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Abstract

Among radiological imaging data, chest X-rays are of great use in observing COVID-19 mani-
festations. For mass screening, using chest X-rays, a computationally efficient AI-driven tool is the
must to detect COVID-19 positive cases from non-COVID ones. For this purpose, we proposed a
light-weight Convolutional Neural Network (CNN)-tailored shallow architecture that can automatically
detect COVID-19 positive cases using chest X-rays, with no false positive. The shallow CNN-tailored
architecture was designed with fewer parameters as compared to other deep learning models, which was
validated using 130 COVID-19 positive chest X-rays. In this study, in addition to COVID-19 positive
cases, another set of non-COVID-19 cases (exactly similar to the size of COVID-19 set) was taken
into account, where MERS, SARS, Pneumonia, and healthy chest X-rays were used. In experimental
tests, to avoid possible bias, 5-fold cross validation was followed. Using 260 chest X-rays, the proposed
model achieved an accuracy of an accuracy of 96.92%, sensitivity of 0.942, where AUC was 0.9869.
Further, the reported false positive rate was 0 for 130 COVID-19 positive cases. This stated that proposed
tool could possibly be used for mass screening. Note to be confused, it does not include any clinical
implications. Using the exact same set of chest X-rays collection, the current results were better than
other deep learning models and state-of-the-art works.
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I. INTRODUCTION

In December 2019, the novel coronavirus disease (COVID-19) was found in Wuhan Province
of China [1], [2]. Unlike the common cold and flu, COVID-19 is much more contagious, and
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for humans immune system, it is an absolute unknown. To be more specific, Severe Acute
Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) are two well-
known coronavirus diseases, which have huge mortality rates of 10% and 37%, respectively [3],
[4]. As of now, COVID-19 affected more than 823626 people with more than 40,598 death cases
across the world (dated, April 02, 2020) [9]. The COVID-19 outbreak spread rate is exponential
and is faster than other respiratory-related diseases. Researchers are now limited to small amount
of data to predict possible consequences using AI-driven tools.

In January 2020, Huang C et al. reported some clinical and paraclinical aspects of COVID-19
using 41 patients. Their study stated that abnormalities, such as Ground-Glass Opacity (GGO)
can be observed using chest CT scans [5]. CT scans are widely used to identify unusual patterns
in confirmed cases of COVID-19 [6], [7], [8]. To be precise, Li Y and Xia L [8] experimented
on 51 CT images and in 96.1% cases COVID-19 was successfully detected. Zhou S et al. [11]
experimented on 62 COVID-19 and Pneumonia, and their results showed diverse patterns that
are visually like lung parenchyma and the interstitial diseases. Also, Zheng Ye et al. [12] stated
that typical and atypical CT manifestations help and familiarize radiologists in decision-making.

In a similar fashion, chest X-rays (CXRs) have been widely used to detect COVID-19 positive
cases [13], [14], [15], [16]. Soon et al. [13] observed the relationship between CXRs and CT
images, where 9 COVID-19 positive cases were used. Besides, others were focused on the use
of Neural Network-tailored deep learning (DL) models, such as COVID-Net [14] and resnet50
[15]. COVID-Net was tested only on 8 COVID-19 positive cases, while resnet50 was validated
on 50 COVID-19 positive cases. Similarly, Zhang et al. [16] used classical DL model to detect
COVID-19 positive cases, where 100 COVID-19 samples were used. As of now, the highest
accuracy of 96Motivated by the fact that X-ray imaging systems are more prevalent and cheaper
than CT scan systems, in this paper, a shallow Convolutional Neural Network (CNN) is proposed
to detect COIVID-19 positive cases from non-COVID-19 ones using CXRs.

II. MATERIALS AND METHODS

A. Data collection

AI-driven tools require enough data so that all possible infestations are trained [18]. However,
as of now, we do not have large amount of data for COVID-19 positive cases, unlike other
respiratory-related diseases. Radiological imaging data are of great use in observing COVID-19
manifestations, where chest X-rays (CXRs) imaging systems are more prevalent and cheaper
than CT scan systems. As an example, Chest X-ray is the first imaging method to diagnose
COVID-19 coronavirus infection in Spain (dated, March 20, 2020). A chest X-ray is performed
in suspected or confirmed patients through specific circuits.

