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This review discusses recent advances in single-particle cryo-EM and single-molecule
approaches used to visualise eukaryotic DNA replication reactions reconstituted in vitro.
We comment on the new challenges facing structural biologists, as they turn to describ-
ing the dynamic cascade of events that lead to replication origin activation and fork
progression.

Introduction
Accurate transfer of genetic information from parental to daughter cells requires that chromosome
replication is finely tuned, so that DNA is faithfully copied only once per cell cycle [1]. Failures in this
process can lead to cellular abnormalities, genetic disease and cancer. In vitro reconstitution studies
using budding yeast proteins revealed that the replication machinery is assembled in three temporally
separated steps (Figure 1) [2–4]. First, the MCM helicase is loaded onto replication start sites
(origins), during a process known as licensing that occurs in the G1 phase of the cell cycle. Here, the
Origin Recognition Complex (ORC) associates with Cdc6 and recruits a set of two hexameric MCM
rings, initially associated with the loading factor, Cdt1 [5,6]. Helicase loading requires ATP hydrolysis
by MCM [7,8], which prompts the formation of a double hexameric MCM ring encircling duplex
DNA [4,9–11]. A second step involves untwisting of the double helix [3], which is promoted by the
association of Cdc45 and GINS to the MCM, together forming the CMG holo-helicase [12,13]. The
third step in origin activation requires the recruitment of the firing factor, Mcm10, which activates the
ATPase powered DNA translocation function of CMG [3,14,15]. At this stage single-stranded DNA
becomes exposed and serves as a template for the replicative polymerases, which dynamically associate
with the replisome during fork progression [3,16]. Here, we review recent biochemical, single-molecule
and structural studies on in vitro reconstituted reactions that recapitulate DNA replication at cellular
rates. We comment on how integrative single-molecule and cryo-electron microscopy (cryo-EM)
approaches can provide unprecedented insights into the molecular mechanisms of DNA replication.

A sequential, quasi-symmetric mechanism for MCM
helicase loading
The loading of a head-to-head MCM double hexamer establishes the symmetry required for bidirec-
tional DNA replication. How the double hexamer is formed around duplex DNA has been the subject
of intense debate. Both biochemical and structural work have shown that ORC binds and bends the
DNA [17,18]. Upon association with Cdc6, ORC recruits one hexameric helicase ring via a set of
C-terminal winged-helix domains [5,6,19]. The MCM ring contains a discontinuity (gate) between two
subunits in the hexamer, which is kept open by the loading factor, Cdt1 [20,21]. Bent DNA is threaded
through the MCM gate, leading to the formation of a short-lived ORC–Cdc6–Cdt1–MCM (OCCM)
complex [19,22], which can be stabilised in the presence of a slowly hydrolysable ATP analogue. Several
models have been proposed to explain the downstream molecular events that lead to MCM double-
hexamer formation. Single-molecule work performed by the Bell group supports a sequential model
whereby DNA loading of the first MCM ring drives origin-association of the second MCM ring. In the
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Figure 1. Licensing and activation of an eukaryotic origin of replication.

Origin licensing is the recruitment of a set of two MCM ring-shaped helicases forming a double hexamer around duplex DNA.

Origin DNA untwisting (and possibly melting) requires the recruitment of GINS and Cdc45 to MCM, which disrupt the double

hexamer leading to the formation of two CMG assemblies, in an ATP-binding-dependent manner. Replication fork

establishment requires of Mcm10 that switches on the ATP-hydrolysis function of CMG, causing lagging-strand ejection via an

