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 Abstract: In  this  article,  we  describe  our  experience  with  deploying  our  previous  work  on 
machine translation and language learning on mobile Internet platforms, i.e. smartphones.  We 
present KANTEAM – KAnji TEAcher Mobile, implemented on the Samsung Galaxy Tab with 
Google's  operating  system  Android,  and  UTROLL –  Ubiquitous  Translation  and  Language 
Learning  Environment,  implemented  on  the  Nokia  N900  with  Maemo5.  In  the  process  of 
implementation,  we have analyzed both platforms as ubiquitous learning devices  with special 
focus on sensor and hardware capabilities as well as usability. This work is combined with our 
previous efforts and creates a bridge between a server based machine translation system and an  
everyday smartphone user. We present a detailed description of both applications, UTROLL and 
KANTEAM, while  comparing their  capabilities  with  respect  to  their  hardware  and  operating 
system issues.

1 Introduction

Technical  advances of mobile  computing technology enable us  to  carry out  complex, 
computer-aided  tasks  virtually  anywhere.  Computer-Assisted  Language  Learning has  been 
greatly  influenced  by  this  development,  and  is  moving  from  a  static  desktop  setting  to  a 
pervasive mobile scenario. Especially language learning endeavors require a tremendous amount 
of time and the learner is confined to his desk or computer at home or at university.  In our 
research, we aim to create a ubiquitous application environment, which not only enables users to 
constantly repeat learned vocabulary, but keeps track of their progress and provides a customized 
learning  experience  based  on  the  analysis  of  their  location  and  environment.  The  level  of 
embeddedness in computer-assisted learning can be depicted with the help of a biaxial graph 
(Fig. 1). As we add embedded components to a desktop computer, shown in the lower left corner 
of the diagram, we move towards the upper left corner, where we approach a pervasive system. 
Such a learning environment is characterized by its situational awareness, while still being bound 
to a certain place. If we add a mobile component to the learning scenario, we move towards the 
right side of the diagram, where we have mobile learning in the lower and ubiquitous learning in 
the upper right corner. Our aim is to move as far as possible towards ubiquitous applications, 
where  the  users  have  access  to  learning  materials  anywhere  and anytime,  enabling  them to 
benefit from a situationally aware system, which enhances the learning experience by adapting to 
the location, context, environmental conditions, and skill level of the user. This can be achieved 
by connecting a user-specific profile, following a learner-centered approach (Levy 2009) with 
various  sensor data  obtained from the mobile device.  This way,  the learning application can 
interweave with almost every aspect of everyday life and accompany language students, hereby 
allowing for a constant progress and a language learning experience tailored to their needs.



Figure 1: Types of learning environments (Lyytinen and Yoo 2002)

Motivated  by  this,  we  have  created  a  system architecture  for  a  ubiquitous  language 
learning and translation environment and, as a part of it, implemented prototypes of a mobile 
environment for the study of Japanese characters (kanji). Kanjis are Japanese characters, adopted 
from China  roughly  1,500  years  ago.  Due  to  their  origin,  these  characters  have  at  least  a 
traditional Chinese and a Japanese pronunciation, and often several readings, depending on the 
context or the combination with other characters. There are several thousands of these characters 
in the Japanese language, from which roughly two thousand are commonly used. The different 
pronunciations, depending on the context, make them a key component in the complexity of 
learning the language. In addition to the characters, Japanese contains two syllabaries, hiragana 
and katakana, which can present the pronunciation of the kanjis in a way similar to the Roman 
alphabet (romaji). Hiragana are mainly used for particles, suffixes, and inflections, katakana for 
transcribing foreign langauge words.  This  complexity of the learning material  inspired us to 
begin our implementation work with KANTEAM and UTROLL implemented on the Samsung 
Galaxy Tab and the Nokia N900 respectively.

Both  programs  offer  a  way  to  browse  through  pages  of  Japanese  signs,  similar  to 
flashcards, but also the capability of reading sample sentences, which are contextually related to 
a particular word. A selection of these sentences can be stored in a personal database for later 
review. Pictographic examples of how to draw the characters, which is vital for their correctness, 
is  displayed  through  so  called  stroke  order  diagrams.  An appealing  and  intuitive  design 
motivates the user to take advantage of the system and ease the burden of learning their way 
around a complex set of menus. Furthermore, the progress and the queries of the learner are sent 
to  a  knowledge  base  on  the  server  and  are  stored  for  an  analysis  of  the  skill  level.  This 
functionality  offers  an  opportunity  for  the  instructor  to  manually  review  the  strengths  and 
weaknesses of the language student. Given a sufficient amount of students using the system, a 
collaborative scenario can be implemented by comparing learners' information on the server.

