuances,
illustrating the potential of the method to discriminate between a
richer set of aberrational patterns. The plot also gives an indi-
cation of the global background variation from copy number
aberrations, maybe most apparent in the IntClust ten subtypes.
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Interestingly, the degree to which the different subtypes are
affected by this background variation seems to correlate well with
the fraction of TP53 mutations observed within each subtype?3.
This again supports the notion that copy number motifs reflect
underlying biological traits.

In order to assess the ability of the method to predict breast
cancer specific survival, a univariate Cox regression model was
fitted to genome-wide CARMA scores in the METABRIC cohort.
All genome-wide scores showed a strong and significant asso-
ciation to survival. As a first step this supports the assumption
that each of the selected scores are informative and thus qualifies
for use in further survival analyses. The scores were combined to
produce the unweighted and weighted prognostic indices CPI and
CPlyeightea- When CPI and CPlyeighea Were compared with
established clinical parameters through Cox regression analyses,
CPI consistently outperformed all other variables in terms of the
level of significance. The multivariate Cox analyses established
that CPI is a strong independent predictor of survival in breast
cancer. The results might point towards a role of specific aber-
ration motifs, proceeding from specific types of genomic
instability, as determinants of malignancy potential in a tumor.
The fact that CPI outperformed GII in the above analyses sup-
ports the idea that additional information is added through
multifaceted measurements of copy number aberrations.

The observation that CPI produced better prognostic predic-
tions than CPly.igntea mightstem from the somewhat strict vari-
able selection exerted by the Lasso regression model. The Lasso
model excludes arm-specific scores that individually do not
contribute strongly to the survival prediction. Aggregated, how-
ever, these arm-specific scores might confer additional prognostic
information. CPI, which is based on combining all arm scores in
an unweighted manner, is not subject to the same kind of
selection bias. The fact that this more inclusive approach per-
formed better in our analyses suggests that all parts of the genome
copy number aberration profile contribute to the real signal when
assessing survival. This supports the notion that our method
captures omnipresent background variation caused by underlying
DNA disruptions.

In the future it would be of high interest to apply the metho-
dology to different cancer types to compare aberration patterns
across tumors at different sites, for example using The Cancer
Genome Atlas Pan-Cancer data set?*. Translocation of genomic
material is not captured by any array-based DNA analysis, and
data from high-throughput sequencing would be required to fully
characterize genomic architecture. The complex patterns descri-
bed in this manuscript are likely to reflect specific mutational
processes that could be further elucidated in future studies,
linking CARMA with sequencing data. Finally, ASCAT has
recently been implemented for whole genome sequencing data2>,
and it would be interesting to apply our methodology directly to
the allele-specific copy number profiles extracted from such data.

Several extensions of the current analyses are possible. One
could for example in- crease the genomic resolution by parti-
tioning the genome into a fairly large number of equal-sized
regions (say 1000), and then assign separate scores to each of
these. At some point, however, the regions may become too small
to meaningfully assign scores, most notably for the indices
reflecting complex rearrangements (STP and CRV). Another
possible extension would be to consider regions harboring genes
involved in specific processes or pathways, thus directly linking
CARMA scores to biological function.

Methods

Deriving allele-specific copy number profiles. Affymetrix CEL files were pre-
processed using the PennCNYV libraries for Affymetrix data0 that includes quantile
normalization, signal extraction, and summarization. All samples were normalized

to a collection of around 5000 normal samples from the HapMap project?’, the
1000 genome project?$, and the Wellcome Trust Case Control Consortium?’. The
resulting LogR and BAF (B allele frequency) values were segmented with the
piecewise constant fitting algorithm3® and processed with the ASCAT algorithm
(version 2.3)3! after adjusting LogR for GC binding artifacts®2. ASCAT infers an
allele-specific copy number profile of a tumor after correction for tumor ploidy and
tumor cell fraction, and is based on allele-specific segmentation of normalized raw
data’® with penalty parameter (y) set to 50. The profile reflects the copy number
state at m genomic loci for which two alleles are present in the germline in the
general population, and can be represented as a sequence of pairs (na; ng;) (i=1,
..., m), where n,; and ng; denote the number of copies of each of two alleles (here
called A and B) being present in the tumor genome at the ith locus. Pairs are
ordered according to location, and since the labels A and B are arbitrary, we may
assume that n,; > ng;.

