Appendix 6

This appendix provides a summary about the study characteristics and the results from the included studies. To summarize:

- Table A6.1 summarizes the study characteristics:
- Type computer model.
- Type tissue.
- Type boundary conditions (BC) at the outer surface of the model (BOS).
- Type experiments and parameters that were validated.
- Table A6.2 provides:
- Names of the included media in the model (electrodes, organs, etc.)
- Values of the electrical and thermal properties of the media.
- Threshold parameters of the media ($\mathrm{E}_{\text {IRE(th) }}, \mathrm{T}_{\text {th }}, \Omega_{\mathrm{th}}, \mathrm{CEM} 43^{\circ} \mathrm{C}_{(\mathrm{th})}$).
* Please note that the data in Table A6.2 were arranged according to the names of the media.
- Table A6.3 summarizes:
- The applied electrode characteristics.
- The simulated pulse parameters.
- The type boundary conditions at the boundaries between electrodes and media.
- Table A6.4 summarizes the data:
- About the electric-field and temperature distributions.
- About the temperature range.
- Applied for meta-analysis.
- About the parameters that were validated and the used pulse parameters.

Table A6.1

Table A6.1 Data about the used software package, modeling dimensions, tissue properties and BC of BOS used in the included studies. This table also shows whether the included studies performed experiments, the type of experiments, and the parameters that were validated. This table was arranged according to the reference number. The brackets "\{ \}" are defined as a set of elements. The following abbreviations are used: NR (Not reported), NA (Not applicable), NC (Not clear), NTA (No thermal analysis), and ND (Not defined).

Computer model		Tissue properties					Boundary conditions (BC) applied to boundaries at outer surface (BOS)		Experiments			
Used software package	Dimension of model geometry	Selected tissue	Composition	Electrical conductivity dependence	Thermal conductivity dependence	Effect of blood perfusion?	Type electrical BC at BOS	Type thermal BC at BOS	Performed experiment? (Experimental type)	Models/ parameters attempted to validate	Additional details	Ref.
FEMLAB V2.2 (Finite element method)	2D	Liver	\{Homogeneous, Isotropic, NonLinear\}	$\sigma(\mathrm{T})$	k(T)	Yes	Neumann	Neumann	No	NA	NA	[3]
	2D	Liver	\{Homogeneous, Isotropic, Linear\}	σ	k	Yes	Neumann	Neumann	Yes (In vivo, rat)	\{ σ, EIRE(th)	NA	[24]
NR	1D	Skin	\{Homogeneous, Isotropic, Linear\}	σ	k	No	NA	NA	Yes (In vivo, mouse)	NA	NA	[25]
FEMLAB (Finite element method)	\{2D, 3D $\}$	ND	\{Homogeneous, Heterogeneous, Isotropic, Linear\}	σ	k	NR	Neumann	Neumann	No	NA	NA	[26]
FEMLAB (Finite element method)	2D	ND	\{Homogeneous, Isotropic, Linear\}	σ	k	No	Neumann	Neumann	No	NA	NA	[27]
COMSOL Multiphysics V3.4 (Finite element method)	2D	\{Breast, Prostate\}	\{Homogeneous, Heterogeneous, Isotropic, Linear\}	σ	k	Yes	Neumann	$\begin{aligned} & \text { Dirichlet } \\ & \left(37^{\circ} \mathrm{C}\right) \end{aligned}$	No	NA	NA	[28]
NR	3D	Breast	\{Heterogeneous, Isotropic, Linear\}	σ	k	Yes	Neumann	Neumann	$\begin{aligned} & \text { Yes } \\ & \text { (In vitro) } \end{aligned}$	$\mathrm{E}_{\text {IRE(}}$ (t)	NA	[29]
Analytic	1D	In vitro	\{Homogeneous, Isotropic, Linear\}	σ	k	No	NA	NA	$\begin{aligned} & \text { Yes } \\ & \text { (In vitro) } \end{aligned}$	NA	NA	[30]
COMSOL Multiphysics V3.5A (Finite element method)	3D	Brain	\{Homogeneous, Isotropic, Linear, Non-linear\}	$\sigma(\mathrm{E}, \mathrm{T})$	k	Yes	Neumann	Neumann	$\begin{aligned} & \text { Yes } \\ & \text { (In vivo, dog) } \end{aligned}$	$\mathrm{EIRE}_{\text {(th) }}$	NA	[31]
COMSOL Multiphysics V3. 4	2D	Prostate	\{Homogeneous, Isotropic, Linear\}	σ	NTA	NTA	Neumann	NTA	No	NA	NA	[32]

Computer model		Tissue properties					Boundary conditions (BC) applied to boundaries at outer surface (BOS)		Experiments			Ref.
Used software package	Dimension of model geometry	Selected tissue	Composition	Electrical conductivity dependence	Thermal conductivity dependence	Effect of blood perfusion?	Type electrical BC at BOS	Type thermal BC at BOS	Performed experiment? (Experimental type)	Models/ parameters attempted to validate	Additional details	
(Finite element method)												
NR (Finite element method)	2D	Artery	\{Homogeneous, Isotropic, Linear\}	σ	k	Yes	Neumann	$\begin{aligned} & \text { Dirichlet } \\ & \left(37^{\circ} \mathrm{C}\right) \end{aligned}$	Yes (In vivo, rabbit)	NA	NA	[33]
COMSOL Multiphysics V3.5A (Finite element method)	2D	Artery	\{Homogeneous, Isotropic, Linear	σ	k	Yes	Neumann	Dirichlet	No	NA	NA	[34]
COMSOL Multiphysics (Finite element method)	3D	Breast	\{Heterogeneous, Anisotropic, Linear\}	σ	NTA	NTA	NR	NTA	Yes (In vivo, mouse)	NA	NA	[35]
COMSOL Multiphysics V3.5A (Finite element method)	2D	Artery	\{Homogeneous, Isotropic, Linear\}	σ	k	No	Neumann	$\begin{aligned} & \text { Dirichlet } \\ & \left(37^{\circ} \mathrm{C}\right) \end{aligned}$	Yes (In vivo, rat)	EIre(th)	NA	[36]
COMSOL Multiphysics V3.5A (Finite element method)	2D	Liver	\{Homogeneous, Isotropic, Linear, Non-linear\}	$\sigma(\mathrm{E}, \mathrm{T})$	k	Yes	Neumann	$\begin{aligned} & \text { Robin } \\ & \left(\mathrm{h}=10 \mathrm{~W} \cdot \mathrm{~m}^{-2 \cdot} \cdot{ }^{\circ} \mathrm{C}-1, \mathrm{~T}_{\text {env }}\right. \\ & \left.=21^{\circ} \mathrm{C}\right) \end{aligned}$	Yes (Ex vivo, pig)	$\mathrm{E}_{\text {IRE(}}$ (h)	NA	[37]
COMSOL Multiphysics (Finite element method)	2D	Liver	\{Homogeneous, Isotropic, Linear\}	σ	NTA	NTA	Neumann	NTA	Yes (In vivo, rat)	$\mathrm{E}_{\text {IRE(}}$ (th)	NA	[38]
COMSOL Multiphysics V3.4 (Finite element method)	2D	Liver	\{Heterogeneous, Isotropic, Linear\}	σ	k	Yes	Neumann	Neumann	No	NA	NA	[39]
COMSOL Multiphysics V3.5A (Finite element method)	3D	Brain	\{Homogeneous, Isotropic, Linear, Non-linear\}	$\begin{aligned} & \{\sigma(\mathrm{E}, \mathrm{~T}), \\ & \sigma(\mathrm{T})\} \end{aligned}$	k	Yes	Neumann	Neumann	Yes (In vivo, dog)	Pennes bioheat equation	NA	[40]

Computer model		Tissue properties					Boundary conditions (BC) applied to boundaries at outer surface (BOS)		Experiments			
Used software package	Dimension of model geometry	Selected tissue	Composition	Electrical conductivity dependence	Thermal conductivity dependence	Effect of blood perfusion?	Type electrical BC at BOS	Type thermal BC at BOS	Performed experiment? (Experimental type)	Models/ parameters attempted to validate	Additional details	Ref.
COMSOL Multiphysics V3.5A (Finite element method)	2D	Artery	\{Homogeneous, Isotropic, Nonlinear\}	σ	k	Yes	Neumann	$\begin{aligned} & \text { Dirichlet } \\ & \left(37^{\circ} \mathrm{C}\right) \end{aligned}$	Yes (In vivo, rat)	EIIEE(th)	NA	[41]
COMSOL Multiphysics V3.5A (Finite element method)	3D	Subcutaneous tissue	\{Heterogeneous, Isotropic, Nonlinear\}	$\sigma(\mathrm{E})$	k	Yes	Neumann	NR	No	NA	NA	[42]
COMSOL Multiphysics V4.2A (Finite element method)	3D	In vitro	\{Homogeneous, Isotropic, Nonlinear\}	$\sigma(\mathrm{T})$	k	No	Neumann	$\begin{aligned} & \text { \{Neumann, Robin }\} \\ & \left(\mathrm{h}=25 \mathrm{~W} \cdot \mathrm{~m}^{-2 .}{ }^{\circ} \mathrm{C}^{-1}, \mathrm{~T}_{\text {env }}\right. \\ & \left.=22{ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \hline \text { Yes } \\ & \text { (In vitro) } \end{aligned}$	\{Heat transfer equation, $\sigma(\mathrm{T})\}$	Heat equation excluding Q_{m} and w_{b}	[43]
COMSOL Multiphysics V3.5A (Finite element method)	3D	Eye	\{Heterogeneous, Isotropic, Linear\}	σ	k	Yes	Neumann	Robin (From sclera and retina to the body core: $\mathrm{h}=65$ $\mathrm{W} \cdot \mathrm{m}^{-2 .}{ }^{\circ} \mathrm{C}^{-1}$, From the cornea to the surroundings: $\mathrm{h}=20$ $\mathrm{W} \cdot \mathrm{m}^{-2 .}{ }^{\circ} \mathrm{C}-1, \mathrm{q}_{\mathrm{e}}=40 \mathrm{~W} \cdot \mathrm{~m}^{-}$ ${ }^{2}, \mathrm{~T}_{\text {env }}=25^{\circ} \mathrm{C}, \varepsilon_{\mathrm{s}}=$ 0.975)	No	NA	NA	[44]
COMSOL Multiphysics V3.5A (Finite element method)	3D	Kidney	\{Homogeneous, Isotropic, Linear, Non-linear\}	$\begin{aligned} & \{\sigma, \sigma(\mathrm{T}), \sigma(\mathrm{E}), \\ & \sigma(\mathrm{E}, \mathrm{~T})\} \end{aligned}$	k	Yes	Neumann	$\begin{aligned} & \text { Robin } \\ & \left(\mathrm{h}=94 \mathrm{~W} \cdot \mathrm{~m}^{-2 \cdot{ }^{\circ} \mathrm{C}-1, \mathrm{~T}_{\text {env }}}\right. \\ & \left.=37^{\circ} \mathrm{C}\right) \end{aligned}$	Yes (Ex vivo, pig)	$\sigma(\mathrm{E})$	NA	[45]
COMSOL Multiphysics V4.1 (Finite element method)	3D	Liver	\{Homogeneous, Heterogeneous, Isotropic, Nonlinear\}	$\sigma(\mathrm{E}(\mathrm{t}), \mathrm{t})$	NTA	NTA	NR	NTA	No	NA	NA	[46]
Marc/Mentat (Finite element method)	3D	In vitro	\{Homogeneous, Isotropic, Linear\}	σ	NTA	NTA	$\begin{aligned} & \hline \text { Dirichlet } \\ & \left(\left\{V_{\mathrm{P}}, 0\right\}\right) \end{aligned}$	NTA	Yes (In vitro)	Eire(th)	NA	[47]
$\begin{aligned} & \text { COMSOL } \\ & \text { Multiphysics } \\ & \text { V3.5 } \\ & \hline \end{aligned}$	3D	Liver	\{Homogeneous, Isotropic, Linear\}	σ	k	Yes	Neumann	NR	Yes (In vivo, rat)	NA	NA	[48]

Computer model		Tissue properties					Boundary conditions (BC) applied to boundaries at outer surface (BOS)		Experiments			Ref.
Used software package	Dimension of model geometry	Selected tissue	Composition	Electrical conductivity dependence	Thermal conductivity dependence	Effect of blood perfusion?	Type electrical BC at BOS	Type thermal BC at BOS	Performed experiment? (Experimental type)	Models/ parameters attempted to validate	Additional details	
(Finite element method)												
COMSOL Multiphysics V3.5A (Finite element method)	3D	Prostate	\{Homogeneous, Isotropic, Linearity for σ NC, Linear for k\}	NC	k	Yes	NR	NR	$\begin{aligned} & \hline \text { Yes } \\ & \text { (In vitro) } \end{aligned}$	NA	NA	[49]
Analytic	1D	Prostate	\{Homogeneous, Isotropic, Linear\}	σ	NTA	NTA	NA	NTA	Yes (In vivo, mouse)	EIRE(th)	NA	[50]
COMSOL Multiphysics V4.2 (Finite element method)	2D	Rectal wall	\{Homogeneous, Isotropic, Linear	σ	NTA	No	$\begin{aligned} & \text { Dirichlet } \\ & (0 \mathrm{~V}) \end{aligned}$	NTA	Yes (In vivo, pig)	NA	NA	[51]
COMSOL Multiphysics (Finite element method)	2D	Pancreas	\{Homogeneous, Isotropic, Linear\}	σ	NTA	NTA	$\begin{aligned} & \text { Dirichlet } \\ & (0 \mathrm{~V}) \end{aligned}$	NTA	Yes (In vivo, pig)	EİE(th)	NA	[52]
COMSOL Multiphysics V4.4 (Finite element method)	2D	Liver	\{Homogeneous, Isotropic, Linear, Non-linear\}	$\sigma(\mathrm{E})$	k	No	Neumann	$\begin{aligned} & \text { Dirichlet } \\ & \left(\mathrm{T}_{\text {env }}=37^{\circ} \mathrm{C}\right) \end{aligned}$	No	NA	NA	[53]
QuickField (Finite element method)	2D	Liver	\{Homogeneous, Heterogeneous, Isotropic, Nonlinear\}	σ (E)	NTA	NTA	NR	NTA	Yes (In vivo, rat)	NA	NA	[54]
CFdesign (Finite element method)	3D	ND	\{Homogeneous, Isotropic, Linear\}	σ	k	No	Dirichlet (0 V)	$\begin{aligned} & \text { Dirichlet } \\ & \text { (Tinit) } \end{aligned}$	No	NA	NA	[55]
COMSOL Multiphysics V3.5A (Finite element method)	3D	Prostate	\{Homogeneous, Heterogeneous, Isotropic, Nonlinear\}	σ (E)	NTA	NTA	NR	NTA	Yes (In vivo, dog)	$\begin{aligned} & \left\{\mathrm{E}_{\text {IRE }}(\mathrm{th}), \sigma_{\text {init }},\right. \\ & \left.\sigma_{\max }\right\} \end{aligned}$	NA	[56]
$\begin{aligned} & \text { COMSOL } \\ & \text { Multiphysics } \\ & \text { V3.5A } \\ & \hline \end{aligned}$	3D	Brain	\{Homogeneous, Isotropic, Linear, Non-linear\}	$\{\sigma, \sigma(\mathrm{E})\}$	NTA	No	Neumann	NTA	$\begin{aligned} & \text { Yes } \\ & \text { (In vitro) } \end{aligned}$	EIRE(th)	NA	[57]

Computer model		Tissue properties					Boundary conditions (BC) applied to boundaries at outer surface (BOS)		Experiments			Ref.
Used software package	Dimension of model geometry	Selected tissue	Composition	Electrical conductivity dependence	Thermal conductivity dependence	Effect of blood perfusion?	Type electrical BC at BOS	Type thermal BC at BOS	Performed experiment? (Experimental type)	Models/ parameters attempted to validate	Additional details	
(Finite element method)												
COMSOL Multiphysics V3.5A (Finite element method)	3D	Subcutaneous tissue	\{Heterogeneous, Isotropic, Linear\}	σ	k	Yes	Neumann	Neumann	No	NA	NA	[58]
COMSOL Multiphysics V3.5A (Finite element method)	2D	Small intestine	\{Homogeneous, Heterogeneous, Isotropic, Anisotropic, Linear, Non-linear\}	$\{\sigma, \sigma(\mathrm{E})\}$	k	No	Neumann	$\begin{aligned} & \text { Robin } \\ & \left(\mathrm{h}=10 \mathrm{~W} \cdot \mathrm{~m}^{-2 \cdot} \cdot{ }^{\circ} \mathrm{C}-1, \mathrm{~T}_{\text {env }}\right. \\ & \left.=20^{\circ} \mathrm{C}\right) \end{aligned}$	Yes (In vivo, rat)	NA	NA	[59]
COMSOL Multiphysics V4.4	3D	In vitro	\{Homogeneous, Isotropic, Linear, Non-linear	$\sigma(\mathrm{T})$	k	No	Neumann	NR	Yes (In vitro)	NA	NA	[60]
COMSOL Multiphysics V4.3	3D	In vitro	\{Homogeneous, Isotropic, Linear\}	σ	k	No	Neumann	\{Neumann, Robin\} (Upper part of electrodes: $\mathrm{h}=50 \mathrm{~W} \cdot \mathrm{~m}$ $2 .{ }^{\circ} \mathrm{C}^{-1}$)	$\begin{aligned} & \text { Yes } \\ & \text { (In vitro) } \end{aligned}$	EIRE(th)	NA	[61]
COMSOL Multiphysics	3D	Liver	\{Heterogeneous, Isotropic, Linear, Non-linear \}	$\sigma(\mathrm{E}, \mathrm{T})$	k	Yes	NR	NR	No	NA	NA	[62]
COMSOL Multiphysics V4.2A (Finite element method)	3D	Kidney	\{Homogeneous, Isotropic, Linear, Non-linear\}	$\{\sigma, \sigma(\mathrm{E})\}$	NTA	No	Neumann	NTA	Yes (In vivo, dog)	σ (E)	NA	[63]
NR	1D	Prostate	\{Homogeneous, Isotropic, Linear, Non-linear\}	$\sigma\left(\mathrm{n}_{\mathrm{P}}\right)$	k	\{Yes, No\}	NA	NA	No	NA	NA	[64]
COMSOL Multiphysics (Finite element method)	2D	Kidney	\{Homogeneous, Isotropic, Linear\}	σ	k	NTA	NR	NTA	$\begin{aligned} & \hline \text { Yes } \\ & \text { (In vivo, pigs) } \end{aligned}$	$\mathrm{EIRE}_{\text {IR (th) }}$	NA	[65]
COMSOL Multiphysics V4.2A	2D	Brain	\{Homogeneous, Isotropic, Linear, Non-Linear\}	$\sigma(\mathrm{E})$	k	Yes	Neumann	NR	No	NA	NA	[66]
COMSOL Multiphysics	3D	Prostate	\{Homogeneous, Isotropic, Linear\}	σ	NTA	NTA	NR	NR	Yes (Clinical)	$\mathrm{E}_{\text {IRE(}}$ (h)	NA	[67]
COMSOL Multiphysics V5.2	3D	Prostate	\{Homogeneous, Isotropic, Linear, Non-linear\}	$\{\sigma, \sigma(\mathrm{E})\}$	NTA	NTA	NR	NTA	$\begin{aligned} & \text { Yes } \\ & \text { (Clinical) } \end{aligned}$	EIRE(th)	NA	[68]