After a short  discussion of related work in  Sect.  2,  and our previous work on TREF 
(Translation  Enhancement  Framework)  in  Sect.  3,  we  describe  the  architecture  of  both 
ubiquitous language learning and translation environments in Sect. 4. Afterwards, we present 



showcases in Sect. 5 guiding the reader through a series of screenshots, demonstrating the look 
and the capabilities of the applications. Following this, we compare the implementation on both 
systems in Sect. 6 and present our findings as to how well these devices are suitable for the 
challenge. Finally in Sect. 7, we conclude by summarizing our findings and giving an outlook on 
future work.

2 Related Work

One of the key components for our work are the language resources. We have chosen the 
JMDICT (Breen 2004a) and KANJIDIC2 (Breen 2004b) resources published under the Creative 
Commons Attribution-ShareAlike Licence (V3.0). JMDICT consists of 137,000 Japanese head 
words with English glosses. KANJIDIC2 contains over 13,000 kanji entries with information 
about their readings, translations to English and other languages, their frequency-of-use ranking 
and  miscellaneous  information  about  notation,  encoding,  indexing,  etc.  This  information  is 
structured in an XML file, which makes it ideal for our application. We have used both resources  
with slight alterations due to limited storage and computational capabilities on the mobile device.

The  presentation  of  the  learning  material  is  equally  important  as  the  content  itself 
(Bomsdorf 2005), hence we have focused on a clean and efficient GUI design, considering the 
cognitive load theory  (Sweller  et  al.  1998).  We have followed the rule  that  a  good balance 
between challenging the learners' focus and memory with content, and a sparse representation 
leads  to  a  successful  learning  experience.  Further,  as  confirmed  by  (Cui  and  Bull  2005), 
contextual information,  i.e.  information inferred from the location and the learners'  activities 
should be utilized to suggest meaningful learning content to the learner anywhere at any time 
(Gan 2007).

(Chen et al. 2002) formulated a well-structured list of characteristics, which an application for 
ubiquitous learning should include in order to be successful. 

• Accessibility: Learners have access to their documents, data, or videos from anywhere. 
That  information is  provided based on their  requests.  Therefore,  the learning is  self-
directed.

• Immediacy:  Wherever  learners  are,  they can  get  any information  immediately.  Thus, 
learners can solve problems quickly. Otherwise, the learner can record the question and 
look for the answer later. 

• Interactivity:  Learners  can  interact  with  experts,  teachers,  or  peers  in  the  form  of 
synchronous or asynchronous communication. Hence, the experts are more reachable and 
the knowledge becomes more available. 

• Situation of instructional activities: The learning should be embedded in our daily life. 
The problems   encountered as well as the knowledge required are all presented in their 
natural authentic forms. This helps learners to notice features of the problem situations 
that make particular actions relevant. 

An example of the application of those guidelines can be found in (Bomsdorf 2005). The idea 
behind it is to give the students the chance to efficiently use their time and the ability to access 
class room information at will. In (Jones and Jo 2004) a ubiquitous learning environment was 
developed  by  using  IEEE  802.11  WLAN  and  Bluetooth  for  network  communication.  This 



showed that a learning experience, supported by a contextually matching surrounding, is more 
valuable in terms of understanding and memorizing since it is based on an inductive process. 
However, the limitations of the network technologies do not allow a deployment of that system 
in a large network structure. 

