
Pervasive Language Learning on
Modern Mobile Devices

Bartholomäus Wloka and Werner Winiwarter
University of Vienna

Research Group Data Analytics and Computing
Universitätsstraße 5, 1010 Vienna, Austria

{bartholomaeus.wloka,werner.winiwarter}@univie.ac.at

 Abstract: In this article, we describe our experience with deploying our previous work on
machine translation and language learning on mobile Internet platforms, i.e. smartphones. We
present KANTEAM – KAnji TEAcher Mobile, implemented on the Samsung Galaxy Tab with
Google's operating system Android, and UTROLL – Ubiquitous Translation and Language
Learning Environment, implemented on the Nokia N900 with Maemo5. In the process of
implementation, we have analyzed both platforms as ubiquitous learning devices with special
focus on sensor and hardware capabilities as well as usability. This work is combined with our
previous efforts and creates a bridge between a server based machine translation system and an
everyday smartphone user. We present a detailed description of both applications, UTROLL and
KANTEAM, while comparing their capabilities with respect to their hardware and operating
system issues.

1 Introduction

Technical advances of mobile computing technology enable us to carry out complex,
computer-aided tasks virtually anywhere. Computer-Assisted Language Learning has been
greatly influenced by this development, and is moving from a static desktop setting to a
pervasive mobile scenario. Especially language learning endeavors require a tremendous amount
of time and the learner is confined to his desk or computer at home or at university. In our
research, we aim to create a ubiquitous application environment, which not only enables users to
constantly repeat learned vocabulary, but keeps track of their progress and provides a customized
learning experience based on the analysis of their location and environment. The level of
embeddedness in computer-assisted learning can be depicted with the help of a biaxial graph
(Fig. 1). As we add embedded components to a desktop computer, shown in the lower left corner
of the diagram, we move towards the upper left corner, where we approach a pervasive system.
Such a learning environment is characterized by its situational awareness, while still being bound
to a certain place. If we add a mobile component to the learning scenario, we move towards the
right side of the diagram, where we have mobile learning in the lower and ubiquitous learning in
the upper right corner. Our aim is to move as far as possible towards ubiquitous applications,
where the users have access to learning materials anywhere and anytime, enabling them to
benefit from a situationally aware system, which enhances the learning experience by adapting to
the location, context, environmental conditions, and skill level of the user. This can be achieved
by connecting a user-specific profile, following a learner-centered approach (Levy 2009) with
various sensor data obtained from the mobile device. This way, the learning application can
interweave with almost every aspect of everyday life and accompany language students, hereby
allowing for a constant progress and a language learning experience tailored to their needs.

Figure 1: Types of learning environments (Lyytinen and Yoo 2002)

Motivated by this, we have created a system architecture for a ubiquitous language
learning and translation environment and, as a part of it, implemented prototypes of a mobile
environment for the study of Japanese characters (kanji). Kanjis are Japanese characters, adopted
from China roughly 1,500 years ago. Due to their origin, these characters have at least a
traditional Chinese and a Japanese pronunciation, and often several readings, depending on the
context or the combination with other characters. There are several thousands of these characters
in the Japanese language, from which roughly two thousand are commonly used. The different
pronunciations, depending on the context, make them a key component in the complexity of
learning the language. In addition to the characters, Japanese contains two syllabaries, hiragana
and katakana, which can present the pronunciation of the kanjis in a way similar to the Roman
alphabet (romaji). Hiragana are mainly used for particles, suffixes, and inflections, katakana for
transcribing foreign langauge words. This complexity of the learning material inspired us to
begin our implementation work with KANTEAM and UTROLL implemented on the Samsung
Galaxy Tab and the Nokia N900 respectively.

Both programs offer a way to browse through pages of Japanese signs, similar to
flashcards, but also the capability of reading sample sentences, which are contextually related to
a particular word. A selection of these sentences can be stored in a personal database for later
review. Pictographic examples of how to draw the characters, which is vital for their correctness,
is displayed through so called stroke order diagrams. An appealing and intuitive design
motivates the user to take advantage of the system and ease the burden of learning their way
around a complex set of menus. Furthermore, the progress and the queries of the learner are sent
to a knowledge base on the server and are stored for an analysis of the skill level. This
functionality offers an opportunity for the instructor to manually review the strengths and
weaknesses of the language student. Given a sufficient amount of students using the system, a
collaborative scenario can be implemented by comparing learners' information on the server.