Computer model		Tissue properties					Boundary conditions (BC) applied to boundaries at outer surface (BOS)		Experiments			
Used software package	Dimension of model geometry	Selected tissue	Composition	Electrical conductivity dependence	Thermal conductivity dependence	Effect of blood perfusion?	Type electrical BC at BOS	Type thermal BC at BOS	Performed experiment? (Experimental type)	Models/ parameters attempted to validate	Additional details	Ref.
COMSOL Multiphysics	3D	Brain	\{Heterogeneous, Isotropic, Linear, Non-linear\}	$\{\sigma, \sigma(\mathrm{E})\}$	NTA	NTA	Neumann	NTA	$\begin{aligned} & \hline \text { Yes } \\ & \text { (Clinical) } \end{aligned}$	NA	NA	[69]
COMSOL Multiphysics	3D	Pancreas	\{Homogeneous, Isotropic, Linear, Non-linear\}	$\sigma(\mathrm{E})$	k	Yes	Neumann	NR	$\begin{aligned} & \text { Yes } \\ & \text { (Clinical) } \end{aligned}$	NA	NA	[70]
COMSOL Multiphysics V4.3A	3D	Liver	\{Homogeneous, Heterogeneous, Isotropic, Nonlinear\}	$\sigma(\mathrm{E})$	NTA	NTA	NR	NTA	No	NA	NA	[71]
Analytic	2D	Liver	\{Homogeneous, Isotropic, Linear	σ	NTA	NTA	$\begin{aligned} & \text { Dirichlet } \\ & (0 \mathrm{~V}) \\ & \hline \end{aligned}$	NTA	$\begin{aligned} & \text { Yes } \\ & \text { (In vivo, rat) } \end{aligned}$	NA	NA	[72]
COMSOL Multiphysics V5.3 (Finite element method)	3D	\{Brain, In vitro\}	\{Homogeneous, Isotropic, Linear, Non-linear\}	$\sigma(\mathrm{E}, \mathrm{T})$	k	Yes	Neumann	Neumann	Yes (In vitro)	EIRE(th)	NA	[73]
COMSOL Multiphysics V4.2A (Finite element method)	2D	Liver	\{Homogeneous, Isotropic, Linear\}	σ	NTA	NTA	Neumann	NTA	Yes (In vivo, rabbit)	$\mathrm{EIRE}_{\text {(th) }}$	NA	[74]
Marc (Finite element method)	2D	In vitro	\{Homogeneous, Isotropic, Linear\}	σ	NTA	NTA	\{Dirichlet, Neumann\} (0 V , Use of symmetry)	NTA	$\begin{aligned} & \text { Yes } \\ & \text { (In vitro) } \end{aligned}$	$\mathrm{EIIRE}_{\text {(th) }}$	NA	[75]
COMSOL Multiphysics V4.4 (Finite element method)	NR	Liver	\{Homogeneous, Isotropic, Linear, Non-linear\}	$\sigma(\mathrm{E}, \mathrm{T})$	k	Yes	NR	NR	Yes (in vivo, rabbit)	EIRE(th)	NA	[76]
COMSOL Multiphysics V5 (Finite element method)	3D	Liver	\{Homogeneous, Isotropic, Nonlinear\}	σ (E)	NTA	NTA	NR	NTA	Yes (ex vivo, cow)	NA	NA	[77]
COMSOL Multiphysics V5.2A (Finite element method)	2D	Cervix	\{Homogeneous, Isotropic, Non-linear \}	$\sigma\left(\mathrm{E}, \mathrm{t}_{\mathrm{p}}\right)$	NTA	NTA	Neumann	NTA	$\begin{aligned} & \text { Yes } \\ & \text { (In vitro) } \end{aligned}$	NA	NA	[78]

Computer model		Tissue properties					Boundary conditions (BC) applied to boundaries at outer surface (BOS)		Experiments			
Used software package	Dimension of model geometry	Selected tissue	Composition	Electrical conductivity dependence	Thermal conductivity dependence	Effect of blood perfusion?	Type electrical BC at BOS	Type thermal BC at BOS	Performed experiment? (Experimental type)	Models/ parameters attempted to validate	Additional details	Ref.
IRENA (Finite difference method)	3D	Liver	\{Heterogeneous, Isotropic, Linear, Non-linear\}	$\sigma(\mathrm{E})$	NTA	NTA	\{Neumann, Robin\} (Parameter used is 0.01)	NTA	Yes (Clinical)	NA	NA	[79]
COMSOL Multiphysics V5.2 (Finite element method)	3D	Liver	\{Homogeneous, Isotropic, Linear, Non-linear\}	$\sigma(\mathrm{E}, \mathrm{T})$	k	Yes	Neumann	Neumann	Yes (Ex vivo, pig)	Pennes bioheat equation	NA	[80]

Table A6.2

Table A6.2 Data about the tissue properties and the thresholds used in the included studies. This table was arranged according to the name of the media. The brackets " $\}$ " are defined as a set of elements, " $[a, b]$ " is defined as the range between and including the values a and b assuming $\{a, b\} \in$ \mathbb{R}, and " $[a: c: b]$ " is defined as the range between and including the values a and b with step c assuming $\{a, b, c\} \in \mathbb{R}$. The following abbreviations are used: NR (Not reported), NA (Not applicable), NC (Not clear), NTA (No thermal analysis), ND (Not defined), and CAR (Cardiac autosynchronous rate). flc2hs is a Heavy side function in COMSOL Multiphysics

	Calculation of V and E	Calculation of T							Calculation of Ω			Ablation parameters				Ref
Name	σ	ρ	c_{p} or c_{b}	k	Qm	$\mathrm{T}_{\text {init }}$	Wb	Tart	A	U_{a}	Additional Details/ Parameters	EIRE(th) ($\left.\mathrm{V}_{\mathrm{P}(\mathrm{th})}, \mathrm{tp}_{\mathrm{t}} \mathrm{th}\right)$, $\mathrm{N}_{\mathrm{P}(\mathrm{th}), \tau_{\mathrm{P}(\mathrm{th})},}$ $\mathrm{f}_{\mathrm{P}(\mathrm{th})}$)	T_{th} (Exposure duration)	$\Omega_{\text {th }}$	CEM $43^{\circ} \mathrm{C}$ (th)	
	[$\left.5 \cdot \mathrm{~m}^{-1}\right]$	[$\left.\mathrm{kg} \cdot \mathrm{m}{ }^{-3}\right]$	$\begin{aligned} & {\left[\mathrm{[J} \mathrm{\cdot kg} \cdot \mathrm{~kg}^{.{ }^{\circ} \mathrm{C}-}\right.} \\ & \left.{ }^{1}\right] \end{aligned}$	$\begin{aligned} & {[\mathrm{W} \cdot \mathrm{~m}} \\ & { }_{-1 .{ }^{\circ} \mathrm{C}-} \\ & 1] \\ & \hline \end{aligned}$	[W•m³]	[${ }^{\circ} \mathrm{C}$]	$\begin{aligned} & {[\mathrm{kg} \cdot \mathrm{~m} \cdot} \\ & \left.3 \cdot \mathrm{~s}^{-1}\right] \end{aligned}$	[${ }^{\text {C }}$]	[s^{-1}]	$\begin{aligned} & {[J \cdot \mathrm{~mol}} \\ & \left.{ }_{1}\right] \end{aligned}$		$\begin{aligned} & \hline\left[\mathrm{V} \cdot \mathrm{~m}^{-1}\right] \\ & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$	$\begin{aligned} & \hline\left[{ }^{[} \mathrm{C}\right] \\ & ([\mathrm{s}]) \end{aligned}$		[min]	
Blood	0.7	NTA	NA	NR	NTA	NTA	NTA	${ }^{[54}$								
Blood	NA	1060	3840	NA	NA	NA	19.08	NR	NA	NA	$\begin{aligned} & \omega_{\mathrm{b}}=18 \cdot 10- \\ & { }^{3} \mathrm{~s}^{-1} \end{aligned}$	NA	NA	NA	NA	${ }^{[62}$
Blood	NA	1060	3840	NA	NA	NA	7.5790	NR	NA	NA	$\begin{aligned} & \omega_{\mathrm{b}}= \\ & 7.15 \cdot 10^{-3} \mathrm{~s}^{-1} \end{aligned}$	NA	NA	NA	NA	${ }_{\text {[} 66}$
Blood	0.7	NR		NA	NR	NR	NR	${ }^{[67}$								
Blood	NA	1060	3840	NA	NA	NA	212	37	NR	NR	$\omega_{\mathrm{b}}=0.2 \mathrm{~s}^{-1}$	NA	NR	NR	NR	${ }^{[70}$
Blood	NA	1060	3850	NA	NA	NA	NA	37	NA	NA	$\begin{aligned} & \omega_{\mathrm{b}}= \\ & 7.15 \cdot 10^{-3} \mathrm{~s}^{-1} \end{aligned}$	NA	NA	NA	NA	${ }^{[73}$
Blood	NA	1000	4180	NA	NA	NA	6.4	37	NA	NA	$\begin{aligned} & \omega_{b}= \\ & 6.4 \cdot 10^{-3} \mathrm{~s}^{-1} \end{aligned}$	NA	NA	NA	NA	${ }_{\text {[}}{ }^{\text {] }}$
Blood vessel (Healthy)	NR	NR	NR	NR	NR	NR	NA	NA	NC	NC	$\begin{aligned} & \sigma_{\text {init }}=0.7 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\max }=1.05 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \end{aligned}$	NA	$\begin{aligned} & \hline 50 \\ & \text { (NR) } \end{aligned}$	1	NR	${ }^{[62}$
Blood vessel aorta (Healthy)	NA	5.6-1063	$\begin{aligned} & 0.43 \cdot 1 \\ & 06 \end{aligned}$	$\begin{aligned} & \dot{\mathrm{R}}=8.314 \\ & \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1} \end{aligned}$	NA	NR	NR	NR	$\begin{aligned} & {[55} \\ &] \end{aligned}$							
Blood vessel artery (Healthy)	0.6	1000	3750	0.5	NR	37	NA	NA	5.6-10 ${ }^{63}$	$4.3 \cdot 10^{5}$	$\begin{aligned} & \dot{\mathrm{R}}=8.314 \\ & \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1} \end{aligned}$	$\begin{aligned} & 1500 \cdot 10^{2} \\ & \text { (NR, NR, NR, } \\ & \text { NR, NR) } \\ & \hline \end{aligned}$	NR	1	NR	${ }^{\text {[} 33}$
Blood vessel artery (Healthy)	[0.1:0.1:0.7]	1000	3750	0.5	NR	37	NA	NA	5.6-10 ${ }^{63}$	$4.3 \cdot 10^{5}$	NA	$\begin{aligned} & 1000 \cdot 10^{2} \\ & \text { (NR, NR, NR, } \\ & \text { NR, NR) } \end{aligned}$	NR	NR	NR	${ }^{[34}$
Blood vessel artery (Healthy)	0.286	1000	3750	0.5	NA	37	NA	NA	5.6-1063	$\begin{aligned} & 430 \cdot 10 \\ & 3 \end{aligned}$	$\begin{aligned} & \dot{\mathrm{R}}=8.314 \mathrm{~J} \\ & \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned}$	$\begin{aligned} & 1750 \cdot 10^{2} \\ & \left(70,100 \cdot 10^{-6},\right. \\ & 90, \mathrm{NA},\{1,4\}) \end{aligned}$	42	1	NR	${ }^{[36}$
Blood vessel artery (Healthy)	0.6	1000	3750	0.5	NA	37	NA	NA	5.6-10 ${ }^{63}$	$4.3 \cdot 10^{5}$	$\begin{gathered} \dot{\mathrm{R}}=8.314 \\ \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1} \end{gathered}$	$\begin{aligned} & 1750 \cdot 10^{2} \\ & \left(70,100 \cdot 10^{-6},\right. \\ & 90, \mathrm{NA}, 4) \\ & \hline \end{aligned}$	NR	1	NR	${ }^{\text {[}}$] ${ }^{\text {a }}$
Blood vessel including blood	0.7	NR	NA	NR	NR	NR	NR	${ }^{[71}$								
Blood vessel wall (Healthy)	0.17	NTA	NA	NR	NTA	NTA	NTA	${ }^{[54}$								
Bone (Healthy)	0.02	NR	NA	NR	NR	NR	NR	${ }_{[71}$								
Bone skull (Healthy)	0.02	NR	NR	NR	NA	${ }^{[69}$										

	Calculation of V and E	Calculation of T							Calculation of Ω			Ablation parameters				Ref
Name	σ	ρ	c_{p} or c_{b}	k	Q_{m}	$\mathrm{T}_{\text {init }}$	w_{b}	Tart	A	U_{a}	Additional Details/ Parameters	EIRE(th) ($\mathrm{V}_{\mathrm{P}(\mathrm{th}), \mathrm{tp}_{\mathrm{P}}(\mathrm{th}) \text {, }, \text {, }}$ $\mathrm{N}_{\mathrm{P}(\mathrm{th}),}, \mathrm{T}_{\mathrm{P}(\mathrm{th})}$, $\left.\mathrm{f}_{\mathrm{p}(\mathrm{th})}\right)$	T_{th} (Exposure duration)	$\Omega_{\text {th }}$	CEM $43^{\circ} \mathrm{C}$ (th)	
	[$\mathrm{S} \cdot \mathrm{m}^{-1}$]	[$\left.\mathrm{kg} \cdot \mathrm{m}{ }^{-3}\right]$	$\begin{aligned} & {\left[\left[\cdot \mathrm{kg}^{-1 .{ }^{\circ} \mathrm{C}-}{ }^{1}{ }^{1}\right]\right.} \end{aligned}$	$\begin{aligned} & {[\mathrm{W} \cdot \mathrm{~m}} \\ & { }^{-1 .{ }^{\circ} \mathrm{C}-} \\ & 1] \end{aligned}$	[W-m³]	[${ }^{\circ} \mathrm{C}$]	$\begin{aligned} & {\left[\mathrm{kg} \cdot \mathrm{~s}^{-1}\right]} \end{aligned}$	[${ }^{\circ} \mathrm{C}$]	[s^{-1}]	$\begin{aligned} & {[\mathrm{lJ} \cdot \mathrm{~mol}} \\ & \left.{ }_{1}\right] \end{aligned}$		$\begin{aligned} & {\left[\mathrm{V} \cdot \mathrm{~m}^{-1}\right]} \\ & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$	$\begin{aligned} & \hline\left[{ }^{[} \mathrm{C}\right] \\ & ([\mathrm{s}]) \end{aligned}$		[min]	
Brain (Cancerous)	$\begin{aligned} & \sigma_{\text {init }}=0.435 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\max }=0.7373 \mathrm{~S} \cdot \mathrm{~m}^{-1} \end{aligned}$	NR	NA	NC	NR	NR	NR	$\begin{aligned} & \hline[69 \\ & \hline \end{aligned}$								
$\begin{aligned} & \hline \text { Brain } \\ & \text { (Healthy) } \end{aligned}$	0.258	1039	3680	$\begin{aligned} & 0.056 \\ & 5 \end{aligned}$	10437	37	NA	NR	NR	NR	NA	$700 \cdot 10^{2}$ (NR, NR, 90, NR, NR)	42 (If sustained for long duration)	NR	NR	$\begin{array}{\|l} \hline[66 \\] \end{array}$
Brain gray matter (Healthy)	$\begin{aligned} & \sigma(\mathrm{E}, \mathrm{~T})=\sigma_{\text {inint }}(1+ \\ & \mathrm{flc} 2 \mathrm{hs}\left(\mathrm{E}-\text { Ealt, }^{\text {Eange }}\right) \\ & \left.+\zeta \cdot\left(\mathrm{T}-\mathrm{T}_{\text {init }}\right)\right) \end{aligned}$	1039	3680	0.565	10437	$\begin{aligned} & 36.1 \\ & \left(V_{P}=\right. \\ & 500 \mathrm{~V} \\ &) \end{aligned}$	NA	NA	NA	NA	$\begin{aligned} & \sigma_{\text {init }}=0.12 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \left(\mathrm{~V}_{\mathrm{P}}=\right. \\ & 500 \mathrm{~V}) \\ & \\ & \xi=0.032 \\ & { }^{\circ} \mathrm{C}-1 \\ & \mathrm{E}_{\text {alt }}= \\ & 580 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \\ & \mathrm{E}_{\text {range }}= \\ & \pm 120 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \\ & \hline \end{aligned}$	$\begin{aligned} & 495 \cdot 10^{2} \\ & \left(500,50 \cdot 10^{-6}\right. \\ & 9 \text { sets } \times 10 \\ & \text { pulses, NA, } 4) \end{aligned}$	NR	NA	60	$\begin{array}{\|l\|} \hline[31 \\] \end{array}$
Brain gray matter (Healthy)	$\begin{aligned} & \sigma(\mathrm{E}, \mathrm{~T})=\sigma_{\text {inite }} \cdot(1+ \\ & \mathrm{flc} 2 \mathrm{hs}\left(\mathrm{E}-\text { Ealt, }^{\text {Eange }}\right) \\ & \left.+\zeta \cdot\left(\mathrm{T}-\mathrm{T}_{\text {init }}\right)\right) \end{aligned}$	1039	3680	0.565	10437	$\begin{aligned} & \hline 36.8 \\ & \left(\mathrm{VP}_{\mathrm{P}}=\right. \\ & 1000 \\ & \mathrm{~V}) \end{aligned}$	NA	NA	NA	NA	$\begin{aligned} & \hline \sigma_{\text {init }}=0.30 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \left(\mathrm{~V}_{\mathrm{P}}=\right. \\ & 1000 \mathrm{~V}) \\ & \\ & \xi=0.032 \\ & { }^{\circ} \mathrm{C}-1 \\ & \mathrm{E}_{\text {alt }}= \\ & 580 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \\ & \mathrm{E}_{\text {range }}= \\ & \pm 120 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \\ & \hline \end{aligned}$	$\begin{aligned} & 510 \cdot 10^{2} \\ & (1000,50 \cdot 10 \\ & 6,9 \text { sets } \times 10 \\ & \text { pulses, NA, } 4) \end{aligned}$	NR	NA	60	$\begin{aligned} & \hline[31 \\ &] \end{aligned}$
Brain gray matter (Healthy)	$\sigma=\sigma_{\text {init }}$	NTA	NR	NR	$\begin{aligned} & \sigma_{\text {init }}= \\ & 0.285 \mathrm{~S} \cdot \mathrm{~m}^{-1} \end{aligned}$	$\begin{aligned} & \hline 800 \cdot 10^{2} \\ & \left(\mathrm{NR}, 50 \cdot 10^{-6},\right. \\ & 80, \mathrm{NA}, 1) \\ & \hline \end{aligned}$	NR	NR	NR	${ }^{[57}$						
Brain gray matter (Healthy)	$\sigma(\mathrm{E})=\sigma_{\text {init }}+\left(\sigma_{\max }-\right.$ $\left.\sigma_{\text {init }}\right) \cdot \exp \left(-\mathrm{a}_{1} \cdot \exp (-\right.$ $\mathrm{a}_{2} \cdot \mathrm{E}$))	NTA	NR	NR	$\begin{aligned} & \sigma_{\text {init }}= \\ & 0.285 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\max }= \\ & 0.7791 \mathrm{~S} \cdot \mathrm{~m}- \\ & 1 \\ & \mathrm{a}_{1}=3.053 \\ & \mathrm{a}_{2}= \\ & 0.00233 \\ & \mathrm{~m} \cdot \mathrm{~V}^{-1} \end{aligned}$	$\begin{aligned} & 800 \cdot 10^{2} \\ & \left(\mathrm{NR}, 50 \cdot 10^{-6},\right. \\ & 80, \mathrm{NA}, 1) \end{aligned}$	NR	NR	NR	$\begin{array}{\|l\|} \hline[57 \\ \hline \end{array}$						

