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Abstract—In order to transmit communication signals of
different properties, quickly, effectively, and accurately, various
different modulation styles can be adopted. Accurate recognition
of signal modulation is required at the receive side. Automatic
modulation recognition (AMR) is a key technique to identify
various styles of modulation of signals received in wireless
channels. It can be used in many kinds of communication systems,
including single antenna system and multiple antenna system. In
this paper, we propose a convolutional neural networks (CNN)
aided AMR method for multiple antenna system. Compared with
the high order cumulants (HOC) and artificial neural networks
(ANN) aided traditional AMR classification method, both with
two specific combination strategies, such as relative majority
voting method and arithmetic mean method, the proposed
AMR with arithmetic mean method has the best classification
performance. The experimental results obtained verify that the
CNN, one of the representative algorithms of deep learning, has
a strong ability to exploit dominant features and classify the
modulation styles.

Index Terms—Convolutional neural network, signal recog-
nition, multiple antenna system, deep learning, cooperative
decision.

I. INTRODUCTION

Automatic modulation recognition (AMR) refers-te—recog-

. . : . o
ensure that the signal can be demodulated correctly and-the
5 is the

information—sent-ean—be—accurately—recovereds—whieh i
basis of various applications—espeem
(CR) spectrum sens1ng, ete [1] [6] i

aﬁd-eﬁq-l—ﬁe}d-s-[q-]- AMR med—te—be—ve;sa-t—ﬁe—rnek&d-m-g-bemg
a-ble to recogmze as many modulat10n s-t-yles as possibles-being

with knowledge of the channel or
target communication system;—and—being—able—teo-be—used—in

multiple—styles—of—communication—systems, including single
[8] and multiple antenna [9]-[13].

Until now, many AMR method have been proposed.
High-precision decision theory (DT) and easy-to-implement

pattern recognition (PR) are the two basic st-yles—e-f—theseA
methods [10]. Although DT-based method ea-n—ha#e—h-lgh,\

aeeufa.ejk i

{-l-4ﬂ—bu-t—a-lrse,\has higher computational complexity. More PR-
based methods are adopted—ne—need—f-e#sueh—eempheated

+n-fe§ma-t-1-en—gene1=a-l-ly consisting of signal preprocessing, fea-

ture exploitation and cla551ﬁcat10n recognition. Among these
sub-systems, artificial feature extraction covers circulatory
stationary analysis [15], high-order statistics (HOS);-ete;-and
i-nel-udes'\k-nearest neighbor (KNN), support vector machines
(SVM) and traditional artificial neural networks (ANN) [9]-
[13]. In-the-backpround-of-thendditivewhite-Gaussionneise
GAWG-Né- HOS is a popular option in single antenna and
multiple antenna systems because of its powerful ability e£

suppress 1nterference [10]. AMR—Eesea-peh—fe{—smg-le—a-men-n-a

The appllcatlons of deep learning (DL) in wireless com-
munications [16]-[20], such as
beamforming [21], non-orthogonal multiple access (NOMA)
[22], network traffic prediction [23]-[27], internet of things
[28]-[31], and AMC [32]-[35]. The DL-based AMR methods
are mainly designed for single antenna system, bﬂ-t—l-s not
suitable for multiple antenna system because the—feeewef
receives—mixed—signals from all transmitting antennas. Few
studies have been conducted en—t-he—i-ntfedue&en—ef\DL, not
only restrieg to convolutional neural network (CNN) [33] and
long short-term memory (LSTM) [36], into AMR in multiple
systems, In—this—thesis;—we propose a convolutional neural
networks (CNN) aided Af\\/IR method for multiple antenna
system, where CNN is trained according to the signals received
by all antennas. Following this the given decision maker
collaboratively determines the modulation style according to
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the identification results of each antenna obtained by CNN.
Here, two kinds of combination strategies; the relative majority
voting method and t-he arithmetic mean method, are adopted.
Gem-paﬂsen—sesu-l-t’\ s-hews—t-h-&t—ehehel-a&s-rﬁe&t-leﬂ—peﬁfefm&nee

is—better—than—that—ef the HOC

and ANN aided AMR met-hed—m—H—Z—],—[%?-}( Moreover, the

arithmetic mean method is always better than the relative
majority voting method in the two proposed combination
strategy.

II. SYSTEM MODEL AND DATASET GENERATION

A. System Model

The multiple antenna system, which utilizes the air separa-
tion transmitting and receiving antenna arrays, has become
the key technology of many innovative communications in
recent years. Multiple antenna systems transmit multiple signal
streams through different signal paths in space, known as
space division multiplexing (SDM), and provide the possibility
to improve link reliability. Since there are multiple paths
between the transmitting antenna array and the receiving
antenna array, each receiver receives a mixed signal symbol
from all transmitters, so it is no longer applicable in a single
antenna system.