After a short discussion of related work in Sect. 2, and our previous work on TREF
(Translation Enhancement Framework) in Sect. 3, we describe the architecture of both
ubiquitous language learning and translation environments in Sect. 4. Afterwards, we present

showcases in Sect. 5 guiding the reader through a series of screenshots, demonstrating the look
and the capabilities of the applications. Following this, we compare the implementation on both
systems in Sect. 6 and present our findings as to how well these devices are suitable for the
challenge. Finally in Sect. 7, we conclude by summarizing our findings and giving an outlook on
future work.

2 Related Work

One of the key components for our work are the language resources. We have chosen the
JMDICT (Breen 2004a) and KANJIDIC2 (Breen 2004b) resources published under the Creative
Commons Attribution-ShareAlike Licence (V3.0). JMDICT consists of 137,000 Japanese head
words with English glosses. KANJIDIC2 contains over 13,000 kanji entries with information
about their readings, translations to English and other languages, their frequency-of-use ranking
and miscellaneous information about notation, encoding, indexing, etc. This information is
structured in an XML file, which makes it ideal for our application. We have used both resources
with slight alterations due to limited storage and computational capabilities on the mobile device.

The presentation of the learning material is equally important as the content itself
(Bomsdorf 2005), hence we have focused on a clean and efficient GUI design, considering the
cognitive load theory (Sweller et al. 1998). We have followed the rule that a good balance
between challenging the learners' focus and memory with content, and a sparse representation
leads to a successful learning experience. Further, as confirmed by (Cui and Bull 2005),
contextual information, i.e. information inferred from the location and the learners' activities
should be utilized to suggest meaningful learning content to the learner anywhere at any time
(Gan 2007).

(Chen et al. 2002) formulated a well-structured list of characteristics, which an application for
ubiquitous learning should include in order to be successful.

• Accessibility: Learners have access to their documents, data, or videos from anywhere.
That information is provided based on their requests. Therefore, the learning is self-
directed.

• Immediacy: Wherever learners are, they can get any information immediately. Thus,
learners can solve problems quickly. Otherwise, the learner can record the question and
look for the answer later.

• Interactivity: Learners can interact with experts, teachers, or peers in the form of
synchronous or asynchronous communication. Hence, the experts are more reachable and
the knowledge becomes more available.

• Situation of instructional activities: The learning should be embedded in our daily life.
The problems encountered as well as the knowledge required are all presented in their
natural authentic forms. This helps learners to notice features of the problem situations
that make particular actions relevant.

An example of the application of those guidelines can be found in (Bomsdorf 2005). The idea
behind it is to give the students the chance to efficiently use their time and the ability to access
class room information at will. In (Jones and Jo 2004) a ubiquitous learning environment was
developed by using IEEE 802.11 WLAN and Bluetooth for network communication. This

showed that a learning experience, supported by a contextually matching surrounding, is more
valuable in terms of understanding and memorizing since it is based on an inductive process.
However, the limitations of the network technologies do not allow a deployment of that system
in a large network structure.