unknown mechanism.
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experimental conditions used, a single ORC complex is sufficient to drive double-hexamer formation. This obser-
vation suggests that the second helicase ring is recruited by the first loaded MCM, in particular via its N-terminal
dimerisation interface [23,24]. Biochemical work from the Diffley group, however, indicates that the same winged-
helix C-terminal elements in MCM are required for the loading of the first and second MCM rings, suggesting
that both rings are recruited via the same OCCM mechanism [5]. Furthermore, efficient helicase loading requires
two distinct ORC-binding events at inverted DNA sites, supporting a symmetric mechanism for double-hexamer
formation [25]. While the two studies initially appeared to describe two distinct helicase-loading pathways, recent
electron microscopy experiments indicate otherwise [22]. Time-resolved cryo-EM imaging revealed, in fact, that
ORC first binds a high-affinity site (the ‘ACS’ element) on the origin of replication and recruits a first helicase
ring by forming the OCCM (ORC–Cdc6–Cdt1–MCM) intermediate (Figure 2). Upon Cdc6 and Cdt1 release, as
well as MCM ring closure, ORC disengages from the C-terminal domain of MCM. A second ORC-binding event
occurs downstream on origin DNA, concomitantly engaging an inverted DNA site (the lower-affinity ‘B2’
element) and a previously unknown protein-binding site on the N-terminal face of MCM [22]. This new struc-
tural intermediate is named MO (MCM–ORC). The TFIIB-like ORC6 subunit [26] mediates the interaction and
selectively recognises the MCM ring when this is locked around DNA. This mechanism ensures that recruitment
of the second helicase occurs with a defined geometry, and only after the loading of the first MCM ring is com-
plete [22]. In this inverted configuration, ORC is suitably positioned to recruit a second MCM ring via the
OCCM pathway, eventually leading to double-hexamer formation. The cascade of events observed was completely
unexpected, yet the observed structural transitions reconcile what initially appeared as contrasting models. As
indicated by the Bell study, loading of the first MCM ring does drive loading of the second ring, and the
N-terminal face of the first loaded MCM is indeed important in this process, as it mediates the second
ORC-binding event [22,23]. Likewise, in accord with data from the Diffley group, both MCM rings are loaded via
the same OCCM mechanism and involve two ORC-binding events that load two MCM rings in an inverted con-
figuration [5,22,25]. Open questions remain — for example: does the same ORC complex always mediate the
loading of both the first and second MCM ring without ever being released into solution? Or is loading mediated
by two distinct ORC complexes, when working at physiological protein concentration? To prevent re-replication,
origin licensing is inhibited by the CDK kinase which phosphorylates specific subunits in ORC [27–29]. What
steps in the helicase-loading reaction are blocked by CDK to impair double-hexamer formation? Is it OCCM
formation, MO assembly or perhaps downstream double-hexamer engagement? Hybrid biochemical, structural
and single-molecule approaches will be needed to address these questions.

Figure 2. MCM double-hexamer formation follows a sequential, quasi-symmetric mechanism.

A first ORC origin-association event involves an ACS, high-affinity DNA site. ORC binds and bends DNA, to allow for the recruitment of a first MCM

ring, through a C-terminal MCM interaction. Upon release of ORC from the ACS site, a second ORC-binding event involves the N-terminal MCM

domain and an inverted lower-affinity ORC-binding site. In this configuration, ORC is competent for recruiting a second MCM ring, following the

same mechanism as the loading of the first MCM ring. The end result of the helicase loading reaction is the formation of a head-to-head double

hexameric ring. The use of the ReconSil in silico reconstitution approach allows for the visualisation of a nucleosome, which flanks the ACS site in

the reconstituted system and in yeast origins of replication.
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Origin DNA melting and replication fork establishment
While helicase loading requires ATP hydrolysis by MCM, the double hexamer remains ADP-bound and does
not unwind DNA [3,10,11]. Helicase activation requires the kinase function of both DDK and CDK. In particu-
lar, DDK phosphorylates MCM allowing for the recruitment of Sld3 and Cdc45 [30], while CDK phosphory-
lates Sld2 and Sld3, leading to the formation of a super-complex of firing factors (phospho-Sld3–Dpb11–
phospho-Sld2–GINS–Pol ε) [31,32], eventually promoting stable MCM engagement of helicase activators GINS
and Cdc45 [2]. CMG assembly disrupts the double hexamer resulting in the formation of two holo-helicase
particles. This process requires the release of ADP and binding of ATP by MCM, followed by the concomitant
untwisting of origin DNA by 0.7 turns of DNA per CMG particle [3] (Figure 1). The structural state of
untwisted origin DNA engaged by CMG remains unknown. In particular, it is unclear whether untwisting of
0.7 turns of the double helix can disrupt Watson–Crick base-pairing within the MCM cavity, which would
nucleate origin DNA melting. Cryo-EM imaging of CMG assembled onto origin DNA is required to address
this question.
ATP–CMG formation at origins fails to recruit the single-stranded binding protein RPA, indicating that add-