As pointed out by (Ogata 2008), language learning is a life-long activity, and support by 
ubiquitous learning environments can accompany the learner at all stages. Language learning 
takes  place  virtually  anywhere  and  is  optimized  if  supplemented  on  demand.  The  need  for 
immediate help makes translation resources on mobile devices very valuable, which is the reason 
we have focused on combining those two, so that they complement each other in the best way 
possible. In the research area of intelligent tutoring (Rau 2009), it was pointed out that the use of 
multiple representations  delivers better  results  than,  for example,  only repetition.  The use of 
pictures  as  representations  of  objects,  which  were  in  the  focus  of  the  tutoring  applications, 
proved to be very useful and enhanced the learning experience  significantly. We have applied 
this idea in our work and present the learning contents graphically, as well as through several 
different  representations.  Furthermore,  there is  need for  an  efficient and clear  user  interface 
design  (Bomsdorf  2005).  This  is  a  vital  point,  considering  the  vast  amount  of  information 
available on a mobile device, combined with limited output capabilities, e.g. the small display. 
(Calvary 2002) has addressed this issue in the CAMELEON project, proposing a dynamic user 
interface. According to the cognitive load theory (Sweller et al. 1998), the amount of information 
presented to the learner has a critical effect on the outcome of the learning process. Therefore, it 
is an important design consideration while building a learning environment. Only information 
which is stored by the short term memory can be processed and then stored in long term memory. 
If the student is faced with too much information at once, some of it might never be properly 
processed and is therefore lost. Too little information can lead to an “idle” state of the short term 
memory, which makes it less productive. Hence, it is vital to keep adequate levels of information 
presentation, depending on the students’ abilities as well as the situation. The abilities are defined 
by how advanced they are in the learning process, which can be monitored by short quizzes. The 
situation, in this context, is monitored by sensors, such as GPS and microphone, which measure 
how well the students can focus on their study at any given time. Research efforts by (Cui and 
Bull 2005) show that using contextual information, i.e. information inferred from the location 
and the activities should be associated with the learning context to present a meaningful learning 
content. 

In  our  previous  work  we  have  focused  on  knowledge-enhanced  statistical  machine 
translation  which produced  good results for the English-Japanese language pair. Though there 
are already many different approaches in machine translation (Wilks 2008), we have achieved an 
improvement  with  a  hybrid  approach,  combining  relational  sequence  alignment  from 
bioinformatics  (Karwath  2007)  and  statistical  machine  translation.  We  have  found  that  our 
TRanslation  Enhancement  Framework,  TREF  (Wloka  and  Winiwarter  2010a),  which  uses 
templates  from  sequence-aligned  and  clustered  sentence  pairs,  assumed  to  be  similar,  is  a 
feasible way of improving translation candidates from statistical machine translation systems. 
Since  our  method  is  both  example-based  and  corpus-based, therefore  containing  numerous 
intermediate information from the translation process, it is well applicable in a language learning 
context. In the following section, we provide some background information on TREF, which is 
necessary for the understanding of the rest of the paper.



3 TRANSLATION ENHANCEMENT FRAMEWORK 

Machine  translation  between  natural  languages,  which  differ  significantly  in  surface 
characteristics  (this  applies  to  most  European-Asian  language  pairs),  is  a  difficult  task,  and 
existing approaches do not produce satisfying results. With TREF we have succeeded to make a 
step forward in this area. Therefore, we applied these results in both our implementations on 
mobile  devices.  The  underlying  assumption  of  TREF  is  that  there  is  a  significant  overlap 
between the structure of a sentence and its meaning. Based on this assumption TREF uses a 
sequence  alignment  algorithm  by  (Karwath  and  Kersting  2007),  taken  from  the  field  of 
bioinformatics,  to  make  decisions  about  the  restructuring  of  a  translated  sentence.  As  a 
translation basis we take the output of the statistical machine translation system Moses (Hoang et 
al. 2007). The overview of the dataflow in TREF is shown in (Fig. 2). 

Figure 2: Translation Enhancement Framework dataflow

An input sentence is sent to the part-of-speech (PoS) tagger MontyLingua (Liu and Singh 2004) 
for English, and ChaSen  (Matsumoto et al.  2000) for Japanese.  After each sentence token is 
assigned a PoS-tag, the sentence and its tags are compared with sentences from a preformatted 
corpus. For this purpose, we have modified and enriched the Jenaad Corpus (Utiyama 2003), a 
bilingual data collection consisting of 150,000 sentences,  taken from news articles.  We have 
removed as much noise as possible from the data, assigned PoS-tags to each sentence token and 
stored the information in an SQL database. We have created  different formats of the bilingual 
data, one with a complete set of PoS information and others with reduced and optimized tag sets 
to provide quick access and efficient processing. Additional representations and tag sets can be 
added  easily  to  satisfy  different needs  in  future  work.  We have  applied  relational  sequence 
alignment (Karwath 2007) to obtain clusters of structurally similar sentences. The comparison of 
the query sentence with the clusters yields several similar structures. At the same time, the query 
sentence is processed with Moses to obtain a preliminary translation. This translation is then used 



to  fill the template of the structures, which had been found to be similar in terms of PoS-tags. 
This  way,  a  certain  number  of  translation  candidates  is  produced.  The  parameters  of  the 
similarity measure can be adjusted to  fine-tune the result, depending on the text type and text 
domain.  Allowing low threshold values for similarity,  a higher  number of candidates can be 
produced, whereas a higher threshold value reduces the number of candidates. 