	Calculation of V and E	Calculation of T							Calculation of Ω			Ablation parameters				
Name	σ	ρ	c_{p} or c_{b}	k	Qm	$\mathrm{T}_{\text {init }}$	w_{b}	Tart	A	U_{a}	Additional Details/ Parameters	EIRE(th) ($\mathrm{V}_{\mathrm{P}(\mathrm{th})}, \mathrm{tp}_{\mathrm{P}(\mathrm{th})}$, $\mathrm{N}_{\mathrm{P}(\mathrm{th}), \tau_{\mathrm{P}(\mathrm{th})},}$ $\left.\mathrm{f}_{\mathrm{p}(\mathrm{th})}\right)$	T_{th} (Exposure duration)	$\Omega_{\text {th }}$	CEM $43^{\circ} \mathrm{C}$ (th)	Ref
	[$\mathrm{S} \cdot \mathrm{m}^{-1}$]	[$\left.\mathrm{kg} \cdot \mathrm{m}{ }^{-3}\right]$	$\begin{aligned} & \text { [[} \cdot \mathrm{kg}^{-1 .{ }^{\circ} \mathrm{C}} \\ & \text {] } \end{aligned}$	$\begin{aligned} & \text { [W.m } \\ & { }_{-1.0}{ }^{\circ} \mathrm{C}- \\ & \left.{ }^{1}\right] \end{aligned}$	[W•m³]	[${ }^{\circ} \mathrm{C}$]	$\begin{aligned} & {\left[\mathrm{kg} \cdot \mathrm{~s}^{-1}\right]} \end{aligned}$	[${ }^{\text {C }}$]	[s^{-1}]	$\begin{aligned} & \text { [J•mol } \\ & \text { 1] } \end{aligned}$		$\begin{aligned} & \hline\left[\mathrm{V} \cdot \mathrm{~m}^{-1}\right] \\ & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$	$\begin{aligned} & \hline\left[{ }^{[} \mathrm{C}\right] \\ & ([\mathrm{s}]) \end{aligned}$		[min]	
Brain gray matter (Healthy)	$\begin{aligned} & \sigma_{\text {init }}=0.285 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\max }=0.7359 \mathrm{~S} \cdot \mathrm{~m}^{-1} \end{aligned}$	NR	NA	NC	NR	NR	NR	$\begin{aligned} & {[69} \\ &] \end{aligned}$								
Brain gray matter (Healthy)	$\begin{aligned} & \sigma(\mathrm{E}, \mathrm{~T})=\sigma_{\text {inint }}(1+ \\ & 2 \cdot \mathrm{flc} 2 \mathrm{hs}\left(\mathrm{E}-\mathrm{E}_{\text {alt }}\right. \\ & \left.\left.\mathrm{E}_{\text {range }}\right)+\zeta \cdot\left(\mathrm{T}-\mathrm{T}_{\text {init }}\right)\right) \end{aligned}$	1039	3680	0.565	10437	37	NA	NA	NR	NR	$\begin{aligned} & \xi=0.032 \\ & { }^{\circ} \mathrm{C}-1 \\ & \sigma_{\text {init }}= \\ & 0.285 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \mathrm{E}_{\text {alt }}= \\ & 580 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \\ & \mathrm{E}_{\text {range }}= \\ & \pm 120 \cdot 10^{2} \\ & \left.\mathrm{~V} \cdot \mathrm{~m}^{-1}\right\} \end{aligned}$	$\begin{aligned} & \hline 745 \cdot 10^{2} \\ & (450,100 \cdot 10 \cdot \\ & 6,80, \mathrm{NA}, 1) \end{aligned}$	NR	NR	NR	$\begin{aligned} & {[73} \\ &] \end{aligned}$
Brain white matter (Healthy)	$\begin{aligned} & \sigma(\mathrm{E}, \mathrm{~T})=\sigma_{\text {init }} \cdot(1+ \\ & 2 \cdot \mathrm{flc} 2 \mathrm{hs}\left(\mathrm{E}-\mathrm{E}_{\text {alt, }}\right. \\ & \left.\mathrm{E}_{\text {range }}\right)+\zeta \cdot\left(\mathrm{T}-\mathrm{T}_{\text {init }}\right) \end{aligned}$	1039	3680	0.565	10437	37	NA	NA	$\begin{aligned} & 2.984 \cdot 10 \\ & 80 \end{aligned}$	$\begin{aligned} & 5.064 \cdot \\ & 10^{5} \end{aligned}$	$\begin{aligned} & \sigma_{\text {init }}= \\ & 0.256 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\max }= \\ & 0.767 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \xi=0.032 \\ & { }^{\circ} \mathrm{C}^{-1} \\ & \mathrm{E}_{\text {alt }}=\mathrm{NR} \\ & \mathrm{E}_{\text {range }}=\mathrm{NR} \\ & \hline \end{aligned}$	500•10 ${ }^{2}$ (NR, NR, NR, NR, NR)	50 (Instantaneous) 43 (Long period)	0.53	NR	$\begin{aligned} & {[40} \\ &] \end{aligned}$
Brain white matter (Healthy)	$\begin{aligned} & \sigma(\mathrm{T})=\sigma_{\text {init }} \cdot(1+\xi \cdot(\mathrm{T} \\ & \left.\left.-\mathrm{T}_{\text {init }}\right)\right) \end{aligned}$	1039	3680	0.565	10437	37	NA	NA	$\begin{aligned} & 2.984 \cdot 10 \\ & 80 \end{aligned}$	$\begin{aligned} & \hline 5.064 \text { - } \\ & 10^{5} \end{aligned}$	$\begin{aligned} & \sigma_{\text {init }}= \\ & 0.256 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\text {max }}= \\ & 0.767 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \xi=0.032 \\ & { }^{\circ} \mathrm{C}^{-1} \\ & \mathrm{E}_{\text {alt }}=\mathrm{NR} \\ & E_{\text {range }}=\mathrm{NR} \\ & \hline \end{aligned}$	$500 \cdot 10^{2}$ (NR, NR, NR, NR, NR)	50 (Instantaneous) 43 (Long period)	0.53	NR	$\begin{aligned} & {[40} \\ & \hline \end{aligned}$
Brain white matter (Healthy)	$\begin{aligned} & \sigma_{\text {init }}=0.3621 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\max }=0.7357 \mathrm{~S} \cdot \mathrm{~m}^{-1} \end{aligned}$	NR	NA	NC	NR	NR	NR	${ }^{[69}$								
Breast (Cancerous)	2.31	1186	2926	0.48	NR	37.08	NA	NA	NR	NR	NA	$\begin{aligned} & 1000 \cdot 10^{2} \\ & \text { (NR, NR, NR, } \\ & \text { NR, NR) } \end{aligned}$	NR	1	NR	$\left[\begin{array}{l} {[28} \\ \hline \end{array}\right.$
Breast (Cancerous)	[0.025, 0.25]	1044	3700	0.564	65400	37	NR	NR	NR	NR	$\begin{aligned} & \mathrm{w}_{\mathrm{b}} \cdot \mathrm{c}_{\mathrm{b}}= \\ & 48000 \\ & \mathrm{~W} \cdot \mathrm{~m}^{-3} \cdot{ }^{\circ} \mathrm{C}-1 \end{aligned}$	$\begin{aligned} & 1000 \cdot 10^{2} \\ & \left(\mathrm{NR}, 100 \cdot 10^{-6},\right. \\ & 80, \mathrm{NA}, 1) \\ & \hline \end{aligned}$	50-60	NR	90	$\begin{aligned} & {[29} \\ &] \end{aligned}$
Breast (Cancerous)	0.25	NTA	NR	NR	NA	$\begin{aligned} & 1000 \cdot 10^{2} \\ & \text { (NR, NR, NR, } \\ & \text { NR, NR) } \end{aligned}$	NR	NR	NR	$\begin{aligned} & {[35} \\ &] \end{aligned}$						
Breast (Healthy)	[0.25, 0.025]	928	3550	0.499	700	37	NR	NR	NR	NR	$\begin{aligned} & \mathrm{W} \cdot \mathrm{C} \cdot \mathrm{Cb}^{=} \\ & 2400 \mathrm{~W} \cdot \mathrm{~m} \\ & 3 .{ }^{\circ} \mathrm{C}^{-1} \end{aligned}$	$\begin{aligned} & 1000 \cdot 10^{2} \\ & \left(\mathrm{NR}, 100 \cdot 10^{-6},\right. \\ & 80, \mathrm{NA}, 1) \\ & \hline \end{aligned}$	50-60	NR	90	${ }_{\text {[}}$] ${ }^{\text {a }}$

	Calculation of V and E	Calculation of T							Calculation of Ω			Ablation parameters				Ref
Name	σ	ρ	c_{p} or c_{b}	k	Qm	$\mathrm{T}_{\text {init }}$	w_{b}	Tart	A	U_{a}	Additional Details/ Parameters	EIRE(th) ($\mathrm{V}_{\mathrm{P}(\mathrm{th})}, \mathrm{tp}_{\mathrm{P}(\mathrm{th})}$, $\mathrm{N}_{\mathrm{P}(\mathrm{th}), \mathrm{T}_{\mathrm{P}(\mathrm{th})},}$ $\left.\mathrm{f}_{\mathrm{p}(\mathrm{th})}\right)$	T_{th} (Exposure duration)	$\Omega_{\text {th }}$	CEM43 ${ }^{\circ} \mathrm{C}$ (th)	
	[$\mathrm{S} \cdot \mathrm{m}^{-1}$]	[$\left.\mathrm{kg} \cdot \mathrm{m}{ }^{-3}\right]$	$\begin{aligned} & {\left[\mathrm{[} \cdot \mathrm{~kg}^{-1 .{ }^{\circ} \mathrm{C}}\right.} \\ & \left.{ }^{-}\right] \end{aligned}$	$\begin{aligned} & {[\mathrm{W} \cdot \mathrm{~m}} \\ & { }^{-1 .{ }^{\circ} \mathrm{C}-} \\ & 1] \end{aligned}$	[W•m-3]	[${ }^{\circ} \mathrm{C}$]	$\begin{aligned} & {[\mathrm{kg} \cdot \mathrm{~m} \cdot} \\ & \left.{ }_{3} \cdot \mathrm{~s}^{-1}\right] \end{aligned}$	[${ }^{\text {C }}$]	[${ }^{-1}$]	$\begin{aligned} & \text { [J•mol- } \\ & \text { 1] } \end{aligned}$		$\begin{aligned} & \hline\left[\mathrm{V} \cdot \mathrm{~m}^{-1}\right] \\ & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$	$\begin{aligned} & \hline\left[{ }^{[} \mathrm{C}\right] \\ & ([\mathrm{s}]) \end{aligned}$		[min]	
Breast fatty peripheral tissue (Healthy)	0.02	NTA	NR	NR	NA	NR	NR	NR	NR	${ }^{[35}$						
Breast fatty tissue (Healthy)	0.024	900	2522	0.25	NR	37.08	NA	NA	$\begin{aligned} & 4.43 \cdot 10^{1} \\ & 6 \end{aligned}$	$\begin{aligned} & 1.29 \cdot 1 \\ & 0^{5} \end{aligned}$	NA	$\begin{aligned} & 1000 \cdot 10^{2} \\ & \text { (NR, NR, NR, } \\ & \text { NR, NR) } \end{aligned}$	NR	1	NR	${ }^{[28}$
Breast gland (Healthy)	0.52	1030	3492	0.41	NR	37.08	NA	NA	NR	NR	NA	$1000 \cdot 10^{2}$ (NR, NR, NR, NR, NR)	NR	1	NR	$\begin{array}{\|l\|} \hline[28 \\] \end{array}$
Breast myoepithelial cell (Healthy)	$1 \cdot 10^{-7}$	NR	NR	NR	NR	37.08	NA	NA	NR	NR	NA	$1000 \cdot 10^{2}$ (NR, NR, NR, NR, NR)	NR	1	NR	${ }^{[28}$
Cervix (Cancerous)	$\sigma(\mathrm{E})=\sigma_{\text {init }}+\left(\sigma_{\max }-\right.$ $\left.\sigma_{\text {init }}\right) \cdot \exp \left(-\mathrm{a}_{1} \cdot \exp (-\right.$ $\mathrm{a}_{2} \cdot \mathrm{E}$)	NR	$\sigma_{\text {init }}=$ 0.22973 S. m^{-1} $\sigma_{\text {max }}=$ 0.64324 S.m ${ }^{-1}$ $\mathrm{a}_{1}=-5 \cdot 10$ - 6.tp ${ }^{2}+$ $0.004 \cdot t_{p}+$ 2.803 $\mathrm{a}_{2}=-7 \cdot 10$ - ${ }^{9} \cdot \mathrm{t}_{\mathrm{p}}{ }^{2}+5 \cdot 10$. ${ }^{6} \mathrm{tp}_{\mathrm{p}}+0.002$ $\mathrm{m} \cdot \mathrm{V}^{-1}$	$600 \cdot 10^{2}$ (NR, NR, NR, NR, NR)	NR	NR	NR	${ }_{]}^{[78}$								
Cervix (Healthy)	0.2033	NR	NA	NR	NR	NR	NR	${ }_{[}^{[78}$								
Colon (Healthy)	0.01	NR	NA	NR	NR	NR	NR	${ }^{[67}$								
Connective tissue	0.03	NR	NR	NR	NR	NR	NA	NA	NR	${ }^{[45}$						
Electrode	$6 \cdot 10^{7}$	NR	NR	100	NA	37	NA	${ }_{1}^{[34}$								
Electrode	NR	7900	500	15	NA	NR	NA	${ }^{[53}$								
Electrode	$\begin{aligned} & \sigma(\mathrm{T})= \\ & 1.73913 \cdot 10^{6} \cdot(1+ \\ & 0.00094 \cdot(\mathrm{~T}-20)) \end{aligned}$	8000	500	15	NA	$\begin{array}{\|l\|} \hline[60 \\] \end{array}$										
Electrode	4.03-10 ${ }^{6}$	7850	475	44.5	NA	20	NA	$\left[\begin{array}{l} {[61} \\ \hline \end{array}\right.$								
Electrode	$1 \cdot 10^{6}$	6000	500	15	NR	37	NA	${ }^{[62}$								

	Calculation of V and E	Calculation of T							Calculation of Ω			Ablation parameters				Ref
Name	σ	ρ	c_{p} or c_{b}	k	Q_{m}	$\mathrm{T}_{\text {init }}$	w_{b}	Tart	A	U_{a}	Additional Details/ Parameters	EIRE(th) ($\mathrm{V}_{\mathrm{P}(\mathrm{th}), \mathrm{tp}_{\mathrm{P}}(\mathrm{th}) \text {, }, \text {, }}$ $\mathrm{N}_{\mathrm{P}(\mathrm{th}),}, \mathrm{T}_{\mathrm{P}(\mathrm{th})}$, $\left.\mathrm{f}_{\mathrm{p}(\mathrm{th})}\right)$	T_{th} (Exposure duration)	$\Omega_{\text {th }}$	CEM $43^{\circ} \mathrm{C}$ (th)	
	[$\mathrm{S} \cdot \mathrm{m}^{-1}$]	[$\left.\mathrm{kg} \cdot \mathrm{m}{ }^{-3}\right]$	$\begin{aligned} & {\left[\left[\cdot \mathrm{kg}^{-1 .{ }^{\circ} \mathrm{C}-}{ }^{1}{ }^{1}\right]\right.} \end{aligned}$	$\begin{aligned} & {[\mathrm{W} \cdot \mathrm{~m}} \\ & { }^{-1 .{ }^{\circ} \mathrm{C}-} \\ & 1] \end{aligned}$	[W-m³]	[$\left.{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & {\left[\mathrm{kg} \cdot \mathrm{~s}^{-1}\right]} \end{aligned}$	[${ }^{\circ} \mathrm{C}$]	[s^{-1}]	$\begin{aligned} & {[\mathrm{lJ} \cdot \mathrm{~mol}} \\ & \left.{ }_{1}\right] \end{aligned}$		$\begin{aligned} & {\left[\mathrm{V} \cdot \mathrm{~m}^{-1}\right]} \\ & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$	$\begin{aligned} & \hline\left[{ }^{[} \mathrm{C}\right] \\ & ([\mathrm{s}]) \end{aligned}$		[min]	
Electrode	$2.22 \cdot 10^{6}$	7900	500	15	NA	NR	NA	NA	NR	NR	NA	NA	NR	NR	NR	${ }^{[70}$
Electrode Electrode (Aluminum)	$1 \cdot 10^{5}$ $3.774 \cdot 10^{7}$	NR 2700	NR 910	NR 250	NR NA	NR 37	NR NA	NR NR	NA NR	NA NR	NA NA	NA NA	NA	NA	NA	$\begin{aligned} & {[71} \\ &] \\ & {[58} \end{aligned}$
Electrode (Copper)	$5.998 \cdot 10^{7}$	8700	385	400	NA	37	NA	${ }^{\text {[36 }}$								
Electrode (Copper)	$5.998 \cdot 10^{7}$	8700	385	400	NA	37	NA	${ }^{[41}$								
Electrode (Copper)	$5.88 \cdot 10^{7}$	8940	380	380	NA	NR	NA	NA	NA	NA	NA	NA	NR	NR	NR	$[55$
Electrode (Copper)	$5.998 \cdot 10^{7}$	8700	385	400	NA	NR	NA	$\begin{aligned} & \text { [66 } \\ & \hline \end{aligned}$								
Electrode (Endovascular)	$4.032 \cdot 10^{6}$	NR	100	NR	NA	37	NA	$\begin{aligned} & {[41} \\ & \hline \end{aligned}$								
Electrode (Silver)	$6.273 \cdot 10^{7}$	10500	234	429	NA	NR	NA	${ }^{[66}$								
Electrode (Stainless steel)	2222222	7900	477	14	NA	25	NA	$\begin{aligned} & {[25} \\ &] \end{aligned}$								
Electrode (Stainless steel)	$2.22 \cdot 10^{6}$	7900	500	15	NA	NR	NA	$\begin{aligned} & {[40} \\ & \hline \end{aligned}$								
Electrode (Stainless steel)	$2.22 \cdot 10^{6}$	7900	477	14	NA	22	NA	$[43$								
Electrode (Stainless steel)	$1.44 \cdot 10^{6}$	NTA	NA	NA	NTA	NTA	NTA	$\begin{aligned} & {[47} \\ & \hline \end{aligned}$								
Electrode (Stainless steel)	$2 \cdot 10^{6}$	NR	NR	NR	NA	NR	NA	$\begin{aligned} & {[68} \\ & \hline \end{aligned}$								
Electrode (Stainless steel)	2.22-106	NR	477	14.9	NA	NR	NA	$\begin{aligned} & {[73} \\ &] \end{aligned}$								
Electrode (Stainless steel)	7.4-10 ${ }^{6}$	8000	480	15	NA	37	NA	${ }^{[76}$								
Electrode (Stainless steel)	$2.22 \cdot 10^{6}$	7900	500	15	NA	26	NA	${ }^{[80}$								