As pointed out by (Ogata 2008), language learning is a life-long activity, and support by
ubiquitous learning environments can accompany the learner at all stages. Language learning
takes place virtually anywhere and is optimized if supplemented on demand. The need for
immediate help makes translation resources on mobile devices very valuable, which is the reason
we have focused on combining those two, so that they complement each other in the best way
possible. In the research area of intelligent tutoring (Rau 2009), it was pointed out that the use of
multiple representations delivers better results than, for example, only repetition. The use of
pictures as representations of objects, which were in the focus of the tutoring applications,
proved to be very useful and enhanced the learning experience significantly. We have applied
this idea in our work and present the learning contents graphically, as well as through several
different representations. Furthermore, there is need for an efficient and clear user interface
design (Bomsdorf 2005). This is a vital point, considering the vast amount of information
available on a mobile device, combined with limited output capabilities, e.g. the small display.
(Calvary 2002) has addressed this issue in the CAMELEON project, proposing a dynamic user
interface. According to the cognitive load theory (Sweller et al. 1998), the amount of information
presented to the learner has a critical effect on the outcome of the learning process. Therefore, it
is an important design consideration while building a learning environment. Only information
which is stored by the short term memory can be processed and then stored in long term memory.
If the student is faced with too much information at once, some of it might never be properly
processed and is therefore lost. Too little information can lead to an “idle” state of the short term
memory, which makes it less productive. Hence, it is vital to keep adequate levels of information
presentation, depending on the students’ abilities as well as the situation. The abilities are defined
by how advanced they are in the learning process, which can be monitored by short quizzes. The
situation, in this context, is monitored by sensors, such as GPS and microphone, which measure
how well the students can focus on their study at any given time. Research efforts by (Cui and
Bull 2005) show that using contextual information, i.e. information inferred from the location
and the activities should be associated with the learning context to present a meaningful learning
content.

In our previous work we have focused on knowledge-enhanced statistical machine
translation which produced good results for the English-Japanese language pair. Though there
are already many different approaches in machine translation (Wilks 2008), we have achieved an
improvement with a hybrid approach, combining relational sequence alignment from
bioinformatics (Karwath 2007) and statistical machine translation. We have found that our
TRanslation Enhancement Framework, TREF (Wloka and Winiwarter 2010a), which uses
templates from sequence-aligned and clustered sentence pairs, assumed to be similar, is a
feasible way of improving translation candidates from statistical machine translation systems.
Since our method is both example-based and corpus-based, therefore containing numerous
intermediate information from the translation process, it is well applicable in a language learning
context. In the following section, we provide some background information on TREF, which is
necessary for the understanding of the rest of the paper.

3 TRANSLATION ENHANCEMENT FRAMEWORK

Machine translation between natural languages, which differ significantly in surface
characteristics (this applies to most European-Asian language pairs), is a difficult task, and
existing approaches do not produce satisfying results. With TREF we have succeeded to make a
step forward in this area. Therefore, we applied these results in both our implementations on
mobile devices. The underlying assumption of TREF is that there is a significant overlap
between the structure of a sentence and its meaning. Based on this assumption TREF uses a
sequence alignment algorithm by (Karwath and Kersting 2007), taken from the field of
bioinformatics, to make decisions about the restructuring of a translated sentence. As a
translation basis we take the output of the statistical machine translation system Moses (Hoang et
al. 2007). The overview of the dataflow in TREF is shown in (Fig. 2).

Figure 2: Translation Enhancement Framework dataflow

An input sentence is sent to the part-of-speech (PoS) tagger MontyLingua (Liu and Singh 2004)
for English, and ChaSen (Matsumoto et al. 2000) for Japanese. After each sentence token is
assigned a PoS-tag, the sentence and its tags are compared with sentences from a preformatted
corpus. For this purpose, we have modified and enriched the Jenaad Corpus (Utiyama 2003), a
bilingual data collection consisting of 150,000 sentences, taken from news articles. We have
removed as much noise as possible from the data, assigned PoS-tags to each sentence token and
stored the information in an SQL database. We have created different formats of the bilingual
data, one with a complete set of PoS information and others with reduced and optimized tag sets
to provide quick access and efficient processing. Additional representations and tag sets can be
added easily to satisfy different needs in future work. We have applied relational sequence
alignment (Karwath 2007) to obtain clusters of structurally similar sentences. The comparison of
the query sentence with the clusters yields several similar structures. At the same time, the query
sentence is processed with Moses to obtain a preliminary translation. This translation is then used

to fill the template of the structures, which had been found to be similar in terms of PoS-tags.
This way, a certain number of translation candidates is produced. The parameters of the
similarity measure can be adjusted to fine-tune the result, depending on the text type and text
domain. Allowing low threshold values for similarity, a higher number of candidates can be
produced, whereas a higher threshold value reduces the number of candidates.

