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Abstract. In this paper, the statistics of excitation-tangles in a postulated background
ideal-superfluid field ψM is studied. The structure of the Standard Model is derived in terms
of tangle vortex-knots and soliton. Gravity is observed in terms of torsion and curvature in the
continuum. In this way, non-linear dynamics and excitations give rise to a unified field theory as
well as a Theory of Everything. As a result of this unification, spacetime and matter are shown to
be fundamentally equivalent, while gauge fields arise from reorientation and excitations of the the
fundamental underlying field ψM .
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Discovering a Theory of Everything has been the
holy grail of Physics ever since the systematic study
of physical phenomena began [1–5]. Since the times of
Copernicus and Leucippus of Miletus to the contempo-
rary age, there have been attempts at tying together the
disparate phenomena within a framework of consistent
rules [6]. Sir Isaac Newton unified observable effects
of gravity on Earth with the behaviour of celestial
bodies in space [7]. James Clerk Maxwell unified
electricity, magnetism and light under the umbrella of
electromagnetism [8]. Albert Einstein unified space-time
and mass-energy [9, 10]. Quantum field theory unified
special relativity with classical field theory and quantum
mechanics [11, 12], and electroweak unification was
developed by Abdus Salam, Sheldon Glashow and
Steven Weinberg [13–15]. The strong interaction was
described by the theoretical tools founded in the theory
of quantum chromodynamics [16, 17], and soon after, the
Standard Model was born [18, 19]. What remains now
is the unification of gravity with the quantum mechanics
in a theory of quantum gravity [20]. There have been
a number of candidate theories, from string theory
[21–25] and loop quantum gravity [26–28] to causal sets
[29] and noncommutative geometry [30]. Superfluid
vacuum theory has been a candidate theory for the
Theory of Everything, and posits that the fundamental
physical vacuum is a superfluid, which accounts for
all the forces of nature as excitations in the superfluid
field [31–33]. This latest theory of the ’lumineferous
aether’ is lacking in not accounting for the multiplicity
of hadrons, which it says could be accounted for us-
ing additional degrees of freedom for the underlying field.

The principle of aether has been deliberated on
since the times of Plato’s Timaeus and Aristotle [34]. Be
it Ramon Llull’s theory of Quintessence, Newton’s use
of the concept of aether to help match observations to
mechanical rules of his conception of physics or Robert
Fludd’s ’subtler than light’ aether, the concept fasci-
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FIG. 1. Some vortex line knots in eigenfunctions, plotted
alongside simpler projections of the same knot [54]

nated scientists well into the eighteenth and nineteenth
century [35–37]. Johann Bernoulli gave the idea that
space was permeated by aether, which had ’excessively
small whirlpools’ in them, and later this influenced Huy-
gen’s wave theory of light [38, 39]. Aether, as conceived
as a medium that is important for the transmission
of forces, was summarily debunked by the famous
Michelson-Morley experiment [40]. Though ’ether fields’
may have been removed from the purview of science in
the first half of the twentieth century itself, fields, in
general, remained at the forefront of Physics thereafter,
beginning with Louis de Broglie’s wave description
of elementary systems, the Born-Heisenberg-Jordan
Free Field Theory and Dirac’s quantum field theory of
radiations [12, 41, 42]. Quantum Field Theory posits the
emergence of localized processes in terms of excitations
of quantum fields, and involves nonclassical, non-local
correlations that lead to varying levels of complexity
[43–53].