itional components are required to establish a bidirectional replication fork [3]. The Mcm10 firing factor plays
a key, yet elusive role in this context. Mcm10 promotes the ejection of the lagging-strand template from the
MCM central channel and activates the ATP-hydrolysis function of the CMG, which powers single-stranded
DNA translocation and DNA fork unwinding [3,14,15]. Two-dimensional single-particle EM analysis of CMG
activated by Mcm10 demonstrated that the helicase advances with the N-terminal face forming the leading
edge of the advancing replisome [3]. This observation, supported by 3D cryo-EM experiments [33–36], implies
that the two helicases need to cross paths in order for bidirectional replication forks to be established. In this
process, the strand ejected by one CMG helicase becomes the translocation strand of the second helicase
(Figure 1). Several key questions remain unanswered. For example, is Mcm10 promoting ejection of the
lagging-strand template from the MCM ring, and is this the trigger that activates the ATP-hydrolysis function
in the CMG? Alternatively, is lagging-strand ejection a consequence of ATP-hydrolysis-driven leading-strand
translocation along the leading-strand template, as proposed by a recent cryo-EM study on CMG fork trans-
location [33]? Do the Mcm10-activated, converging CMG particles exchange DNA strands as they pass one
another? Or does strand ejection occur before the helicases cross paths? Is a specific gate used for strand ejec-
tion [16] as observed for the duplex DNA entry into MCM–Cdt1 during origin loading [20,21,37,38]?
Addressing these questions will be important to establish whether CMG can actively translocate along duplex
and not only single-stranded DNA, which is a compelling frontier question raised by a recent single-molecule
study [16].

Architecture and functions of the eukaryotic replisome
Not only does the CMG unwind the established DNA fork, it also serves as the organising centre of the repli-
some bringing together multiple DNA replication, genome and epigenome maintenance functions (reviewed in
[39,40], Figure 3A). For example, the leading-strand polymerase Pol ε contacts both GINS and the ATPase
(rear) face of the advancing MCM through a set of essential, non-catalytic modules [34]. Two functional ele-
ments are in turn flexibly tethered to the non-enzymatic core of Pol ε. One is the catalytic domain, which is
likely free to engage and disengage the primer-template junction on the leading strand, hence allowing substrate
access to the RFC clamp loader or other DNA polymerases [41]. The second flexible Pol ε element is the
Dpb3–4 histone-like dimer [42], which plays a key role in re-depositing parental histones onto the leading-
strand DNA [43,44]. Fork protection factors Csm3 and Tof1 are positioned ahead of the helicase, and they
contact and stabilise duplex DNA as it enters the helicase pore [33]. These factors, together with Mrc1, support
DNA replication at cellular rates in the in vitro reconstituted system; however, the mechanism is unknown
[45,46]. Engagement of the incoming parental DNA at the fork by Csm3–Tof1 might directly increase the effi-
ciency of replisome progression, as proposed in a recent cryo-EM study [33]. Also positioned at the leading
edge of the replication fork is the homo-trimeric Ctf4 adaptor protein, linking the CMG helicase to a set of
various client proteins. One example is Pol α, which primes Okazaki fragments on the lagging strand [47–49],
and another is the helicase/nuclease Dna2, which functions during Okazaki fragment maturation [50].
Surprisingly, despite the direct interaction with lagging-strand enzymes, in vitro reconstitution experiments
have failed to identify any role for Ctf4 in DNA replication per se [2,45], indicating that Ctf4 might play a
more important role in critical chromosome maintenance functions. One of these roles is parental histone
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reshuffling at the replication fork. Indeed, Ctf4, alongside histone chaperone elements found in N-terminal
Mcm2 and the Pol1 subunit of Pol α, have been found to function in the selective redeposition of parental his-
tones onto lagging-strand DNA [51–55]. A second key activity is sister chromatid cohesion establishment,
which indeed is the first function attributed to Ctf4 in cells [56]. The monomeric helicase Chl1, another known
cohesion establishment factor, employs the same molecular mechanism to contact Ctf4, as identified for GINS
and Pol α. Consistent with this, when point mutations were introduced in Chl1, designed to impair Ctf4
engagement, a sister chromatid cohesion establishment defect was identified, which nearly phenocopied the
Ctf4 knockout [57]. Ctf4 can also bridge between two GINS (and therefore two CMG) assemblies, although the
functional significance of this complex is unknown [47,58]. While it is established that two replisomes need
not be physically connected for efficient DNA replication to occur [59], physical tethering of two CMGs has
been suggested to play a role during sister chromatid cohesion by keeping the two ends of a growing replication
bubble in close physical proximity [48]. Mechanistic studies on sister chromatid cohesion and parental histone
redeposition at the replication fork are in their infancy, and present exciting new challenges for the field of
chromosome replication.

