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Abstract—Surface defect detection is a critical task in industrial 

production process. Nowadays, there are lots of detection methods 

based on computer vision and have been successfully applied in 

industry, they also achieved good results. However, achieving full 

automation of surface defect detection remains a challenge, due to 

the complexity of surface defect, in intra-class, while the defects 

between inter-class contain similar parts, there are large 

differences in appearance of the defects. To address these issues, 

this paper proposes a pyramid feature fusion and global context 

attention network for pixel-wise detection of surface defect, called 

PGA-Net. In the framework, the multi-scale features are extracted 

at first from backbone network. Then the pyramid feature fusion 

module is used to fuse these features into five resolutions through 

some efficient dense skip connections. Finally, the global context 

attention module is applied to the fusion feature maps of adjacent 

resolution, which allows effective information propagate from 

low-resolution fusion feature maps to high-resolution fusion ones. 

In addition, the boundary refinement block is added to the 

framework to refine the boundary of defect and improve the result 

of predict. The final prediction is the fusion of the five resolutions 

fusion feature maps. The results of evaluation on four real-world 

defect datasets demonstrate that the proposed method 

outperforms the state-of-the-art methods on mean Intersection of 

Union and mean Pixel Accuracy (NEU-Seg: 82.15%, DAGM 2007: 

74.78%, MT_defect: 71.31%, Road_defect: 79.54%). 

 
Index Terms—Surface defect detection, deep learning, deeply-

supervised, pyramid feature fusion, global context attention, 

boundary refinement  

 

I. INTRODUCTION 

HE quality is an important component during the 

manufacturing process. To meet the growing demand, it is 

necessary to ensure the quality of products strictly while 

improving the production efficiency in the process of industrial 

production. To meet the growing demand, it is necessary to 

ensure the quality of products strictly while improving the 

production efficiency in the process of industrial production. 
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Because of the complexity of defects, there are three main 

challenges in the automatic defect detection task: 1) low-

contrast: in the industrial production, the existence of dust and 

the change of light intensity result in the low-contrast between 

defects and background in the image. Fig. 1 (a) shows that the 

defects in red box are hardly visible; 2) intra-class difference: 

unlike other applications, in industrial production, the shape of 

the defect is irregular. As shown in Fig. 1(b), the multiple scales 

of defects in the same kind are great different; 3) inter-class 

similarity: due to the uncertainty of the production process, 

some different kinds of defects have little difference. Fig. 1(c) 

presents the different types of defects (in yellow and blue 

boxes), which are very similar in texture and grayscale 

information;  

Benefiting from the rapid development of computer vision, 

the above challenges are gradually being addressed in the 

industrial production. Zhang et al. [1] used curvature filter and 

gaussian mixture model to the rail surface defect detection. 

Wang et al. [2] applied template-based methods to the strip 

surface defect detection. Other approaches based on hand 

crafted feature are used for defect detection in industrial 

applications (such as solar modules [3], metal [4], and steel [5]) 

and have achieved good result in recent years. However, these 

methods are artificially design a set of features for a specific 

defect, which isn’t universal.  
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Fig. 1.  Challenges of defect inspection from industry. (a) Defects with low-

contrast. (b) Defects with great difference between intra-class. (c) Defects with 

similarity between inter-class. 
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4) A global context attention module was designed, which 

embedded in these resolutions to ensure efficient 

information transfer from low-resolution to high-

resolution. 

5) The deep supervision and boundary refinement are added 

to the proposed method to optimize the network for multi-

branches, and accelerating convergence during the 

training process. The final framework achieves 

outperformance on four defect datasets.  

The residue of the paper is organized as follows: Related 

works about surface defect detection are given in Section Ⅱ. 

Next, the proposed PGA-Net is narrated thoroughly in Section 

Ⅲ. Afterwards, Section IV describes the evaluation on four 

defect datasets and corresponding discussions. Finally, the 

conclusion and suggestions to further improvement are shown 

in Section Ⅴ. 

II. RELATED WORKS 

In recent years, the methods based on computer vision for 

surface defect detection can be categorized into traditional 

detection approaches and deep-learning-based detection 

approaches. 

A. Traditional detection approaches 

This section refers traditional detection approaches as no-

deep learning-based approaches. In the past decade, the 

traditional approaches can be categorized into statistical-based 

approaches, filter-based approaches and model-based 

approaches. 

1) Statistical-based approaches: The statistical-based 

approaches were applied to measure the distribution of pixel 

values. Popular statistical-based methods usually adopt 

histogram-of-oriented-gradient, co-occurrence matrix [26], and 

local-binary-pattern [27] for surface defects detection. 