The multiple antenna system consists of N, transmit
antennas and NN, receive antennas. Consider a time-invariant
Rayleigh fading channel whose channel matrix H is given
by N, X N; complex matrix. In the case of complete
synchronization, in the total observed N samples, the sample
vector 7, = [ri(1),7%(2), - ,7:(N)]T, k € [1,N] of the
k-th received signal can be given by

r, = Hsy, + wy, (D
where s, = [sk(1),56(2), - ,sx(N)]T, & € [1,N]
is the k-th transmitted signal symbol vector. w; =

[wi (1), wg(2), -+ ,we(N)]T, k € [1,N] is the observed
additive noise from the k-th signal sample. It is assumed
that the transmitted symbol vectors are independent and
identically distributed, and each modulation symbol has the
same probability, and furthermore, the additive noise is AWGN
with zero mean and one variance, i.e. wy € N(0, Iy, xn,)-
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Fig. 1. Data set formation process for multiple antenna system.

B. Dataset Generation

Fig. 1 shows the specific data set formation process, where
s is a data sequence with dimension is 1 x N formed by
modulation of randomly generated data. The normalization is
to speed up convergence and make the signals of different
modulation styles have better differentiation. After reshaping,
8 = [51(4),52(), -+ ,3n/n, (0)]F, i € [1,Ny], represents
N/N, signals of the i-th transmitting antenna. Accordingly,
= [()ra(i) G 5 € (LN represents
N/N; complex-value baseband signal at the j-th receiving
antenna after passing through wireless channel. The real part
and imaginary part of r/ will be set as a set of training sample
of the j-th antenna.

III. THE PROPOSED AMC METHOD

The classification decision is to find the candidate
modulation style that provides the maximum likelihood value,
which can be calculated by

mi =arg max P(my,|r?), j € [l,N,], 2)
g gmax Plmalr?), j €[l N
where PJ {P(m|r) Y™ s the received antenna N,

probability distribution function (PDF).//, and m,, represents
the predicted modulation type and the real modulation type,
respectively. Here, the modulation signal types are set as M =
{BPSK,QPSK,8PSK,16QAM?} [32], and the number of
its internal modulation styles is expressed in |M].

Fig. 2 shows the structure of proposed AMC method,
containing a designed CNN and a specific decision maker.
The testing process can be divided into two stages. First, the
signals 7/ received by each antenna are input into the trained
CNN to extract the effective features and give the predicted
PDFs {PJ} 1. It is important to note that the CNN here
is the central training, which means to train CNN together
according to the received signals of all the receiving antennas,
rather than to train their own CNN separately with the received
signals of each antenna. Then, the specific decision maker will
decide whether to receive the PDFs or the sub-results of each
receiving antenna according to the selected decision rule, and

jointly give the final prediction style.

Decision
maker

Modulation
style

Janaday

Fig. 2. Architecture of proposed AMR method.
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Fig. 3. The framework of CNN.
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A. CNN Structure

As shown in Fig. 3, the CNN has five layers with two
convolutional (i.e. convlD) layers and three full connected
(i.e. Dense) layers. Batch normalization (BN) allows for faster
convergence and shorter overall training time. To prevent
overtraining the network from leading to overfitting, we set
dropout = 0.5. Based on our training dataset and CNN, the
final optimization function, i.e. structural risk minimization
(SRM), can be described as

L(fonn,0; {si, Li}o,) =

18 3)
min l—S Zlog(fCNN(G; si)) + A (fenn, 9)]

i=1

where {s;,l;}5_, represents the combination of training
dataset containing S training samples and their corre-
sponding one-hot coded-labels; foyny and 6 are the
mapping function and parameters of the CNN, respectively.

n|—1/8 Zle l; 1og(fCNN(9;si))} represents empirical
risk minimization (ERM) for the classification problem.
J(fenn,0) is a function of the complexity of the model, and
A > 0 is a coefficient used to weigh empirical risk and the
complexity of model. Adaptive moment estimation (ADAM)
is selected as the optimizer [10].

