
Dr. Ryan F. Seipke, University of Leeds, April 2020

On programmatically draw genes using R

After spending a decade and a half drawing PowerPoint/Keynote schematics of biosynthetic gene
clusters (BGCs) for manuscripts and presentations, I finally decided to invest time in learning how
to programmatically draw genes using R.

Most of us are self-taught and if you are like me, then you have always found R a little bit
challenging to work despite the impressive documentation available! So I thought I would share my
workflow in case others wanted to embark on a similar journey of discovery.

Below I describe a workflow for drawing a BGC.

Step 1: Generate a tab-delimited gene table.

There are of course a variety of ways to do this, below is just one strategy I came up with if you do
not feel like manually entering gene coordinates for a large number of genes.

1: Download the Genbank file for your BGC, for example this may be from the from the
MIBiG database (https://mibig.secondarymetabolites.org).

2: Open the Genbank file in Artemis (https://www.sanger.ac.uk/science/tools/artemis).

3: Convert the Genbank file into a GFF file using 'Save Entry As GFF' (note, you will receive
warnings that header information will be lost, but it is not important).

4: Open your Command Prompt and use the Unix tool grep to pull out lines with 'CDS' in
them.

For instance at the command prompt:
$ grep 'CDS' file.gff > CDSs.txt

5: Open the CDSs.txt file in Excel and use manual manipulation in combination with the
text-to-columns tool to generate a sheet that looks like the below. Copy and paste the tab-
delimited gene table into a simple plain text editor (e.g. Notepad, TextWrangler or Brackets; I
prefer Brackets) and save. In this example I use the file name BGC.tab.

Your gene table should be a tab-delimited file that looks like this:

molecule gene start end strand direction
BGC XYZ gene1 1617 1 reverse -
BGC XYZ gene2 2520 1927 reverse -
BGC XYZ gene3 3270 2554 reverse -
BGC XYZ gene4 3380 3796 forward +

Note that if the gene is on the REVERSE strand, then the start and end coordinates need
to reflect this. This has to do with how the R packages gggenes and ggplot2 interprets
information.

Step 2: Setup up R so you can plot your BGC.

I am not an R expert and barely consider myself above the beginner level. However, the below
assumes you have some working knowledge of R otherwise you will probably be a little bit lost.

1: Install the latest version of R, I am currently using R 3.6.3 GUI on MacOSX Catalina

2: Open R

Dr. Ryan F. Seipke, University of Leeds, April 2020

3: Install the ggplot2 and gggenes packages from the CRAN binaries repository using
the Package Installer located under the Packages & Data menu.

4: Load ggplot2 and gggenes using the Packager Manager located under the Packages &
Data menu or by typing library(ggplot2) followed by the enter key and then
library(gggenes) followed by the enter key.

5: Import your gene table using this command:

genes <- read.table("/Full path/to the location/of your
file/BGC.tab", header=TRUE, sep="\t")

6: Check to make sure your gene table has been imported by simply typing the word
genes and hitting the enter key.

This should return the below:

Step 3: Drawing your BGC using gggenes.

1: Read the brief tutorial about gggenes available here:
https://cran.r-project.org/web/packages/gggenes/vignettes/introduction-to-gggenes.html

2: Become familiar with the functionality of gggenes by drawing either the four gene
example I provided above or the set of genes provided within gggenes (note: the file
example_genes used in documentation commands is loaded when you load the gggenes
package).

To plot your genes execute the following command, note I have bolded where the
parameter that specifies your gene table. Do not worry about the awkward spacing of this
command, just copy/paste it in and you should be good to go. Also please note that the
bulk of this code originated from the gggenes documentation.

ggplot(genes, aes(xmin = start, xmax = end, y = molecule, fill =
gene, label = gene)) +
geom_gene_arrow(arrowhead_height = unit(3, "mm"), arrowhead_width =
unit(1, "mm")) +
facet_wrap(~ molecule, scales = "free", ncol = 1) +
scale_fill_brewer(palette = "Set1") +
theme_genes()

Note: A PDF should pop up that you can save. It should look like this the figure below.

0 1000 2000 3000

BGC XYZ

m
ol
ec
ul
e

gene
gene1

gene2

gene3

gene4

Dr. Ryan F. Seipke, University of Leeds, April 2020

In the gggenes documentation, the author shows various aesthetics, but all utilise a pre-
set colour palette using scale_fill_brewer. If you want control over the colour of
individual genes (i.e. to colour-code them based on putative function, for instance), then
you will need to specify this in the plotting command.

Although R accepts HTML hex codes, I find it easier to use colour names. The names of
colours can be obtained by executing the command colors(). Although this provides a
list of colour names, it is obviously fairly useless without knowing what they look like. At the
end of this document I have provide colour cheat sheet that I generate using code
produced by Dr. Michal Bojanowski from Kozminki University available on his website:
http://bc.bojanorama.pl/2013/04/r-color-reference-sheet/.

3: Plot your BGC specifying individual colours using the below command. I selected these
four colours: gold1, dodgerblue3, maroon3 and darkorchid2.

Before the BGC can be plotted with specified colours, you need to ensure that ggplot2
knows that the gene names in your gene table are unique factors otherwise depending how
your genes are named there is a chance that the colours could be incorrectly assigned. To
do this you need to execute this command (which I have borrowed from MajoroMask on the
tidyverse GitHub space):

genes$gene <- factor(genes$gene, levels = unique(genes$gene))

Now you can plot using this command:

ggplot(genes, aes(xmin = start, xmax = end, y = molecule, fill =
gene, label = gene)) +
geom_gene_arrow(arrowhead_height = unit(3, "mm"), arrowhead_width =
unit(1, "mm")) +
facet_wrap(~ molecule, scales = "free", ncol = 1) +
scale_fill_manual(values=c("gold1", "dodgerblue3", "maroon3",
"darkorchid2")) +
theme_genes()

Troubleshooting: You may get the below error message the second time you try to plot the same
imported gene table:

Error in UseMethod("depth") :
 no applicable method for 'depth' applied to an object of class "NULL"

I do not understand why this happens (because I am not an R expert!), but my workaround for this
is to just re-import the gene table and re-specify that gene names are unique factors every time I
re-plot it. I hope this tutorial was useful and happy plotting!

0 1000 2000 3000

BGC XYZ

m
ol
ec
ul
e

gene
gene1

gene2

gene3

gene4