2) Filter-based approaches: Filter-based approaches adopt a 

bank of filters to describe texture on images in a transformed 

domain, which are widely used for texture analysis. The filter-

based approaches can be categorized into three domains of 

spatial, frequency [28], and spatial-frequency.  

3) Model-based approaches: Model-based approaches 

obtain certain models with special distributions or other 

attributes using certain models, which require a high 

computational complexity [29]. 

Despite these techniques have achieved good performance 

on the description of texture features and the detection of 

texture defects, most of them are applied for homogeneous 

textures and heavily dependent on expertise. 

B. Deep-learning-based detection approaches 

According to different surface defect detection tasks, deep 

learning-based approaches can be categorized into image-level 

defect classification, region-level defect inspection, and pixel-

level defect segmentation. 

Image-level defect classification: Masci et al. [30] proposed a 

multi-scale pyramidal pooling network for classification of 

steel defect, which didn’t require the size of all images to be 

equal. Natarajan et al. [31] proposed a flexible multi-layered 

deep feature extraction through transfer learning and SVM 

classifiers, which overcome the problem of over-fitting caused 

by small datasets. He et al. [32] proposed a semi-supervised 

model of CNN for feature extraction and fed the representation 

features into a classifier for classification of steel surface defect. 

However, these methods can’t give the exact location of defects. 

Meanwhile, when there are many kinds of defects in the image, 

the accuracy of these methods will also be reduced. 

Region-level defect inspection: He et al. [33] proposed a 

multilevel-feature fusion network, which combined multi-level 

hierarchical features extracted from a backbone CNN into one 

resolution for steel plate defect inspection. Chen et al. [34] 

proposed an approach based on CNN, which analyzed 

individual video frames for crack detection through CNN and 

Naïve Bayes data fusion scheme. Zhou et al. [35] improved a 

deep convolution neural network, which applied a new anchor 

mechanism to generate suitable candidate boxes for objects, and 

combines multi-level features to construct discriminative hyper 

features for split pins defect inspection. The shortcomings of 

these methods are that they can only provide a coarse region of 

defects through one or more tight-fitting bounding boxes, but 

can’t describe the defect boundary precisely. 

Pixel-level defect segmentation: Currently, the most effective 

surface defect detection methods are based on the fully 

convolutional network [11]. A novel CNN was proposed in [36], 

which integrated context information from top-to-down in a 

feature pyramid way for pavement crack detection. Ren et al. 

[37] proposed a deep-learning-based framework for defect 

classification, then obtain the pixel-wise prediction through the 

trained classifier convoluted with raw image. Yang et al. [38] 

proposed a multiscale feature-clustering-based fully 

convolutional for texture surface defect inspection. Compared 

with image-level and region-level based methods, the methods 

based on pixel-level can locate the defect and describe the 

defect boundary more accurately. However, the results of these 

methods also need to be improved: ⅰ) Most of these methods 

focus on the high-level features, ignoring the importance of 

low-level features information. Meanwhile, the output is only 

one-side prediction, the detect results is poor. ⅱ) Part of these 

methods adopt more-side prediction, and then fuse these 

predictions directly to output the final prediction, which lack of 

the intrinsic relationship of different resolutions feature maps. 

In contrary, we propose a pyramid feature fusion module to 

TABLE I 
DETAILS OF FEATURES EXTRACTION MODULE 

Stage 

Type 

33 conv, stride = 1 

22 max pool, stride = 2 

Block1 
[conv 33 + BN + ReLU, C = 64]  2 

max pool 2×2 

Block2 
[conv 33 + BN + ReLU, C = 128]  2 

max pool 2×2 

Block3 
[conv 33 + BN + ReLU, C = 256]  3 

max pool 2×2 

Block4 
[conv 33 + BN + ReLU, C = 512]  3 

max pool 2×2 

Block5 [conv 33 + BN + ReLU, C = 512]  3 
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utilize the feature information of different layers fully. We fuse 

these features into different resolutions, and adopt global 

context attention module to fuse them step by step. 

III. METHODOLOGY AND DESIGN 

A. System Overview 

In this work, surface defect detection is regard as a pixel-wise 

task. The architecture of the proposed approach includes five 

major components: ⅰ) feature extract network for multi-level 

features extraction; ⅱ) pyramid feature fusion module; ⅲ) 

global context attention module; ⅳ) boundary refinement block; 

ⅴ) deep supervision, as shown in Fig. 2. 