Complexity in various physical systems is often seen in
subtle spatio-temporal structures and disorder [55–58].
For instance, at high energies, principles of quantum
ergodicity set in for complex modes of three-dimensional
domains [59]. Understanding the spatial structure of
wavefunctions, especially for chaotic wave dynamics, has
been a challenge [60]. If we follow the hydrodynamic
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interpretation of the quantum mechanics of a single-
particle, the zeros of complex-valued three-dimensional
scalar fields are lines, in general, which are basically vor-
tex filaments around which the probability current, local
velocity and phase [61–64]. The amplitude is zero at the
vortex core and the phase change around a vortex-line is
quantised (in units of 2π). This kind of vortex topology
is also seen in many-particle quantum condensates such
as Bose-Einstein Condensates [65]. The arrangement
of vortex lines in such physical systems provides a
structural skeleton to the wavefunctions [62, 63, 66]. At
high-energy modes, this arrangement is highly irregular
and densely intertwined, often with knotting of vortex
filaments. Taylor et al recently studied knotted nodal
vortex lines in model systems of wave chaos, presenting
interesting characteristics of vortex knots in tangled
quantum eigenfunctions [54]. Even with the ubiquity of
vortex filaments and tangles, in systems as disparate as
cosmic string [67], quantum turbulence [68] and optical
vortices [69], the systematic study of knotted structures
and vortex arrangements in fields has only recently been
started: theoretical studies of vortex lines in complex
scalar fields, such as in superfluid flows [70], and optical
vector vortex beams [71], and experimental studies
with topological defects and vortices being knotted
and successfully embedded in various three-dimensional
fields, such as those in chiral nematic colloids [72] and
liquid crystals [73], and isolated trefoil vortex knots
and pairs of linked vortex rings in water [74]. Even
as rigorous mathematical methods and tools to study
the statistical topology of random fields are limited,
there has been progress recently in exploration of these
structures using computing techniques and simulations
[54].

The multiplicity of tangled vortex knots provide
the perfect theoretical basis for developing the principles
of the Superfluid Vacuum Theory to present a true The-
ory of Everything, from first principles, which relies only
on the non-linear dynamics of an underlying universal
superfluid field ψM . The reason for this can be obtained
by considering why the concept of the luminiferous
aether as defined in classical Physics faced a number
conceptual hurdles and contradictions. The primary one
related to the idea that the aether had a well-defined
velocity at each point in space, which contradicts the
idea that all directions inside a light-cone are equivalent
[75]. Dirac circumvented this by suggesting that the
aether was quantum mechanical in nature, and had
quantum fluctuations [76]. Applying the uncertainty
principle makes us able to define the velocity of the
aether at a point only upto a limited certainty. We
can only define a wavefunction representing the perfect
vacuum state for the aether flow, where all velocities
are equiprobable. The objections to the possibility
of a drag force, as posited by those contradicting the
classical conception of aether, can be worked around by
considered this medium to be a superfluid.

In the formulation of the Superfluid Vacuum The-
ory, the system is taken to comprise of a sea of fermions
and anti-fermions, with the system’s hamiltonian taken
to be

H =
∑

εka
†
k,σ−

ak,σ− +
∑

εkb
†
k,σ+

bk,σ+

−
∑

V (k, k′)a†k′,σ−b
†
q−k′,σ+

bq−k,σ+ak,σ− (1)

where (a†k,σ− , ak,σ−) and (b†k,σ+
, bk,σ+

) represent fermion

and anti-fermion (creation, destruction) operators for
momentum k and spin σ− (for fermion) and σ+ (for

anti-fermion), and single particle energy ε
(a)
k = ε

(b)
k = εk.

The interaction potential is given by V (k, k′) for
plane-wave states with momentum k and k′, and this
can be decomposed into various components Vm with
m = 0, 1, 2, ... and spin-pairs in the quintet, singlet and
triplet states. This involves generalised correlations -
including two-particle and four-particle correlations.
The general superfluid state state is taken as a super-
position of two-particle singlet, two-particle triplet and
four-particle quintet states.

The conception of the vacuum state in terms of
fermion and anti-fermion states within the Superfluid
Vacuum Theory seems to be ad-hoc and imposed.
A more first-principles approach would involve the
formulation of the elementary particles and forces in
terms of topological defects and perturbations in the
background fluid-field ψM . This is the primary invention
in the formalism presented in this paper, and this
begins with the idea of quantisation of the superfluid
from first-principles. Fluid behavior arises in systems
with microscopic constituents that are quite different
from other systems that are described by field theoretic
descriptions, and therefore we expect the theory to take
the form of an effective field theory. We encounter fluid
vortices that have arbitrarily low energy classically, irre-
spective of their spatial extent, in such systems. Landau
was one of the first to tackle this problem, saying that
vortex modes should be gapped in the quantum theory,
and eventually ending up formulating the theory of
superfluids [77]! While Endlich et al conjectured that
it is not possible to quantize fluids [78], Gripaios et al
showed that such a theory is indeed possible with the
quantum fluid having a good IR and UV behavior using
direct loop computations [79].