The example in (Fig. 3) illustrates how the sentence “My name is Yamada” is processed
to present the user with the output, i.e. the translation candidates. The Japanese words in this
schematic representation are written in Roman transcription. The acronyms represent the PoS-
tags from MontyLingua and ChaSen, e.g. NNP (proper noun singular) or VBZ (verb, 3rd person
singular present). First, the PoS-tagging of the input sentence is performed, in this case: My/POP
(personal pronoun), name/NN (noun), is/VBZ (verb, 3rd person singular present), Yamada/NNP
(proper noun). The alignment detects sentences in the database which are similar in terms of
words and PoS-tags. In this step, different weights can be assigned to word or tag matches, so the
output can vary. We still experiment with different parameter settings on large input data, to
improve the alignment results. All structures of those similar sentences are considered structure
candidates for the final translation. The two groups of sentences in (Fig. 3) represent the concept
of structure-to-meaning-mapping as mentioned before. The candidates obtained from this
mapping are sent to the matching and translation step to improve the translation result from
Moses. Once the translation is finished, the target sentence is sent back and displayed on the
client. As a useful feature in terms of language learning, the user can choose to display the PoS-
tagged sentence from the translation process to obtain an insight about the linguistic
characteristics. In the future we plan to integrate a search for similar sentences based on the
aligning algorithm to find similar sentences for study suggestions. The interface of TREF for the
communication with the client is the Django Web framework (www.djangoproject.com). In our
previous work we have used Django to build a Web site interface. This site provides the access to
the TREF module and includes the translation functionality, PoS-tag output, random sentence
output from the Jenaad corpus as well as legends for the PoS-tags of MontyLingua and ChaSen.
The translation of the original Japanese ChaSen tags into English was part of our previous work
and is, to the best of our knowledge, the only English ChaSen PoS-tag legend available. The
entire content is accessible through the Web interface at https: //wloka.dac.univie.ac.at.

Figure 3: TREF processing example

4 System Architecture

4.1 UTROLL

The application is designed as a client-server setup. The client is the cell phone, in our case the
Nokia N900. The LAMP (Linux-Apache-MySQL-PHP) server is situated at the University of
Vienna. The operating system on the N900 is the open-source Maemo5, running on a Linux
kernel, designed for smartphones and Internet tablets. This platform was developed in
collaboration with the Linux kernel, Debian, and the GNOME project. The GUI and application
framework is Hildon, which was originally developed by Nokia and became recently a part of
GNOME. For development, we have used Scratchbox, a cross-compilation toolkit
(www.scratchbox.org/), in combination with Python and GTK+, a cross-platform widget toolkit
for creating graphical user interfaces. In contrast to distributions for desktop computers, Maemo5
has touch screen support, sliding keyboard support, an interface to the camera and to other
sensors, while discarding some typical desktop distribution functionalities. Even though the
hardware on the client side is quite powerful for a cell phone, it is not enough to perform all the
calculations needed for our framework in a reasonable amount of time. Hence, we need to
outsource as many calculations as possible to the server, where they can be processed much
quicker. Another reason is the fact that the main part of the translation module, TREF utilizes
SWI-Prolog (Wielemaker 2003), and as of now, there exists no Prolog compiler for the Nokia
N900 architecture. It is unlikely that efforts will be undertaken to offer such a compiler any time
soon, since even though SWI-Prolog is very efficient, the computational overhead created by
Prolog does not make it a good language choice for mobile devices in general. We have
considered the fact that a cellular phone is not always guaranteed to have a decent network