Calculating regional instability scores. We characterize the allele-specific copy
number in a small genomic neighborhood on a chromosome arm by six features:
degree of alteration in negative direction, degree of alteration in positive direction,
degree of change, degree of oscillation, extent of LOH, and extent of allelic
imbalance (see Fig. 1c). Sliding the genomic region along the chromosome arm
from one end to the other, we may regard each feature as a function of genomic
position. Specifically, suppose we have measured allele-specific copy numbers (r14;,
np;) at genomic loci L;, i = 1,..., m. We can represent this as a pair of piecewise
constant functions (f, fg) defined on the unit interval R = [0, 1]. The interpreta-
tion of this is that each position L; is mapped to a value ¢, in the unit interval R=
[0, 1], and such that L, <- - - < L, will be represented by points t, <- - - <t,, in R. We
thus have a one-to-one correspondence between ¢ < [0, 1] and genomic loci L(t),
and if Ly is the measurement locus closest to L(t), then f5(f) = nax and fg(t) = npy.
We assume that fg(t) < fs(f) for all t€R, ie., B is the minor allele when allelic
imbalance is present. The median centered total copy number in locus ¢ is f () =
fa(® + fa(t) — m, where m is the least number in Range(f) that satisfies p(f~1((—o,
m])) 2 1/2, where y is the Lebesgue measure. Informally, this means that m is
chosen as the observed copy number with the property that half the genome has a
total copy number less than or equal to m. We define the change in total copy
number as the derivative Df () of the first order spline interpolation to the center
points of segments in f; i.e. Df (f) is the slope of the line segment connecting the
pair of segment centers immediately to the left and right of position . Note that Df
is also a piecewise constant function. We define the oscillation in total copy
number as D?f (t) = D(Df (#)), which is also a piecewise constant function. This
process can in principle be repeated to define higher order properties of f such as
D3f (t) = D(D?f (t)); however, in practice further levels add little additional
information.

Regional instability scores are next defined by integrating the above local scores
over the desired region (e.g., over a chromosome arm). To assess the degree of
positive or negative deviation within a region, we define two scores:

j= [ dand s, = [ (70 Y,

where z, =z if z>0 and z, =0 otherwise, and z_ =z if z<0 and z_ =0
otherwise. For example, in a region with total copy number equal to the median, we
have J; = J, =0, while in a region with some gains and no losses relative to the
median, we have J; > 0 and J, = 0. The regional degree of change and oscillation in
copy number are captured by the following two scores:

I, = / (Df(6)Ydt and J, / (D2f(1) V.

R R

In a region with constant total copy number, we have J3 =J, = 0. In a region with
gradually increasing (or decreasing) copy number, J; >0 while J; is close to zero,
and in a region with fluctuations between smaller and larger copy numbers we have
J5>0 and J,>0. LOH and allelic asymmetry are captured by the last two scores:

= [ e andf, = [ (a0 - fy0) e

where 1y(z) =1 if z=0 and 14(z) =0 otherwise. In a region with only one allele
present we have J5 > 0 and the magnitude of the score reflects the proportion of the
region with LOH. In a region with allelic imbalance, we have Js > 0. Further
computational details can be found in Supplementary Materials.

Calculating CARMA scores in sex chromosomes. The top level function in the
accompanying software does not currently support calculation of CARMA scores
for the Y chromosome. It is still possible to obtain such scores by use of the
included low level function for calculating scores on a single chromosome. Cal-
culation of CARMA scores for the X chromosome is supported, but it requires
information about the gender for correct calculation of AMP and DEL.