Name	Calculation of V and	Calculation of T							Calculation of Ω			Ablation parameters				Ref
	σ	ρ	c_{p} or c_{b}	k	Qm	$\mathrm{T}_{\text {init }}$	w_{b}	Tart	A	U_{a}	Additional Details/ Parameters	Eire(th) ($\mathrm{V}_{\mathrm{P}(\mathrm{th})}, \mathrm{tp}_{\mathrm{p}(\mathrm{th})}$, $\mathrm{N}_{\mathrm{P}(\mathrm{th}), \tau_{\mathrm{P}}(\mathrm{th}),}$ $\mathrm{f}_{\mathrm{P}(\mathrm{th})}$)	T_{th} (Exposure duration)	$\Omega_{\text {th }}$	CEM43 ${ }^{\circ} \mathrm{C}$ (th)	
	[$\mathrm{S} \cdot \mathrm{m}^{-1}$]	[$\left.\mathrm{kg} \cdot \mathrm{m}{ }^{-3}\right]$	$\begin{aligned} & {\left[\mathrm{J} \cdot \mathrm{~kg} \mathrm{gg}^{-1 .{ }^{\circ} \mathrm{C}-}\right.} \\ & \left.{ }^{1}\right] \end{aligned}$	$\begin{aligned} & {[\mathrm{W} \cdot \mathrm{~m}} \\ & -1 .{ }^{\circ} \mathrm{C}- \\ & 1] \\ & \hline \end{aligned}$	[W.m³]	[${ }^{\circ} \mathrm{C}$]	$\begin{aligned} & {\left[\mathrm{kg} \cdot \mathrm{~m}^{-}\right.} \\ & \left.\hline \cdot \mathrm{s}^{-1}\right] \end{aligned}$	[${ }^{\circ} \mathrm{C}$]	[s^{-1}]	$\begin{aligned} & \hline \text { [J•mol } \\ & \left.{ }_{1}\right] \end{aligned}$		$\begin{aligned} & {\left[\mathrm{V} \cdot \mathrm{~m}^{-1}\right]} \\ & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$	$\begin{aligned} & \hline\left[{ }^{\circ} \mathrm{C}\right] \\ & ([\mathrm{s}]) \end{aligned}$		[min]	
Electrode insulation	$1 \cdot 10^{-5}$	800	3400	0.01	NA	NR	NA	${ }^{[31}$								
Electrode insulation	1-10-5	800	3400	0.01	NA	NR	NA	$[40$								
Electrode insulation	NR	800	3400	0.01	NA	NR	NA	${ }^{[53}$								
Electrode insulation	1-10-5	800	3400	0.01	NA	NR	NA	NA	NR	NR	NA	NA	NR	NR	NR	$\left.{ }^{[70}\right]$
Electrode insulation	1-10-5	NR	NA	${ }_{[}^{[71}$												
Electrode insulation	$1 \cdot 10^{-12}$	2329	700	NC	NA	26	NA	${ }_{\text {[}}$] 8								
Eye (Cancerous)	$\begin{aligned} & \{0.08305,0.1661, \\ & 0.3322,0.4983, \\ & 0.6644\} \end{aligned}$	1030	3000	0.4	NA	36.5	NA	NA	NR	NR	NA	NR	NR	NR	NR	${ }_{[}{ }^{\text {[44 }}$
Eye aqueous (Healthy)	1.5	1010	3997	0.58	NA	$\begin{aligned} & {[34.2} \\ & 5, \\ & 35.32 \end{aligned}$	NA	NA	NR	NR	NA	NR	NR	NR	NR	$[44$
Eye cornea (Healthy)	0.427	1076	4178	0.58	NA	34.25	NA	NA	NR	NR	NA	NR	NR	NR	NR	${ }_{[}^{[44}$
Eye lens (Healthy)	0.3322	1100	3000	0.4	NA	$\begin{gathered} {[35.3} \\ 2,36] \\ \hline \end{gathered}$	NA	NA	NR	NR	NA	NR	NR	NR	NR	${ }^{[44}$
Eye retina (Healthy)	0.5075	1039	3000	0.5	NA	36.7	NA	37	NR	NR	NA	NR	NR	NR	NR	${ }^{[44}$
Eye sclera (Healthy)	0.5075	1100	3180	$\begin{aligned} & 1.004 \\ & 2 \end{aligned}$	NA	36.7	NA	37	NR	NR	NA	NR	NR	NR	NR	${ }^{[44}$
Eye vitreous (Healthy)	1.5	1000	4178	0.603	NA	$\begin{aligned} & {[36,} \\ & 36.5] \\ & \hline \end{aligned}$	NA	NA	NR	NR	NA	NR	NR	NR	NR	${ }_{\text {[}}{ }^{\text {[4 }}$
Fat	0.012	NR	NR	NR	NR	NR	NA	${ }^{[45}$								
Fat	0.012	NR	NA	NA	NR	NR	NR	${ }^{[67}$								
FR4	0.004	1900	1369	0.3	NA	37	NA	${ }_{\text {[}}{ }^{\text {[36 }}$								
FR4	0.004	1900	1369	0.3	NA	37	NA	${ }^{[41}$								
In vitro - PBS including THP1 cells	1.4	1000	4200	NA	NA	NR	NA	NA	$\begin{aligned} & \hline 1.19 \cdot 10^{3} \\ & 5 \end{aligned}$	$\begin{aligned} & 2.318 \\ & 10^{5} \end{aligned}$	$\begin{aligned} & \alpha= \\ & 1.34 \cdot 10^{-7} \\ & \mathrm{~m}^{2} \cdot \mathrm{~s}^{-1} \end{aligned}$	NA	NA	0.53	NA	${ }^{[30}$
In vitro CHOK1 cell line in potassium phosphate	$\begin{aligned} & \sigma(\mathrm{T})=0.162 \cdot(1+ \\ & 0.02 \cdot(\mathrm{~T}-20)) \end{aligned}$	1000	4200	0.58	NA	20	NA	NA	NR	NR	NA	NR	42	NR	NR	${ }^{[60}$

	Calculation of V and E	Calculation of T							Calculation of Ω			Ablation parameters				Ref
Name	σ	ρ	c_{p} or c_{b}	k	Q_{m}	$\mathrm{T}_{\text {init }}$	w_{b}	Tart	A	U_{a}	Additional Details/ Parameters	EIRE(th) ($\mathrm{V}_{\mathrm{P}(\mathrm{th}), \mathrm{tp}_{\mathrm{P}}(\mathrm{th}) \text {, }, \text {, }}$ $\mathrm{N}_{\mathrm{P}(\mathrm{th}),}, \mathrm{T}_{\mathrm{P}(\mathrm{th})}$, $\left.\mathrm{f}_{\mathrm{p}(\mathrm{th})}\right)$	T_{th} (Exposure duration)	$\Omega_{\text {th }}$	$\text { CEM43 }{ }^{\circ} \mathrm{C}$ (th)	
	[$\mathrm{S} \cdot \mathrm{m}^{-1}$]	[$\left.\mathrm{kg} \cdot \mathrm{m}{ }^{-3}\right]$	$\begin{aligned} & {\left[\left[\cdot \mathrm{kg}^{-1 .{ }^{\circ} \mathrm{C}-}{ }^{1}{ }^{1}\right]\right.} \end{aligned}$	$\begin{aligned} & \text { [W•m } \\ & { }_{-1.0}{ }^{\circ} \mathrm{C}- \\ & 1] \\ & \hline \end{aligned}$	[W-m³]	[${ }^{\circ} \mathrm{C}$]	$\begin{aligned} & {\left[\mathrm{kg} \cdot \mathrm{~s}^{-1}\right]} \end{aligned}$	[${ }^{\circ} \mathrm{C}$]	$\left.{ }^{\text {[}}{ }^{-1}\right]$	$\begin{aligned} & {[\mathrm{lJ} \cdot \mathrm{~mol}} \\ & \left.{ }_{1}\right] \end{aligned}$		$\begin{aligned} & {\left[\mathrm{V} \cdot \mathrm{~m}^{-1}\right]} \\ & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$	$\begin{aligned} & \hline\left[{ }^{[} \mathrm{C}\right] \\ & ([\mathrm{s}]) \end{aligned}$		[min]	
electroporatio n buffer																
In vitro Fibroblasts cultured in agarose gel	1.82	NR	NR	NR	NR	NR	NA	NA	NR	NR	NA	$\begin{aligned} & 803.21 \cdot 10^{2} \\ & \text { (NA, NA, NA, } \\ & \text { NA, NA) } \end{aligned}$	53.3	NR	NR	$[75$
In vitro Glioblastoma cells (U251 malignant glioma cells) in 3D collagen scaffolds	NR	NR	NR	NR	NR	NR	NA	NA	NR	NR	NA	698.10² $\{1 \mathrm{mM} \mathrm{NaCl}$, (450, 100.10 $\left.\left.{ }^{6}, 80, \mathrm{NA}, 1\right)\right\}$ $745 \cdot 10^{2}$ $\{5 \mathrm{mM} \mathrm{NaCl}$, (450, 100.10 $\left.\left.{ }^{6}, 80, \mathrm{NA}, 1\right)\right\}$	NR	NR	NR	$\begin{aligned} & {[73} \\ & \hline \end{aligned}$
In vitro Hydrogel including Glioblastoma multiform	1.2	997.8	4181.8	0.6	NA	20	NA	NA	NR	NR	NA	$\begin{aligned} & 428 \cdot 10^{2} \\ & (450,100 \cdot 10 \\ & 6,50, \mathrm{NA}, 1) \end{aligned}$	NR	NR	NR	$\begin{aligned} & {[61} \\ &]^{2} \end{aligned}$
In vitro Pancreatic tumor cell suspension + Collagen I hydrogels	$\begin{aligned} & \sigma(T)=\sigma_{\text {init }}(1+\xi \cdot(T \\ & \left.\left.-T_{\text {init }}\right)\right) \end{aligned}$	997.8	4181.8	0.6	NA	22	NA	NA	NR	NR	$\begin{aligned} & \xi=0.02{ }^{\circ} \mathrm{C}- \\ & 1 \\ & \sigma_{\text {init }}=1.2 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \end{aligned}$	$\begin{aligned} & \hline 500 \cdot 10^{2} \\ & (\{300,450\}, \\ & 100 \cdot 10 \cdot 6,80, \\ & \mathrm{NA}, 1) \end{aligned}$	45	NR	NR	$[43$
In vitro Phantom including NIH3T-3 cell line	1.82	NTA	NA	$\begin{aligned} & 1250 \cdot 10^{2} \\ & \text { (Assumption) } \end{aligned}$	NTA	NTA	NTA	$[47$								
$\begin{aligned} & \hline \text { Kidney } \\ & \text { (Healthy) } \end{aligned}$	$\sigma=\sigma_{\text {init }}$	1080	3890	0.547	23889	37	NR	NR	NR	NR	$\begin{aligned} & \sigma_{\text {init }}=0.15 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \mathrm{~W}_{\mathrm{b}} \cdot \mathrm{c}_{\mathrm{b}}= \\ & 43062 \\ & \mathrm{~W} \cdot \mathrm{~m}^{-3} \cdot{ }^{\circ} \mathrm{C}^{-1}-1 \end{aligned}$	$500 \cdot 10^{2}$ (NR, NR, NR, NR, NR)	43 (For prolonged exposures) 50 (Transition point for rapid thermal damage)	NR	NR	$\begin{aligned} & {[45} \\ & \hline \end{aligned}$
$\begin{aligned} & \hline \text { Kidney } \\ & \text { (Healthy) } \end{aligned}$	$\begin{aligned} & \sigma(\mathrm{T})=\sigma_{\text {init }} \cdot(1+\xi \cdot(\mathrm{T}- \\ & \left.\left.\mathrm{T}_{\text {init }}\right)\right) \end{aligned}$	1080	3890	0.547	23889	37	NR	NR	NR	NR	$\begin{aligned} & \hline \sigma_{\text {init }}=0.15 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \xi=0.017 \\ & { }^{\circ} \mathrm{C}^{-1} \end{aligned}$	$\begin{aligned} & \text { 500•102 } \\ & \text { (NR, NR, NR, } \\ & \text { NR, NR) } \end{aligned}$	43 (For prolonged exposures) 50	NR	NR	$\begin{aligned} & {[45} \\ & \hline \end{aligned}$

	Calculation of V and E	Calculation of T							Calculation of Ω			Ablation parameters				Ref
Name	σ	ρ	c_{p} or $\mathrm{cb}^{\text {b }}$	k	Q_{m}	$\mathrm{T}_{\text {init }}$	w_{b}	Tart	A	U_{a}	Additional Details/ Parameters	EIRE(th) $\mathrm{N}_{\mathrm{P}(\mathrm{th}), \tau_{\mathrm{P}}(\mathrm{th}),}$ $\mathrm{f}_{\mathrm{P}(\mathrm{th})}$)	T_{th} (Exposure duration)	$\Omega_{\text {th }}$	CEM $43^{\circ} \mathrm{C}$ (th)	
	[$\mathrm{S} \cdot \mathrm{m}^{-1}$]	[$\left.\mathrm{kg} \cdot \mathrm{m}{ }^{-3}\right]$	$\begin{aligned} & {\left[\mathrm{[J} \mathrm{\cdot kg} \cdot \mathrm{~kg}^{.{ }^{\circ} \mathrm{C}-}\right.} \\ & \left.{ }^{1}\right] \end{aligned}$	$\begin{aligned} & {[\mathrm{W} \cdot \mathrm{~m}} \\ & -1 .{ }^{\circ} \mathrm{C}- \\ & 1] \\ & \hline \end{aligned}$	[$\mathrm{W} \cdot \mathrm{m}^{-3}$]	[${ }^{\circ} \mathrm{C}$]	$\begin{aligned} & {\left[\mathrm{kg} \cdot \mathrm{~s}^{-1}\right]} \end{aligned}$	[${ }^{\circ} \mathrm{C}$]	${ }^{\left[s^{-1}\right]}$	$\begin{aligned} & {[J \cdot \mathrm{~mol}} \\ & \left.{ }_{1}\right] \end{aligned}$		$\begin{aligned} & {\left[\mathrm{V} \cdot \mathrm{~m}^{-1}\right]} \\ & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$	$\begin{aligned} & \hline\left[{ }^{[} \mathrm{C}\right] \\ & ([\mathrm{s}]) \end{aligned}$		[min]	
											$\begin{aligned} & \hline \mathrm{W}_{\mathrm{b}} \cdot \mathrm{C}_{\mathrm{b}}= \\ & 43062 \\ & \mathrm{~W} \cdot \mathrm{~m}^{-3 \cdot} \cdot \mathrm{C}^{-1} \end{aligned}$		(Transition point for rapid thermal damage)			
$\begin{aligned} & \hline \text { Kidney } \\ & \text { (Healthy) } \end{aligned}$	$\begin{aligned} & \sigma(\mathrm{E})=\sigma_{\text {init }}+\left(\sigma_{\max }-\right. \\ & \left.\sigma_{\text {initit }}\right) \cdot \exp \left(-\mathrm{a}_{1} \cdot \exp (-\right. \\ & \left.\left.\mathrm{a}_{2} \cdot \mathrm{E}\right)\right) \end{aligned}$	1080	3890	0.547	23889	37	NR	NR	NR	NR	$\begin{aligned} & \sigma_{\text {init }}=0.15 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \mathrm{w}_{\mathrm{b}} \cdot \mathrm{cb}_{\mathrm{b}}= \\ & 43062 \\ & \mathrm{~W} \cdot \mathrm{~m}^{-3 .}{ }^{\circ} \mathrm{C}-1 \\ & \mathrm{a}_{1}=-5 \cdot 10^{-} \\ & 6 \cdot\left(\mathrm{t} \cdot 1 \cdot 10^{-6}\right)^{2} \\ & + \\ & 0.004 \cdot(\mathrm{t} \cdot 1 \cdot \\ & 10^{-6} \cdot+ \\ & 2.803 \\ & \mathrm{a}_{2}=-7 \cdot 10^{-} \\ & 9 \cdot\left(\mathrm{t} \cdot 1 \cdot 10^{-6}\right)^{2} \\ & +5 \cdot 10^{-} \\ & 6 \cdot\left(\mathrm{t} \cdot 1 \cdot 10^{-6}\right) \\ & +0.002 \\ & \mathrm{~m} \cdot \mathrm{~V}^{-1} \end{aligned}$	$\begin{aligned} & 500 \cdot 10^{2} \\ & \text { (NR, NR, NR, } \\ & \text { NR, NR) } \end{aligned}$	43 (For prolonged exposures) 50 (Transition point for rapid thermal damage)	NR	NR	$\begin{aligned} & \hline 45 \\ & \hline \end{aligned}$
Kidney (Healthy)	$\begin{aligned} & \sigma(\mathrm{E}, \mathrm{~T})=\left(\sigma_{\text {init }}+\right. \\ & \left(\sigma_{\text {max }}-\right. \\ & \left.\sigma_{\text {init }}\right) \cdot \exp \left(\mathrm { a } _ { 1 } \cdot \operatorname { e x p } \left(\mathrm{a}_{2} \cdot \mathrm{E}\right.\right. \\ &))\left(1+\xi \cdot\left(\mathrm{T}-\mathrm{T}_{\text {init }}\right)\right) \end{aligned}$	1080	3890	0.547	23889	37	NR	NR	NR	NR	$\begin{aligned} & \sigma_{\text {init }}=0.15 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \xi=0.017 \\ & { }^{\circ} \mathrm{C}^{-1} \\ & \mathrm{w}_{\mathrm{b}} \cdot \mathrm{c}_{\mathrm{b}}= \\ & 43062 \\ & \mathrm{~W} \cdot \mathrm{~m}^{-3} \cdot{ }^{\circ} \mathrm{C}^{-1} \\ & \mathrm{a}_{1}=-5 \cdot 10^{-} \\ & 6 \cdot\left(\mathrm{t} \cdot 1 \cdot 10^{-6}\right)^{2} \\ & + \\ & 0.004 \cdot(\mathrm{t} \cdot 1 \cdot \\ & 10^{-6} \cdot+ \\ & 2.803 \\ & \mathrm{a}_{2}=-7 \cdot 10^{-} \\ & 9 \cdot\left(\mathrm{t} \cdot 1 \cdot 10^{-6}\right)^{2} \\ & +5 \cdot 10- \\ & 6 \cdot\left(\mathrm{t} \cdot 1 \cdot 10^{-6}\right) \\ & +0.002 \end{aligned}$	$\begin{aligned} & 500 \cdot 10^{2} \\ & \text { (NR, NR, NR, } \\ & \text { NR, NR) } \end{aligned}$	43 (For prolonged exposures) 50 (Transition point for rapid thermal damage)	NR	NR	$\begin{aligned} & \hline[45 \\ & \hline \end{aligned}$
Kidney (Healthy)	$\sigma=\sigma_{\text {init }}$	NR	$\begin{aligned} & \sigma_{\text {init }}= \\ & 0.353 \mathrm{~S} \cdot \mathrm{~m}^{-1} \end{aligned}$	$\begin{aligned} & 501 \cdot 10^{2} \\ & (\{1250,1750, \\ & 2250\}, \\ & 100 \cdot 10^{-6}, 100 \\ & N A, 1) \end{aligned}$	NR	NR	NR	$\begin{aligned} & {[63} \\ & \hline \end{aligned}$								