connection. Spots without a carrier signal, such as tunnels, elevators, etc. have to be taken into
consideration. Therefore, the communication between the server and the client is done over
asynchronous calls, to guarantee a service even in the case of an interruption of the network
connection. Additionally, a database on the mobile device is kept to store user input, such as
vocabulary lists or program preferences, and enable system use while the network and/or the
server is not available. Outdated entries from this database are purged periodically, due to limited
storage capabilities on the cell phone. The overview of the server-client architecture is shown in
(Fig. 4). The translation module presents the contents graphically and provides input fields. The
communication with the TREF module is initiated once a translation query is received. The
language learning module offers a graphical learning program with various functionality. Data
from the knowledge base on the server are used to construct a customized learning support, in
terms of word/sentence suggestions and difficulty level. Both interfaces store essential data on
the device. The language learning module accesses the personal database on the phone, which
holds the necessary information to operate the framework without a network connection, though
with limited capabilities. This personal database is synchronized with the user-specific database
on the server, whenever possible. The user-specific database, as shown in (Fig. 4), stores the
user’s history, such as previous query sentences. Words, compounds, and sentences stored in this
database are assumed to be of interest to the student and are preferred in lecture suggestions. In
future work, we plan to use ontologies in combination with the user’s queries to find contextually
fitting study suggestions. The didactic analysis module makes decisions about the difficulty and
the representation of the learning data by analyzing the user data from the user-specific database.
The user can also provide information about his environment, e.g. his degree of attention, similar
to (Bomsdorf 2010). We also plan to automatically infer as much information as possible by
monitoring sensor data, to perform situation analysis by using GPS and noise level data. In the
future, we intend to integrate a voice recording module as well as a text capture module. The
recording module will recognize words, spoken into the microphone of the cell phone, and
translate and store them in the user’s personal database. The text capture module will extract text
from pictures, taken with the camera of the cell phone. The text in the picture will then be
identified, translated, and stored in the personal database. We have incorporated the server
functionalities of our previous work, which are shown in (Fig. 4). The client in this case is
symbolized by the Nokia N900 device.

Figure 4: Server-Client Architecture

4.2 KANTEAM

The ubiquitous learning framework architecture is depicted in (Fig. 5). The starting point is the
Internet tablet or smartphone, symbolized here by a picture of the Samsung Galaxy Tab. The
application on the phone is constantly fed with sensor data from the smartphone motion sensor,
microphone, and the GPS. Upon startup of the learning application, this data, as well as user
specific data from the server if an Internet connection is available, is queried to present the
learners with the best possible learning material for their particular needs. Whether the users
choose to start a kanji lesson or type in a sentence to be translated, the action is forwarded to the
server (or temporarily stored on the device in case the network is not available) and used to
analyze the users' profile. On the server a knowledge base keeps track of the users' progress,
location and environment data, which is used to infer the custom learning experience. The
knowledge base on the mobile device serves a similar purpose, though not all data is located here
due to obvious space and computational constraints. The language learning and translation
service on the server offers translations and sentence analysis queries through TREF. Further, we
have incorporated language resources and a local knowledge base on the mobile device to
guarantee basic functionalities in case the server is not available.

Figure 5: System Architecture

5 Showcase

5.1 UTROLL

In this section we present the components of our Ubiquitous TRanslatiOn and Language
Learning (UTROLL) environment. We have implemented a Japanese-English translation
module, and a kanji learning module as part of the language learning task of UTROLL. The
workflow of the kanji learning module and its GUI are demonstrated in (Fig. 6). In the Starting
View the user has the choice of starting the Translation Task or the Language Learning Task.
Upon initiating the Language Learning Task, there is an attempt to connect to the server. If the
connection is successful, the user-specific data is transmitted to the server, where the didactic
profile is generated, according to the data in the user-specific database. The result, which is sent
back to the phone, determines the difficulty level of the learning material. In order to maintain a
challenging learning experience with growing skill, the didactic analysis is performed

periodically. In the kanji learning application, users can review flashcards with various
information about a kanji, which they can choose to be displayed randomly or in a sequence
suggested by the didactic profile. We call this the Flashcard View (Fig. 7). From here, the student
can switch to the Stroke Order Diagram View (Fig. 8), where the exact way of drawing the kanji
is presented with a sequence of images. We strictly follow the cognitive load theory mentioned
before by separating the information into different views. The Compound View (Fig. 9) is a
collection of compound terms, extracted from JMdict, which include the currently selected kanji.
Users can store any of those compounds in a personal database. These stored compounds can
later be reviewed in the Personal Database View (Fig. 10), which is accessible from the
Flashcard View. The stored entries are considered in the process of creating or updating a
didactic profile, in a way that the future suggestions will emphasize on similar terms or the
domain of the terms.