1) First, input a batch size of raw images and corresponding 

ground truth to network, and extract the multi-level features by 

feature extraction network with convolution and pooling 

operation. The model learns the effective features in each image 

of the training samples through forward propagation, and these 

features correspond to the ground truth one by one to inform the 

attributes of these features. At the forward propagation, the 

output feature maps and ground truth are used to calculate the 

loss. Then back propagation algorithm minimizes the loss and 

achieves the goal of optimizing the network. 

2) Next, feeding these features into pyramid feature fusion 

module. Adjusting the dimension by convolution and 

deconvolution (with different kernels and strides) operations to 

make the fused feature maps have the same dimension. Through 

some dense skip connects and fuse these features into five 

resolutions at once. 

3) Then, global context attention embedded in these 

resolutions to allow for effective information propagate from 

low-resolution to high-resolution. The output of each global 

context attention is followed by boundary refinement. Resize 

the dimension of each resolution to make it same as the raw 

image to yield prediction maps. 

4) Finally, fuse these prediction maps and produces the final 

prediction. 

B. Multi-level Features Extraction Module 

CNNs are widely used to extract features from objects follow 

their characteristics, and these features can be learned by 

stacking multiple convolution and pooling layers.  

In this paper, the deep feature extraction module (FEM) was 

built on the VGG-16 [39] model pretrained with ImageNet [40] 

dataset to extract multi-level features for surface defect 

detection. The FEM includes five blocks, and these blocks 

extract appearance information on various, from shallow, fine 

layers (block_1 and block_2) to deep, coarse layers (block_4 

and block_5). Each block consists convolution layers, rectified 

linear unit activation function (ReLU), batch normalization, and 

max-pooling layer except the last block. The details of FEM can 

be referred to Table Ⅰ, all these layers are optimized by 

stochastic gradient descent in the process of back propagation 

to minimize the difference between prediction and ground truth. 

C. Pyramid Feature Fusion Module 

In deep CNN, the extent to how much context information is 

used roughly depends on the size of receptive field. For defect 

detection, some defects are intra-class difference and through 

the whole image (as shown in Fig. 1(b)), which need large 

receptive field to realize the overall perception of the defect in 

image. However, the size of actual receptive fields in the CNN 

are smaller than the theoretical ones [41]. Inspired by [42][43], 

the pyramid feature fusion (PFF) module was proposed in this 

paper as shown in Fig. 3, which can be divided into three steps. 

First, give an input image I with size W × H, and through FEM 

module generates multi-level features at different stages. The 

PFF module obtain last layer feature of each stage: conv1_2, 

conv2_2, conv3_3, conv4_3, conv5_3. For simplicity, these 

five features could be denoted by a feature set F:

( )1 2 3 4, , , ,=f f f f fF 5 , where f1 denotes the conv1_2 features and 

 
 
Fig. 3.  Details of the PFF module. The PFF module first takes multi-scale 

features from FEM. Then through the up-scale, down-scale and conv operation 
to resize the features to the same dimension as the target fusion resolution. 

Finally, the concatenation and 11 convolution are used to output the final 

fusion feature maps. 

 

 
Fig. 4.  The details of global context attention module and boundary 

refinement block are illustrated in (a) and (b), respectively. 

 

 

 

 

 

TABLE Ⅱ 
DETAILS OF PYRAMID FEATURE FUSION MODULE 

Stage Dec-1s Dec-2s Dec-4s Dec-8s Dec-16s 

Conv1_2 11, s=1 

stride=1 

22, s=2 

stride=2 

44, s=4 88, s=8 1616, s=16 

Conv2_2 deconv 11, s=1 

stride=1 

22, s=2 

stride=2 

44, s=4 88, s=8 

Conv3_3 deconv deconv 11, s=1 

stride=1 

22, s=2 

stride=2 

44, s=4 

Conv4_3 deconv deconv deconv 11, s=1 

stride=1 

22, s=2 

stride=2 Conv5_3 deconv deconv deconv deconv 11, s=1 

stride=1  
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so on. Second, multi context information is generated by multi-

scale receptive fields weighted F, and this information is 

mapped to five different resolution feature maps at the same 

time: ( , )
2 2n nn

W HT = , where n = (0, 1, 2, 3, 4), W and H represent 

the width and height of the input image, respectively. For f1 

(resolution R1=T0), the module down-scales it to five resolution 

with a stack of convolution layers, and the output feature maps

1Y
i
as follows: 

( )( )( )1 1 1( , ) 1, ,5-i

k k sdown scale i= =  + = f f     (1) 

where σ refers to the ReLU activation, down-scale() signifies 

through 
k kW (kernel size is k×k, stride s = k) to downscale the 

feature map f1, b denote bias,  denotes convolution. For f5 

(resolution R5=T4), the module upsamples it into five resolution, 

the output feature maps
5Y
i
as follows: 