In this paper, publicly available collection of data that is composed of COVID-19 positive
CXRs [19] was used. Altogether, it includes 130 COVID-19 positive and 51 non-COVID-19
cases. The collection includes CXRs related to MERS, SARS, and ARDS. Since AI-driven
tool requires balanced dataset, non-COVID-19 cases are required to be added. For this purpose,
another collection (publicly available via Kaggle) of CXRs were used [20], where both 48
Pneumonia positive, and 31 healthy CXRs were used. Like COVID-19 CXRs, non-COVID-19
category contains 130 CXRs. Overall, the non-COVID-19 category was composed of multiple
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Fig. 1. CXR samples: (a)-(c) COVID-19 positive cases; and (d)-(f) non-COVID-19 cases. CXR image sizes are varied from
one collection to another.

abnormalities as well as normal cases. The reason behind this mixed bag in one category is to
check whether the proposed model can classify COVID-19 positive case from its counterparts.
Further, it was observed that CXRs with Pneumonia were identical to the COVID-19. Few CXR
samples are show in Figure 1.

B. Shallow convolutional neural network

Convolutional neural networks (CNNs) [21], [17] are a class of neural networks which work
on the principle of deep learning. A basic CNN architecture consists of alternate layers of
convolutional and pooling followed by one or more fully connected layers at the final stage.

The convolutional layer is the prime ingredient of this architecture that detects the existence
of a set of features from the input. This layer comprises a set of convolutional kernels. The
functioning of this layer can be computed as, fk

c (m,n) =
∑

d

∑
r,s jd(r, s).i

k
c (v, w), where,

jd(r, s) is an instance of the input vector Jd, which is multiplied by ikc (v, w) index of the
kth kernel of the cthlayer. The output mapping of the kth kernel can me measured as, F k

c =

[fk
c (1, 1), ......, fk

c (m,n), ...., fk
c (M,N)].

The pooling layer is arranged between two convolutional layers that reduces the size of the
vectors while keeping their relevancy intact. It aggregates the related information in the region
of the receptive domain and outputs the feedback within that region using Y k

c = 0p(F
k
c ), where
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Y k
c determine the pooled feature map of the cth layer for kth kernel and 0p determines the kind

of pooling operation.
The dense layer accepts the input from the previous stages and globally evaluates the output

of all the former layers. Hence, makes a non-linear combination of specified features that are
used for the classification purpose.

In this paper, a shallow CNN architecture is proposed, which consists of only four layers
as compared to deep architectures. The primary motivation behind this was to design light
architecture with minimal number of parameters (weights) so that it does not suffer from heavy
computational time. As a result, the proposed shallow (or light-weight) CNN architecture is not
just computationally efficient but also is able to avoid possible overfitting. More often, deep
architectures are prone to overfitting due to their heavy usage of parameters, and of course,
longer training period. The proposed shallow CNN architecture is therefore a better fit for mass
population screening especially in resource constrained areas.

The network consists of a single convolution layer, followed by a max-pooling layer and a
256-dimensional dense layer. This was finally followed by a 2 dimensional output layer. Initially,
the images were scaled down to 50x50 pixels and fed to the network. The convolution layer and
the first dense layer had Rectified Linear Unit activation function: f(x) = max(0, x), where x is

a input to a neuron. The final dense layer had a softmax activation function: σ(z)j =
ezj

ΣK
k=1e

zk ,
where zi is an element of input vector z of size K.

Using the proposed shallow CNN architecture, the generated feature maps for COVID-19
positive and Pneumonia CXRs are shown in Figure 2.

III. RESULTS

To validate the proposed architecture, a 5-fold cross validation was considered for all tests.
This provides a thorough statistical analysis of the model. Since the proposed shallow CNN
architecture requires several parameters, the first set of experiment tests were based on how well
the model can be trained. For this, a few essential parameters, such as image size, number of
filters used in convolutional layer and its filter size, pooling window size, and batch size were
considered. In what follows, these parameters are discussed.

A. Image size

CXR image size were of different sizes in the dataset. They were, therefore, resized into a
fixed dimension. For experimental purpose, the resized dimensions were varied from 50x50 to
150x150 pixels. With the proposed model, better result (accuracy = 96.15%) was obtained from
CXRs of size 100x100 as compared to 50x50 (accuracy = 95.00%) and 150x150 (accuracy =
50%).