	Calculation of V and E	Calculation of T							Calculation of Ω			Ablation parameters				Ref
Name	σ	ρ	c_{p} or $\mathrm{cb}^{\text {b }}$	k	Q_{m}	$\mathrm{T}_{\text {init }}$	w_{b}	Tart	A	U_{a}	Additional Details/ Parameters	EIRE(th) ($\mathrm{V}_{\mathrm{P}(\mathrm{th})}, \mathrm{tp}_{\mathrm{P}(\mathrm{th})}$, $\mathrm{N}_{\mathrm{P}(\mathrm{th}), \tau_{\mathrm{P}(\mathrm{th})},}$ $\left.\mathrm{f}_{\mathrm{p}(\mathrm{th})}\right)$	T_{th} (Exposure duration)	$\Omega_{\text {th }}$	CEM $43^{\circ} \mathrm{C}$ (th)	
	[$\mathrm{S} \cdot \mathrm{m}^{-1}$]	[$\left.\mathrm{kg} \cdot \mathrm{m}{ }^{-3}\right]$	$\begin{aligned} & {\left[\mathrm{[J} \mathrm{\cdot kg} \cdot \mathrm{~kg}^{.{ }^{\circ} \mathrm{C}-}\right.} \\ & \left.{ }^{-}\right] \end{aligned}$	$\begin{aligned} & {[\mathrm{W} \cdot \mathrm{~m}} \\ & { }_{-1 .{ }^{\circ} \mathrm{C}-} \\ & 1] \\ & \hline \end{aligned}$	[W•m³]	[${ }^{\circ} \mathrm{C}$]	$\begin{aligned} & {\left[\mathrm{kg} \cdot \mathrm{~s}^{-1}\right]} \end{aligned}$	[${ }^{\text {C }}$]	[s^{-1}]	$\begin{aligned} & {[J \cdot \mathrm{~mol}} \\ & \left.{ }_{1}\right] \end{aligned}$		$\begin{aligned} & {\left[\mathrm{V} \cdot \mathrm{~m}^{-1}\right]} \\ & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$	$\begin{aligned} & \hline\left[{ }^{\circ} \mathrm{C}\right] \\ & ([\mathrm{s}]) \end{aligned}$		[min]	
$\begin{aligned} & \hline \text { Kidney } \\ & \text { (Healthy) } \end{aligned}$	$\begin{aligned} & \sigma(\mathrm{E})=\left(\sigma_{\text {max }}-\right. \\ & \sigma_{\text {init }} \cdot\left(\mathrm{E}-\mathrm{a}_{1}\right) /\left(\mathrm{a}_{2}-\right. \\ & \left.\mathrm{a}_{1}\right)+\sigma_{\text {init }} \end{aligned}$	NR	$\begin{aligned} & \hline \sigma_{\text {init }}= \\ & 0.353 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\max }= \\ & 1.195 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \mathrm{a}_{1}= \\ & 200 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \\ & \mathrm{a}_{2}= \\ & 2000 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \\ & \hline \end{aligned}$	$\begin{aligned} & 638 \cdot 10^{2} \\ & (\{1250,1750, \\ & 2250\}, \\ & 100 \cdot 10^{-6}, 100, \\ & \mathrm{NA}, 1) \end{aligned}$	NR	NR	NR	$\begin{aligned} & {[63} \\ &] \end{aligned}$								
Kidney (Healthy)	$\begin{aligned} & \sigma(\mathrm{E})=\sigma_{\text {init }}+\left(\sigma_{\text {max }}-\right. \\ & \sigma_{\text {init }} \cdot \exp \left(\mathrm{a}_{3} \cdot \exp (\mathrm{a} 4 \cdot \mathrm{E}\right. \\ &)) \end{aligned}$	NR	$\begin{aligned} & \sigma_{\text {init }}= \\ & 0.353 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\max }= \\ & 0.988 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \mathrm{a}_{3}=-3.053 \\ & \mathrm{a}_{4}=- \\ & 0.00233 \cdot 10 \\ & -2 \mathrm{~m} \cdot \mathrm{~V}-1 \end{aligned}$	$\begin{aligned} & 575 \cdot 10^{2} \\ & (\{1250,1750, \\ & 2250\}, \\ & 100 \cdot 10^{-6}, 100, \\ & \text { NA, 1) } \end{aligned}$	NR	NR	NR	$\begin{aligned} & {[63} \\ &] \end{aligned}$								
Kidney (Healthy)	1	NTA	NR	NR	NA	$600 \cdot 10^{2}$ (NR, NR, NR, NR, NR)	NR	NR	NR	${ }^{[65}$						
Liver (Cancerous)	0.411	1050	3600	0.512	33800	37	1	37	NR	NR	NA	$\begin{aligned} & 680 \cdot 10^{2} \\ & (3000 \\ & 100 \cdot 10^{-6}, 8,1, \\ & \text { NA }) \end{aligned}$	$\begin{aligned} & \{43,50\} \\ & (\mathrm{NR}) \end{aligned}$	NR	NR	$\begin{aligned} & {[39} \\ &] \end{aligned}$
Liver (Cancerous)	$\begin{aligned} & \begin{array}{l} \sigma_{\text {pulse1 }}(t)=\mathrm{S}_{\mathrm{t}}(\mathrm{t})+ \\ \sigma_{\text {init }} \\ \\ \sigma_{\text {off }}=\max \left(\sigma_{\text {init }}\right. \\ \sigma_{\text {pulse1 }}\left(\mathrm{tpp}_{1}\right) \cdot(0.64- \\ \left.\left.0.017 \cdot \ln \left(\mathrm{t}-\mathrm{t}_{\mathrm{p} 1}\right)\right)\right) \\ \\ \sigma_{\text {pulse2 }}(\mathrm{t})=\min \left(\sigma_{\text {max }},\right. \\ \left.\mathrm{S}_{\mathrm{t}}(\mathrm{t})+\sigma_{\text {off }}\right) \end{array} \end{aligned}$	NR	NR	NR	NR	NTA	NR	NTA	NR	NR	$\begin{aligned} & \sigma_{\text {init }}= \\ & 0.135 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\max }= \\ & 0.426 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \mathrm{t}_{\mathrm{P} 1}=25 \cdot 10^{-} \\ & { }^{6} \mathrm{~s} \\ & \mathrm{t}_{\mathrm{P} 2}= \\ & 100 \cdot 10^{-6} \mathrm{~s} \\ & \mathrm{~S}_{\mathrm{t}}(\mathrm{t})= \\ & 0.291 \cdot \exp (- \\ & \exp (- \\ & 0.0012 \cdot(\mathrm{E}(\mathrm{t} \\ &)-1500))) \end{aligned}$	$700 \cdot 10^{2}$ (NR, NR, NR, NR, NR)	NR	NR	NR	${ }^{[46}$
Liver (Cancerous)	NR	1079	3540	0.52	10740	37	NA	NA	$\begin{aligned} & 2.984 \cdot 10 \\ & 80 \end{aligned}$	$\begin{aligned} & 5.06 \cdot 1 \\ & 0^{5} \end{aligned}$	$\begin{aligned} & \dot{\mathrm{R}}=8.314 \\ & \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1} \\ & \xi=0.015 \\ & { }^{\circ} \mathrm{C}^{-1} \\ & \sigma_{\text {init }}=0.4 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \end{aligned}$	$800 \cdot 10^{2}$ (NR, NR, NR, NR, NR)	$\begin{aligned} & 50 \\ & \text { (NR) } \end{aligned}$	1	NR	$\begin{aligned} & {[62} \\ &] \end{aligned}$

	Calculation of V and E	Calculation of T							Calculation of Ω			Ablation parameters				Ref
Name	σ	ρ	c_{p} or c_{b}	k	Q_{m}	$\mathrm{T}_{\text {init }}$	w_{b}	Tart	A	U_{a}	Additional Details/ Parameters	EIRE(th) ($\mathrm{V}_{\mathrm{P}(\mathrm{th}), \mathrm{tp}_{\mathrm{P}}(\mathrm{th}) \text {, }, \text {, }}$ $\mathrm{N}_{\mathrm{P}(\mathrm{th}),}, \mathrm{T}_{\mathrm{P}(\mathrm{th})}$, $\left.\mathrm{f}_{\mathrm{p}(\mathrm{th})}\right)$	T_{th} (Exposure duration)	$\Omega_{\text {th }}$	CEM $43^{\circ} \mathrm{C}$ (th)	
	[$\mathrm{S} \cdot \mathrm{m}^{-1}$]	[$\left.\mathrm{kg} \cdot \mathrm{m}{ }^{-3}\right]$	$\begin{aligned} & {\left[\mathrm{I} \cdot \mathrm{~kg}^{-1 .{ }^{\circ} \mathrm{C}}\right.} \\ & \text { 1] } \end{aligned}$	$\begin{aligned} & {[\mathrm{W} \cdot \mathrm{~m}} \\ & { }^{-1 .{ }^{\circ} \mathrm{C}-} \\ & 1] \end{aligned}$	[W-m³]	[${ }^{\circ} \mathrm{C}$]	$\begin{aligned} & {\left[\mathrm{kg} \cdot \mathrm{~s}^{-1}\right]} \end{aligned}$	[${ }^{\circ} \mathrm{C}$]	[s^{-1}]	$\begin{aligned} & {[\mathrm{lJ} \cdot \mathrm{~mol}} \\ & \left.{ }_{1}\right] \end{aligned}$		$\begin{aligned} & {\left[\mathrm{V} \cdot \mathrm{~m}^{-1}\right]} \\ & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$	$\begin{aligned} & \hline\left[{ }^{[} \mathrm{C}\right] \\ & ([\mathrm{s}]) \end{aligned}$		[min]	
											$\begin{aligned} & \sigma_{\max }=1.6 \\ & S \cdot \mathrm{~m}^{-1} \end{aligned}$					
Liver (Cancerous)	$\begin{aligned} & \sigma(E)=\sigma_{\text {init }}+\left(\sigma_{\max }-\right. \\ & \left.\sigma_{\text {init }}\right) \cdot 1 /(1+\exp (-(E \\ & \left.\left.\left.-\mathrm{a}_{2}\right) / \mathrm{a}_{3}\right)\right) \end{aligned}$	NR	$\sigma_{\text {init }}=0.2$ $\mathrm{~S} \cdot \mathrm{~m}^{-1}$ $\sigma_{\max }=0.5$ $\mathrm{~S} \cdot \mathrm{~m}^{-1}$ $\mathrm{a}_{2}=$ $950 \cdot 10^{2}$ $\mathrm{~V} \cdot \mathrm{~m}^{-1}$ $\mathrm{a}_{3}=$ $200 \cdot 10^{2}$ $\mathrm{~V} \cdot \mathrm{~m}^{-1}$	$700 \cdot 10^{2}$ (NR, NR, NR, NR, NR)	NR	NR	NR	$\begin{aligned} & \hline[71 \\ & \hline \end{aligned}$								
Liver (Cancerous)	$\begin{aligned} & \sigma(\mathrm{E})=\sigma_{\text {init }}+\left(\sigma_{\text {max }}-\right. \\ & \sigma_{\text {initit }} \mathbb{1}\left(\mathrm{E}-\mathrm{a}_{1}\right) \end{aligned}$	NR	$\begin{aligned} & \sigma_{\text {init }}=0.1 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\text {max }}=0.3 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \mathrm{a}_{1}= \\ & 500 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \end{aligned}$	$\begin{aligned} & {\left[1500 \cdot 10^{2},\right.} \\ & \left.1700 \cdot 10^{2}\right] \\ & \text { (NR, } 100 \cdot 10^{-6}, \\ & 70, \text { NA, } \sim 1 \text {) } \end{aligned}$	NR	NR	NR	${ }^{[77}$								
Liver (Healthy)	0.286	1050	3600	0.512	33800	37	NA	NA	NR	NR	$\begin{aligned} & \xi=0.015 \\ & { }^{\circ} \mathrm{C}^{-1} \end{aligned}$ (For σ) $\begin{aligned} & \xi=0.0025 \\ & { }^{\circ} \mathrm{C}-1 \\ & \text { (Fork) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 680 \cdot 10^{2} \\ & (\{952,960\}, \\ & 100 \cdot 10^{-6}, 8, \\ & \mathrm{NA}, 1 \mathrm{~Hz}) \end{aligned}$	50 (Instantaneous) 42 (Several seconds to hours)	0.53	NA	[3]
Liver (Healthy)	0.05	1050	3600	NR	NR	37	NA	NA	NR	NR	NA	$\begin{aligned} & \hline\left[300 \cdot 10^{2},\right. \\ & \left.500 \cdot 10^{2}\right] \\ & \text { (Assumption) } \end{aligned}$	$\begin{aligned} & 50 \\ & \text { (Instantaneous) } \end{aligned}$	NR	NR	$\begin{aligned} & \hline[24 \\ & \hline \end{aligned}$
$\begin{aligned} & \hline \text { Liver } \\ & \text { (Healthy) } \end{aligned}$	$\begin{aligned} & \sigma(\mathrm{E}, \mathrm{~T})=\sigma_{\text {inite }}(1+ \\ & \mathrm{flc} 2 \mathrm{hs}\left(\mathrm{E}-\mathrm{E}_{\text {alt, }} \text { Erange }\right) \\ & \left.+\xi \cdot\left(\mathrm{T}-\mathrm{T}_{\text {init }}\right)\right) \end{aligned}$	1050	3600	0.512	NR	21	NA	NA	NR	NR	$\sigma_{\text {init }}=$ $0.067 \mathrm{~S} \cdot \mathrm{~m}^{-1}$ $\sigma_{\text {max }}=$ $0.241 \mathrm{~S} \cdot \mathrm{~m}^{-1}$ Ealt $=$ 580•10² $\mathrm{V} \cdot \mathrm{m}^{-1}$ $\mathrm{E}_{\text {range }}=$ $\pm 120 \cdot 10^{2}$ $\mathrm{V} \cdot \mathrm{m}^{-1}$ $\xi=0.015 \mathrm{C}^{-}$	$\begin{aligned} & 423 \cdot 10^{2} \\ & (1500 \\ & 100 \cdot 10^{-6}, 99 \\ & \mathrm{NA}, 4) \end{aligned}$	NR	NR	NR	$\begin{array}{\|l} \hline[37 \\] \end{array}$
Liver (Healthy)	0.125	NTA	NR	NR	NA	$\begin{aligned} & \text { 680•10 } \\ & \text { (NR, NR, NR, } \\ & \text { NR, NR) } \\ & \hline \end{aligned}$	NR	NR	NR	${ }^{[38}$						