Replisome dynamics during fork progression
In silico reconstitution of double-hexamer formation using time-resolved cryo-EM has allowed for the visualisa-
tion of the structural intermediates that occur upon licensing of an origin of replication [22]. So far, however,
structural analysis of all the molecular assemblies that co-ordinate downstream replication events have either
been studied at equilibrium or as isolated subcomplexes stabilised with nucleotide analogues [33,36,60,61].
The precise nature of the molecular interactions between DNA polymerases and the rest of the core repli-

some is an important determinant in processes such as polymerase recycling and the mechanism of lagging-
strand synthesis. Biochemical studies have revealed that the leading-strand polymerase Pol ε is tightly associated
with the CMG helicase [34,41,62,63]. Conversely, the lagging-strand polymerase Pol δ is believed to be highly
dynamic and physically disconnected from the replisome core [39]. Whether the DNA polymerases act dynam-
ically or are stably tethered to the replisome core during fork progression remains to be established. A recent
van Oijen and O’Donnell study utilised single-molecule fluorescence imaging to simultaneously monitor DNA
synthesis and polymerase dynamics of individual replisomes in real time [64]. Reconstituted eukaryotic repli-
somes were found to be highly resistant to dilution, retaining the continuous presence of one Pol ε, one Pol δ
and two Pol α molecules for the synthesis of tens of kilobases. However, all three polymerases were found to
dynamically exchange into the replisome, when challenged with excess polymerases in solution (Figure 3B
[64]). The kinetics of these observed polymerase exchange events were dependent on the concentration of poly-
merase molecules in solution. Notably, a single Pol δ molecule was observed to be reused for the synthesis of

Figure 3. Architecture of the eukaryotic replication fork.

(A) The CMG forms the organising centre of the eukaryotic replisome. Pol ε is positioned at the back of the advancing MCM

helicase motor, directly interacting with the ATPase domain. Pol α is linked to the CMG via the homo-trimeric Ctf4 factor. Pol δ

has been reported to directly interact with Pol α. Additional replisome factors mediate fast and efficient replication and other

functions such as sister chromatid cohesion establishment and parental histone redeposition. (B) All three eukaryotic replicative

polymerases can exchange into the replisome using a multi-site competitive exchange mechanism.
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many Okazaki fragments, even when challenged with excess polymerases in solution. This apparent stability of
Pol δ during lagging-strand synthesis is facilitated in part through its Pol32 subunit [64]. Indeed, Pol32 has
previously been reported to interact with the Pol1 catalytic subunit of Pol α, suggesting a possible mechanism
for Pol δ tethering to the replisome core [65]. Consistent with this scenario, cryo-EM analysis of Pol δ bound
to primed-DNA reveals that the Pol32 subunit of Pol δ is surface-exposed and hence available to interact with
other replisome factors.
The dynamics of the interactions between replisome components raise an immediate paradox. How can the

replisome form a stable processive complex, while polymerases are easily exchanged? This same behaviour has
been observed in other model systems and can be explained by the presence of multiple weak pair-wise
protein–protein-binding sites linking polymerases with core replisome factors [66–69]. In this scenario, stable
polymerase association is mediated by interaction with two or more simultaneous binding sites, as indeed
observed in the CMG–Pol ε cryo-EM structure [34]. Under dilute conditions (or in the absence of a solution
pool of proteins), complete polymerase dissociation would involve at least two steps. Transient disruption to
one of the first interaction elements would be followed by rapid reassociation, preventing polymerase release.
Things would change if competitor polymerase molecules were to be found in close proximity to these transi-
ently vacated sites. Under these conditions, the polymerase exchange would be favoured as a transiently vacated
interaction site would become occupied by a polymerase molecule recruited from the solution pool. Such a
concentration-dependent multi-site exchange mechanism provides a general solution to tuning the stability of
proteins at the replication fork to help handle obstacles and endogenous stressors during replication of large
genomes.
We now understand that the Pol ε interaction with CMG is much more dynamic than originally suggested