In superfluids such as helium 4He, the classical
theory of thin-core vortex filaments is valid due to
the the large separation of scales between the typical
distances between vortices and the vortex core radius
a0. In experiments involving turbulence and in systems
such as the atomic Bose-Einstein condensates, these
two length scales are comparable. In this scenario, the
Gross-Pitaevskii equation (GPE) presents a realistic and
appropriate model for studying these systems[80]. If the
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FIG. 2. The density field around a 2D axisymmetric vortex,
with the radial distances being in units of the healing length

wavefunction of the background superfluid field is ψM ,
we have

2iδtψM +∇2ψM − |ψM |2ψM = 0 (2)

where there is no external confining potential. The char-
acteristic length scale of perturbations of the background
superfluid field, known as the Healing Length, is ξ = 1√

〈ρ〉

where 〈ρ〉 = 1
V

∫
V
|ψM |2dV is the mean density of the

superfluid. The GPE conserves energy, the total num-
ber of particles and thereby the quantity ξ. We will be
studying a system where the density field at infinity is
equal to unity and perturbations are localised in a cer-
tain region of the superfluid, without loss of generality.
In this system, a vortex is constructed by considering a
two-dimensional S-Z plane, where S is an axis in the X-Y
plane inclined to the X-axis at at angle of φ. A stable vor-
tex in this superfluid is a hole in the density field around
which the wave function has phase changes by ±2π. An
accurate description of a 2D vortex centered on the origin
of the S-Z plane is given by the wave function

ψV (s, z) =
√
ρ(R)e−iθ(s,z) (3)

where R =
√
s2 + z2, ρ(R) = R2(a1+a2R

2)
1+b1R2+b2R4 and

θ(s, z) = tan−1( zs ). The coefficients a1 = 0.344, a2 =
0.029, b1 = 0.333, b2 = 0.029 arise from a second-order
Padé approximation [81]. We define a vortex-knot as a
closed curve Tl,k over a torus, with the toroidal radius
R0 and the poloidal radius R1, which is determined by
counting the number of toroidal wraps l and the number
of poloidal wraps k. We can evaluate the wavefunctions
of these vortex-knots and feed them into the Gross-
Pitaevskii Equation to study the knot-dynamics.

While this is useful to look at a finite number of
topological defects, for a general effective field theory
description, we must look at fluid parametrisation, in
terms of a time-dependent map ψi(xj , t) from some space
manifold M into itself. We will assume this manifold to

be R2, and that by changing this map at short distances,
we can make the map (and its inverse) smooth so that
ψ is a diffeomorphism and the configuration space of
this fluid is the diffeomorphism group Diff(M). We
will also assume that interpenetration and cavitation of
the fluid has an energy-cost and can be ignored in the
field-theoretic description so that the map is bijective.
Unlike for Lie Groups for which an exponential maps
takes one from tangent space to the Lie group, since
the configuration space of ψ is infinite-dimensional and
not a Lie Group in the usual sense, the exponential
map is seen to be inadequate for its description [79].
We therefore use the parametrisation ψ = x + v,
where x is the identity map on M and v denotes the
transverse ’vortex’ mode. The action for the fluid,
which is taken to be perfect for a consistent quantum
description that requires non-dissipative conditions, can
be derived by requiring that the theory be invariant
under Poincare transformations of x and area-preserving
diffeomorphisms of ψ [78], and has been known for
quite some time [82]. In (2+1)D, the lagrangian is

L = α0f(
√
det(δµψiδµψj)), with α setting the overall

phase and f ′(1) = 1. This satisfies the conservation of
the energy-momentum tensor Tµν = (ρ+ p)uµuν + pηνµ
for ρ = −α0f , p = −α0(

√
det(δµψiδµψj)f

′ − f) and

uµ = 1

2
√
det(δµψiδµψj)

εµαβεijδαψ
iδβψ

j .