The example in (Fig. 3) illustrates how the sentence “My name is Yamada” is processed 
to present the user with the output, i.e. the translation candidates. The Japanese words in this 
schematic representation are written in Roman transcription. The acronyms represent the PoS-
tags from MontyLingua and ChaSen, e.g. NNP (proper noun singular) or VBZ (verb, 3rd person 
singular present). First, the PoS-tagging of the input sentence is performed, in this case: My/POP 
(personal pronoun), name/NN (noun), is/VBZ (verb, 3rd person singular present), Yamada/NNP 
(proper noun). The alignment detects sentences in the database which are similar in terms of 
words and PoS-tags. In this step, different weights can be assigned to word or tag matches, so the 
output can vary. We still experiment with different parameter settings on large input data, to 
improve the alignment results. All structures of those similar sentences are considered structure 
candidates for the final translation. The two groups of sentences in (Fig. 3) represent the concept 
of  structure-to-meaning-mapping  as  mentioned  before.  The  candidates  obtained  from  this 
mapping are sent to the matching and translation step to improve the translation result  from 
Moses. Once the translation is finished, the target sentence is sent back and displayed on the 
client. As a useful feature in terms of language learning, the user can choose to display the PoS-
tagged  sentence  from  the  translation  process  to  obtain  an  insight  about  the  linguistic 
characteristics. In the future we plan to integrate a search for similar sentences based on the 
aligning algorithm to find similar sentences for study suggestions. The interface of TREF for the 
communication with the client is the Django Web framework (www.djangoproject.com). In our 
previous work we have used Django to build a Web site interface. This site provides the access to 
the TREF module and includes the translation functionality, PoS-tag output, random sentence 
output from the Jenaad corpus as well as legends for the PoS-tags of MontyLingua and ChaSen. 
The translation of the original Japanese ChaSen tags into English was part of our previous work 
and is, to the best of our knowledge, the only English ChaSen PoS-tag legend available. The 
entire content is accessible through the Web interface at https: //wloka.dac.univie.ac.at. 



Figure 3: TREF processing example

4 System Architecture 

4.1 UTROLL

The application is designed as a client-server setup. The client is the cell phone, in our case the 
Nokia N900. The LAMP (Linux-Apache-MySQL-PHP) server is situated at the University of 
Vienna.  The operating system on the N900 is the open-source Maemo5, running on a Linux 
kernel,  designed  for  smartphones  and  Internet  tablets.  This  platform  was  developed  in 
collaboration with the Linux kernel, Debian, and the GNOME project. The GUI and application 
framework is Hildon, which was originally developed by Nokia and became recently a part of 
GNOME.  For  development,  we  have  used  Scratchbox,  a  cross-compilation  toolkit 
(www.scratchbox.org/), in combination with Python and GTK+, a cross-platform widget toolkit 
for creating graphical user interfaces. In contrast to distributions for desktop computers, Maemo5 
has  touch screen support,  sliding  keyboard support,  an  interface to  the camera  and to  other 
sensors,  while  discarding  some typical  desktop  distribution  functionalities.  Even  though  the 
hardware on the client side is quite powerful for a cell phone, it is not enough to perform all the 
calculations  needed for  our  framework in  a  reasonable  amount  of  time.  Hence,  we need to 
outsource as many calculations as possible to the server,  where they can be processed much 
quicker. Another reason is the fact that the main part of the translation module, TREF utilizes 
SWI-Prolog (Wielemaker 2003), and as of now, there exists no Prolog compiler for the Nokia 
N900 architecture. It is unlikely that efforts will be undertaken to offer such a compiler any time 
soon, since even though SWI-Prolog is very efficient, the computational overhead created by 
Prolog  does  not  make  it  a  good  language  choice  for  mobile  devices  in  general.  We  have 
considered the fact that a cellular phone is  not always guaranteed to have a decent network 