B. Combination Strategy

The specific decision maker jointly determines the modu-
lation style according to the PDFs of the receiving antenna
N,.. The PDF here is the product of the signal samples to
be tested obtained by designed CNN. Especially, the joint
decision is because the proposed AMR method is based on
two combination strategies, namely relative majority voting
method and arithmetic mean method. It is obvious from
relative majority voting method that the modulation style
with the most predicted sub-result will be determined as the
final classification result. It is important to note that if more
than one category wins the highest vote, one category is
randomly selected to be the final category. The arithmetic
mean method is the arithmetic mean of the PDFs of the
receiving antenna and the final decision result depends on the
one with the highest probability of the modulation style. The
detailed description of relative majority voting method and
arithmetic mean method is listed in Algorithm 1.
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Fig. 4. Architecture of HOC and ANN aided traditional AMR method.

C. Traditional HOC and ANN aided AMR Methods

Different modulation styles have different cumulative
values, so the classification of modulation styles can be

Algorithm 1 The proposed AMR based on two combination
strategy.

Require: Test sample {77 };V:Ti and the trained CNN;
Ensure: The predicted modulation type;
1: for j = 1: N,
Give the 77’ by (2) and
P’ = [P(ma|r;), P(malr),- -
end
20 if choosmg relative majorlty voting method,
M= N E] L,

Mmoot = arg maxyeq,im M(n):
end
3: 1f choosing arithmetic mean method,
=1/N, ZJ 1 Bis R
fna”emgmg = arg max,cq1,|m] P(n):
end
4: return The predicted modulation type m

s P(myaq|r)]
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Fig. 5. The performance of classification of proposed AMR method and the
HOC and ANN aided traditional AMR methods with two specific combination
strategies.

realized. Swami and Sadler suggest to classify M-PAM, M-
PSK, and M-QAM modulation by charactering the fourth-
order cumulants of complex signals [38]. Here, we use a
traditional AMR based on ANN and HOC [12], [37] to make a
comparison, whose architecture is shown in Fig. 4. Traditional
AMR also uses central training and cooperative decision to
be fair. In addition, ANN is a classifier having three fully-
connected whose parameters are consistent with the fully-
connected layer of proposed AMR.

IV. SIMULATION RESULTS

In this section, we demonstrate that the proposed AMR
method for multiple antenna system has better classification
performance through simulation. For each modulation style,
20,000 samples are prepared per signal-to-noise ratio (SNR)
for training CNN network, the training set and validation set
reasonably divided according to 7 : 3, and 10,000 samples are
prepared per SNR for testing to obtain the correct classification
probability P,. at snr dB.

snr

Scorvect x 100% (G))

test

Pcc:
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Fig. 6. Confusion matrices of CNN using (a) relative majority voting method and (b) arithmetic mean method when snr € {—8,0,8} dB.
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Fig. 7. The loss and accuracy curves of training validation.

snr
where Sicsr and S27. .., represent the number of samples of

each modulation style and the correct number of classification
of all modulation styles at snr dB, respectively. The
performance of classification of proposed AMR method and
the HOC and ANN aided traditional AMR methods with
two specific combination strategies under different SNR are
showed in Fig. 5. Here, we design N,, = 4 and N, = 1. AMR
in 5 represents the average probability of correct classification
of four received antennas. It is obvious that the arithmetic
mean method is always better than the relative majority voting
method in both proposed AMR method and the HOC and
ANN aided traditional AMR methods. In condition, through
the comparison of the two AMR methods, the classification
performance of proposed AMR has been greatly improved in
two kinds of combination strategies.

Furthermore, we provide six confusion matrices of proposed
AMR method using relative majority voting method and
arithmetic mean method when snr € {—8,0,8} dB in Fig.
6 respectively, which helps to analyze the performance of our
algorithm in detail. We can see that proposed AMR using
arithmetic mean method can almost accurately identity BPSK
modulation even when snr = —8 dB, and it can completely
identity four modulation styles when snr = 8 dB, which
is also better than the relative majority voting method. The
accuracy and loss curves of training and validation are also
provided in Fig. 7 to prove that we do not overtrain the network
just to get the desired results and lead to overfitting.



V. CONCLUSION

In this paper, we have proposed CNN aided AMR method

for

multiple antenna system. Our approach adopted two

combination strategies: relative majority voting method and
arithmetic mean method. Experimental results show that the
arithmetic mean method has better classification performance
than the relative majority voting method. Comparing with the
HOC and ANN aided traditional AMR methods with the same
two combination strategies under the same fully-connected
layer parameters, the proposed AMR method with the
arithmetic mean method has best classification performance,
which shows that CNN has the advantage of dominant feature
exploitation and high recognition accuracy, compared with the
traditional artificial feature designing methods. In future work,
we plan to propose more advanced method by using transfer
learning and federated learning algorithms.
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