( )( )( )5 5 5( ) ; 1, ,5i upsample i= = = f fY              (2) 

where σ refers to the ReLU activation, upsample(;) refers 

the deconvolution with parameters which are learned during 

the training. For f2, f3 and f4, which resolution between T0 and 

T4, the model uses the combination of down-scale and upsample 

to resize them into five resolution, and the output feature maps

i

lY as follows: 

( ) ( )( )( )( ) & 1, ,5; 2,3,4i

l l l l i l=   =  =f f fY        (3) 

where σ refers to the ReLU activation, Φ() and () denote 

Equa. (1) and Equa. (2), respectively. The channel dimension 

of these resized feature maps ( 1 5, ,Y Y
i i) is 128. Finally, the 

features with same dimension in these output ones are fused to 

generate the final five fused feature maps. To be convenient, the 

five fused feature maps are respectively named Dec-1s (n = 0), 

Dec-2s (n = 1), Dec-4s (n = 2), Dec-8s (n = 3), Dec-16s (n = 4). 

The five fused features could be defined as: 

( )( )1 1 1 3 5, , ,W CAT Y Y Y b
i i i

sDec i =    +-           (4) 

Where σ refers to the ReLU activation, CAT denotes the 

element-wise concatenated. The channel of each fused features 

map Dec is 640. 
1 1W denotes a convolution with 1×1 kernel 

size to change the channel dimension of concatenated features 

(640 to 128), b refers bias. All convolution layers defined in 

PFF are followed by ReLU activation and Batch Normalization 

and these parameters are trainable, as shown in Table Ⅱ. 

Through this way, the model effectively obtains the multi-scale 

context information from different stages of CNN, and realizes 

the overall perception of the object. 

D. Global Context Attention Module 

The final fusion feature maps with different resolution 

generated from PFF contains various visual context information, 

and each of them can be used to yield the result prediction. One 

method using bilinear upsample to up-scale these fused features 

into the same dimension with the raw image, then change their 

channel through a convolutional layer to the number of classes 

to predict the segmentation result. However, the shortcomings 

of these approaches are: i) they lack the inner relation 

information between different resolution predictions, ⅱ) use 

bilinear upsample with a big kernel directly may lead to the 

missing of some detail information and the parameters are not 

trainable. Other U-shape models [23][44] combine the adjacent 

feature maps from low-resolution to high-resolution step-by-

step in the decoding process. However, there are also two 

shortcomings in these methods: i) The type of this combination 

between adjacent features maps in the decoding process is too 

single and lack diverse representation, ii) lack the global 

context information from low-resolution (high-level), which 

can enhance high-resolution (low-level) feature map in 

decoding process. 

To address above issues, a global context attention module 

(shown in Fig. 4(a)) was proposed, which consists of two stages:  

Stage one: A 3×3 convolution was applied to adjust the 

channels dimension of high-resolution and low-resolution 

fusion feature maps, then through global pooling to the low-

resolution to obtain global context, following multiplied with 

the high-resolution feature map. The output fs1 as follows: 

( ) ( )1 3 3 3 3( ( ))W W
h l

sf f b f b   =  +   +G     (5) 

where  and ⁎ denote element-wise multiplication and 

convolution, respectively, ( )G denotes global pooling 

operation, σ refers to ReLU activation,  f h and f l represent high-

resolution and low-resolution fusion feature maps, 
3 3W  

indicates trainable parameters, b refers bias. 

Stage two: The low-resolution fusion feature map is 

upsamped to the same dimension with the high-resolution, and 

then added with the fs1. The output of stage two fs2 as follows: 

( )( )2 1;l

s sf upsample f f =                     (6) 

Where upsample(;) refers the deconvolution with 

parameters which are learned during the training, refers to 

element-wise addition. 

In short, compared with simply adding the upsampled 

coarser-resolution feature maps to the finer-resolution ones, the 

proposed GCA module can utilize different resolution fusion 

feature maps to improve the efficiency of context obtain and 

corresponding pixel-wise localization.  

E. Boundary Refinement Block 

In this paper, we add boundary refinement [45] block to 

further improve the detection accuracy, shown in Fig. 4(b). The 

boundary refinement was seen as a residual structure, the output 

refined score map S  as follows: 

( )( )1 1 (S)S S b =   +W                           (7) 
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where S and ℝ(∙) signify the coarse score map and residual 

branch, respectively, ⁎ represents convolution, σ refers to the 

ReLU activation,  is the cross-channel concatenation, b refers 

bias. The details were shown in Fig. 4(b). 