connection. Spots without a carrier signal, such as tunnels, elevators, etc. have to be taken into 
consideration.  Therefore,  the communication between the server  and the  client  is  done over 
asynchronous calls, to guarantee a service even in the case of an interruption of the network 
connection. Additionally, a database on the mobile device is kept to store user input, such as 
vocabulary lists or program preferences, and enable system use while the network and/or the 
server is not available. Outdated entries from this database are purged periodically, due to limited 
storage capabilities on the cell phone. The overview of the server-client architecture is shown in 
(Fig. 4). The translation module presents the contents graphically and provides input fields. The 
communication with the TREF module is  initiated once a  translation query is  received.  The 
language learning module offers a graphical learning program with various functionality. Data 
from the knowledge base on the server are used to construct a customized learning support, in 
terms of word/sentence suggestions and difficulty level. Both interfaces store essential data on 
the device. The language learning module accesses the personal database on the phone, which 
holds the necessary information to operate the framework without a network connection, though 
with limited capabilities. This personal database is synchronized with the user-specific database 
on the server, whenever possible. The user-specific database, as shown in (Fig. 4), stores the 
user’s history, such as previous query sentences. Words, compounds, and sentences stored in this 
database are assumed to be of interest to the student and are preferred in lecture suggestions. In 
future work, we plan to use ontologies in combination with the user’s queries to find contextually 
fitting study suggestions. The didactic analysis module makes decisions about the difficulty and 
the representation of the learning data by analyzing the user data from the user-specific database. 
The user can also provide information about his environment, e.g. his degree of attention, similar 
to (Bomsdorf 2010). We also plan to automatically infer as much information as possible by 
monitoring sensor data, to perform situation analysis by using GPS and noise level data. In the 
future, we intend to integrate a voice recording module as well as a text capture module. The 
recording module  will  recognize  words,  spoken into  the  microphone of  the  cell  phone,  and 
translate and store them in the user’s personal database. The text capture module will extract text 
from pictures,  taken with the camera of the cell  phone.  The text  in the picture will  then be 
identified,  translated,  and  stored  in  the  personal  database.  We  have  incorporated  the  server 
functionalities of our previous work,  which are shown in (Fig.  4).  The client  in this  case is 
symbolized by the Nokia N900 device.



 
Figure 4: Server-Client Architecture

4.2 KANTEAM

The ubiquitous learning framework architecture is depicted in (Fig. 5). The starting point is the 
Internet tablet or smartphone, symbolized here by a picture of the Samsung Galaxy Tab. The 
application on the phone is constantly fed with sensor data from the smartphone motion sensor, 
microphone, and the GPS. Upon startup of the  learning application, this data, as well as user 
specific data from the server if  an Internet connection is available,  is queried to present the 
learners with the best possible learning material for their particular needs. Whether the users 
choose to start a kanji lesson or type in a sentence to be translated, the action is forwarded to the 
server (or temporarily stored on the device in case the network is not available) and used to  
analyze the users' profile. On the server a  knowledge base keeps track of the users' progress, 
location  and  environment  data,  which  is  used  to  infer  the  custom learning  experience.  The 
knowledge base on the mobile device serves a similar purpose, though not all data is located here 
due  to  obvious  space  and computational  constraints.  The  language learning and translation  
service on the server offers translations and sentence analysis queries through TREF. Further, we 
have  incorporated  language  resources and  a  local  knowledge  base  on the  mobile  device  to 
guarantee basic functionalities in case the server is not available.



 

Figure 5: System Architecture

5 Showcase

5.1 UTROLL

In  this  section  we  present  the  components  of  our  Ubiquitous  TRanslatiOn  and  Language 
Learning  (UTROLL)  environment.  We  have  implemented  a  Japanese-English  translation 
module, and a kanji learning module as part of the language learning task of UTROLL. The 
workflow of the kanji learning module and its GUI are demonstrated in (Fig. 6). In the Starting 
View the user has the choice of starting the Translation Task or the Language Learning Task. 
Upon initiating the Language Learning Task, there is an attempt to connect to the server. If the 
connection is successful, the user-specific data is transmitted to the server, where the didactic 
profile is generated, according to the data in the user-specific database. The result, which is sent 
back to the phone, determines the difficulty level of the learning material. In order to maintain a 
challenging  learning  experience  with  growing  skill,  the  didactic  analysis  is  performed 



