
www.ramoncasares.com 20200513 Putnam 1

Putnam’s Rocks Are Clocks

Ramón Casares
orcid: 0000-0003-4973-3128

Putnam proved that “every ordinary open system is a realization of
every abstract finite automaton”, showing that computing is mean-
ingless. Analyzing a simpler version of his proof, we conclude that
giving a meaning to a computation requires computing, which is
meaningless, starting a recursion.

Keywords: Putnam, implementation, interpretation, computing,
meaning.

§1 Putnam’s theorem
¶1 · Putnam (1988), pages 121–125, proved the following theorem:

Every ordinary open system is a realization of every abstract finite automaton.

¶2 · An abstract finite automaton, also known as finite-state automaton, is a mathematical
concept, so it does not need further specifications, see for example Mealy (1955), but an
ordinary open system requires some additional physical stipulations in order to fit it
into a mathematical theorem. So before the proof, Putnam explains the two Physical
Principles that he needs: the Principle of Continuity and the Principle of Noncyclical
Behavior. The Principle of Continuity is needed to adapt the ordinary system, which is
modeled by physics as existing in an analog world, to the digital world of abstract finite
automata. And Putnam assures us that the Principle of Noncyclical Behavior is true for
any physical system affected by a clock, and that every open system is affected.
¶3 · We will proceed otherwise. Instead of assuming that every ordinary open system is
affected by a clock, we will use a clock as system. This way we can completely ignore the
physics of the theorem, including the two Physical Principles, and we can instead focus
on its mathematical content. So we will restate Putnam’s theorem in a simpler way by
using a simple clock instead of the ordinary open system, we will prove it following his
trail, and we will analyze the consequences.
¶4 · Putnam’s theorem shows that computing by itself is meaningless, and our analysis
shows that giving a meaning to a computation requires computing, which is meaningless
as shown by Putnam’s theorem. Therefore, Putnam’s theorem is just a step in a recursion.
Finally, I will propose a way out of the recursion.

This is doi: 10.6084/m9.figshare.5450278.v3, version 20200513.
c⃝ 2017, 2020 Ramón Casares; licensed as cc-by.
Any comments on it to papa@ramoncasares.com are welcome.

https://orcid.org/0000-0003-4973-3128
https://doi.org/10.6084/m9.figshare.5450278
mailto:papa@ramoncasares.com


www.ramoncasares.com 20200513 Putnam 2

§2 Simpler theorem

§2.1 Theorem
¶1 · We will prove the simpler theorem:

Every simple clock is a realization of every abstract finite automaton.

§2.2 Definition
¶1 · A simple clock is one that implements the successor function, so its starting state is 0,
and the next state is the next natural number. So for any simple clock s0 = 0, s1 = 1,
s2 = 2, and in general sn = n, where n ∈ N.

§2.3 Proof
¶1 · Any finite string of states, generated by any abstract finite automaton, can be realized
by any simple clock using the following rule: assign the disjunction of the positions
where it appears to each state in the string. For example, for string ABABABA, define
A = 0∨ 2∨ 4∨ 6 and B = 1∨ 3∨ 5. Using these definitions, the clock realizes the string.
Q.E.D.?

§2.4 Analysis
¶1 · As you can see, our proof has distilled the essence of Putnam’s proof, avoiding any
possible distraction. The analysis is now easier.
¶2 · The simple clock is perhaps the simplest clock, but the only requirement that any
clock has to fulfill is that it cannot repeat any state. If, for example sj = sn, where j ̸= n,
that is, if state at time j were repeated at time n, not necessarily consecutive, then it
could not realize every finite-state automaton, but only those that were at the same state
at times j and n. The simple clock does not repeat any state, thus providing a unique
index. In Putnam’s proof, the Principle of Noncyclical Behavior grants a unique index.
¶3 · Using the simple clock, the rule used in our proof defines a partial function f that
assigns a state of the finite-state automaton to the first natural numbers. Following the
example, f(0) = A, f(1) = B, f(2) = A, f(3) = B, f(4) = A, f(5) = B, and f(6) = A.
We will call this function the interpreting function.
¶4 · So the simple clock generates a series 0, 1, 2, 3, 4, 5, 6, which is transformed by the
interpreting function into the series f(0), f(1), f(2), f(3), f(4), f(5), f(6) that realizes the
string generated by the finite-state automaton ABABABA.
¶5 · By the simple clock definition in §2.2, we know that the next state of the simple clock
will be s7 = 7, but we cannot use the simple clock to foresee what will be the next state
of the finite-state automaton. To make that prediction we will need to know the value of
the interpreting function for number 7, that is, f(7). And in general, to know the state
of the finite-state automaton at any instant, we will need to know the total version of the
interpreting function, that is, the value of f(n) for any n ∈ N.
¶6 · What indeed realizes the finite-state automaton is not the simple clock, which only
provides a temporal index, but the interpreting function, which is not just a device of
the proof, as it seemed to be. In other words, what the proof shows is this slightly
augmented three-part theorem: Using suitable interpreting functions, every simple clock
is a realization of every abstract finite automaton. Putnam’s theorem requires the same
amendment.