	$\begin{aligned} & \text { Calculation of V and } \\ & \text { E } \end{aligned}$	Calculation of T							Calculation of Ω			Ablation parameters				Ref
Name	σ	ρ	c_{p} or c_{b}	k	Qm	$\mathrm{T}_{\text {init }}$	w_{b}	Tart	A	U_{a}	Additional Details/ Parameters	Eire(th) ($\mathrm{V}_{\mathrm{P}(\mathrm{th}), \mathrm{tp}_{\mathrm{P}}(\mathrm{th}) \text {, }}$ $\mathrm{N}_{\mathrm{P}(\mathrm{th}),} \mathrm{T}_{\mathrm{P}(\mathrm{th})}$, $\mathrm{f}_{\mathrm{P}(\mathrm{th})}$)	T_{th} (Exposure duration)	$\Omega_{\text {th }}$	CEM43 ${ }^{\circ} \mathrm{C}$ (th)	
	[$\mathrm{S} \cdot \mathrm{m}^{-1}$]	[$\left.\mathrm{kg} \cdot \mathrm{m}{ }^{-3}\right]$	$\begin{aligned} & {\left[\mathrm{J} \cdot \mathrm{~kg}^{-1 .{ }^{\circ} \mathrm{C}}\right.} \\ & { }^{-} \end{aligned}$	$\begin{aligned} & {[\mathrm{W} \cdot \mathrm{~m}} \\ & { }_{-1 .{ }^{\circ} \mathrm{C}-} \\ & { }^{1]} \end{aligned}$	[W/m-3]	[$\left.{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & {\left[\mathrm{kg} \cdot \mathrm{~s}^{-1}\right]} \\ & \hline \mathrm{m}^{-} \end{aligned}$	[${ }^{\circ} \mathrm{C}$]	[s^{-1}]	$\begin{aligned} & {[\mathrm{J} \cdot \mathrm{~mol}} \\ & \left.{ }_{1}\right] \end{aligned}$		$\begin{aligned} & {\left[\mathrm{V} \cdot \mathrm{~m}^{-1}\right]} \\ & (\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$	$\begin{aligned} & {\left[{ }^{[} \mathrm{C}\right]} \\ & ([\mathrm{s}]) \end{aligned}$		[min]	
$\begin{aligned} & \hline \text { Liver } \\ & \text { (Healthy) } \end{aligned}$	0.075	1050	3600	0.512	33800	37	1	37	NR	NR	NA	NR	$\begin{aligned} & \{43,50\} \\ & (\mathrm{NR}) \end{aligned}$	NR	NR	[39
Liver (Healthy)	$\begin{aligned} & \sigma_{\text {pulse1 } 1}(t)=\mathrm{S}(\mathrm{t})+\sigma_{\text {init }} \\ & \sigma_{\text {off }}=\max \left(\sigma_{\text {init, }}\right. \\ & \sigma_{\text {pulse1 }}\left(\mathrm{tp}_{1}\right) \cdot(0.28- \\ & \left.\left.0.03 \cdot \ln \left(\mathrm{t}-\mathrm{t}_{\mathrm{P} 1}\right)\right)\right) \\ & \sigma_{\text {pulse2 }}(\mathrm{t})=\min \left(\sigma_{\text {max }},\right. \\ & \left.\mathrm{S}(\mathrm{t})+\sigma_{\text {off }}\right) \end{aligned}$	NR	NR	NR	NR	NTA	NR	NTA	NR	NR	$\begin{aligned} & \hline \sigma_{\text {init }}= \\ & 0.067 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\max }= \\ & 0.241 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \mathrm{t}_{\mathrm{p} 1}= \\ & 100 \cdot 10^{-6} \mathrm{~s} \\ & \mathrm{t}_{\mathrm{p} 2}= \\ & 100 \cdot 10^{-6} \mathrm{~s} \\ & \mathrm{~S}(\mathrm{t})=\left(\sigma_{\max }\right. \\ & \left.-\sigma_{\text {init }}\right) /(1+ \\ & 10 \cdot \exp (- \\ & 1 \cdot 10^{2} \cdot(\mathrm{E}(\mathrm{t}) \\ & \left.\left.\left.-\mathrm{a}_{1}\right) / \mathrm{a}_{2}\right)\right) \\ & \hline \end{aligned}$	$700 \cdot 10^{2}$ (NR, NR, NR, NR, NR)	NR	NR	NR	$\begin{aligned} & {[46} \\ & \hline \end{aligned}$
$\begin{aligned} & \hline \text { Liver } \\ & \text { (Healthy) } \end{aligned}$	0.286	1050	3600	0.512	NR	37.2	NA	NA	NR	NR	$\begin{aligned} & \mathrm{h}=10 \mathrm{~W} \\ & \mathrm{~m}^{-2}{ }^{-2} \mathrm{C}^{-1} \\ & \mathrm{~T}_{\text {env }}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 213 \cdot 10^{2} \\ & \left(500,50 \cdot 10^{-6},\right. \\ & 200, \mathrm{NA}, 1) \\ & \hline \end{aligned}$	50 (for at least 3 minutes)	NR	NR	[48
Liver (Healthy)	$\begin{aligned} & \sigma(\mathrm{E})=\sigma_{\text {init }}+\left(\sigma_{\text {max }}-\right. \\ & \left.\sigma_{\text {init }}\right) /\left(1+\mathrm{a}_{1} \cdot \exp (-\right. \\ & \left.\left.\left(\mathrm{E}-\mathrm{a}_{2}\right) / \mathrm{a}_{3}\right)\right) \\ & \mathrm{a}_{2}=\left(\mathrm{E}_{\text {IRE }}(\mathrm{th})+\right. \\ & \left.\mathrm{ERE}_{\text {RE }(\mathrm{h})}\right) / 2 \\ & \mathrm{a}_{3}=\left(\mathrm{E}_{\text {REE (th })}-\right. \\ & \mathrm{EREE}(\mathrm{th})) / \mathrm{a}_{4} \end{aligned}$	1060	3600	0.502	NA	NR	NA	NA	$\begin{aligned} & 7.39 \cdot 10^{3} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.577 \text {. } \\ & 10^{5} \end{aligned}$		$\begin{aligned} & 700 \cdot 10^{2} \\ & \left(\mathrm{NR}, 100 \cdot 10^{-6},\right. \\ & 8, \mathrm{NA}, 1) \end{aligned}$	42 (Extended exposure) 73.4 (Instantaneous)	4.6 (99\% probabi lity of cell death)	NA	${ }^{[53}$
Liver (Healthy)	NR	1079	3540	0.52	10740	37	NA	NA	$\begin{aligned} & 2.984 \cdot 10 \\ & 80 \end{aligned}$	$\begin{aligned} & 5.06 \cdot 1 \\ & 0^{5} \end{aligned}$	$\begin{aligned} & \hline \dot{\mathrm{R}}=8.314 \\ & \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1} \\ & \xi=0.015 \\ & { }^{\circ} \mathrm{C}-1 \\ & \sigma_{\text {init }}= \\ & 0.091 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\max }=0.45 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \hline \end{aligned}$	$700 \cdot 10^{2}$ (NR, NR, NR, NR, NR)	$\begin{aligned} & \hline 50 \\ & (\mathrm{NR}) \end{aligned}$	1	NR	$\begin{aligned} & {[62} \\ &] \end{aligned}$
Liver (Healthy)	$\begin{aligned} & \sigma(\mathrm{E})=\sigma_{\text {init }}+\left(\sigma_{\text {max }}-\right. \\ & \left.\sigma_{\text {init }}\right) \cdot 1 /(1+\exp (-(E \\ & \left.\left.\left.-\mathrm{a}_{2}\right) / \mathrm{a}_{3}\right)\right) \end{aligned}$	NR	$\begin{aligned} & \sigma_{\text {init }}=0.05 \\ & S \cdot \mathrm{~m}^{-1} \\ & \sigma_{\max }=0.3 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \end{aligned}$	$700 \cdot 10^{2}$ (NR, NR, NR, NR, NR)	NR	NR	NR	$\begin{aligned} & {[71} \\ & \hline \end{aligned}$								

	Calculation of V and	Calculation of T							Calculation of Ω			Ablation parameters				Ref
Name	σ	ρ	c_{p} or c_{b}	k	Q_{m}	$\mathrm{T}_{\text {init }}$	w_{b}	Tart	A	U_{a}	Additional Details/ Parameters	EIRE(th) ($\mathrm{V}_{\mathrm{P}(\mathrm{th}), \mathrm{tp}_{\mathrm{P}}(\mathrm{th}) \text {, }, \text {, }}$ $\mathrm{N}_{\mathrm{P}(\mathrm{th}),}, \mathrm{T}_{\mathrm{P}(\mathrm{th})}$, $\left.\mathrm{f}_{\mathrm{p}(\mathrm{th})}\right)$	T_{th} (Exposure duration)	$\Omega_{\text {th }}$	CEM $43^{\circ} \mathrm{C}$ (th)	
	[$\mathrm{S} \cdot \mathrm{m}^{-1}$]	[$\left.\mathrm{kg} \cdot \mathrm{m}{ }^{-3}\right]$	$\begin{aligned} & {\left[\mathrm{J} \cdot \mathrm{~kg}^{-1 .{ }^{\circ} \mathrm{C}}\right.} \\ & { }^{-} \end{aligned}$	$\begin{aligned} & {[\mathrm{W} \cdot \mathrm{~m}} \\ & { }_{-1 .{ }^{\circ} \mathrm{C}-} \\ & { }^{1]} \end{aligned}$	[W/m-3]	[${ }^{\circ} \mathrm{C}$]	$\begin{aligned} & {\left[\mathrm{kg} \cdot \mathrm{~s}^{-1}\right]} \end{aligned}$	[${ }^{\circ} \mathrm{C}$]	[s^{-1}]	$\begin{aligned} & \text { [J•mol } \\ & \text { 1] } \end{aligned}$		$\begin{aligned} & {\left[\mathrm{V} \cdot \mathrm{~m}^{-1}\right]} \\ & (\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$	$\begin{aligned} & \hline\left[{ }^{[} \mathrm{C}\right] \\ & ([\mathrm{s}]) \end{aligned}$		[min]	
											$\begin{aligned} & a_{2}= \\ & 950 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \\ & \mathrm{a}_{3}= \\ & 200 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \end{aligned}$					
$\begin{aligned} & \text { Liver } \\ & \text { (Healthy) } \end{aligned}$	0.124	NR	NR	NR	NR	NTA	NR	NTA	NR	NR	NA	NR	NR	NR	NR	$\begin{aligned} & {[72} \\ & { }^{[} \\ & \hline \end{aligned}$
Liver (Healthy)	0.047666							NA			$\varepsilon_{\mathrm{r}}=42672$			NR		$[74$
Liver (Healthy)	$\begin{aligned} & \sigma(\mathrm{E}, \mathrm{~T})=\left(\sigma_{\text {init }}+\right. \\ & \left(\sigma_{\max }-\sigma_{\text {init }} /(1+\right. \\ & 10 \cdot \exp (-(\mathrm{E}- \\ & \left.\left.\left.58 \cdot 10^{3}\right) / 3 \cdot 10^{3}\right)\right) \cdot 1.0 \\ & 2(\mathrm{~T}-37) \end{aligned}$	1080	3455	0.502	0	37	NA	NA	NR	NR	$\begin{aligned} & \sigma_{\text {init }}=0.08 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\max }=0.31 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \end{aligned}$	$\begin{aligned} & 500 \cdot 10^{2} \\ & \left(\mathrm{NR}, 100 \cdot 10^{-6},\right. \\ & 100, \mathrm{NA}, 1) \end{aligned}$	NR	NR	340	[76
Liver (Healthy)	$\begin{aligned} & \sigma(\mathrm{E})=\sigma_{\text {init }}+\left(\sigma_{\text {max }}-\right. \\ & \sigma_{\text {initit }} \mathbb{1}\left(\mathrm{E}-\mathrm{a}_{1}\right) \end{aligned}$	NR	$\begin{aligned} & \sigma_{\text {init }}=0.1 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\text {max }}=0.3 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \mathrm{a}_{1}= \\ & 500 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \end{aligned}$	$\begin{aligned} & \hline\left[1500 \cdot 10^{2},\right. \\ & \left.1700 \cdot 10^{2}\right] \\ & \text { (NR, 100.10-6, } \\ & 70, \text { NA, } \sim 1 \text {) } \end{aligned}$	NR	NR	NR	$\begin{aligned} & {[77} \\ &] \end{aligned}$								
Liver (Healthy)	$\begin{aligned} & \sigma(\mathrm{E})=\sigma_{\text {init }} \cdot(1+ \\ & 0.5 \cdot a_{1}(1+\tanh ((\mathrm{E} \\ & \left.\mathrm{ERE}^{(\mathrm{th}))}\right) / \mathrm{ERE}_{\mathrm{RE}(\mathrm{t}))))} \end{aligned}$	NR	$\begin{aligned} & \sigma_{\text {init }}=0.12 \\ & S \cdot \mathrm{~m}^{-1} \\ & \mathrm{a}_{1}=3 \\ & E_{\text {REE }(\mathrm{th})}= \\ & 300 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \end{aligned}$	$\begin{aligned} & \hline 650 \cdot 10^{2} \\ & \text { (NR, NR, NR, } \\ & \text { NR, NR) } \end{aligned}$	NR	NR	NR	$\begin{aligned} & {[79} \\ & \hline \end{aligned}$								
$\begin{aligned} & \hline \text { Liver } \\ & \text { (Healthy) } \end{aligned}$	$\begin{aligned} & \sigma(\mathrm{E}, \mathrm{~T})=\left(\sigma_{\text {init }}+\right. \\ & \left(\sigma_{\text {max }}-\sigma_{\text {init }} /(1+\right. \\ & \mathrm{a}_{1} \cdot \exp ((-\mathrm{E}- \\ & \left.\left.\left.\left.\mathrm{a}_{2}\right) / \mathrm{a}_{3}\right)\right)\right) \cdot(1+\xi \cdot(\mathrm{T}- \\ & \left.\mathrm{T}_{\text {init }}\right) \end{aligned}$	1079	3540	0.52	NR	26	NR	NR	$\begin{aligned} & 7.39 \cdot 10^{3} \\ & 9 \end{aligned}$	$\begin{aligned} & 2.577 \\ & 10^{5} \end{aligned}$		$700 \cdot 10^{2}$ (NR, NR, NR, NR, NR)	70	NR	NR	${ }^{[80}$

	Calculation of V and	Calculation of T							Calculation of Ω			Ablation parameters				Ref
Name	σ	ρ	c_{p} or cb	k	Qm	Tinit	w_{b}	Tart	A	U_{a}	Additional Details/ Parameters	EIRE(th) ($\mathrm{VP}_{\mathrm{P}(\mathrm{th}), \mathrm{tp}_{\mathrm{P}}(\mathrm{th}) \text {, }, \text {, }}$ $\mathrm{N}_{\mathrm{P}(\mathrm{th})}, \tau_{\mathrm{P}(\mathrm{th})}$, $\mathrm{f}_{\mathrm{P}(\mathrm{th})}$)	T_{th} (Exposure duration)	$\Omega_{\text {th }}$	CEM43 ${ }^{\circ} \mathrm{C}$ (th)	
	[$\mathrm{S} \cdot \mathrm{m}^{-1}$]	$\left[\mathrm{kg} \cdot \mathrm{m}{ }^{-3}\right]$	$\begin{aligned} & {\left[\text { [} \cdot \mathrm{kg}^{-1 .{ }^{\circ} \mathrm{C}}\right.} \\ & \text { 1] } \end{aligned}$	$\begin{aligned} & {[\mathrm{W} \cdot \mathrm{~m}} \\ & { }_{-1,{ }^{\circ} \mathrm{C}-} \\ & \text { 1] } \end{aligned}$	[W•m³]	[${ }^{\circ} \mathrm{C}$]	$\begin{aligned} & {\left[\mathrm{kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-1}\right]} \end{aligned}$	[${ }^{\text {C }}$]	[s^{-1}]	$\begin{aligned} & {\left[J \cdot \mathrm{~mol}^{-}\right.} \\ & \left.{ }_{1}\right] \end{aligned}$		$\begin{aligned} & {\left[\mathrm{V} \cdot \mathrm{~m}^{-1}\right]} \\ & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$	$\begin{aligned} & {\left[{ }^{\circ} \mathrm{C}\right]} \\ & ([\mathrm{s}]) \end{aligned}$		[min]	
											$\begin{aligned} & \hline \mathrm{E}_{\text {IRE }(\mathrm{th})}= \\ & 700 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\text {init }}=0.12 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\max }=0.42 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \hline \end{aligned}$					
Liver (Healthy, Parenchymal)	$\begin{aligned} & \left\{\sigma=0.02 \mathrm{~S} \cdot \mathrm{~m}^{-1} \mid \mathrm{E}=\right. \\ & \left.0 \mathrm{~V} \cdot \mathrm{~m}^{-1}\right\} \\ & \left\{\sigma=0.13 \mathrm{~S} \cdot \mathrm{~m}^{-1} \mid \mathrm{E} \neq\right. \\ & \left.0 \mathrm{~V} \cdot \mathrm{~m}^{-1}\right\} \end{aligned}$	NTA	NA	NR	NTA	NTA	NTA	$\begin{aligned} & \hline[54 \\ & \hline \end{aligned}$								
Muscle (Healthy)	0.2	NR	NA	NR	NR	NR	NR	[67								
Muscle (Healthy, Anisotropic circumferentia l)	$\begin{aligned} & \sigma(\mathrm{E})=\sigma_{\text {init }} \cdot(1+ \\ & \Lambda \cdot 2 \cdot \mathrm{fflc} 2 \mathrm{hs}\left(\mathrm{E}-\mathrm{E}_{\text {alt }},\right. \\ & \left.\left.\mathrm{E}_{\text {range }}\right)\right) \end{aligned}$	1000	3750	0.5	NA	37	NA	NA	$\begin{aligned} & 1.552 \cdot 10 \\ & 67 \end{aligned}$	4.3-105	$\begin{aligned} & \sigma_{\text {init }}=0.75 \\ & S \cdot \mathrm{~m}^{-1} \\ & \Lambda=2.5 \\ & \mathrm{E}_{\text {alt }}= \\ & 500 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \\ & \text { Erange }= \\ & 300 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \end{aligned}$	$500 \cdot 10^{2}$ (NR, NR, NR, NR, NR)	NR	0.53	NR	${ }^{[59}$
Muscle (Healthy, Anisotropic longitudinal)	$\begin{aligned} & \sigma(\mathrm{E})=\sigma_{\text {init }} \cdot(1+ \\ & \Lambda \cdot 2 \cdot f \mathrm{flc} 2 \mathrm{hs}\left(\mathrm{E}-\mathrm{E}_{\text {alt }}\right. \\ & \text { Erange })) \end{aligned}$	1000	3750	0.5	NA	37	NA	NA	$\begin{aligned} & 1.552 \cdot 10 \\ & 67 \end{aligned}$	$4.3 \cdot 10^{5}$	$\begin{aligned} & \sigma_{\text {init }}= \\ & 0.135 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \Lambda=2.5 \\ & \text { Ealt }= \\ & 500 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \\ & \text { Erange }= \\ & 300 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \end{aligned}$	$500 \cdot 10^{2}$ (NR, NR, NR, NR, NR)	NR	0.53	NR	${ }^{[59}$
Muscle (Healthy, Anisotropic parallel)	0.8	NTA	NR	NR	NA	NR	NR	NR	NR	$\begin{aligned} & \hline[35 \\ & { }^{2} \end{aligned}$						
Muscle (Healthy, Anisotropic perpendicular)	0.055	NTA	NR	NR	NA	NR	NR	NR	NR	${ }_{[}^{[35}$						
ND tissue	0.2	1000	4000	0.5	NA	37	0	37	NA	NA	NA	NR	NR	NA	NA	${ }_{[}^{[27}$
ND tissue	0.2	1000	4200	NA	NA	NR	NA	NA	$\begin{aligned} & 1.19 \cdot 10^{3} \\ & 5 \end{aligned}$	$\begin{aligned} & 2.318 \\ & 10^{5} \end{aligned}$	$\begin{aligned} & \alpha= \\ & 1.34 \cdot 10^{-7} \\ & \mathrm{~m}^{2} \cdot \mathrm{~s}^{-1} \end{aligned}$	NA	NA	0.53	NA	${ }^{[30}$

