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Abstract: Curcumin has been investigated extensively for cancer prevention, but it has been proposed
that long-term treatments may promote clonal evolution and gain of cellular resistance, potentially
rendering cancer cells less sensitive to future therapeutic interventions. Here, we used long-term,
low-dose treatments to determine the potential for adverse effects in non-small cell lung cancer
(NSCLC) cells. IC50s for curcumin, cisplatin, and pemetrexed in A549, PC9, and PC9ER NSCLC
cells were evaluated using growth curves. IC50s were subsequently re-assessed following long-term,
low-dose curcumin treatment and a three-month treatment withdrawal period, with a concurrent
assessment of oncology-related protein expression. Doublet cisplatin/pemetrexed-resistant cell lines
were created and the IC50 for curcumin was determined. Organotypic NSCLC-fibroblast co-culture
models were used to assess the effects of curcumin on invasive capacity. Following long-term
treatment/treatment withdrawal, there was no significant change in IC50s for the chemotherapy
drugs, with chemotherapy-resistant cell lines exhibiting similar sensitivity to curcumin as their
non-resistant counterparts. Curcumin (0.25–0.5 µM) was able to inhibit the invasion of both native
and chemo-resistant NSCLC cells in the organotypic co-culture model. In summary, long-term
curcumin treatment in models of NSCLC neither resulted in the acquisition of pro-carcinogenic
phenotypes nor caused resistance to chemotherapy agents.
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1. Introduction

Lung cancer is the most commonly diagnosed cancer worldwide, and is the leading cause of cancer
mortality [1]. Despite many treatment advances, one-year survival for those with stage IV disease
remains at less than 20% [2], emphasising that a focus on early detection and prevention is essential for
more effectively managing disease burden. Whilst lung cancer prevention is primarily focused around
smoking cessation, there may still be a role for therapeutic prevention (chemoprevention) approaches
in certain high-risk cohorts.

Historically, therapeutic prevention strategies have had little success in lung cancer, with two large
trials (alpha-tocopherol and beta-carotene (ATBC), beta-carotene and retinol (CARET)) showing increased
mortality in smokers following beta-carotene intervention [3,4]. Subsequent investigations suggested
that beta-carotene and its metabolites may contribute to neutrophil-induced genotoxicity in smokers [5],
with smoking being a risk factor in itself, independent from inhaled levels of tar and nicotine [6].
These study failures have provided critical information and have led to rational changes to the way in
which prevention trials are now undertaken. Chemoprevention trials are often in healthy populations
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and so should give considerable scrutiny to factors that would decrease the likelihood of adverse
outcomes, including: choice of dose, when to treat, dosing strategy, in-depth knowledge of molecular
mechanisms and recognition/planning for previously unknown toxic mechanisms, identification of
which populations may benefit/be at risk, and choice of most suitable efficacy biomarkers for early
read-out [7].

A further safety consideration for chemoprevention trials is to understand the potential effects
that long-term dosing may have at a cellular level in those individuals that subsequently go on to
develop cancer. It has been suggested that long-term single-agent use in this paradigm may result
in the promotion of clonal evolution and generation of therapy-resistant subclones [8], potentially
resulting in decreased efficacy of standard-of-care chemotherapy. Gain of resistance to anti-cancer
therapeutics and small molecule inhibitors is a common occurrence even when administered over
relatively short time frames. Within the chemoprevention setting, preventive drugs are typically
administered over longer time frames meaning that gain of resistance is also common (e.g., selective
oestrogen receptor modulators in breast cancer prevention [9,10]). It is therefore imperative to better
understand the consequences of longer-term dosing using preventive agents, to determine whether
there may be adverse implications for the effectiveness of future therapies.

The diet-derived agent, curcumin, has been investigated extensively for use as a cancer preventive
agent, but the issue around potential for gain of resistance following long-term administration, which
may be implicated in some of the notable failures of intervention approaches based around administration
of dietary constituents, has yet to be investigated [8]. Using multiple experimental approaches, we
tried to address these concerns. We firstly attempted identification of models potentially useful in
the lung cancer chemoprevention setting [11], and subsequently generated and applied these models
using curcumin as an exemplary agent. We then assessed the effects of long-term, low-dose curcumin
intervention and its subsequent withdrawal on lung cancer cell lines. Furthermore, cell lines resistant to
combinations of commonly used NSCLC chemotherapy drugs were developed to ascertain whether
chemotherapy-resistant cell lines retained sensitivity to curcumin. Finally, we developed a 3D air-interface
organotypic co-culture model of lung cancer to assess the effects of curcumin on invasive capacity.

2. Results

2.1. Effect of Long-Term Curcumin Treatment and Its Withdrawal on Cellular Sensitivity to Chemotherapy
Agents

Sensitivity to single-agent cisplatin and pemetrexed in native cell lines, cells treated for 3 months
with 0.25 µM of curcumin, and cells that had a subsequent three-month withdrawal of curcumin are
shown in Table 1 and Supplemental Figure S1A,B. No significant differences in any of the cell lines’
response to cisplatin or pemetrexed following long-term treatment with curcumin or its subsequent
withdrawal were observed.