periodically.  In  the  kanji  learning  application,  users  can  review  flashcards  with  various 
information about a kanji, which they can choose to be displayed randomly or in a sequence 
suggested by the didactic profile. We call this the Flashcard View (Fig. 7). From here, the student 
can switch to the Stroke Order Diagram View (Fig. 8), where the exact way of drawing the kanji 
is presented with a sequence of images. We strictly follow the cognitive load theory mentioned 
before by separating the information into different views.  The Compound View (Fig. 9) is a 
collection of compound terms, extracted from JMdict, which include the currently selected kanji. 
Users can store any of those compounds in a personal database. These stored compounds can 
later  be  reviewed  in  the  Personal  Database  View  (Fig.  10),  which  is  accessible  from  the 
Flashcard  View.  The  stored  entries  are  considered  in  the  process  of  creating  or  updating  a 
didactic profile,  in a way that the future suggestions will  emphasize on similar terms or the 
domain of the terms. 

Figure 6: UTROLL – language learning task workflow



Figure 7: UTROLL – Flashcard view

Figure 8: UTROLL – stroke order diagram view

Figure 9: UTROLL – compound view



Figure 10: UTROLL – Personal database view

Selecting the Translation Task from the Starting View initiates a workflow as shown in 
(Fig. 11). Upon initiating the task, a connection to the server is attempted. In contrast to the 
language learning task, a connection to the server is vital. In the first view (Fig. 12), the user has 
the choice of the input language. An input box (Fig. 13), takes the query sentence and sends it to 
the TREF module, which is located at the server. In the next view (Fig. 14), the translation result 
is displayed and the query sentence is stored on the server for later use by the didactic module.  
Additionally, the user has the choice of viewing further language details (Fig. 15). At the time of 
writing,  we display various  PoS-tag  information.  In  the  future  we plan  to  integrate  a  more 
detailed linguistic analysis, e.g. dependency trees produced by CaboCha (Kudo and Matsumoto 
2002). Even though the current programming libraries available for the Maemo5 platform are 
fairly intuitive and easy to program, there is still a lack of certain design capabilities, so that 
there has  been a significant  discrepancy between our  initial  design and the final  realization. 
Unsightly gaps be tween the lines or between buttons are almost impossible to avoid using the 
current version of the SDK. The final implementation of the application on the Maemo platform 
is available for download at: 
http://maemo.org/ packages/view/ktmobile/.



Figure 11: UTROLL – Translation task workflow

Figure 12: UTROLL – Language selection view



Figure 13: UTROLL – Sentence input view

Figure 14: UTROLL – Translation result view

Figure 15: UTROLL – PoS-tag view



5.2 KANTEAM

In  this  section,  we  present  a  showcase  of  the  Android  2.2  application  KANTEAM.  It  is  a 
flashcard-like application in which learners can choose to display kanji information based on 
different criteria, e.g. frequency-of-use of the character or a contextually inferred suggestion. The 
data can also be explored sequentially moving from screen to screen by finger-swipe or selecting 
a random entry by shaking the device. An example screenshot of a representation of the kanji  
data is shown in (Fig. 16). Below the title of the application, the kanji is shown in red color. 
Further, the different readings of the kanji are denoted in  katakana and hiragana script, followed 
by the frequency ranking and the English meaning. The button just below the meanings takes the 
learner to a dynamically created list of compound terms (combinations of two to four kanji and 
their  meanings).  At  the  bottom,  the  stroke  order  diagram describes  the  correct  sequence  of 
drawing this particular character. From the main menu, which is accessible through a button on 
the Android device, the user can choose to input a sentence, Japanese to English or vice versa, to 
translate via the server-based part of the system (Fig. 17). Upon entering the query, the result is 
displayed (Fig. 18) and the learner has the opportunity to take a detailed look at the  part-of-
speech tagging data of the translation process to understand the grammatical properties of both 
the input as well as the translated sentence (Fig. 19).

Figure 16: KANTEAM screenshot



      
Figure 17: Translation – sentence input

Figure 18: Translation – result
 
 



      
Figure 19: Translation – part-of-speech tags

6 Discussion

After implementing our application on both systems, we have found that both offer a 
good platform for a server/client language learning application. The API and the interface to the 
hardware on both smartphones is well implemented, though the Android system seems to have a 
slight advantage due to its wider popularity. The GUI design was more intuitive and flexible on 
the Android system. However, text manipulation is easier and more efficient on the Maemo5 
platform. 