Figure 6: UTROLL – language learning task workflow

Figure 7: UTROLL – Flashcard view

Figure 8: UTROLL – stroke order diagram view

Figure 9: UTROLL – compound view

Figure 10: UTROLL – Personal database view

Selecting the Translation Task from the Starting View initiates a workflow as shown in
(Fig. 11). Upon initiating the task, a connection to the server is attempted. In contrast to the
language learning task, a connection to the server is vital. In the first view (Fig. 12), the user has
the choice of the input language. An input box (Fig. 13), takes the query sentence and sends it to
the TREF module, which is located at the server. In the next view (Fig. 14), the translation result
is displayed and the query sentence is stored on the server for later use by the didactic module.
Additionally, the user has the choice of viewing further language details (Fig. 15). At the time of
writing, we display various PoS-tag information. In the future we plan to integrate a more
detailed linguistic analysis, e.g. dependency trees produced by CaboCha (Kudo and Matsumoto
2002). Even though the current programming libraries available for the Maemo5 platform are
fairly intuitive and easy to program, there is still a lack of certain design capabilities, so that
there has been a significant discrepancy between our initial design and the final realization.
Unsightly gaps be tween the lines or between buttons are almost impossible to avoid using the
current version of the SDK. The final implementation of the application on the Maemo platform
is available for download at:
http://maemo.org/ packages/view/ktmobile/.

Figure 11: UTROLL – Translation task workflow

Figure 12: UTROLL – Language selection view

Figure 13: UTROLL – Sentence input view

Figure 14: UTROLL – Translation result view

Figure 15: UTROLL – PoS-tag view

5.2 KANTEAM

In this section, we present a showcase of the Android 2.2 application KANTEAM. It is a
flashcard-like application in which learners can choose to display kanji information based on
different criteria, e.g. frequency-of-use of the character or a contextually inferred suggestion. The
data can also be explored sequentially moving from screen to screen by finger-swipe or selecting
a random entry by shaking the device. An example screenshot of a representation of the kanji
data is shown in (Fig. 16). Below the title of the application, the kanji is shown in red color.
Further, the different readings of the kanji are denoted in katakana and hiragana script, followed
by the frequency ranking and the English meaning. The button just below the meanings takes the
learner to a dynamically created list of compound terms (combinations of two to four kanji and
their meanings). At the bottom, the stroke order diagram describes the correct sequence of
drawing this particular character. From the main menu, which is accessible through a button on
the Android device, the user can choose to input a sentence, Japanese to English or vice versa, to
translate via the server-based part of the system (Fig. 17). Upon entering the query, the result is
displayed (Fig. 18) and the learner has the opportunity to take a detailed look at the part-of-
speech tagging data of the translation process to understand the grammatical properties of both
the input as well as the translated sentence (Fig. 19).

Figure 16: KANTEAM screenshot

Figure 17: Translation – sentence input

Figure 18: Translation – result

Figure 19: Translation – part-of-speech tags

6 Discussion

After implementing our application on both systems, we have found that both offer a
good platform for a server/client language learning application. The API and the interface to the
hardware on both smartphones is well implemented, though the Android system seems to have a
slight advantage due to its wider popularity. The GUI design was more intuitive and flexible on
the Android system. However, text manipulation is easier and more efficient on the Maemo5
platform.

The implementation of the Android system was done in the Eclipse-3.5 software
development framework, using the Android Developer plugin provided by Google. The Android
programming language, which is Java-based and heavily relying on XML-defined structures,
proved to be an excellent choice for our purposes. These structures allow for quick and intuitive
GUI design. This model is inspired by the Web development model where the presentation of the
GUI and the application logic is separated. The communication between those two components
is executed behind the scenes by the Android operating system. The Android system seems to
have an advantage when it comes to the efficiency when dealing with large amounts of data. It
comes with a formidable library and interface to XML files, while this can be somehow
cumbersome on the Maemo5 platform. The XML handling capabilities on the Android system
enabled us to import the language resources very quickly and iterate over a large amount of data
without any noticeable performance issues. Compared with the Maemo5 framework, the
implementation was more straightforward, even though the support for the Python language on

the Maemo5 device offered more flexibility when working with string manipulation.