Table 1. IC50s following 168 h treatment with cisplatin and pemetrexed in lung cancer cell lines A549,
PC9, and PC9ER. IC50s represent those for native cell lines, those that have undergone three-month
treatment with 0.25 µM of curcumin, and those with subsequent three-month curcumin withdrawal.
Data represent means from three independent growth curve experiments ±SD.

Treatment Native Cell Line
IC50 (±SD)

Long-Term Curcumin
Treatment IC50 (±SD)

Curcumin Withdrawal
IC50 (±SD)

A549
Cisplatin 1.12 µM (±0.11) 1.20 (±0.43) 1.02 (±0.14)

Pemetrexed 0.06 µM (±0.01) 0.08 µM (±0.07) 0.08 µM (±0.05)

PC9
Cisplatin 0.3 µM (±0.03) 0.42 µM (±0.35) 0.25 µM (±0.18)

Pemetrexed 11.42 nM (±0.83) 11.42 nM (±1.54) 9.20 nM (±4.26)

PC9ER
Cisplatin 0.94 µM (±0.20) 0.57 µM (±0.42) 0.43 µM (±0.34)

Pemetrexed 10.2 nM (±1.99) 10.20 nM (±2.42) 12.93 nM (±2.89)
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2.2. Sensitivity of Chemotherapy-Resistant Cell Lines to Curcumin

We then sought to determine whether chemotherapy-resistant cell lines still exhibited sensitivity to
curcumin. IC50 values in native cell lines at 120 h and 168 h following curcumin treatment revealed the
order of sensitivity to curcumin to be PC9ER > PC9 > A549. This order of sensitivity was maintained
following the generation of resistance, and IC50s did not significantly differ between native and
chemotherapy-resistant cell lines (Table 2, Supplemental Figure S2) showing that gain of resistance to
chemotherapy agents did not alter sensitivity to curcumin.

Table 2. IC50s of native and double-resistant lung cancer cell lines in response to curcumin treatments
over 168 h. Data represent mean IC50 values from three independent growth curve experiments ±SD.

120 h
IC50 (±SD)

168 h
IC50 (±SD)

A549 14.67 µM (±1.03) 30.26 µM (±20.87)
A549cisR/pemR 12.43 µM (±2.43) 15.32 µM (±4.39)

PC9 8.55 µM (±5.54) 14.44 µM (±10.52)
PC9cisR/pemR 9.22 µM (±3.47) 11.15 µM (±4.46)

PC9ER 7.33 µM (±1.43) 9.19 µM (±2.14)
PC9ERcisR/pemR 7.77 µM (±1.41) 8.37 µM (±0.21)

2.3. Effect of Long-Term Curcumin Treatment and Its Withdrawal on Expression of Oncology Array Proteins

Oncology arrays were used to ascertain whether long-term curcumin treatment adversely
affected the expression of oncology-related proteins in the lung cancer cell lines, and whether
any changes were reversed upon treatment withdrawal. Significant changes in protein expression
for each cell line following long-term curcumin treatment and its withdrawal are shown in Table 3
(Supplemental Figures S3–S8). A549 cells were the most resistant to significant changes induced by
curcumin, and PC9ER cells were the most sensitive. The majority of changes saw the downregulation
of proteins, with most of this downregulation affecting pro-carcinogenic proteins (73% were
pro-carcinogenic across all three cell lines).

Of note, the pro-carcinogenic proteins downregulated following long-term curcumin
treatment and its withdrawals were associated with poor prognosis, progression, invasion, and
epithelial-mesenchymal transition in lung cancer.

2.4. Effect of Curcumin on Invasive Capacity of Lung Cancer Cells Using the Organotypic Co-Culture Model

The invasive capacity of native lung cancer cell lines and their doublet-resistant counterparts
in response to curcumin was assessed using the organotypic co-culture model (Table 4, Figure 1).
Curcumin treatment significantly reduced invasion at 0.5 µM for A549, PC9, and PC9ER lung cancer
cell lines. In the resistant cell lines, A549cisR/pemR exhibited decreased invasion at 5 µM only, whereas
invasion by PC9cisR/pemR and PC9ERcisR/pemR was significantly reduced at both 0.5 and 5 µM by up to
56%. Long-term, low-dose curcumin treatment and treatment withdrawal did not significantly alter
invasive capacity when compared to native cell lines (data not shown).