Considering ψi = xi + vi, we have the Lagrangian
[79, 83]

L =
1

2
(v̇2 − c2[δv]2)− (3c2 + f3)

6
[δv]3 +

c2

2
[δv][δv2]

+
(c2 + 1)

2
[δv]v̇2 − v̇.δv.v̇ − (f4 + 3c2 + 6f3)

24
[δv]4

+
(c2 + f3)

4
[δv]2[δv2]− c2

8
[δv2]2 +

(1− c2)

8
v̇4

− c2[δv].v̇.δv.v̇ − (1− 3c2 − f3)

4
[δv]2v̇2

+
1− c2

4
[δv2]v̇2 +

1

2
v̇.δv.δvT .v̇ + ... (4)

where fn = δnf

δ
√
det(δµψiδµψj)

n |det(δµψiδµψj)=1, c =
√
f2 is

the speed of sound and [δv] is the trace of the matrix δivj .

While this is informative of the dynamics of the
vortices, this is not endowed with the physical resources
to be able to describe all the forces of nature. A way to
get around this is to involve higher dimensional defects
and interaction-knots. Recently it was found that one
could use entanglement between vortex-membranes to
study the Standard Model [84, 85], in which knot dynam-
ics on 3D vortex-membranes in 5D superfluid systems
were studied, with a new theory called Knot Physics
being derived from there to characterise the evolution of
entanglement of the 3D leapfrogging vortex-membranes.
We can derive the unified theory of the Standard Knot
by considering the low energy effective theory for the
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composite knot with (N = 4, M = 3), where N denotes
the number of vortex-membranes and M denotes the
number of levels [86]. This is, however, only valid for
one-generation of particles: the up quark, the down
quark, electron and neutrino. Given the restrictions of
the construction, we cannot change the half-winding
numbers to create different generations of particles.

Instead of taking the system to be a 5D system
with interaction-knots, if we take a 3+1D space with
the particles being made of vortical solitons that move
around each other, we have an interesting system of
study. Instead of the two-knot systems in the vortex-
membrane model, here coupling of more than two
vortical solitons can be allowed, whose dynamics can
be solved using nonlinear dispersive partial differen-
tial equations. Mandelstam showed that finite-length
vortices in an SU(n) Nielsen-Olesen model need the
explicit introduction of monopoles, which are confined
in multiples of n by the Meissner effect, and thereby
the model could offer a natural explanation of quark
confinement [87]. A key element that I introduce is
that of self-similarity: vortices within vortices. The
hierarchical nature of vortex tubes in turbulence has
been studied previously [88]. Leykam et al studied the
existence, dynamics and stability of multivortex discrete
solitons [89]. The important topological quantity in this
framework is the vortex topological charge (TC), which
is the phase change in units of 2π accumulated around
the vortex core. In the past there have been attempts at
looking at specific gauge fields and their connection to
superfluid systems, such as that between Quantum Chro-
modynamics and Superfluid Helium-II (particularly with
an emphasis on the topological susceptibility in the for-
mer and winding number susceptibility in the latter) [90].

The circulation of the vortex tangle into knots produces
the various particles. For instance, the Trefoil knot
could produce a proton with the branches of the knot
symbolising the quarks. In the simple vortex soliton
model, if the charge is the net topological circulation
number, the mass being the speed of circulation (which
also relates to the flavor in this formalism) and the
relative orientation of solitons in 3D space (also seen
from the idea of coloured knots [91]) giving an idea of the
colour-charge, we can build the various particles accord-
ingly. In the tangled vortex model, we have tangle knots
that require energy for the tangle-knots to be formed.
The physical attributes of the particles can be naturally
determined using a model that associates structure and
form to the atomic constituents, and explores their
interactions, mostly by their combinations. A reaction
or a physical process, in this picture, is a stage of
combination (fusion) or separation (fission) of composite
tangle-knots. Two of the most interesting results of this
model are: absence of the SU(3) gauge theory associated
with quantum chromodynamics and the absence of the
Higgs Boson. The reason for the former is the absence

FIG. 3. Trefoil knot, shown winding around a torus, and
by-itself

of quarks beyond just as tangle-elements, along with
the absence of gluons to account for confinement,
which is a natural result of the knot structure of the
quark-composites. Mass, on the other hand, emerges in
terms of solitonic distortions of spacetime. The idea of
considering structures with half-twists as fundamental
elements of this theory, be it within an unknot or a
trefoil knot, comes from the idea that if one considers
that the twist in a Mobius strip can be thought of as a
half-twist between strands, if the perimeter of the strip
is regarded as constituting the strand(s). A fermion can
be represented geometrically by a Mobius strip since the
quantum mechanical wavefunction of a spin 1