Statistics and reproducibility. Three-dimensional scatter plots: Subtype centroids
were calculated by averaging over all the three-dimensional vectors representing
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samples from a particular PAM50 subtype. Trend curves are principal curves®3 and
were calculated with the R package princurve using default parameter values.

Survival analysis: To assess the association between survival (DSS or PFS) and
CPI risk groups, a longrank test was applied, and survival estimates were found
using the Kaplan-Meier estimator. The functions survdiff and survfit in the
R package survival were used for this purpose. All other associations between
survival and covariates were assessed using univariate or multivariate Cox
regression, as appropriate. A score test was applied to test the significance of
individual covariates in the Cox models. Models were fitted by maximization of the
Cox partial likelihood, with the exception of the model containing all the 252 arm-
wise CARMA scores as covariates. In the latter case a Cox partial likelihood with an
L, (lasso) penalty* was applied. The lasso is a regularization method that shrinks
regression coefficients towards zero by enforcing an upper bound on the L;-norm
of the coefficients (i.e. Zle |3;/ < ) in the maximization of the partial log
likelihood.

The amount of shrinkage is determined by a tuning parameter A. Leave-one-out
cross-validation was used to determine the value of A. Cox regression with a Lasso
penalty was performed using the functions cv.glmnet and glmnet in the R
package glmnet3>36, All other Cox regressions were performed using the
function coxph in the R package survival.

Assessment of risk-score model: The goodness of fit of the continuous CPI risk
score was determined using Harrell’s C score. For every pair of observations it is
determined if the pair is concordant (lowest risk pairs with longest survival),
discordant (lowest risk pairs with shortest survival) or cannot be determined due to
censoring. Harrell’s C score is then the ratio between the number of concordant
pairs and the number of concordant/discordant pairs.

) The weighted prognostic index (CPLeigntea) Was calculated as CPLyeighted = x!
B, where x; represents the CARMA arm scores for patient i in the validation data
set and " are the estimated coefficients in the survival prediction models found for
the discovery set.

Materials. The data material in this study was obtained from four patient cohorts:
METABRIC (n = 1943), Oslo2 (n = 276), OsloVal (n = 165), and ICGC (n = 553).
Only female patients were included. The distribution of clinical parameters within
each of the data sets can be found in Supplementary Tables 4-5. The METABRIC
cohort was randomly split into a 2:1 ratio into a discovery set (n = 1295) and a test
set (n = 648) for the purpose of model validation. For detailed information
regarding which samples belong to the train and test cohort, please contact the
authors. For more details about the four cohorts, see Supplementary Material and
Methods. Survival data were not available for the Oslo2 cohort.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

Genomic copy number and gene expression information as well as clinical data for the
OsloVal cohort have been described previously’” and are available at the Synapse
platform, https://doi.org/10.7303/syn1688370. Gene expression information for the
Oslo2 cohort has been described previously®®3 and is available at Gene Expression
Omnibus, DOI: GSE81002. The SNP 6.0 copy number data from the Oslo2 cohort are
available upon request. Molecular-subtype information and segmented copy number
profiles for the OsloVal and Oslo2 cohort are available from the corresponding author on
reasonable request. Genomic copy number, gene expression and molecular-subtype
information for the METABRIC cohort have been described previously! and are available
at the European Genome Phenome Archive, DOI: EGAS00000000083, while clinical data
are available from!®. Gene expression data, segmented copy number profiles and clinical
information for the ICGC breast cancer cohort have been described previously*? and are
available from the Supplementary Tables in that publication. Raw data are available at the
European Genome Phenome Archive under the overarching accession number
EGAS00001001178.

Code availability

Software with detailed instructions and test data is available as an R package at the web
site http://heim.ifi.uio.no/bioinf/Projects/. The software is open source and may be used
according to the MIT license.
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