As can be seen in the side-by-side comparison of software features (Fig. 20), the base of
both systems is a Linux Kernel and both accept C/C++ as a language for developing
applications. However, it is much easier to use Java on Android and Python on Maemo5, due to
better library support and easier, more abstracted, source code. When it comes to the
development environment, Maemo5 does not offer a comprehensive solution, however, it is
possible to develop on the device itself if needed and when using Python as the language of
choice, no compilation is necessary and the application can be tested instantaneously. Android on
the other hand offers the Eclipse plugin which makes porting the application to the device very
easy.

Android 2.2 Maemo5

Base Linux 2.6 Nokia N900-50-1 Linux 2.6.28
- omap1 on armv71

Prog. Language Choices Java, C/C++ C/C++, Python

Development Environments Arbitrary, development can be
done directly on device

Eclipse with plugins or any
other (more complicated
deployment using other)

Figure 20: Software comparison

A hardware comparison of the devices we have used is shown in (Fig. 21). The Galaxy
Tab has a small advantage over the slightly older N900. The presentation of apps profits greatly
from the larger screen on the Galaxy Tab. Due to its performance advantage and the more
efficient data management of Android our application runs considerably faster on this device.

Nokia N900 Samsung Galaxy Tab

CPU ARM Cortex-A8 600MHz ARM Cortex-A8 1.0GHz

Memory 256MB 512MB

Operating System Maemo5 Android 2.2

HD 32GB 32MB

Screen 8.9cm diagonal, 800 x 480px 18cm diagonal, 1024 x 600px

Figure 21: Hardware comparison

Overall, the Android platform offers a visually more attractive solution. Since there are
far more Android users and programmers than for the Maemo5 system, there is obviously more
support for future work on Android. Other disadvantages of the Maemo5 platform are that, at the
time of writing, it already seized its development to merge into the MeeGo project and the new

partnership of Nokia with Microsoft has rendered the future of the open source system on Nokia
devices very questionable.

7 Conclusion

 In this article, we have presented the progress of our work on a ubiquitous language
learning environment and an implementation of the client-side application on the Nokia N900
with Maemo5 and the Samsung Galaxy Tab with Android 2.2. We have described the system
regarding ubiquitous language learning and its capability towards new research trends such as
collaborative learning and utilization of smartphone sensor capabilities.

 We are ready to deploy our prototypes to a classroom scenario at the language department
of our university to obtain valuable feedback and evaluate the system regarding scalability as
well as usability. We expect a wide community of users, especially for KANTEAM due to the
popularity of the Android platform and its propagation to modern smartphone devices.

 In the future, we plan to widen the ubiquitous component even more, by adding
instructional scenarios based on the learners' location, in combination with Google's map and
location services and add new and/or additional language resources, which are currently being
developed, e.g. the Japanese WordNet (Bond 2009), offering graphical illustrations of concepts
for an even more valuable and intuitive learning experience.

Further, we would like to integrate the GPS capabilities of the mobile devices to offer a
selection of courses, translations and language related suggestions to the user based on their
current location and combine the current application with a graphical instructional adventure
game, moving away from text based lessons to visually enhanced presented learning material.

References:

Lyytinen, K. and Yoo, Y. (2002). Issues and challenges in ubiquitous computing. Communications of the ACM, 45 (12), 62-65

Levy, M. (2009). Technologies in use for second language learning. The Modern Language Journal, 93, 769-782.

Breen, J. (2004 a). JMdict: A Japanese-Multilingual dictionary. COLING Multilingual Resources Workshop, 2004, ACL,
Stroudsburg, PA. 65-72.