www.ramoncasares.com 20200513 Putnam 3

¶7 · Since Turing’s (1937) proof, we know that realizing a function is equivalent to com-
puting the function, where ‘realizing’ means ‘effectively calculating’ as in Church’s (1935)
thesis. As this is true for any function, it applies also to every interpreting function:

Realizing any interpreting function is computing it.

§3 Discussion
¶1 · See Chalmers (1996), §4, page 317, for another simplification of Putnam’s theorem.
You can find there a proof that: “Every physical system containing a clock and a dial
will implement every inputless FSA [finite-state automaton].” But, instead of amending
the theorem as we do, that is, by ascribing the mind to the proof reader who realizes the
interpreting function, he concludes that, as a clock and a dial cannot have a mind, his
proof shows that no implementation of an inputless finite-state automaton has a mind.
¶2 · Similarly, in §5, Chalmers concludes that no implementation of a finite-state automa-
ton with input and output has a mind because of the simplicity of implementing any of
them. In §6, page 324, he explains us that:

The trouble is that the internal states of these FSAs are monadic, lacking any in-
ternal structure, whereas the internal states of most computational and cognitive
systems have all sorts of complex structure.

Then his solution is the combinatorial state automaton, or CSA, which is a finite-state
automaton but with complex states. Therefore, according to Chalmers, a rock has not a
mind because it implements an inputless finite-state automaton, and a human brain has
a mind because it implements a combinatorial state automaton.
¶3 · But I am not convinced by Chalmers’ solution. As he writes in page 325:

For every CSA, there is an FSA that can simulate it.

Now suppose that evolution produces a new subspecies, call it Homo sapiens FSA, that is
exactly as our actual species, which we will call Homo sapiens CSA, except that the Homo
sapiens FSA brain implements an FSA that simulates the CSA that the Homo sapiens
CSA brain implements. Then, following Chalmers, and although their behaviours would
be completely indistinguishable, the Homo sapiens FSA would be mindless, while the
Homo sapiens CSA is mindful.
¶4 · To me, most arguments relying on complexity are suspicious, from the derogatory ‘this
is too complex for you to understand’ to Chalmers’ ‘mind is an effect of implementation
complexity’. But, what is even more relevant here is that Chalmers does not show that
complexity is independent of the observer, so we can think instead that implementation
complexity depends on the computing resources of the interpreting observer.
¶5 · Examining the wall argument by Searle (1992), pages 208–209, which is similar to
Putnam’s theorem, Blackmon (2013) argues that program implementation is a three-place
relation: physical things, programs, and mappings, where the mappings are our inter-
preting functions. This way he avoids the problems that Putnam, Searle and Chalmers’
two-place implementation face. Giunti (2017) also defines implementation by seeing a
computational system as a three-part object: a physical part, a mathematical part, and
an interpretation.



www.ramoncasares.com 20200513 Putnam 4

¶6 · So we have a näıve epistemology that assumes that reality is translated identically
into knowledge, and according to which truth is a two-place relation: fact and expression.
But, when the assumption of näıve epistemology breaks, we need a three-place relation
that takes into consideration the agent who expresses the fact: fact, expression, and
agent. We can call this three-place epistemology subjectivism because it can be derived
from the epistemology of Kant: reality, knowledge, and subject.
¶7 · Our analysis confirms that implementation is a three-place relation: physical device,
mathematical model, and interpreting function. But our analysis also reveals an issue:
that the interpreting function of implementation has to be implemented, too. It seems
that we go in circles.

reality knowledge subject
fact expression agent
thing program mapping
physical device mathematical model interpreting function