F. Deep supervision 

Although multi-level features are fully utilized, the mount of 

parameters is also increased obviously, which may introduce 

additional optimization difficulty. To address the issue, we add 

deep supervision into our model, which aims to ease the process 

of training and accelerate the optimization of network model. 

The fused feature maps generated from PFF module at each 

resolution can performs crack prediction individually. We add 

a per-pixel loss (cross-entropy) to each of the above five 

resolution fused maps. The loss function is described as: 

( ) ( ) ( )
1

1
, log 1 log 1L

N

i i i i

i

T P T P T P
N =

=−  + − −          (8) 

where Ti and Pi represent ground truth and predicted 

probabilities of ith image, respectively, N refers batch size. In 

the test phase, the predictions generated from the five branches 

are fused to output the result of detection, as shown in Fig. 2. 

IV. EXPERIMENTS AND RESULTS 

A. Implementation Details 

1) Parameters Setting: The initialization parameters of FEM 

are transformed from the pre-trained VGG-16 network which 

for image classification task on the ImageNet dataset. 

Furthermore, the weights realize initialization of other 

convolutional layers through “Xavier” scheme. As for up-scale 

features, we use transposed convolution with learnable weights. 

For fine-tuning, we set the base learning rate is 10-5 with a decay 

of 0.005, the max-inter is 100k with mini-batch size 5. The 

model is saved every 5,000 iterations. 

2)   Computation Platform: We implement our method on the 

PyCharm with the open source toolbox TensorFlow [46]. We 

run our method in a NVIDIA GTX TITAN GPU (with 12G 

memory) on Ubuntu 16.04 Linux. 

B. Datasets 

1)  Datasets Description: In this work, four surface defect 

datasets are selected to prove and evaluate the applicability and 

generality of the proposed method, including NEU-DET defect 

dataset, DAGM 2007 defect dataset, MT defect dataset and 

Road defect dataset.  

NEU-Seg Dataset: NEU-Seg defect dataset is a standardized 

high-quality database, which collected by [51] to solve the 

problem of automatic recognition for hot-rolled steel strip. This 

 
Fig. 5.  Comparison of detection results on NEU-Seg dataset. Red, green and 

yellow represent inclusion (In), patches (Pa) and scratches (Sc) defect, 

respectively. (a) Original image. (b) Ground truth. (c) SegNet. (d) PSPNet. (e) 
DeepLab. (f) RefineNet. (g) FCN. (h) PGANet 

 

 

 

 

 

TABLE Ⅴ 
THE NUMBER OF FOUR DATASETS  

Dataset Train Test 

NEU-Seg 3630 840 

DAGM 2007 3550 400 

MT Defect 2840 300 

Road Defect 6000 400 

 

 
Fig. 6.  Comparison of detection results on DAGM 2007 dataset. (a) Original 

image. (b) Ground truth. (c) SegNet. (d) FCN. (e) DeepLab. (f) PSPNet. (g) 
RefineNet. (h) PGA-Net 

 

 
TABLE Ⅳ 

QUANTITATIVE COMPARISONS OF DIFFERENT DETECTION METHODS 

Dataset Method mIoU (%) Time (s) 

DAGM 2007 

Dataset 

SegNet [23] 21.95 0.0558 

RefineNet [25] 32.90 0.0322 

PSPNet [21] 41.21 0.0369 

FCN [11] 73.86 0.1041 

DeepLab [18] 74.61 0.0108 

PGA- Net 74.78 0.0229 

 

TABLE Ⅲ 
QUANTITATIVE COMPARISONS OF DIFFERENT DETECTION METHODS 

Dataset Method mIoU (%) Time (s) 

NEU-Seg Dataset 

SegNet [23] 56.57 0.0528 

PSPNet [21] 72.25 0.0375 

DeepLab [18] 74.01 0.0104 

RefineNet [25] 75.37 0.0315 

FCN [11] 81.79 0.0665 

PGA-Net 82.15 0.0206 
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dataset includes six categories surface defects from strip steel 

plates, including patch, crazing, pitted-surface, inclusion, 

scratches, and rolled-in scale. The resolution of each raw image 

is 200×200 and each class include 300 images with tightfitting 

bounding box annotations. However, in order to achieve the 

pixel-wise surface defect detection task, this form of annotation 

does not satisfy the training of CNN model. In this work, three 

typical defects (inclusion, patch and scratches) are selected, and 

conduct pixel-wise annotation by the open annotation tool: 

LabelMe. This dataset is named as NEU-Seg datasets. Due to 

the complexity of the situation of hot-rolled plates, there are 

large differences in appearance of the defects between intra-

class, while the defects between inter-class contain similar parts, 

as well as the low contrast with background. All these factors 

bring great challenges to the surface defect detection of hot-

rolled strip steel. Figure 5 shows the visualization of partial 

NEU-Seg raw images and corresponding ground truth. 