Molecules 2020, 25, 366 4 of 15

Table 3. Effects of a three-month curcumin treatment (0.25 µM) and subsequent three-month curcumin withdrawal on lung cancer cell lines compared to native
(untreated) cell lines. Changes in protein expression were assessed using oncology arrays. Arrays were performed in triplicate for A549, PC9, and PC9ER cell lines.
Proteins with a known function in lung cancer that were significantly altered (p < 0.05) are shown in the table (all data are shown in Supplemental Figures S3–S8).
‘PRO’ represents pro-carcinogenic proteins; ‘ANTI’ represents anti-carcinogenic proteins. Numbers in brackets represent mean percent change compared to native cell
lines. Red represents upregulated proteins. Green represents downregulated proteins.

Long-Term Curcumin Treatment Treatment Withdrawal

Cell
Line

Significantly upregulated Significantly downregulated Significantly upregulated Significantly downregulated

PRO ANTI PRO ANTI PRO ANTI PRO ANTI

A549
- - Kallikrein 6 (26%) Lumican (38%) - - Vimentin (38%) -

- - - Progesterone receptor
(32%) - - HO-1 (23%) -

- - - Serpin B5/maspin (29%) - - FGF basic (4%) -

PC9

Enolase 2 Serpin B5/Maspin (18%) VCAM-1 (30%) Lumican (43%) - - Osteopontin (37%) Endoglin (26%)
- P53 (11%) CCL2 (29%) - - - M-CSF (30%) SPARC (23%)
- - - - - - Cathepsin B (23%) Progesterone Receptor (18%)
- - - - - - VCAM1 (21%) E-cadherin (14%)
- - - - - - Progranulin (18%) -
- - - - - - IL-2α (18%) -
- - - - - - CA125 (16%) -

- - - - - - HIF-1
α (14%) -

- - - - - - PECAM1 (13%) -
- - - - - - Mesothelin (7%)

PC9ER

- - Endostatin (51%) Angiopoetin-1 (38%) - - Amphiregulin (46%) Angiopoetin-like 4 (44%)
- - eNOS (43%) FOXO1 (37%) - - Enolase-2 (38%) Serpin B5/Maspin (30%)
- - α-fetoprotein (42%) SPARC (28%) - - Cathepsin B (38%) FOXO1 (16%)

Lumican (33%)

- - HCG (41%) Angiopoetin-like 4 (28%) - - Carbonic Anhydrase
IX (30%) -

- - Cathepsin B (37%) Prostasin (22%) - - Endostatin (29%) -
- - ENPP/Autotaxin (37%) Endoglin/CD105 (32%) - - CapG (26%) -
- - Carbonic Anhydrase IX (36%) - - - Progranulin (17%) -
- - MMP-3 (35%) - - - Serpin E1 (17%) -
- - VCAM-/CD106 (32%) - - - - -

- - HIF-1
α

- - - - -

- - GM-CSF (29%) - - - - -
- - CA125 (29%) - - - - -
- - Amphiregulin (27%) - - - - -
- - VEGF (21%) - - - - -
- Snail (16%) - - - - -
- - Mesothelin (16%) - - - - -

VCAM-1, Vascular Cell Adhesion Molecule-1; CCL-2, Chemokine Ligand-2; eNOS, endothelial Nitric Oxide Synthase; FOXO1, Forkhead Box Protein O1; HCG, Human Chorionic
Gonadotropin; SPARC, Secreted Protein Acidic and Rich in Cysteine; MMP-3, Matrix Metalloproteinase-3; ICAM-1, Intercellular Adhesion Molecule-1; HIF-1α, Hypoxia-Inducible Factor-1;
GM-CSF, Granulocyte Macrophage-Colony Stimulating Factor; CA-125, Cancer Antigen-125; VEGF, Vascular Endothelial Growth Factor; HO-1, Hemoxygenase-1; IL-2α, Interleukin-2α;
PECAM-1, Platelet Endothelial Cell Adhesion Molecule-1; CapG, Macrophage Capping Protein.
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Table 4. Effects of curcumin treatment on invasive capacity of native and double-resistant non-small cell lung cancer (NSCLC) cell lines when in organotypic co-culture
with MRC5 fibroblasts. Co-cultures were performed in triplicate on three separate occasions.

Mean Percent Reduction in Invaded Area (±SD)

Curcumin Concentration (µM) A549 A549cisR/pemR PC9 PC9cisR/pemR PC9ER PC9ERcisR/pemR

0 0 0 0 0 0 0
0.25 2.13 (±3.25) 0.43 (±3.80) 0.62 (±6.01) 19.62 (±3.17) 0.30 (±1.51) 36.66 (±1.29)
0.5 5.71 (±3.02) 2.88 (±3.93) 6.05 (±2.27) 21.14 (±1.97) 7.82 (±5.33) 12.92 (±0.45)
1.0 3.05 (±0.8) 18.87 (±1.86) 6.00 (±0.74) 35.73 (±1.68) 2.95 (±11.08) 20.13 (±1.89)
2.5 5.31 (±3.06) 16.10 (±1.76) 4.46 (±4.10) 34.02 (±4.03) 5.26 (±4.20) 31.41 (±1.12)
5.0 6.73 (±0.61) 20.33 (±2.45) 9.83 (±7.10) 53.02 (±0.55) 8.35 (±5.52) 56.59 (±0.92)
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Figure 1. Representative haematoxylin and eosin (H&E) images (×20 magnification) of the 
organotypic co-culture model for A549, PC9, and PC9ER native cell lines following treatment with 5 
µM of curcumin. Co-cultures were performed on three separate occasions for each cell line. 