2 particle is
represented by a spinor that requires two full rotations
to come back to its original state, and this gives a further
motivation to pursue a half-twist as the fundamental
element in our formulation. The half-strand, in this
model, emerges in the form of crossings in a generalised
Mobius form, which can be wound on a torus, as shown
in Figure 1. From the perspective of topology and
algebraic geometry, a torus is homeomorphic to the
Cartesian product of two circles: S1 × S1. As a group
the circle has the U(1)/SO(2) topological structure,
and therefore, locally, the toroidal topology has a U(1)
substructure. At the same time, a torus in SU(2) yields
a torus in SO(3) [92]. The U(1) and SU(2) Lie groups
will form the geometric basis for the formulation of the
Vortex-knot unification theory.

Formally, we can define the vortex-knot as a closed,
non-self intersecting curve embedded in a torus that
cuts a meridian at p > 1 points and a longitude at
q > 1 points (p and q relatively prime integers), is a
non-trivial knot Tp,q, with winding number w = q/p. If
we only focus at a crossing point, as shown in Figure
4, we can define the charge as ’Up’ if moving under
from right to left and ’Down’ if moving under from left
to right. For a three-particle system, we can have the
following combinations with their associated number of
half-twists (nHT ), with nHT of ’u’ being +1 and nHT
of ’d’ being ’-1’: ’uuu’ (nHT = +3), ’uud’ (nHT = +1),
’udd’ (nHT = -1) and ’ddd’ (nHT = -3). For empirically
found fermions, we know that a Proton (with ’uud’) has
charge +1 and a Neutron (with ’udd’) has no charge.
Therefore, charge of ’u’ is + 2

3 and the charge of ’d’ is

− 1
3 . We have an interesting formula between the charge

of the constituent particles (q), average charge of the
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FIG. 4. Charge based on crossing orientation (a) Down - d,
(b) Up - u

FIG. 5. Illustration of circulation of (a) Antiparticle with (+)
parity, (b) Particle with (-) parity

composite particles (Q) and the nHT :

q =
nHT

2
+Q (5)

This is similar to the well-known formula: q = I3 + Y
2 ,

where I3 is the third component of the isospin and Y is
the hypercharge. We can thus make the assignment:

I3 =
nHT

2
, Q =

Y

2
(6)

An important point of discussion here is the manner of
defining the anti-particles within this formalism. This
is straightforward, due to the fluidic nature of the con-
stituent strands. The net direction of traversing in the
knot, when reversed, gives us the antiparticle. We can
define parity here as the orientation of the direction of
traversing: clockwise is (-) and counterclockwise is (+).

The trefoil knots can combine in various combinations by
fusing at one of the half-twist points, if and only if the
direction of traversal and the half-twist are compatible,
as best defined by Hopf Algebra. We can use a tensor-
formalism, with composite fermion tangle-knots repre-
sented as a covariant tensor with three indices (Mabc) and
the corresponding composite antifermion tangle-knot as
contravariant tensor with three indices (Ndef ). These

indices can be ’u’, ’d’ or even ’s’, if the formalism is ex-
tended to incorporate strangeness. Implementing fusion
is then expressed by equating a subscript of M and a
superscript of N using the Kronecker delta function,

δmn MabcN
def = K

def/n
abc/m (7)

where K denotes the composite resultant particle. The
notation abc/m indicates the subscripts not selected by
the choice of m and the notation def/n indicates the
superscripts not selected by the choice of n. To help
define the nature of the fusion, we define a state function
for the connections in the tangential and normal direction
to the flux-tangle, at the point of fusion. Let the normal-
connection be 〈ηα〉 and the tangential-connection be 〈τα〉,
where the value of α is ’u’, ’d’ or ’s’. We will define a†

and a as the creation and destruction operators for a
connection. We can then write a general fusion as

〈εfα〉 = a〈τα〉+ a†〈ηα〉 (8)

and a general fission as

〈εfiα 〉 = a〈ηα〉+ a†〈τα〉 (9)

We define the value of a u−u coupling as x, d−d coupling
as y and s− s coupling as z. Generally, 〈εfα〉 = (pα) with
pu = x, pd = y and ps = z. If we integrate this into (7),
we have

δmn 〈ε
f
ν(m)〉MabcN

def = Mabc/mN
def/n(pν(m) (10)

This gives us the mathematical tools to look at how
particles can fuse. An important aspect of elementary
particles is spin, and this too can be assigned using the
number of half-twists here: vortex-knots with odd values
of nHT that represent fermions are characterized by odd
multiples of spin 1/2 while those with even values of
nHT that represent bosons are characterized by even
multiples of spin 1/2.