by the first cryo-EM imaging experiments, while Pol δ is emerging as a candidate component of the replisome
core, in contrast with the textbook picture. Retention of Pol α and Pol δ over lagging-strand cycles has import-
ant implications for replisome coordination, presumably through the generation of priming, lagging-strand
loops or a combination of both. Simultaneous observation of DNA looping and leading-strand synthesis during
replication by T7 replisomes have demonstrated that most loop formation events occur during primer synthesis
[70]. Coordination of DNA synthesis may be achieved through multiple reaction mechanisms involving the
production of replication loops. Previous studies have implied the frequency to which possible mechanisms are
utilised by the replisome is often guided by the physical connections between different proteins [71–73]. It
remains to be established how lagging-strand primer hand-off, DNA polymerase activity and the formation of
loops on the lagging strand are co-ordinated to achieve simultaneous synthesis of both strands in such a
polymerase-tethered replisome. Understanding the molecular configurations available to the eukaryotic repli-
some during fork progression, especially during exchange events, will be exciting areas of the new investigation.

Future directions
The ability to describe the compositional and conformational dynamics of the advancing replisome is an
important new challenge for structural biologists. Recent biochemical reconstitution combined with single-
particle cryo-EM techniques have provided important insights into the mechanism of DNA replication. At the
same time, real-time single-molecule imaging of individual replisomes have started to reveal unexpected kinetic
and compositional dynamics at the replication fork. Thus, the development of new structural tools will be
required to characterise the molecular choreography that control and maintain the replisome during chromo-
some replication. Time-resolved imaging approaches, combined with in silico reconstitution techniques, have
enabled the detection of sequential MCM helicase loading reactions on the minute timescale [22]. Other events
leading to the replication fork establishment (e.g. Mcm10-triggered lagging-strand ejection from CMG) will
likely require higher temporal resolution. Fortunately, the ability to isolate reaction intermediates using micro-
fluidic devices coupled to spray-plunging technologies are rendering robust millisecond-resolution time-
resolved cryo-EM a reality [74].
In parallel, computational methods to tackle complex structural flexibility and compositional heterogeneity

are being developed. Three-dimensional classification strategies and multi-body refinement are established,
powerful techniques that can describe non-discrete conformational heterogeneity in large molecular assemblies
[75]. At the same time, new approaches are being developed to capture the full context of dynamic protein–
DNA assemblies. Traditional single-particle approaches can report on the high-resolution structure of nucleo-
protein complexes but often fail to report on the relative orientation of two particles spaced apart by a flexible
DNA stretch. Protocols such as ReconSil [22] aim to overcome these technical limitations and map different
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protein-binding sites on the same DNA molecule. By positioning averaged DNA-bound structures back onto
the original micrograph, overlaid to the corresponding raw particles, enhanced-signal views can be obtained for
large DNA segments decorated by multiple proteins. This approach is powerful in describing complex replica-
tion reactions performed by compositionally dynamic protein assemblies. Combined with time-resolved
resolved methods, these techniques enable observation of transient intermediates, which are lost during aver-
aging when using traditional single-particle averaging methods. In summary, biochemical reconstitution com-
bined with modern cryo-EM image processing promises to provide a complete understanding of the dynamic
structural transitions that occur upon replication fork establishment and replisome progression.

Perspectives
• Importance of the field: Studying chromosome replication is key to understanding genome

stability. To understand the concerted function of multiple enzymes that form the eukaryotic
replisome, we must describe their structural dynamics.

• Current thinking: Time-resolved cryo-EM methods allow us to establish the sequence of
molecular events that drive replication origin transactions. Single-molecule approaches
describe the unexpected dynamics of replisome components, posing new challenges to struc-
tural biology.

• Future directions: Development of time-resolved methods with millisecond resolution will allow
access to key short-lived structural intermediates on the path to replication fork establishment.
In silico reconstitution methods will enable understanding the concerted action of multiple
replication enzymes on the broader context of replication fork progression.

Abbreviations
cryo-EM, cryo-electron microscopy; ORC, Origin Recognition Complex.
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