2.5. Effect of Curcumin on MRC5 Fibroblasts 

Neither the native nor resistant lung cancer cell lines had the capacity to invade without the 
presence of MRC5 fibroblasts in the co-culture model. The c-Met (mesenchymal–epithelial transition) 
pathway is a key regulator of migratory phenotype, with the c-Met ligand, hepatocyte growth factor 
(HGF) secreted in high levels by MRC5 cells. MRC5 cells themselves were sensitive to curcumin, with 
an IC50 of 1.49 ± 0.3 µM at 144 h (Supplemental Figure S9), and so the decrease in invasion following 

Figure 1. Representative haematoxylin and eosin (H&E) images (×20 magnification) of the organotypic
co-culture model for A549, PC9, and PC9ER native cell lines following treatment with 5 µM of curcumin.
Co-cultures were performed on three separate occasions for each cell line.

2.5. Effect of Curcumin on MRC5 Fibroblasts

Neither the native nor resistant lung cancer cell lines had the capacity to invade without the
presence of MRC5 fibroblasts in the co-culture model. The c-Met (mesenchymal–epithelial transition)
pathway is a key regulator of migratory phenotype, with the c-Met ligand, hepatocyte growth factor
(HGF) secreted in high levels by MRC5 cells. MRC5 cells themselves were sensitive to curcumin,
with an IC50 of 1.49 ± 0.3 µM at 144 h (Supplemental Figure S9), and so the decrease in invasion
following curcumin treatment may have been in part due to a decrease in MRC5 cell number. However,
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H&E staining of the co-cultures reveals in-gel fibroblasts to still be numerous, suggesting that curcumin
may also be directly affecting signalling networks between cancer and stromal cells. Following
curcumin treatment, HGF secretion by fibroblasts (normalised to cell number to take into account any
decreases) was decreased by 70% at 0.25 µM and completely abrogated at higher doses (Figure 2).
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transduction to create a stable MRC5 HGF knockdown. Following knockdown, HGF concentrations 
decreased from 14.15 pg/mL/5000 cells to 0.81 pg/mL/5000 cells, constituting a 94% decrease in HGF 
production (Supplemental Figure S10). Once the success of this approach had been established, the 
HGF knockdown MRC5 cells (MRC5-HGF) were co-cultured with the lung cancer cell lines (Figure 3). 
Co-culture with MRC5-HGF cells resulted in decreased invasive capacity for all cell lines, reaching 
significance for PC9 and PC9ER (Table 5), with decreases in invasion of 53% and 58%, respectively. 

Figure 2. MRC5-secreted hepatocyte growth factor (HGF) protein levels in media following a seven-day
treatment with curcumin. Bars represent mean of three independent experiments ±SD, * p ≤ 0.05.

2.6. Effect of MRC5 HGF Knockdown on Invasive Capacity of Tumour Cells in the Organotypic Co-Culture
Model

In order to ascertain whether the abrogation of fibroblast-secreted HGF by curcumin was
responsible for decreased invasive capacity of tumour cells in the co-culture model, we used lentiviral
transduction to create a stable MRC5 HGF knockdown. Following knockdown, HGF concentrations
decreased from 14.15 pg/mL/5000 cells to 0.81 pg/mL/5000 cells, constituting a 94% decrease in HGF
production (Supplemental Figure S10). Once the success of this approach had been established, the
HGF knockdown MRC5 cells (MRC5-HGF) were co-cultured with the lung cancer cell lines (Figure 3).
Co-culture with MRC5-HGF cells resulted in decreased invasive capacity for all cell lines, reaching
significance for PC9 and PC9ER (Table 5), with decreases in invasion of 53% and 58%, respectively.
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Figure 3. Representative H&E images (×20 magnification) showing effects of HGF knockdown in 
MRC5 cells on the invasive front of lung cancer cell lines in organotypic co-culture compared to their 
native cell counterparts. Co-cultures were performed on three separate occasions. 

Table 5. Effects of HGF knockdown in MRC5 cells on invasiveness of lung cancer cell lines in 
organotypic co-culture. The mean percent reduction in invaded area represents change to invasion 
compared to their native cell line counterparts. Co-cultures were performed on three separate 
occasions. MRC5-HGF denotes cells with stable HGF knockdown. 

Cell Line Combination Mean Percent Reduction in Invaded Area (±SD) 
A549/MRC5-HGF 19.15% (±15.79) 
PC9/MRC5-HGF 53.27% (±13.45) 

PC9ER/MRC5-HGF 58.03% (±20.62) 

Figure 3. Representative H&E images (×20 magnification) showing effects of HGF knockdown in
MRC5 cells on the invasive front of lung cancer cell lines in organotypic co-culture compared to their
native cell counterparts. Co-cultures were performed on three separate occasions.