DAGM 2007 Dataset: This dataset [47] which produced by 

artificial represents defects under a textured background is very 

close to real-world. This dataset includes many categories 

defects and the resolution of each raw image is 512×512. In the 

label images of DAGM 2007, the defect regions are blanket 

roughly by ellipses. In this experiment, six types of defects are 

selected and redefine the raw label (we didn't change the size of 

the raw defect area, just changed the index in the label image), 

the different indexes in the new label image represent different 

categories. Figure 6 shows partial defect images and 

corresponding ground truth of DAGM 2007 datasets. 

MT Defect Dataset: The magnetic-tile defect dataset is 

presented in [48] which contains 1344 defect images, and each 

raw defect image corresponds to a pixel-level label. MTdefect 

dataset includes five types of defects: uneven, fray, crack, 

blowhole, and break, all these defect images with different 

resolution. Most of these defect images contain a series of noise, 

e.g., the diversity of defect shape, complexity of texture, and 

the change of illumination intensity, all these factors bring a big 

challenge of detection. In this experiment, we detect five types 

defects (blowhole, crack, fray, break and uneven) of magnetic-

tile defect dataset. Figure 7 shows the partial raw defect images 

and corresponding ground truth. 

Road Defect Dataset: This dataset contains two classes 

(crack, inlaid patch). The number of crack images are 500 with 

size around 2,0001,500 pixels, which collected by [36]. The 

inlaid patch images that we collect by CCD contains 800 

images of size around 3,000  2,000. Each defect image 

corresponds to a pixel-level label with different indexes. In this 

experiment, these raw images are randomly cut to 256  256 to 

improve diversity of the dataset, the effective area of the defect 

in each crop-image is kept above twenty percent. Figure 8 

shows example raw defect images and corresponding ground 

truth.  

2) Data Augmentation: Deep learning-based detection 

methods usually require a great many datasets to overcome 

over-fitting during training. However, in the actual production 

process, it is difficult to collect a large of high-quality defect 

image due to factors such as environment and equipment etc. 

The basic method to solve the over-fitting issue caused by the 

lack of dataset during training the model is data augmentation. 

In the early stage of the experiment, we cut all the images of 

four datasets with 200×200 resolution. Then we rotate the 

cropped images (90
o
,180

o
, 270

o
) to increase the training 

samples, and the corresponding ground truth are also processed 

in the same way. To ensure the validity of the samples, samples 

with defect area less than 10% of the whole image are deleted. 

 
Fig. 7.  Comparison of detection results on MT defect dataset. Different colors 
represent different kinds of defects, respectively. (a) Original image. (b) 

Ground truth. (c) PSPNet. (d) RefineNet. (e) SegNet. (f) DeepLab. (g) FCN. 

(h) PGA-Net 

 

 

 

 

TABLE Ⅵ 

QUANTITATIVE COMPARISONS OF DIFFERENT DETECTION METHODS 

Dataset Method mIoU (%) Time (s) 

MT Defect 

Dataset 

PSPNet [21] 12.84 0.0401 

RefineNet [25] 13.52 0.0335 

SegNet [23] 33.32 0.0550 

DeepLab [18] 49.21 0.0124 

FCN [11] 67.83 0.2735 

PGA- Net 71.31 0.0246 

 

 
Fig. 8.  Comparison of detection results on Road defect dataset. Red and green 

represents crack and inlaid patch, respectively. (a) Original image. (b) Ground 
truth. (c) PSPNet. (d) DeepLab. (e) RefineNet. (f) SegNet. (g) FCN. (h) PGA-

Net 

 

 

 

TABLE Ⅶ 

QUANTITATIVE COMPARISONS OF DIFFERENT DETECTION METHODS 

Dataset Method mIoU (%) Time (s) 

Road Defect 
Dataset 

PSPNet [21] 27.65 0.0374 

RefineNet [25] 46.21 0.0322 

DeepLab [18] 47.63 0.0109 

SegNet [23] 65.04 0.0568 

FCN [11] 78.74 0.1018 

PGA- Net 79.54 0.0218 
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The details are shown in Table Ⅴ. Inspired by [40][44], in the 

process of training, the network randomly extracts 192×192 

size areas (and their horizontal reflections) from input images, 

then train the framework on these extracted areas, which the 

training samples are increased 128 times. Although the random 

extract operation will not change the structure of the object in 

the image too much, so that each extracted region has high 

similarity in the object itself, but the operation can change the 

spatial position information and the semantic information of the 

target, so as to improve the number and diversity of dataset and 

avoid over-fitting. 