§4 Conclusion
¶1 · An idea behind Putnam’s theorem is that any computation is meaningless, except
when it is interpreted by a mind. When you press, in this order, the four buttons labeled
‘2’, ‘+’, ‘3’, and ‘=’, of your calculator, its screen lights up some segments that you interpret
as the number 5. You can say that your calculator is adding numbers, but it is only
because you are giving some meanings to the labeled buttons and to the lighted up screen
segments. In this example, you are the mindful agent who interprets that the physical
ordinary open system that is your calculator is realizing the mathematical abstract finite
automaton that defines addition. The same happens to a full programmable computer,
as shown by Searle (1980 and 1992) with his Chinese room and wall arguments.
¶2 · In the case of our proof, the interpreting function plays the rôle of the interpreting
mind. What we have found in our analysis is that the interpreting mind has to perform
computations, too. Then Putnam’s theorem and Searle’s Chinese room and wall argu-
ments show that computing by itself is meaningless, and our analysis shows that giving a
meaning to a computation requires computing, which is meaningless, starting a recursion.
¶3 · To me, this recursion halts whenever a computation resolves a problem, because then
the problem provides the meaning, so I would say that any computation is meaningful
for its resolver, regardless whether it is mindful or mindless. Therefore, for those who can
agree with me on this, all brain computations resolving the survival problems of living
beings are meaningful. This is further elaborated in Casares (I).

Acknowledgments
I am very grateful to Mark Bishop, James Blackmon, David Chalmers, and Marco Giunti
for valuable discussions and commentary on the first version of this paper.



www.ramoncasares.com 20200513 Putnam 5

References
Blackmon (2013): James Blackmon, “Searle’s Wall”; in Erkenntnis, vol. 78, no. 1, pp.

109–117, February 2013, doi: 10.1007/s10670-012-9405-4.
Casares (I): Ramón Casares, “The Intention of Intention”;

doi: 10.6084/m9.figshare.7928240.
Chalmers (1996): David J. Chalmers, “Does a Rock Implement Every Finite-State Au-

tomaton?”; in Synthese, vol. 108, no. 3, pp. 309–333, 1996,
doi: 10.1007/BF00413692.

Church (1935): Alonzo Church, “An Unsolvable Problem of Elementary Number Theory”;
in American Journal of Mathematics, vol. 58, no. 2, pp. 345–363, April 1936, doi:
10.2307/2371045. Presented to the American Mathematical Society, April 19, 1935.

Giunti (2017): Marco Giunti, “What is a Physical Realization of a Computational Sys-
tem?”; in Isonomia Epistemologica, vol. 9, pp. 177–192, 2017,
http://isonomia.uniurb.it/reasoning-metaphor-and-science/.

Mealy (1955): George H. Mealy, “A Method for Synthesizing Sequential Circuits”; in
Bell System Technical Journal, vol. 34, no. 5, pp. 1045–1079, September 1955, doi:
10.1002/j.1538-7305.1955.tb03788.x.

Putnam (1988): Hilary Putnam, Representation and Reality ; The MIT Press, Cambridge,
MA, 1988, isbn: 978-0-262-66074-7.

Searle (1980): John R. Searle, “Minds, Brains, and Programs”; in The Behavioral and
Brain Sciences, vol. 3, no. 3, pp. 417–424, September 1980,
doi: 10.1017/S0140525X00005756.

Searle (1992): John R. Searle, The Rediscovery of the Mind ; The MIT Press, Cambridge,
MA, 1992, isbn: 978-0-262-69154-3.

Turing (1937): A. M. Turing, “Computability and λ-Definability”; in The Journal of
Symbolic Logic, vol. 2, no. 4, pp. 153–163, December 1937, doi: 10.2307/2268280.

https://doi.org/10.1007/s10670-012-9405-4
https://doi.org/10.6084/m9.figshare.7928240
https://doi.org/10.1007/BF00413692
https://doi.org/10.2307/2371045
http://isonomia.uniurb.it/reasoning-metaphor-and-science/
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.1017/S0140525X00005756
https://doi.org/10.2307/2268280

	Putnam's Rocks Are Clocks
	§1 Putnam's theorem
	§2 Simpler theorem
	§2.1 Theorem
	§2.2 Definition
	§2.3 Proof
	§2.4 Analysis

	§3 Discussion
	§4 Conclusion
	Acknowledgments
	References