The  implementation  of  the  Android  system  was  done  in  the  Eclipse-3.5  software 
development framework, using the Android Developer plugin provided by Google. The Android 
programming language,  which is  Java-based and heavily relying on XML-defined structures, 
proved to be an excellent choice for our purposes. These structures allow for quick and intuitive 
GUI design. This model is inspired by the Web development model where the presentation of the 
GUI and the application logic is separated. The communication between those two components 
is executed behind the scenes by the Android operating system.  The Android system seems to 
have an advantage when it comes to the efficiency when dealing with large amounts of data. It  
comes  with  a  formidable  library  and  interface  to  XML files,  while  this  can  be  somehow 
cumbersome on the Maemo5 platform. The XML handling capabilities on the Android system 
enabled us to import the language resources very quickly and iterate over a large amount of data 
without  any  noticeable  performance  issues.  Compared  with  the  Maemo5  framework,  the 
implementation was more straightforward, even though the support for the Python language on 



the Maemo5 device offered more flexibility when working with string manipulation. 

As can be seen in the side-by-side comparison of software features  (Fig. 20), the base of 
both  systems  is  a  Linux  Kernel  and  both  accept  C/C++  as  a  language  for  developing 
applications. However, it is much easier to use Java on Android and Python on Maemo5, due to 
better  library  support  and  easier,  more  abstracted,  source  code.  When  it  comes  to  the 
development  environment,  Maemo5 does  not  offer  a  comprehensive  solution,  however,  it  is 
possible to develop on the device itself if needed and when using Python as the language of 
choice, no compilation is necessary and the application can be tested instantaneously. Android on 
the other hand offers the Eclipse plugin which makes porting the application to the device very 
easy.  

Android 2.2 Maemo5

Base Linux 2.6 Nokia N900-50-1 Linux 2.6.28 
- omap1 on armv71

Prog. Language Choices Java, C/C++ C/C++, Python

Development Environments Arbitrary, development can be 
done directly on device

Eclipse  with  plugins  or  any 
other  (more  complicated 
deployment using other)

Figure 20: Software comparison

A hardware comparison of the devices we have used is shown in (Fig. 21). The Galaxy 
Tab has a small advantage over the slightly older N900. The presentation of apps profits greatly 
from the  larger  screen  on the  Galaxy Tab.  Due to  its  performance advantage  and the  more 
efficient data management of Android our application runs considerably faster on this device. 

Nokia N900 Samsung Galaxy Tab

CPU ARM Cortex-A8 600MHz ARM Cortex-A8 1.0GHz

Memory 256MB 512MB

Operating System Maemo5 Android 2.2

HD 32GB 32MB

Screen 8.9cm diagonal, 800 x 480px 18cm diagonal, 1024 x 600px

Figure 21: Hardware comparison

Overall, the Android platform offers a visually more attractive solution. Since there are 
far more Android users and programmers than for the Maemo5 system, there is obviously more 
support for future work on Android. Other disadvantages of the Maemo5 platform are that, at the 
time of writing, it already seized its development to merge into the MeeGo project and the new 



partnership of Nokia with Microsoft has rendered the future of the open source system on Nokia 
devices very questionable.

7 Conclusion

 In this  article,  we have presented the progress of our work on a ubiquitous language 
learning environment and an implementation of the client-side application on the Nokia N900 
with Maemo5 and the Samsung Galaxy Tab with Android 2.2. We have described the system 
regarding ubiquitous language learning and its capability towards new research trends such as 
collaborative learning and utilization of smartphone sensor capabilities. 

 We are ready to deploy our prototypes to a classroom scenario at the language department 
of our university to obtain valuable feedback and evaluate the system regarding scalability as 
well as usability. We expect a wide community of users, especially for KANTEAM due to the 
popularity of the Android platform and its propagation to modern smartphone devices.

 In  the  future,  we  plan  to  widen  the  ubiquitous  component  even  more,  by  adding 
instructional scenarios based on the learners' location, in combination with Google's map and 
location services and add new and/or additional language resources, which are currently being 
developed, e.g. the Japanese  WordNet  (Bond 2009), offering graphical illustrations of concepts 
for an even more valuable and intuitive learning experience.

Further, we would like to integrate the GPS capabilities of the mobile devices to offer a 
selection of courses, translations and language related suggestions to the user based on their 
current location and combine the current application with a graphical instructional adventure 
game, moving away from text based lessons to visually enhanced presented learning material.
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