Table 5. Effects of HGF knockdown in MRC5 cells on invasiveness of lung cancer cell lines in organotypic
co-culture. The mean percent reduction in invaded area represents change to invasion compared to
their native cell line counterparts. Co-cultures were performed on three separate occasions. MRC5-HGF

denotes cells with stable HGF knockdown.

Cell Line Combination Mean Percent Reduction in Invaded Area (±SD)

A549/MRC5-HGF 19.15% (±15.79)
PC9/MRC5-HGF 53.27% (±13.45)

PC9ER/MRC5-HGF 58.03% (±20.62)
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3. Discussion

Understanding the consequences and mechanisms of therapeutic resistance is of vital importance,
but to date has been given little consideration in preventive medicine that uses low doses of well-tolerated
drugs over many years. We have previously highlighted the importance of improving the variety and
range of models that should be made available to investigate primary, secondary, and tertiary cancer
chemoprevention strategies [11], and this article presents the first tranche of these approaches.

Curcumin is known to mitigate pro-carcinogenic signalling across numerous pathways. Here,
we evaluated whether long-term exposure to low-dose curcumin affected the response of cells to
the chemotherapy agents, cisplatin and pemetrexed, used as first-line chemotherapy in NSCLC of
non-squamous histology with no known EGFR sensitising mutation, and also at relapse for those with
EGFR mutation. Several reports have previously suggested that curcumin may offer a sensitising effect
when administered at high doses in conjunction with chemotherapy drugs [12–15]. When given at
low-dosage over three months (which is more consistent with administration in a preventive setting),
no sensitising effect was observed in three lung cancer cell lines exhibiting different mutational spectra
(A549: K-ras mutant; PC9: EGFR driver mutation; PC9ER: EGFR driver mutation but exhibiting
erlotinib resistance). Importantly, there was no evidence of decreased sensitivity to chemotherapy
drugs following curcumin treatment and its subsequent withdrawal, suggesting that long-term,
low-dose curcumin is insufficient to drive clonal evolution and promote therapeutic resistance. This is
an important consideration when planning any long-term therapy regimen that may have the potential
to impact on the success of future treatments.

These findings were corroborated by the oncology array platform, which demonstrated that
long-term, low-dose curcumin favours upregulation of anti-carcinogenic, and downregulation of
pro-carcinogenic proteins, many of which are associated with epithelial to mesenchymal transition
(EMT). Curcumin has previously been shown to play a role in preventing or reversing the generation
of an EMT phenotype [16–19], albeit at single, non-pharmacologic high doses ranging from 10 to
80 µM. Such high doses are unlikely to be attained clinically, making it difficult to interpret and
translate mechanistic relevance to prevention strategies that are typified by sub-micromolar systemic
curcuminoid availability. High-dose curcumin has been shown specifically to inhibit the EMT-associated
proteins snail [20], lumican [21], CCL2 [22], cathepsin B [23], carbonic anhydrase [24], and matrix
metalloproteinase-3 [25], all of which we also show here to have been significantly downregulated
following long-term, low-dose curcumin. Some of these proteins exhibited prolonged downregulation
even following a three-month withdrawal period from curcumin treatment. This alludes to the ability
of curcumin to decrease the invasive potential of NSCLC cells in vitro following prolonged dosing at a
concentration for which pharmacologic benefit is not usually observed in cellular models following
short-term treatments.

We next sought to create models representative of an acquired resistant phenotype in lung
cancer. Despite NSCLC rarely being treated by monotherapy alone, the A549/DDP cell line has been
used extensively as a model of acquired cisplatin chemoresistance. To expand the relevance of this
model, we generated lung cancer cell lines resistant to cisplatin and pemetrexed doublet therapy,
and together with the PC9ER erlotinib-resistant cell line, further generated a model with a triplet
resistant phenotype. All resistant cell lines were similarly as sensitive to curcumin as their native
counterparts, which contrasts with previous studies using the A549/DDP cells that exhibited decreased
sensitivity [26]. Following the generation of doublet/triplet resistance, cells took on distinct spindle-like
morphological characteristics, suggestive of EMT phenotypical gain. This was further investigated via
the oncology array platform, which revealed significant upregulation of vimentin across all three cell
lines (Smagurauskaite et al., unpublished data).

Due to the ability of curcumin to downregulate the expression of pro-EMT proteins in all cell
lines, we next sought to apply this knowledge to an air-interface model of invasion. In the organotypic
co-culture model, lung cancer cells are not directly submerged in treatment-containing media, but
instead, treatments pass through a basement membrane/collagen matrix prior to reaching the target
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cancer cells. This model has the advantage that it allows the addition of other cell types to enable
specific cell–cell interactions to be further elucidated. Despite expression of EMT-associated proteins,
neither the native cell lines nor their resistant counterparts were able to invade through collagen gels
when in monoculture, and required co-culture with MRC5 fibroblasts to facilitate their invasion.