To look at mesons, the idea presented by Fermi et
al [93] describing a meson as a combination of a nucleon
and an anti-nucleon is explored. If we denote the
combinations ’ddd’ as ’A’, ’udd’ as ’B’, ’uud’ as ’C’
and ’uuu’ as ’D’, we can write the mesons and baryons
as combinations of these and their conjugates: ∆− is
BC*B, ∆0 is BC*C, ∆+ is CB*B, ∆++ is CB*C, π− is
CB*, π− is BC* and π0 being either BB* or CC*. The
way we ascertain the structure of these mesons is using
empirically found reactions, such as

n+ π− → ∆− (11)

n+ π0 → ∆0 (12)

n+ π+ → ∆+ (13)

p+ π− → ∆0 (14)
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p+ π0 → ∆+ (15)

p+ π+ → ∆++ (16)

Since, neutron n has form B and proton p form C,
and given the charge of the pions, we can say that
the pions will be of a form constituted by a pairing
between any two of B, B*, C and C*. We can check
for the charges and each combination to determine
the exact form. We can similarly work out the form
of other baryons. However, to extend it to the three
generations of quarks and other baryons, we have to
look at the fundamental difference between generations.
This is primarily with regards to mass and flavour. To
differentiate between them therefore, we need to look at
how mass arises in this formalism. As shown by Avrin
[94], if we study the behavior of a torus vortex-knot
under the influence of General Relativity, we will see
that it obeys the Sine- Gordon equation

d2θ

ds2
+ η2sinθ = 0 (17)

where η =
√

R+rcosθ
µr((R+rcosθ)2+µ2r2) ≈

1√
µRr

, with r being

the inner radius of the torus, R being the outer radius
of the torus and µ = n

m for an (m,n) torus knot. This
can be put into a dynamic F = ma form, with the mass

being m = c2

4πG

√
µRr. Thus the mass varies due to

the winding number, the inner and the outer radii of
the torus-knot. If we consider the same unknot/trefoil
configuration (thereby not altering the winding number),
using the variation in the radii of the knot, we can obtain
particles of different masses. In this manner, we can
form the half-twist that embodies the strange-quark, and
thereby all composite-particles comprising the strange-
quark. This completes the baryon and meson sectors

of the Standard Model. With regards to bosons, they
are envisioned as composite particles as well, with their
characteristic masses. We know that a photon is formed
with the annihilation of a particle with its antiparticle,
and therefore a photon has the form AA*, BB*, CC* or
DD*. However, since we do not see an annihilation by
neutrons or delta baryons into photons empirically, we
only consider AA*, with both radii R and r tending to
0, for vanishing photon mass. The gauge bosons for the
weak interaction are W+ = BA*, W−= B*A and Z0 =
AA* and BB*, with masses 80.379 ± 0.012GeV/c2 (for
the W bosons) and 91.1876 ± 0.0021GeV/c2 (for the Z
boson) respectively.

Conclusion. Using the formulated vortex-knot model of
unification, we can characterizes the various particles in
the Standard Model in terms of vortical-knot solitons in
spacetime-superfluid. The inherent ambiguity in that a
given label (corresponding to a trefoil or unknot) may
represent multiple fundamental particles of the Standard
Model depending on the interaction that we are mod-
eling is resolved using the variation in mass due to the
radii of vortex-flow around the torus-knot. In this way,
using a combinatorial framework, toroidal topology and
first-principles-based properties matched with empirical
data, we have a complete unified theory of Physics,
which is based on an underlying spacetime-superfluid
with excitations in the form of vortex tangles and knots
that embody curvature and torsion in an otherwise
featureless continuum. In terms of predictions, the
occurrence of other combinations of the basic half-twists
in this model can be tested.
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