C. Evaluation Metrics 

Compared with other segmentation methods, mean 

intersection-over-union (mIoU) is used to performance the 

evaluation of the prediction result. The mathematical 

definitions are shown in [11]. We also use the average running 

time of process each image in this experiment to show the real-

time performance of the proposed approach. 

D. Experiment Results and Analysis 

1)  Detection Results on NEU-Seg Defect: The visual 

comparison of our approach and other methods for strip steel 

surface defect images are shown in Fig. 5. It can be observed 

that the proposed PGA-Net outstanding the performance than 

other methods in the challenging cases of defect detection, e.g. 

low-contrast (the 4-5 rows) and intra-class difference (the 7-8 

rows), and the results of prediction are very similar to the 

ground truth. As the quantitative comparisons shown in Table 

Ⅲ, the proposed approach is superior to other compared 

counterparts in term of the evaluation metrics: the value of 

mIoU is improved to 82.15%. 

2) Results of DAGM 2007 Dataset: The comparison of visual 

results of partial DAGM 2007 defect images detection shown 

in Fig. 6. The main detection challenging for this dataset is low-

contrast between the backgrounds and defects (the 1-3 rows). It 

can be found that [23] miss or erroneously detects some defects. 

For some large area defects, [21] and [25] can’t accurately 

locate defects. [11] and [18] magnify some low-contrast defect 

areas. In Contrary, the performance of proposed PGA-Net is 

closer to the real situation. As listed in Table Ⅳ, PGA-Net 

improves performance to 74.78%. 

3)  Detection Results on MT Defect: Figure 7 shows some 

samples of magnetic tile defects and the corresponding visual 

prediction. The main challenging of this dataset is inter-class 

similarity (the 1-3 rows). It can be observed from Figure 7 that 

[25] and [21] are failure of predict result. [23] and [18] can 

locate and detect the defects (the region of defects is large and 

obvious), but they are easy to miss the defect detection in small 

area. [11] can effectively defects small defects, but the detected 

defect area is incomplete. However, the proposed PGA-Net 

achieves best performance in above aspects. In Table Ⅵ, PGA-

Net improves the mIoU to 71.31%. 

4) Detection Results on Road Defect Dataset:  Figure 8 

demonstrates part of the road defect images and the 

corresponding prediction results. The main challenging cases of 

this dataset are low-contrast (the 2 row) and intra-class 

difference (the 1-3 rows). It can be observed from Figure 8 that 

[21] can detected defects roughly, but failed to locate the region 

of defect. For crack defects which are low contrast to the 

background, [25] and [18] failed to detect these defects, [23] 

and [11] lack of integrity in these defects. As listed in Table Ⅶ, 

the proposed PGA-Net increases the mIoU by 0.8% compared 

with the second best. 

5) Analysis of Time to Test Each Image: Table Ⅲ, Ⅳ, Ⅵ, 

Ⅶ list the average running time to process each image of 

different methods, and performed on four datasets using a 

computer introduced in Section Ⅳ-A. Compared with other 

state-of-the-art methods, the time of test each image of our 

method is not the shortest, but the speed can reach 41-49 fps/s, 

which is acceptable in the real detection process and does not 

harm the user experiences. In future research, we will further 

optimize the code to accelerate the proposed method to meet the 

needs of real-time and high accuracy. 

6) Analysis of Failure cases: The experiment results show 

that the proposed approach outperforms state-of-the-art 

detection methods on the four datasets. However, some difficult 

images still posed challenged to our method as well as those 

comparative methods. As shown in second line images (a), (b), 

(e), (g), (h) of Fig. 9, we can see that our method is lack of 

integrity in detection the defect area of partial defect images. 

Because of the network over fits the benchmark data, when the 

difference between the test sample and the training sample is 

large, it will lead to missed detection. The main reason is the 

lack of dataset. Meanwhile, the generalization ability of 

network model needs to be improved. As shown in (c), (d) of 

the second line of Fig. 9, some defects are detected by mistake. 

The network model is over sensitive to image changes. When 

the defect area changes obviously, the network does not regard 

it as a whole. The main reason for this case is the lack of 

diversity and number of datasets. We will work on these 

problems in the future. 