The role of fibroblasts in creating a permissive and motility-inducing microenvironment in lung
cancer has been well established (reviewed in [27]), together with their ability to facilitate the acquisition
of therapeutic resistance [28]. Fibroblasts are a rich source of many growth factors including hepatocyte
growth factor (HGF), which has been shown to be a key factor in enhancing NSCLC progression [29].
Paracrine activation of the Met (HGF) receptor in NSCLC occurs upon binding of the active HGF
molecule. Met is a receptor tyrosine kinase regulated by phosphorylation at a number of sites: pMet1003
regulates ubiquitination and degradation of the receptor; pMet1234 and pMet1235 in the tyrosine kinase
domain regulate kinase activity; pMet1349 and pMet1356 in the c-terminal domain serve as docking
sites for downstream proteins [30]. Phosphorylation of sites within the tyrosine kinase domain following
HGF binding results in receptor dimerisation and activation, leading to the consequent activation of a
number of pro-carcinogenic downstream signalling pathways including those involved in EMT, invasion,
angiogenesis, and proliferation. We hypothesised that the ability of curcumin to downregulate HGF
production from fibroblasts in the co-culture model may be responsible for the reduced invasive capacity
of NSCLC cells, rather than just a direct effect of curcumin on the cancer cells per se. The importance of
curcumin’s ability to decrease HGF secretion by the MRC5 cells was confirmed following the creation
of MRC5-HGF cells and their addition to the organotypic model, resulting in significantly decreased
tumour cell invasion. Conversely, Jiao et al. [17] confirmed that the HGF-induced mesenchymal
morphology of A549 and PC9 cells could be abrogated when the cancer cells themselves were directly
treated with 10–30 µM of curcumin, in addition to downregulating HGF-induced downstream PI3K
signalling. This leads to the notion that curcumin is able to decrease Met signalling via numerous
different mechanisms, some of which are summarised in Supplementary Figure S11 (adapted from [31]).

There is increasing emphasis on the importance of the c-Met/HGF pathway in lung cancer
progression and promotion of resistance resulting from Met amplification, exon 14 mutation,
or activation due to HGF expression [32–34], with small molecule Met inhibitors and anti-HGF
antibodies now in clinical trials [35,36]. Exploring further mechanisms by which curcumin may inhibit
HGF signalling in lung cancer should contribute to the mechanistic scrutiny applied when considering
the utility of curcumin in therapeutic prevention regimens.

4. Methods

4.1. Cell Lines

Non-small cell lung cancer (NSCLC) accounts for approximately 87% of lung cancer
cases and can be subdivided into adenocarcinoma, squamous cell carcinoma, and large cell
carcinoma. Adenocarcinomas are the most common, with treatment regimens including
cisplatin/pemetrexed/erlotinib [37]. Adenocarcinoma cell lines with representative common driver
mutations A549 (K-ras mutant), PC9 (EGFR erlotinib-sensitive mutant), its erlotinib-resistant derivative
cell line PC9ER, and MRC5 fibroblasts were originally obtained from the American Type Culture
Collection (ATCC). All three NSCLC cell lines were cultured in RPMI-1640 (ThermoFisher, Leicester,
UK) and MRC5 were cultured in DMEM-6429 (ThermoFisher, Leicester, UK), supplemented with 10%
FCS and l-Glutamine. Cell lines were regularly tested for mycoplasma contamination.

4.2. Assessing Cell Proliferation in Response to Curcumin, Pemetrexed, and Cisplatin

A549 cells (1000/well), PC9, and PC9ER cells (2000/well) were seeded in 24-well plates and
allowed to adhere overnight prior to treatment. Cells were treated with increasing concentrations of
curcumin (0.25–10 µM), pemetrexed (0.05–1.0 µM), or cisplatin (0.05–10 µM). Stocks of curcumin were
reconstituted in DMSO, cisplatin in PBS/140 mM NaCl, and pemetrexed disodium in PBS. All curcumin
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treatments contained equivocal amounts of DMSO, which did not exceed 0.05%. Cells were counted
at 72 h, 96 h, 120 h, 144 h, and 168 h time points using a Beckman Coulter Z2 particle analyser
(Beckman Coulter, High Wycombe, UK). Cell counts were subsequently plotted to determine the
concentrations at which cellular proliferation was reduced by 50% (IC50). Curcuminoid concentrations
up to 18.85 µg/mg (51 µM) have previously been observed in human colorectal biopsy material
(even after bowel preparation and extensive sample wash-out) following 2.35 g daily oral curcumin
consumption [38]. In addition, studies using the Meriva curcumin formulation in human healthy
volunteers revealed the total plasma curcuminoid Cmax to be 206.9 ng/mL (equating to ~0.56 µM of
curcuminoids) following a dose of 396 mg curcuminoids contained in the Meriva formulation [39].
Hence, for long-term treatments, we deemed 0.25 µM to be a low in vitro dose, commensurate with
clinically achievable concentrations available systemically.