Breen, J.W. (2004b). The KANJIDIC2 Project, http://www.csse.monash.edu.au/~jwb/ kanjidic2/

Bomsdorf. B. (2005). Adaptation of learning spaces: Supporting ubiquitous learning in higher distance education. Mobile
Computing and Ambient Intelligence: The Challenge of Multimedia, Dagstuhl Seminar, Dagstuhl, Germany, 2005.

Sweller, J., & van Merrienboer J., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology
Review. 10, 251–296, 1998.

Cui, Y. & Bull, S. (2005). Context and learner modelling for the mobile foreign language learner. System, 33(2), 353–367, 2005.

Wloka B. and Winiwarter W. (2010a). TREF – TRanslation Enhancement Framework for Japanese-English. International
Multiconference on Computer Science and Information Technology, IEEE, 2010. 541-546

Wloka B. and Winiwarter W. (2010 b). Enhancing Language Learning and Translation with Ubiquitous Applications.
International Conference on Advances in Mobile Computing and Multimedia, ACM, 2010. 203-210

Wilks, Y. (2008). Machine Translation: Its Scope and Limits. Springer-Verlag, 2008.

Chen, Y. et al. (2002). A mobile scaffolding-aid-base bird-watching learning system. IEEE International Workshop on Wireless
and Mobile Technologies in Eduction, IEEE Computer Society Press, 2002. 15-22

Bond, F. et al. (2009). Enhancing the Japanese WordNet. 7th Workshop on Asian Language Resources, in conjunction with ACL-
IJCNLP, 2009.

Gan, L.H. et al. (2007). Language learning outside the classroom using handhelds with knowledge management. Conference on
Supporting Learning Flow through Integrative Technologies, Amsterdam, The Netherlands, 2007. IOS Press. 361–368

Bond, F. et al. (2009). Enhancing the Japanese WordNet. 7th Workshop on Asian Language Resources, in conjunction with ACL-
IJCNLP, 2009.

Jones V. and Jo J. H. (2004) Ubiquitous learning environment: An adaptive teaching system using ubiquitous technology. In
Proceedings of the 21st ASCILITE Conference, 2004.

Karwath A. and Kersting K. (2007). Relational sequence alignments and logos. pages 290–304, 2007.

Hoang H. et al. (2007). Moses: Open source toolkit for statistical machine translation. pages 177–180, 2007.

Liu H. and Singh P. (2004). Conceptnet — a practical commonsense reasoning tool-kit. BT Technology Journal, 22(4):211–226,
2004.

Matsumoto Y., Kitauchi A., Hirano T.Y., Matsuda H., Takaoka K., Asahara M. (2000). Japanese Morphological Analysis System
ChaSen version 2.2.1, 2000.

Utiyama M. and Isahara H. (2003). Reliable measures for aligning Japanese-English news articles and sentences. In Proceedings
of the 41st Annual Meeting on Association for Computational Linguistics, pages 72–79, Morristown, NJ, USA, 2003. Association
for Computational Linguistics.

Rau M.A., Aleven V., Rummel N. (2009). Intelligent tutoring systems with multiple representations and self-explanation prompts
support learning of fractions. In Proceedings of the 2009 Conference on Artificial Intelligence in Education, pages 441–448,
Amsterdam, The Netherlands, 2009. IOS Press.

Calvary C. et al. (2002). Plasticity of user interfaces: A revised reference framework. In Proceedings of TAMODIA, 2002.

Wielemaker J. (2003). An overview of the SWI-Prolog programming environment. In F. Mesnard and A. Serebenik, editors,
Proceedings of the 13th International Workshop on Logic Programming Environments, pages 1–16, Heverlee, Belgium, 2003.
Katholieke Universiteit Leuven.

Kudo T. and Matsumoto Y. (2002). Japanese dependency analysis using cascaded chunking. In CoNLL 2002: Proceedings of the
6th Conference on Natural Language Learning 2002 (COLING 2002 Post-Conference Workshops), pages 63–69, 2002.

Ogata H. (2008). Computer supported ubiquitous learning: Augmenting learning experiences in the real world. In IEEE
International Conference on Wireless, Mobile, and Ubiquitous Technology in Education, pages 3–10, Los Alamitos, CA, USA,
2008. IEEE Computer Society.