	Calculation of V and E	Calculation of T							Calculation of Ω			Ablation parameters				Ref
Name	σ	ρ	c_{p} or c_{b}	k	Qm	$\mathrm{T}_{\text {init }}$	w_{b}	Tart	A	U_{a}	Additional Details/ Parameters	EIRE(th) ($\left.\mathrm{V}_{\mathrm{P}(\mathrm{th})}, \mathrm{tpp}_{\mathrm{P}} \mathrm{th}\right)$, $\mathrm{N}_{\mathrm{P}(\mathrm{th}), \mathrm{T}_{\mathrm{P}(\mathrm{th})},}$ $\mathrm{f}_{\mathrm{P}(\mathrm{th})}$)	T_{th} (Exposure duration)	$\Omega_{\text {th }}$	CEM43 ${ }^{\circ} \mathrm{C}$ (th)	
	[$\left.\mathrm{S} \cdot \mathrm{m}^{-1}\right]$	$\left[\mathrm{kg} \cdot \mathrm{m}{ }^{-3}\right]$	$\begin{aligned} & {\left[\left[\cdot \mathrm{kg}^{-1 .{ }^{\circ} \mathrm{C}^{-}}\right.\right.} \\ & \left.{ }^{2}\right] \end{aligned}$	$\begin{aligned} & {[\mathrm{W} \cdot \mathrm{~m}} \\ & { }^{-1 .{ }^{\circ} \mathrm{C}-} \\ & 1] \end{aligned}$	[W•m-3]	[${ }^{\circ} \mathrm{C}$]	$\begin{aligned} & {\left[\mathrm{kg} \cdot \mathrm{~s}^{-1}\right]} \end{aligned}$	[${ }^{\circ} \mathrm{C}$]	[s^{-1}]	$\begin{aligned} & \hline[J \cdot \mathrm{~mol} \\ & \left.{ }^{1}\right] \end{aligned}$		$\begin{aligned} & \hline\left[\mathrm{V} \cdot \mathrm{~m}^{-1}\right] \\ & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \\ & \hline \end{aligned}$	$\begin{aligned} & {\left[{ }^{\circ} \mathrm{C}\right]} \\ & ([\mathrm{s}]) \end{aligned}$		[min]	
ND tissue	NA	$\begin{aligned} & 1.98 \cdot 10^{1} \\ & 06 \end{aligned}$	$\begin{aligned} & \hline 6.67 \cdot 1 \\ & 0^{5} \end{aligned}$	NA	NA	NA	NA	NA	${ }^{40}$							
ND tissue	NA	NA	NA	NA	NA	NA		NA	$7.39 \cdot 10^{3}$	2.577				NA	NA	[40
ND tissue (Healthy)	$\begin{aligned} & \sigma(\mathrm{E})=\left(\sigma_{\max }-\right. \\ & \sigma_{\text {init) }} \cdot \mathrm{E} / \mathrm{E}_{\text {IRE }(\mathrm{th})}- \\ & \left.\mathrm{ERE}_{\mathrm{RE}(\mathrm{th})}\right)+\sigma_{\text {init }} \end{aligned}$	1050	3600	0.51	420	37	4.664	37	NR	NR	$\begin{aligned} & \sigma_{\text {init }}=0.1 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\max }=0.4 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \mathrm{E}_{\text {RE }}(\mathrm{th})= \\ & 200 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \\ & \mathrm{E}_{\text {IRE }}(\mathrm{h}) \\ & 800 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \end{aligned}$	$800 \cdot 10^{2}$ (NR, NR, NR, NR, NR)	50	NR	NR	[42
ND tissue (Healthy)	0.286	1050	3600	0.25	NA	NR	NA	NA	NR	NR	NA	$\begin{aligned} & 1000 \cdot 10^{2} \\ & \text { (Assumption) } \end{aligned}$	NR	NR	NR	${ }^{[55}$
ND tissue 1	0.2	1050	3600	0.5	NR	37	NR	NR	NR	NR	NA	$\begin{aligned} & 800 \cdot 10^{2} \\ & \text { (Assumption) } \end{aligned}$	50 (Instantaneous) 42 (Long period of exposure)	NR	NR	${ }^{1}{ }^{26}$
ND tissue 1		1060	3600	0.502	NA	NR	NA	NA	$\begin{aligned} & 7.39 \cdot 10^{3} \\ & 9 \end{aligned}$	$\begin{aligned} & \hline 2.577 \cdot \\ & 10^{5} \end{aligned}$	$\begin{aligned} & \dot{\mathrm{R}}=8.314 \\ & \mathrm{~J} \cdot \mathrm{~mol}{ }^{-1} \cdot \mathrm{~K}^{-1} \\ & \mathrm{a}_{1}=10 \\ & \mathrm{a}_{4}=8 \\ & \mathrm{ERE}_{\mathrm{RE}(\mathrm{th})}= \\ & 460 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \\ & \mathrm{EIRE}^{(\mathrm{th})}= \\ & 700 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\text {init }}= \\ & 0.067 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\max }= \\ & 0.241 \mathrm{~S} \cdot \mathrm{~m}^{-1} \end{aligned}$	$\begin{aligned} & \hline 700 \cdot 10^{2} \\ & \left(\mathrm{NR}, 100 \cdot 10^{-6},\right. \\ & 8, \mathrm{NA}, 1) \end{aligned}$	42 (Extended exposure) 73.4 (Instantaneous)	4.6 (99\% probabi lity of cell death)	NA	$\begin{aligned} & {[53} \\ & \hline \end{aligned}$
ND tissue 2	0.04	NA	NR	NR	NA	$\begin{aligned} & 800 \cdot 10^{2} \\ & \text { (Assumption) } \end{aligned}$	50 (Instantaneous) 42 (Long period of exposure)	NR	NR	${ }_{[}^{[26}$						
ND tissue 2	$\begin{aligned} & \sigma(\mathrm{E})=1.5 \cdot\left(\sigma_{\text {init }}+\right. \\ & \left(\sigma_{\max }-\sigma_{\text {initit }}\right) /(1+ \\ & \left.\left.\mathrm{a}_{1} \cdot \exp \left(-\left(\mathrm{E}-\mathrm{a}_{2}\right) / \mathrm{a}_{3}\right)\right)\right) \\ & \hline \end{aligned}$	1060	3600	0.502	NA	NR	NA	NA	$7.39 \cdot 10^{3}$	$\begin{aligned} & \hline 2.577 \cdot \\ & 10^{5} \end{aligned}$	$\dot{\mathrm{R}}=8.314$ $\mathrm{J} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$ $\mathrm{a}_{1}=10$	$\begin{aligned} & \hline 700 \cdot 10^{2} \\ & \left(\mathrm{NR}, 100 \cdot 10^{-6},\right. \\ & 8, \mathrm{NA}, 1) \\ & \hline \end{aligned}$	42 (Extended exposure)	4.6 (99\% probab	NA	${ }^{[53}$

	Calculation of V and E	Calculation of T							Calculation of Ω			Ablation parameters				Ref
Name	σ	ρ	c_{p} or c_{b}	k	Qm	$\mathrm{T}_{\text {init }}$	w_{b}	Tart	A	U_{a}	Additional Details/ Parameters	EIRE(th) ($\left.\mathrm{V}_{\mathrm{P}(\mathrm{th})}, \mathrm{tpp}_{\mathrm{P}} \mathrm{th}\right)$, $\mathrm{N}_{\mathrm{P}(\mathrm{th}), \mathrm{T}_{\mathrm{P}(\mathrm{th})},}$ $\mathrm{f}_{\mathrm{P}(\mathrm{th})}$)	T_{th} (Exposure duration)	$\Omega_{\text {th }}$	CEM43 ${ }^{\circ} \mathrm{C}$ (th)	
	[$\mathrm{S} \cdot \mathrm{m}^{-1}$]	[$\left.\mathrm{kg} \cdot \mathrm{m}{ }^{-3}\right]$	$\begin{aligned} & {\left[\mathrm{J} \cdot \mathrm{~kg}^{-1 .{ }^{\circ} \mathrm{C}-}\right.} \\ & \left.{ }^{-}\right] \end{aligned}$	$\begin{aligned} & {[\mathrm{W} \cdot \mathrm{~m}} \\ & { }^{-1 .{ }^{\circ} \mathrm{C}-} \\ & 1] \end{aligned}$	[$\mathrm{W} \cdot \mathrm{m}^{-3}$]	[${ }^{\circ} \mathrm{C}$]	$\begin{aligned} & {\left[\mathrm{kg} \cdot \mathrm{~s}^{-1}\right]} \end{aligned}$	[${ }^{\circ} \mathrm{C}$]	[s^{-1}]	$\begin{aligned} & \hline[J \cdot \mathrm{~mol} \\ & \left.{ }^{1}\right] \end{aligned}$		$\begin{aligned} & \hline\left[\mathrm{V} \cdot \mathrm{~m}^{-1}\right] \\ & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \\ & \hline \end{aligned}$	$\begin{aligned} & {\left[{ }^{\circ} \mathrm{C}\right]} \\ & ([\mathrm{s}]) \end{aligned}$		[min]	
ND tissue 3	$\begin{aligned} & \mathrm{a}_{2}=\left(\mathrm{E}_{\mathrm{IRE}(\mathrm{th})}+\right. \\ & \left.\mathrm{E}_{\mathrm{RE}(\mathrm{th})}\right) / 2 \end{aligned}$ $\begin{aligned} & a_{3}=\left(\mathrm{E}_{\text {IRE }(\mathrm{th})}-\right. \\ & \left.\mathrm{E}_{\mathrm{RE}(\mathrm{th})}\right) / \mathrm{a}_{4} \end{aligned}$ 1	NA	NR	NR		800•10² (Assumption)	73.4 (Instantaneous) 50 (Instantaneous) 42 (Long period of exposure)	lity of cell death)	NR	$\begin{aligned} & {[26} \\ &] \end{aligned}$						
ND tissue 3		1060	3600	0.502	NA	NR	NA	NA	$\begin{aligned} & 7.39 \cdot 10^{3} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.577 \\ & 10^{5} \end{aligned}$	$\begin{aligned} & \hline \dot{\mathrm{R}}=8.314 \\ & \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1} \\ & \mathrm{a}_{1}=10 \\ & \mathrm{a}_{4}=8 \\ & \mathrm{E}_{\mathrm{RE}(\mathrm{th})}= \\ & 460 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \\ & \mathrm{EIRE}^{(\mathrm{th})}= \\ & 700 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\text {init }}= \\ & 0.067 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\max }= \\ & 0.241 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 700 \cdot 10^{2} \\ & \left(\mathrm{NR}, 100 \cdot 10^{-6},\right. \\ & 8, \mathrm{NA}, 1) \end{aligned}$	42 (Extended exposure) 73.4 (Instantaneous)	4.6 (99\% probabi lity of cell death)	NA	$\begin{aligned} & {[53} \\ &] \end{aligned}$
Nerve - Myelin (Healthy)	$3.45 \cdot 10^{-6}$	1043	3600	0.5	NR	37.08	NA	NA	NR	NR	NA	$\begin{aligned} & 1000 \cdot 10^{2} \\ & \text { (NR, NR, NR, } \\ & \text { NR, NR) } \end{aligned}$	NR	1	NR	${ }^{[28}$
Nerve axon (Healthy)	1.44	1043	3600	0.5	NR	37.08	NA	NA	NR	NR	NA	$1000 \cdot 10^{2}$ (NR, NR, NR, NR, NR)	NR	1	NR	${ }^{[28}$
Nerve axon (Healthy)	1.44	NR	NA	NR	NR	NR	NR	${ }_{\text {] }}{ }^{\text {a }}$								
Pancreas (Cancerous)	$\sigma(\mathrm{E})=\sigma_{\text {init }}+\left(\sigma_{\text {max }}-\right.$ $\left.\sigma_{\text {init }}\right) \cdot \exp \left(-\exp \left(\mathrm{a}_{6} \cdot(\mathrm{E}\right.\right.$ - $\left.\mathrm{E}_{\text {IRE }}(\mathrm{th})\right)$)	1087	3164	0.51	$\begin{aligned} & 12924 . \\ & 43 \end{aligned}$	37	212	37	NR	NR	$\begin{aligned} & \sigma_{\text {init }}= \\ & 0.341 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\max }=0.95 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \mathrm{a}_{6}=0.2 \cdot 10 . \\ & { }^{2} \mathrm{~m} \cdot \mathrm{~V}^{-1} \end{aligned}$	$\begin{aligned} & 500 \cdot 10^{2} \\ & \left(300,90 \cdot 10^{-6},\right. \\ & 100, N R, N R) \end{aligned}$	NR	NR	NR	$\begin{aligned} & {[70} \\ &] \end{aligned}$

	Calculation of V and E	Calculation of T							Calculation of Ω			Ablation parameters				Ref
Name	σ	ρ	c_{p} or $\mathrm{cb}^{\text {b }}$	k	Qm	$\mathrm{T}_{\text {init }}$	w_{b}	Tart	A	U_{a}	Additional Details/ Parameters	EIRE(th) ($\mathrm{V}_{\mathrm{P}(\mathrm{th}), \mathrm{tp}_{\mathrm{P}}(\mathrm{th}) \text {, }, \text {, }}$ $\mathrm{N}_{\mathrm{P}(\mathrm{th}),} \mathrm{T}_{\mathrm{P}(\mathrm{th})}$, $\left.\mathrm{f}_{\mathrm{p}(\mathrm{th})}\right)$	T_{th} (Exposure duration)	$\Omega_{\text {th }}$	CEM $43^{\circ} \mathrm{C}$ (th)	
	[$\mathrm{S} \cdot \mathrm{m}^{-1}$]	[$\left.\mathrm{kg} \cdot \mathrm{m}{ }^{-3}\right]$	$\begin{aligned} & {\left[\mathrm{[J} \mathrm{\cdot kg} \cdot \mathrm{~kg}^{-{ }^{\circ} \mathrm{C}-}\right.} \\ & \left.{ }^{1}\right] \end{aligned}$	$\begin{aligned} & \text { [W•m } \\ & { }_{-1.0}{ }^{\circ} \mathrm{C}- \\ & 1] \\ & \hline \end{aligned}$	[W•m-3]	[${ }^{\circ} \mathrm{C}$]	$\begin{aligned} & \left.\hline \mathrm{kg} \cdot \mathrm{~s}^{-1}\right] \end{aligned}$	[${ }^{\text {C }}$]	[s^{-1}]	$\begin{aligned} & \text { [J•mol } \\ & \left.{ }_{1}\right] \end{aligned}$		$\begin{aligned} & {\left[\mathrm{V} \cdot \mathrm{~m}^{-1}\right]} \\ & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$	$\begin{aligned} & \hline\left[{ }^{[} \mathrm{C}\right] \\ & ([\mathrm{s}]) \end{aligned}$		[min]	
											$\begin{aligned} & \mathrm{E}_{\mathrm{IRE}(\mathrm{th})=}= \\ & 400 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \end{aligned}$					
Pancreas (Healthy)	0.5	NTA	NR	NR	NR	$650 \cdot 10^{2}$ (NR, NR, NR, NR, NR)	NR	NR	NR	${ }^{[52}$						
Pancreas (Healthy)	$\begin{aligned} & \sigma(\mathrm{E})=\sigma_{\text {init }}+\left(\sigma_{\max }-\right. \\ & \left.\sigma_{\text {init) }}\right) \cdot \exp (-\exp (\mathrm{a} \cdot(\mathrm{E} \\ & \left.\left.\left.-\mathrm{E}_{\operatorname{IRE}(\mathrm{th})}\right)\right)\right) \end{aligned}$	1087	3164	0.51	$\begin{aligned} & 12924 . \\ & 43 \end{aligned}$	37	212	37	NR	NR	$\begin{aligned} & \sigma_{\text {init }} \\ & 0.341 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\text {max }}=0.95 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \mathrm{a}_{6}=0.2 \cdot 10 \cdot \\ & 2 \mathrm{~m} \cdot \mathrm{~V} \cdot{ }^{-1} \\ & \mathrm{E}_{\text {IRE } \mathrm{t}}^{\mathrm{th})}= \\ & 400 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \end{aligned}$	NR	NR	NR	NR	$\begin{aligned} & \hline[70 \\ &] \end{aligned}$
Prostate (Cancerous)	NR	NTA	$\begin{aligned} & \xi=[0.01, \\ & 0.03]^{\circ} \mathrm{C}^{-1} \end{aligned}$	$\begin{aligned} & {\left[668 \cdot 10^{2},\right.} \\ & \left.893 \cdot 10^{2}\right] \\ & (500,\{50 \cdot 10 \cdot 6, \\ & \left.100 \cdot 10^{-6}\right\},\{10, \\ & 50,99\}, 10) \end{aligned}$	$\begin{aligned} & \sim 43^{\circ} \mathrm{C} \\ & (5 \text { minutes }) \end{aligned}$	0.53	NTA	$\begin{aligned} & {[50} \\ & { }^{[50} \end{aligned}$								
Prostate (Cancerous)	0.3	NR	NA	$700 \cdot 10^{2}$ \{([1650, 2850], 90•10 ${ }^{-6}$, 70, NA, NR), Multiple electrode pairs)	NR	NR	NR	$\begin{aligned} & {[67} \\ & { }^{[67} \end{aligned}$								
Prostate (Cancerous)	$\sigma=\sigma_{\text {init }}$	NR	NA	$422 \cdot 10^{2}$ \{(NR, $\left[70 \cdot 10^{-6}\right.$, 90•10-6], 90 , NA, NR), Static conductivity, Multiple electrode pairs	NR	NR	NR	$\begin{aligned} & {[68} \\ &] \end{aligned}$								
Prostate (Cancerous)	$\sigma(\mathrm{E})$ (No values mentioned, Plotted in figure)	NR	$\begin{aligned} & \sigma_{\text {init }} \\ & 0.284 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\max }=0.72 \\ & \pm 0.15 \mathrm{~S} \cdot \mathrm{~m}^{-} \end{aligned}$	$\begin{aligned} & 506 \cdot 10^{2} \\ & \left\{\left(\mathrm{NR},\left[70 \cdot 10^{-6},\right.\right.\right. \\ & 90 \cdot 10^{-6}, 9,90, \\ & \mathrm{NA}, \mathrm{NR}), \\ & \text { Dynamic } \\ & \text { conductivity, } \\ & \text { Multiple } \\ & \text { electrode } \\ & \text { pairs }\} \\ & \hline \end{aligned}$	NR	NR	NR	${ }_{]}^{[68}$								