4.3. Long-Term Treatments with Curcumin

Cell line treatments using curcumin are typically for 1 week or less, using cytotoxic concentrations
of up 50 µM. In order to better model a long-term treatment, we sought to extend treatment times
12-fold out to 3 months. Whilst this is not directly comparable to clinical dosing schedules for preventive
agents, this time frame equates to approximately 20 cell passages and thus minimises clonal instability
as a consequence of excessive passaging. A549, PC9, and PC9ER cells were cultured in RPMI-1640
media supplemented with 0.25 µM of curcumin (Indena S.p.A.). Following 3 months of growth in
curcumin-supplemented media, cells were used for sensitivity analyses. Cells were subsequently
passaged for a further 3 months in curcumin-free media to assess effects of curcumin withdrawal

4.4. Generation of Cell Lines Resistant to Both Cisplatin and Pemetrexed

All NSCLC cell lines were cultured in media containing increasing concentrations of
pemetrexed disodium (Santa Cruz Biotechnology, Heidelberg, Germany) together with cisplatin
(cis-Diammineplatinum(II) dichloride, Sigma, Poole, UK) to achieve cell lines exhibiting resistance to
drug concentrations approximately 10 × IC50 values. For A549 cells, resistance was achieved when
cells were able to grow in media containing 10 µM cisplatin/0.6 µM pemetrexed; for PC9 cells, 2 µM
cisplatin/0.1 µM pemetrexed; for PC9ER cells, 6.7 µM cisplatin/0.1 µM pemetrexed. Double-resistant
cell lines were designated A549cisR/pemR, PC9cisR/pemR, and PC9ERcisR/pemR.

4.5. Oncology Arrays

Proteome Profiler Human XL Oncology Array Kits (R&D Systems, Abingdon, UK) contain 84
human cancer-related proteins spotted in duplicate onto a nitrocellulose membrane. The array kits
allowed comparison between native and resistant cell lines or those that had undergone long-term,
low-dose curcumin treatment in order to determine whether significant changes to oncological profiles
had occurred. Lysates were first prepared for all of the relevant cell lines using lysis buffer supplied
with the kit. Oncology array membranes were blocked in 2 mL of Array Buffer 6 for 1 h prior to
adding samples containing 200 µg of protein for incubation overnight at 4 ◦C. Arrays were washed
×3 with oncology array wash buffer and incubated with Detection Antibody Cocktail for 1 h at
room temperature. Following a further three washes, arrays were incubated with 2 mL of 1 ×
Streptavidin-HRP (R&D Systems, Abingdon, UK) for 30 min at room temperature. Following a
further three washes, the signal was developed with Chemi Reagent Mix for 1 min. Data analysis
was performed by measuring the intensity of each spot using GeneSys software v1.5.4.0 (GeneSys,
Camberly, UK) and comparing mean values between control and treated array membranes.

4.6. Organotypic Co-Culture

Co-cultures are useful models of invasive capacity which take into consideration effects of
components of the tumour microenvironment. Co-cultures were carried out in a similar manner to
that described previously [40], but with differing cell lines as below:
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In brief, collagen gels were made by plating 1 mL of total volume, containing 350 µL (3.5 parts) of
rat-tail collagen I (Millipore, Watford, UK), 350 µL (3.5 parts) of Matrigel (Corning, High Wycombe,
UK), 100 µL (1 part) of 10 × DMEM, 100 µL (1 part) of sterile-filtered FCS, and 100 µL (1 part) of
MRC5 cell suspension (2.5 × 106 cells/mL) for gels with fibroblasts or 100 µL of 10% DMEM for
gels that did not contain fibroblasts. Gels were set for 1 h, then 1 mL of 10% DMEM was added,
and the gels were incubated at 37 ◦C, 5% CO2 overnight. The following day, cell suspensions of
250,000 NSCLC cells/mL and 1.25 × 106 MRC5/mL were prepared and mixed to give a 1:5 ratio of
NSCLC:MRC5 cells. One millilitre of the cell mixture was added drop-wise to the collagen gels,
which were subsequently incubated overnight at 37 ◦C, 5% CO2. All other aspects were as previously
described in [40]. For the co-culture of resistant cell lines, cell numbers had to be re-optimised with cell
ratios of 1:5 for A549cisR/pemR:MRC5, 1:2 PC9cisR/pemR:MRC5, and 5:1 PC9ERcisR/pemR:MRC5.