 
Fig. 9.  The failure of proposed method PGA-Net on four datasets. (a) and (b) 

are failure detect of NEU-Seg dataset, (c) and (d) are failure detect of DAGM 

2007, (e) and (f) are failure detect of Road Defect dataset, (g) and (h) are 
failure detect of MT Defect dataset. 

 

 

 

 

TABLE Ⅷ 
DETAILED PERFORMANCE OF OUR METHOD WITH DIFFERENT SETTINGS 

Method mIoU (%) 

Dec-16s 76.84 

Dec-8s 80.36 
Dec-4s 81.68 

Dec-2s 82.00 

Dec-1s 82.07 
PFF(Convk×k) + GCA 80.46 

PFF(Max pooling) + GCA 79.89 

PFF(Convk×k) + GCA + BR 82.15 
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E. Ablative Study 

To evaluate the proposed method, this work conducts a rank 

of ablation experiments, including down-scale type, the effects 

of fusion feature resolution, and the boundary refinement for 

detection result. All the evaluate of these ablative experiments 

based on NEU-Seg dataset. 

1) The ablation studies for the down-sacle type: For the 

down-scale structure in PFF module, this paper uses large 

kernel convolution (convkk) to replace max pooling. On the one 

hand, convolution reduces the dimension of feature and retains 

feature information, while the max pooling may lead to a large 

number of feature information loss. Meanwhile, using large 

kernel size doesn’t bring too much computation burden. As 

shown in Table Ⅷ, the performance is improved from 79.89% 

to 80.46%. 

2) The effects of fusion feature resolution: Some fused 

feature structures (spatial and semantics) from FEM are easily 

destroyed when these features resolution are adjusted by 

convolution and deconvolution (with big kernel size and stride) 

which are very different from the resolution of target fusion 

feature map (Block5_3→Dec-1s / Block1_2→Dec-16s). To 

verify the effects of fusion feature resolution, this work 

additionally evaluates the five fusion feature maps (Dec-1s, 

Dec-2s, Dec-4s, Dec-8s, Dec-16s) come from PFF, and the 

corresponding performance are shown in Table Ⅷ. As can be 

seen from table that with the increment of resolutions, the 

model performance better gradually, which demonstrate the 

necessary of selection of resolution for feature maps fusion for 

our method. 

3)  The ablation of boundary refinements for inspection 

result: Boundary refinement block is added into the proposed 

method to improve the performance of result. As shown in 

Table Ⅷ, with the boundary refinement block yields results 

82.15% in terms of mIoU, which proves the validity of BR for 

our method. 

4) Compared with Other Multi-level Features Fusion 

Methods 

To verify the advantage of the proposed PFF module, we 

compared other multi-level features fusion methods, including 

UN [44], DLA [49], DSS [50]. We replace the PFF module of 

our proposed method with the multi-level fusion module of 

these methods. All the modules are based on the same backbone 

network VGG-16 network. In the experiment, we optimize the 

parameters of each multi-level features fusion module to 

achieve the best results. The evaluate results of these compared 

module on NEU-Seg dataset. The visual comparison of our 

approach and other methods is shown in Fig. 10. The 

quantitative evaluation is listed in Table Ⅸ. From Fig. 10 and 

Table Ⅸ we can see that compared with multi-level features 

fusion module, our PFF achieves better performance. 

V. CONCLUSION 

In this work, an automatic defect detection network for 

surface defect detection is proposed. In the framework, multi-

level features from defect images are extracted by feature 

extraction module. Pyramid feature fusion module is introduced 

to fuse these multi-level features into different resolutions. 

Global context attention module makes the effective 

information propagate from low-resolution fusion feature maps 

to high-resolution fusion ones. The boundary refinement block 

is added in the framework to refine the object boundary 

prediction.  Deep supervision is applied in the framework to 

speed up the process of network optimization. Experiments 

demonstrate that the proposed approach significantly advances 

the state-of-the-art approaches on four surface defect datasets 

detection. However, due to the limitation of the number and 

diversity of datasets, some defects are missing and wrong 

detected as shown in Fig.9. Although the speed of detection can 

reach 41-49 fps/s, which is acceptable in the real detection 

process and does not harm the user experiences, the detection 

speed needs to be further improved to meet the needs of real-

time and high accuracy. In addition, all the defect samples need 

to be labeled but consuming time. 

In future research, we plan to seek an efficient data 

augmentation strategy combined with our approach to improve 

the detection performance, and optimize the framework to 

accelerate the proposed approach to meet real-time and high 

accuracy requirement. In addition, semi-supervised mechanism 

will be adopted in our future work. 
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