B. Number of filters in convolution layer

In convolution layer, different the numbers of filters were employed, such as 5, 10, 20, 30. Of
all, it is observed best results were obtained from the experimental test, where 10 filters were
used.
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Fig. 2. Feature map visualization: (a) COVID-19 positive case and its corresponding (b)-(D) feature maps; and (e) Pneumonia
positive case and its corresponding (f)-(g) feature maps.

C. Filter size

The convolution filter size was also experimented with, from 2 to 5 with an increment of 1:
2x2, 3x3,..., 5x5. Of all, the best results were obtained from the filter of size 4x4 (accuracy =
96.92%).

D. Pooling window size

Like filter size, the pooling windows were varied from 2 to 4, with an increment of 1: 2x2,
3x3, and 4x4. The experimental test results dropped on increasing the pooling window size.
Therefore, the pooling window size was fixed at 2 (accuracy = 96.92%).

E. Batch size

During training period, different batch sizes were applied, starting from 25 to 150 instances
with the difference of 25. Of all, best results were obtained from both 50 and 75 instances
(accuracy = 96.92%). In both batch sizes, 130 COVID-19 positive cases were correctly identified.
The closest performance to the best results was obtained from 25 instance batch size and the
accuracy was 95.77%. In this case, 2 true negative cases and 9 false positives were identified.
The detailed experimental test results for different batch sizes are provided in Table I. The results
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TABLE I
CONFUSION MATRICES FOR DIFFERENT BATCH SIZES.

TABLE II
PERFORMANCE METRICS FOR DIFFERENT BATCH SIZES.

Metrics
Batch size

25 50 75 100 125 150

Sensitivity 0.9343 0.9420 0.9420 0.8978 0.9149 0.9220

Specificity 0.9837 1.0000 1.0000 0.9431 0.9916 1.0000

Precision 0.9846 1.0000 1.0000 0.9462 0.9923 1.0000

False positive rate 0.0163 0.0000 0.0000 0.0569 0.0084 0.0000

False negative rate 0.0657 0.0580 0.0580 0.1022 0.0851 0.0780

Accuracy (%) 95.77 96.92 96.92 91.92 95.00 95.77

F1 Score 0.9588 0.9701 0.9701 0.9213 0.9520 0.9594

AUC 0.9869 0.9922 0.9921 0.9742 0.9915 0.9908

were further analyzed with respect to several performance metrics, such as sensitivity, specificity,
precision, F1 score, and AUC, which are detailed in Table II.

For better understanding, the ROC curves are presented in Figure 3 along with the correspond-
ing AUC values. It is noted that, even though 50 and 75 instance batch sizes reported exact same
accuracy, 50 instances batch size achieved a higher AUC of 0.9922 as compared to 75 (AUC =
0.9921).

On the whole, for the proposed shallow CNN-based architecture, parameters were tuned for
upcoming test purposes. The best performance scores were achieved when the architecture used
10 filters of size 4x4 in the convolution layer, batch size of 50 for CXR image size of 100X100
pixels, and the window size of 2x2 in the pooling layer. Precisely, the results were provided by
considering the following evaluation metrics: sensitivity, specificity, precision, false positive rate,
false negative rate, accuracy, F1 score, and AUC (see Table II). The proposed model provided
the highest possible accuracy of 96.92% with an AUC of 0.9922. It is important to note that the
proposed model received a false positive rate of 0.
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Fig. 3. ROC curves for different batch sizes: (a) 25 batch size; (b) 50 batch size; (c) 75 batch size; (d) 100 batch size; (e) 125
batch size; and (f) 150 batch size. The batch size of 50 was found to be the best of all.

IV. DISCUSSIONS

For COVID-19 screening, since sensitivity measures the likelihood that the model would not
miss to detect COVID-19 positive patients, it plays a crucial role in validating model in early
stages of a pandemic. As a consequence, it helps prevent further COIVD-19 spreading. The
similar argument lies in computing false positive rate. The proposed model achieved a sensitivity
score of 0.9420 (on average), using 5-fold cross validation protocol. Further, precision indicates
the probability in detecting COVID-19 positive cases. It is useful as it measures the likelihood
that a model would not make a mistake to classify the COVID-19 positive patients as normal
and it is important in the later stages of a pandemic, when medical resources are limited to
COVID-19 patients. The proposed model reported an average precision of 1.00. This means that
false positive rate was 0. As the work was particularly focused on detecting COVID-19 positive
cases, the discussion can be limited to sensitivity, false positive rate, and precision. Accuracy was
computed to measure the overall performance of the model. AUC is, on the other hand, conveys
how stable the system was: degree of measure of separability (between two categories: COVID-
19 and non-COVID-19). Similarly, other metrics (as provided in Table II are of importance to
test further the robustness of the model.