After 12 days of supplementing the co-cultures with media containing 0.5–5 µM of curcumin,
gels were formalin-fixed and paraffin-embedded. Cut sections were stained with haematoxylin and
eosin (performed as a service by the University of Leicester Core Biotechnology Services Histopathology
Laboratory, as per standard diagnostic protocols) and analysed using a Hamamatsu NanoZoomer
Digital Slide Scanner (Hamamatsu, Welwyn Garden City, UK) to visualise cell invasion. Invasion
was subsequently quantified using ImageJ (version 1.49, open source software) using the following
formula: Percent invasion = total invaded area/total area × 100.

4.7. HGF ELISA

MRC5 cells were seeded into 24-well plates (1 × 103/well), left to adhere overnight, and the culture
medium replaced by fresh media containing 0–5 µM of curcumin. Following 7 days of treatment,
media was removed and the remaining cells were counted to determine HGF levels/5000 cells using a
human HGF ELISA kit (ThermoFisher, Leicester, UK) following the manufacturer’s instructions.

4.8. Generation of Stable HGF Knockdown in MRC5 Cells

Four 29mer plasmids containing Hu HGF shRNA in pGFP-shLenti vector constructs and one
scrambled negative control (see supplementary information for sequences) (OriGene, Rockville, MD,
USA) were used to transform library efficiency DH5a competent cells, with plasmid DNA extracted
using a Qiagen Plasmid Maxiprep kit as per manufacturer’s instructions (Qiagen, Crawley, UK).

To generate lentiviral particles, 5 µg of the pLenti-shRNA construct was combined with 6 mg
of packaging plasmids and 500 µL Opti-MEM (ThermoFisher, Leicester, UK). Following the addition
of MegaTran transfection reagent (OriGene, MD, USA), the mixture was added to 70% confluent
HEK293T cells for 12 h, after which the media was changed. Following overnight incubation, viral
particle-containing supernatant was harvested, fresh media added for a further overnight incubation,
and the second batch of media collected and combined with the first to give a viral titre of between 106

and 107 TU/mL. To perform the stable HGF knockdown in MRC5 cells, MRC5 cells were seeded at 1 × 105

on to 12-well plates and allowed to adhere overnight. The desired number of viral particles (multiplicity
of infection (MOI) ranging from 20 to 150) were added to the cells and incubated for 18 h before replacing
with fresh media overnight followed by splitting at a 1:10 ratio. Cells for each MOI were grown in a
range of puromycin-containing medium (0–1.5 µM) until resistant subclones could be identified and
sub-cultured on. Secreted HGF levels were assessed for all clones using the human HGF ELISA kit.

5. Conclusions

The use of low-dose chronically administered curcumin in cellular models lends greater relevance
to mechanistic outcomes as it represents a pharmacologically relevant concentration that may be
achievable within a clinical setting. The ability of low-dose curcumin to decrease the EMT phenotypes
of cancer cells in conjunction with targeting HGF secretion by fibroblasts lends support for potential use
in a long-term prevention or maintenance setting, particularly where low toxicity remains a priority.



Molecules 2020, 25, 366 13 of 15

When administered at low doses over a prolonged period of time, curcumin neither contributed
to pro-carcinogenic clonal evolution nor affected the response of NSCLC cells to standard
chemotherapeutic intervention, allaying fears over resistance-gain following long-term administration.

Supplementary Materials: The following are available online. Figure S1A: Growth curves showing A549, PC9
and PC9ER cell line response to cisplatin and pemetrexed after long-term 0.25 µM curcumin treatment. Figure S1B:
Growth curves showing A549, PC9 and PC9ER cell line response to cisplatin and pemetrexed after long-term
0.25 µM curcumin treatment followed by a subsequent 3 month withdrawal period. Figure S2: Growth curves
for native and doublet-resistant (R) cells in response to curcumin. Figure S3: Oncology array waterfall plot
representing fold change for A549 treated with long-term, low-dose curcumin compared with native A549 cells.
Figure S4: Oncology array waterfall plot representing fold change for PC9 treated with long-term, low-dose
curcumin compared with native A549 cells. Figure S5: Oncology array waterfall plot representing fold change for
PC9ER treated with long-term, low-dose curcumin compared with native A549 cells. Figure S6: Oncology array
waterfall plot representing fold change for A549 cells treated with long-term, low-dose curcumin followed by
three months of treatment withdrawal, compared with native A549 cells. Figure S7: Oncology array waterfall plot
representing fold change for PC9 cells treated with long-term, low-dose curcumin followed by three months of
treatment withdrawal, compared with native A549 cells. Figure S8: Oncology array waterfall plot representing
fold change for PC9ER cells treated with long-term, low-dose curcumin followed by three months of treatment
withdrawal, compared with native A549 cells. Figure S9: Growth curve showing effect of curcumin on MRC5
fibroblast cell number. Figure S10: Table shows HGF production in MRC5 cells following stable HGF knock-down.
Figure S11: Schema showing potential ways in which curcumin may interfere with the HGF/Met signalling
cascade. Figure S12: Supplemental Information for method section ‘Generation of stable HGF knock-down in
MRC5 cells’.
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