For a comparison, the exact same set of experimental datasets were applied to other popular
Deep Learning (DL) architectures, such as MobileNet [22] and VGG16 [23]. Their performance
scores along with the number of generated parameters were presented in Table III. As compared
to VGG16, MobileNet performed well, and achieved an overall accuracy of 83.08%. The pro-
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TABLE III
PERFORMANCE COMPARISON WITH OTHER DEEP LEARNING MODELS.

Metrics
Architectures

MobileNet [22] VGG16 [23] Shallow CNN

(proposed)

Sensitivity 0.7905 0.0000 0.9420

Specificity 0.8839 0.5000 1.0000

Precision 0.9000 0.0000 1.0000

False positive rate 0.1161 0.5000 0.0000

False negative rate 0.2095 0.0000 0.0580

Accuracy (%) 83.08 50 96.92

F1 Score 0.8417 0.0000 0.9701

AUC 0.9133 0.5000 0.9922

Parameters 7,423,938 16,812,610 5,899,500

TABLE IV
COMPARATIVE STUDY. INDEX: WANG AND WONG [14], SETHY AND BEHERA [15], AND ZHANG ET AL. [16] ARE TAKEN

FROM ARXIV.ORG (NON-PEER-REVIEWED). SINCE AUTHORS DID NOT REPORT RESULTS FOR SEVERAL DIFFERENT

METRICS, THERE EXISTS SYMBOL IN THE TABLE.

Metrics Wang and Wong [14] Sethy and Behera [15] Zhang et al. [16]
Shallow CNN
(Proposed)

Dataset (# of COVID-19
positive cases)

10 50 100 130

Sensitivity 0.80 0.9729 0.9600 0.9420
Specificity — 97.4705 0.7065 1.0000
Precision — — — 1.0000
False positive rate —- — — 0.0000
False negative rate — — — 0.0580
Accuracy (%) 92.4 95.38 83.34 96.92
F1 Score — 0.9552 — 0.9701
AUC —- —- — 0.9922

posed shallow CCN-based architecture outperformed MobileNet by more than 13.84% in terms
of accuracy. Not limited to accuracy, the proposed model outperformed others with remarkable
difference in terms of other metrics, such as sensitivity, false positive rate, precision, and AUC.
Considering computational complexity issue, the proposed model required 5,899,500 number of
parameters, which was 1.258 times smaller than MobileNet [22] and 2.850 times smaller than
VGG16 [23].

Further, since recently a few researchers worked on exact same set of datasets (but different
sizes), they were taken into consideration for a comparison. A comparative study was provided
in Table IV. Wang and Wong [14] tested their tool on 10 COVID-19 positive cases. With this
small dataset of size 10, their reported accuracy was 92.40% with a sensitivity score of 0.80.
This means that all COVID-19 positive cases were not correctly classified. Sethy and Behera [15]
tested 50 COVID-19 positive cases and reported an accuracy of 95.38%, where sensitivity was
97.44. Zhang et al. [16] reported an accuracy of 96.00%, where 100 COVID-19 positive cases
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were used. For the newly updated dataset collection, which was composed of 130 COVID-19
CXRs, the proposed model achieved higher performance scores in terms of accuracy, precision,
sensitivity, false positive rate, F1 score, and AUC (see Table IV). To be precise, test results were
higher than state-of-the-art works.

V. CONCLUSIONS

On the whole, in this paper, a light-weight CNN-tailored shallow architecture was proposed
to detect COVID-19 positive cases using CXRs against non-COVID-19 ones. The experiments
were performed on dataset collections of COVID19 positive, Pneumonia positive, SARS positive,
MERS positive and healthy CXRs. To validate its robustness, 5-fold cross validation protocol was
used, and a comparison study was performed by taking a) popular DL tools, such as MobileNet
and VGG16; and b) state-of-the-art works for COVID-19 detection using CXRs, into account.
The proposed model outperformed all and is computationally efficient as it requires less number
of parameters. As the proposed shallow CNN-tailored architecture has no false positive, it could
be used to scree COVID-19 positive cases in chest X-rays.
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