Name	Calculation of V and	Calculation of T							Calculation of Ω			Ablation parameters				Ref
	σ	ρ	c_{p} or c_{b}	k	Q_{m}	$\mathrm{T}_{\text {init }}$	w_{b}	Tart	A	U_{a}	Additional Details/ Parameters	EIRE(th) ($\mathrm{V}_{\mathrm{P}(\mathrm{th}), \mathrm{tp}_{\mathrm{P}}(\mathrm{th}) \text {, }, \text {, }}$ $\mathrm{N}_{\mathrm{P}(\mathrm{th}),}, \mathrm{T}_{\mathrm{P}(\mathrm{th})}$, $\left.\mathrm{f}_{\mathrm{p}(\mathrm{th})}\right)$	$\mathrm{T}_{\text {th }}$ (Exposure duration)	$\Omega_{\text {th }}$	CEM $43^{\circ} \mathrm{C}$ (th)	
	[$\mathrm{S} \cdot \mathrm{m}^{-1}$]	[$\left.\mathrm{kg} \cdot \mathrm{m}{ }^{-3}\right]$	$\begin{aligned} & {\left[\mathrm{J} \cdot \mathrm{~kg}^{-1 .{ }^{\circ} \mathrm{C}}\right.} \\ & { }^{-} \end{aligned}$	$\begin{aligned} & {[\mathrm{W} \cdot \mathrm{~m}} \\ & { }_{-1 .{ }^{\circ} \mathrm{C}-} \\ & { }^{1]} \end{aligned}$	[W/m-3]	[$\left.{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & {\left[\mathrm{kg} \cdot \mathrm{~s}^{-1}\right]} \\ & \hline \mathrm{m}^{-} \end{aligned}$	[${ }^{\circ} \mathrm{C}$]	[s^{-1}]	$\begin{aligned} & {[\mathrm{J} \cdot \mathrm{~mol}} \\ & 1] \end{aligned}$		$\begin{aligned} & {\left[\mathrm{V} \cdot \mathrm{~m}^{-1}\right]} \\ & (\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$	$\begin{aligned} & \hline\left[{ }^{\circ} \mathrm{C}\right] \\ & ([\mathrm{s}]) \end{aligned}$		[min]	
Prostate (Healthy)	0.42	1045	3600	0.56	NR	37.08	NA	NA	$3.12 \cdot 10^{2}$	$\begin{aligned} & \hline 1.28 \cdot 1 \\ & 0^{5} \end{aligned}$	NA	$1000 \cdot 10^{2}$ (NR, NR, NR, NR, NR)	NR	1	NR	$\begin{aligned} & {[28} \\ & { }^{[28} \end{aligned}$
Prostate (Healthy)	0.42	NR	NA	NR	NR	NR	NR	${ }^{[32}$								
Prostate (Healthy)	$\begin{aligned} & \sigma_{\text {init }}=0.4113 \mathrm{~s} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\max }=0.8712 \mathrm{~S} \cdot \mathrm{~m}^{-1} \end{aligned}$	1000	3600	0.5	NR	37	NR	NR	NR	NR	$\begin{aligned} & \mathrm{w}_{\mathrm{b}} \cdot \mathrm{c}_{\mathrm{b}}= \\ & 40000 \\ & \mathrm{~W} \cdot \mathrm{~m}^{-3 .} \cdot \mathrm{C}^{-1} \end{aligned}$	NR	NR	NR	NR	$\begin{aligned} & \text { [49 } \\ & \hline \end{aligned}$
Prostate (Healthy)	$\begin{aligned} & \sigma\left(\mathrm{n}_{\mathrm{P}}\right)=\sigma_{\text {init }} \cdot 1.29 \cdot(1 \\ & \left.+0.36 \cdot\left(\mathrm{~N}_{\mathrm{P}}-\mathrm{n}_{\mathrm{P}}\right)^{0.5}\right)^{0.5} \end{aligned}$	1000	3500	NA	NA	37	NA	37	NR	NR	$\begin{aligned} & \sigma_{\text {init }}=0.3 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \alpha \approx \\ & 0.13 \cdot 10^{-6} \\ & \mathrm{~m}^{2} \cdot \mathrm{~s}^{-1} \\ & \mathrm{r}_{\mathrm{fit}}= \\ & 0.85 \cdot 10^{-3} \mathrm{~m} \\ & \mathrm{~T}_{\mathrm{fit}}=3.53 \\ & { }^{\circ} \mathrm{C}\left(\mathrm{~V}_{\mathrm{P}}=\right. \\ & 1500 \mathrm{~V}) \\ & \mathrm{T}_{\text {fit }}=6.28 \\ & { }^{\circ} \mathrm{C}\left(\mathrm{~V}_{\mathrm{P}}=\right. \\ & 2000 \mathrm{~V}) \\ & \tau=1.4 \mathrm{~s} \\ & \hline \end{aligned}$	NR	NR	NR	NR	$\begin{aligned} & \hline \text { [64 } \end{aligned}$
Prostate (Healthy)	0.41	NR	NA	700•102 $\{([1650$, 2850], $90 \cdot 10 \cdot 6$, 70, NA, NR), Multiple electrode pairs $)$	NR	NR	NR	$\begin{aligned} & {[67} \\ &] \end{aligned}$								
Prostate (Healthy, Dog)	$\sigma(\mathrm{E})=\sigma_{\text {init }}+\left(\sigma_{\max }-\right.$ $\left.\sigma_{\text {init }}\right) \cdot \exp \left(-a_{1} \cdot \exp (-\right.$ $\mathrm{a}_{2} \cdot \mathrm{E}$)	NTA	NR	NR	$\begin{aligned} & \sigma_{\text {init }} \\ & 0.284 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\max }=0.65 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \mathrm{a}_{1}=3.212 \\ & \mathrm{a}_{2}= \\ & 0.002543 \\ & \mathrm{~m} \cdot \mathrm{~V}^{-1} \end{aligned}$	$\begin{aligned} & 948 \cdot 10^{2} \\ & (1250, \\ & 100 \cdot 10^{-6}, 100, \\ & \text { NA, } 1) \end{aligned}$	NR	NR	NR	$\begin{aligned} & {[56} \\ &] \end{aligned}$						
Prostate (Healthy, Human)	$\sigma(\mathrm{E})=\sigma_{\text {init }}+\left(\sigma_{\max }-\right.$ $\left.\sigma_{\text {init }}\right) \cdot \exp \left(-\mathrm{a}_{1} \cdot \exp (-\right.$ $\mathrm{a}_{2} \cdot \mathrm{E}$))	NTA	NR	NR	$\begin{aligned} & \sigma_{\text {init }}= \\ & 0.284 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\max }= \\ & 0.927 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \mathrm{a}_{1}=3.212 \\ & \mathrm{a}_{2}= \\ & 0.002543 \\ & \mathrm{~m} \cdot \mathrm{~V}^{-1} \end{aligned}$	$\begin{aligned} & {\left[1085 \cdot 10^{2},\right.} \\ & \left.1185 \cdot 10^{2}\right] \\ & (\{1800,2100, \\ & 2625\}, 70 \cdot 10 \\ & 6,90, \mathrm{NA}, \mathrm{CAR}) \end{aligned}$	NR	NR	NR	$\begin{aligned} & {[56} \\ &] \end{aligned}$						

	$\begin{aligned} & \text { Calculation of } V \text { and } \\ & E \end{aligned}$	Calculation of T							Calculation of Ω			Ablation parameters				Ref
Name	σ	ρ	c_{p} or c_{b}	k	Qm	$\mathrm{T}_{\text {init }}$	w_{b}	Tart	A	U_{a}	Additional Details/ Parameters	EIRE(th) ($\mathrm{V}_{\mathrm{P}(\mathrm{th})}$, $\mathrm{tp}_{\mathrm{P}(\mathrm{th})}$, $\mathrm{N}_{\mathrm{P}(\mathrm{th})}, \tau_{\mathrm{P}(\mathrm{th})}$, $\mathrm{f}_{\mathrm{P}(\mathrm{th})}$)	$\mathrm{T}_{\text {th }}$ (Exposure duration)	$\Omega_{\text {th }}$	CEM43 ${ }^{\circ} \mathrm{C}$ (th)	
	[$\mathrm{S} \cdot \mathrm{m}^{-1}$]	[$\left.\mathrm{kg} \cdot \mathrm{m}{ }^{-3}\right]$	$\begin{aligned} & {\left[\mathrm{[J} \mathrm{\cdot kg} \cdot \mathrm{~kg}^{-{ }^{\circ} \mathrm{C}-}\right.} \\ & \left.{ }^{1}\right] \end{aligned}$	$\begin{aligned} & {[\mathrm{W} \cdot \mathrm{~m}} \\ & { }_{-1 .{ }^{\circ} \mathrm{C}-} \\ & 1] \\ & \hline \end{aligned}$	[W-m³]	[$\left.{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & {[\mathrm{kg} \cdot \mathrm{~m} \cdot} \\ & \left.3 \cdot \mathrm{~s}^{-1}\right] \end{aligned}$	[$\left.{ }^{\circ} \mathrm{C}\right]$	${ }^{\left[s^{-1}\right]}$	$\begin{aligned} & \quad \begin{array}{l} \text { [J.mol } \\ \left.{ }^{1}\right] \end{array}, ~ \end{aligned}$		$\begin{aligned} & {\left[\mathrm{V} \cdot \mathrm{~m}^{-1}\right]} \\ & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$	$\begin{aligned} & \hline\left[{ }^{[} \mathrm{C}\right] \\ & ([\mathrm{s}]) \end{aligned}$		[min]	
Rectum Perirectal tissue (Healthy)	0.3	NTA	NR	NR	NA	$\begin{aligned} & \left\{275 \cdot 10^{2},\right. \\ & \left.500 \cdot 10^{2}\right\} \\ & \text { (NR, NR, NR, } \\ & \text { NR, NR) } \end{aligned}$	NR	NR	NR	$\begin{array}{\|l} \hline[51 \\] \end{array}$						
Rectum Rectal wall (Healthy)	0.6	NTA	NR	NR	NA	$\begin{aligned} & \left\{275 \cdot 10^{2},\right. \\ & \left.500 \cdot 10^{2}\right\} \\ & (N R, N R, N R, \\ & \text { NR, NR) } \end{aligned}$	NR	NR	NR	$\begin{array}{\|l\|} \hline[51 \\] \end{array}$						
Saline	$\{1,2.5,4.5,8\}$	1000	4180	0.6	NA		NA	NA	NA	NA	$\begin{aligned} & \mathrm{h}=100 \\ & \mathrm{~W} \cdot \mathrm{~m}^{-2 \cdot} \cdot{ }^{\circ} \mathrm{C}^{-1} \end{aligned}$	NA	NA	NA	NA	${ }^{[39}$
Scar	0.2	NR	NA	NA	NA	NA	NA	[79								
Skin (Cancerous)	0.2	1000	4000	0.5	33800	37	NR	NR	NR	NR	NA	NR	NR	NR	>10	$\begin{array}{\|l\|} \hline[25 \\] \\ \hline \end{array}$
Skin collagen (Healthy)	NA	$\begin{aligned} & 1.606 \cdot 10 \\ & 45 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.306 \\ & 10^{6} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \dot{\mathrm{R}}=8.314 \mathrm{~J} \\ & \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & \hline \end{aligned}$	NA	NR	NR	NR	$\begin{array}{\|l} \hline \\ \hline 55 \\ \hline \end{array}$							
Skin dermis (Healthy)	0.015	1116	3800	0.293	200	37	NR	NR	NR	NR	$\begin{aligned} & \omega_{\mathrm{b}}= \\ & 2.198 \cdot 10^{-3} \\ & \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & 900 \cdot 10^{2} \\ & \text { (NR, 100•10-6, } \\ & 8, \text { NA. 1) } \end{aligned}$	42 (Several seconds to hours) $50-60$	0.53 (Minim um degree burn) $10 \cdot 10^{3}$ (Third degree burn)	NR	[58
Skin epidermis (Healthy)	NA	$3.1 \cdot 10^{98}$	$\begin{aligned} & \hline 0.627 \\ & 10^{6} \\ & \hline \end{aligned}$	$\begin{aligned} & \dot{\mathrm{R}}=8.314 \\ & \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1} \end{aligned}$	NA	NR	NR	NR	$\begin{array}{\|l} \hline[55 \\ \hline \end{array}$							
Skin stratum corneum and epidermis (Healthy)	0.01001	1305	3600	$\begin{aligned} & \hline 0.204 \\ & 5 \end{aligned}$	0	37	0	NR	NR	NR	NA	$\begin{aligned} & 900 \cdot 10^{2} \\ & \text { (NR, } 100 \cdot 10^{-6}, \\ & 8, \text { NA. 1) } \end{aligned}$	42 (Several seconds to hours) $50-60$	0.53 (Minim um degree burn) $10 \cdot 10^{3}$ (Third degree burn)	NR	$\begin{aligned} & {[58} \\ & \hline \end{aligned}$
Skin subcutaneous fat	0.02	850	2300	0.23	5	37	NR	NR	NR	NR	$\begin{aligned} & \hline \omega_{\mathrm{b}}= \\ & 5.142 \cdot 10^{-4} \\ & \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & 900 \cdot 10^{2} \\ & \left(\text { NR, } 100 \cdot 10^{-6},\right. \\ & 8, \text { NA. 1) } \end{aligned}$	```42 to hours) 50-60```	0.53 (Minim um degree burn) $10 \cdot 10^{3}$	NR	$\begin{array}{\|l\|} \hline[58 \\ \hline \end{array}$

	$\text { Calculation of } V \text { and }$ E	Calculation of T							Calculation of Ω			Ablation parameters				Ref
Name	σ	ρ	c_{p} or c_{b}	k	Qm	$\mathrm{T}_{\text {init }}$	w_{b}	Tart	A	U_{a}	Additional Details/ Parameters	Eire(th) ($\mathrm{V}_{\mathrm{P}(\mathrm{th}), \mathrm{tp}_{\mathrm{P}}(\mathrm{th}) \text {, }}$ $\mathrm{N}_{\mathrm{P}(\mathrm{th}),} \mathrm{T}_{\mathrm{P}(\mathrm{th})}$, $\mathrm{f}_{\mathrm{P}(\mathrm{th})}$)	T_{th} (Exposure duration)	$\Omega_{\text {th }}$	CEM43 ${ }^{\circ} \mathrm{C}$ (th)	
	[$\mathrm{S} \cdot \mathrm{m}^{-1}$]	[$\left.\mathrm{kg} \cdot \mathrm{m}{ }^{-3}\right]$	$\begin{aligned} & {\left[\left[\cdot \mathrm{kg} \cdot{ }^{-1 .{ }^{\circ} \mathrm{C}-}\right.\right.} \\ & \left.{ }^{1}\right] \end{aligned}$	$\begin{aligned} & \hline \text { [W.m } \\ & { }_{-1 .}{ }^{\circ} \mathrm{C}- \\ & 1] \\ & \hline \end{aligned}$	[W/m³]	[$\left.{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & {\left[\mathrm{kg} \cdot \mathrm{~s}^{-1}\right]} \end{aligned}$	[${ }^{\circ} \mathrm{C}$]	[s^{-1}]	$\begin{aligned} & {[\mathrm{lJ} \cdot \mathrm{~mol}} \\ & \left.{ }^{1}\right] \end{aligned}$		$\begin{aligned} & {\left[\mathrm{V} \cdot \mathrm{~m}^{-1}\right]} \\ & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$	$\begin{aligned} & \hline\left[{ }^{[} \mathrm{C}\right] \\ & ([\mathrm{s}]) \end{aligned}$		[min]	
														(Third degree burn)		
Skin subcutaneous tissue (Cancerous)	$\begin{aligned} & \sigma(\mathrm{E})=\left(\sigma_{\text {max }}-\right. \\ & \sigma_{\text {inite }} \cdot \mathrm{E} /\left(\mathrm{E}_{\text {REE }(\mathrm{th})}-\right. \\ & \operatorname{ERE}(\mathrm{th}))+\sigma_{\text {init }} \end{aligned}$	1050	3600	0.51	420	37	4.664	37	NR	NR	$\begin{aligned} & \hline \sigma_{\text {init }}=0.2 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \sigma_{\mathrm{max}}=0.8 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \mathrm{E}_{\mathrm{RE}(\mathrm{th})}= \\ & 400 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \\ & \mathrm{E}_{\text {IRE }(\mathrm{th})}= \\ & 900 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \end{aligned}$	$900 \cdot 10^{2}$ (NR, NR, NR, NR, NR)	50	NR	NR	$\begin{aligned} & {[42} \\ &]^{2} \end{aligned}$
Skin subcutaneous tissue (Cancerous)	0.4	1050	3700	0.75	42000	37	NR	NR	NR	NR	$\begin{aligned} & \omega_{\mathrm{b}}=2 \cdot 10^{-3} \\ & \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & 900 \cdot 10^{2} \\ & \text { (NR, } 100 \cdot 10^{-6} \text {, } \\ & 8, \text { NA. 1) } \end{aligned}$	42 (Several seconds to hours) $50-60$	0.53 (Minim um degree burn) $10 \cdot 10^{3}$ (Third degree burn)	NR	$[58$
Skin subcutaneous tissue (Healthy)	0.41	1040	3800	0.5	800	37	NR	NR	NR	NR	$\begin{aligned} & \hline \omega_{\mathrm{b}}= \\ & 6.557 \cdot 10^{-4} \\ & \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \hline 900 \cdot 10^{2} \\ & \left(\text { NR, } 100 \cdot 10^{-6},\right. \\ & 8, \text { NA. 1) } \end{aligned}$	42 (Several seconds to hours) $50-60$	0.53 (Minim um degree burn) $10 \cdot 10^{3}$ (Third degree burn)	NR	$\begin{aligned} & \hline[58 \\ & \hline \end{aligned}$
Small intestine (Homogeneous)	0.61	1000	3750	0.5	NA	37	NA	NA	$\begin{aligned} & 1.552 \cdot 10 \\ & 67 \end{aligned}$	$4.3 \cdot 10^{5}$	NA	$\begin{aligned} & \hline 500 \cdot 10^{2} \\ & \text { (NR, NR, NR, } \\ & \text { NR, NR) } \\ & \hline \end{aligned}$	NR	0.53	NR	${ }^{[59}$
Small intestine mucosa 2 (Healthy, Excluding villi)	$\begin{aligned} & \sigma(\mathrm{E})=\sigma_{\text {init }} \cdot(1+ \\ & \Lambda \cdot 2 \cdot f \mathrm{flc} 2 \mathrm{hs}(\mathrm{E}-\mathrm{Ealt} \\ & \left.\mathrm{E}_{\text {range }}\right) \end{aligned}$	1000	3750	0.5	NA	37	NA	NA	$\begin{aligned} & 1.552 \cdot 10 \\ & 67 \end{aligned}$	4.3-105	$\begin{aligned} & \hline \sigma_{\text {init }}=\{0.1, \\ & 0.4,0.8\} \\ & S \cdot \mathrm{~m}^{-1} \\ & \Lambda=4 \\ & E_{\text {alt }}= \\ & 600 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \\ & \hline \end{aligned}$	$600 \cdot 10^{2}$ (NR, NR, NR, NR, NR)	NR	0.53	NR	$\begin{aligned} & {[59} \\ & \hline \end{aligned}$

	Calculation of V and E	Calculation of T							Calculation of Ω			Ablation parameters				
Name	σ	ρ	c_{p} or c_{b}	k	Qm	$\mathrm{T}_{\text {init }}$	w_{b}	Tart	A	U_{a}	Additional Details/ Parameters	EIRE(th) $\mathrm{N}_{\mathrm{P}(\mathrm{th}), \tau_{\mathrm{P}(\mathrm{th})},}$ $\mathrm{f}_{\mathrm{P}(\mathrm{th})}$)	T_{th} (Exposure duration)	$\Omega_{\text {th }}$	CEM $43^{\circ} \mathrm{C}$ (th)	Ref
	[$\left.5 \cdot \mathrm{~m}^{-1}\right]$	$\left[\mathrm{kg} \cdot \mathrm{m}^{-3}\right]$	$\begin{aligned} & {\left[J \cdot \mathrm{~kg}^{-1 .{ }^{\circ} \mathrm{C}}{ }_{1}-2\right]} \end{aligned}$	$\begin{aligned} & {[\mathrm{W} \cdot \mathrm{~m}} \\ & { }^{-1 .{ }^{\circ} \mathrm{C}} \\ & 1] \\ & \hline \end{aligned}$	[W/m $\left.{ }^{-3}\right]$	$\left[{ }^{\circ} \mathrm{C}\right]$	$\underset{\left.3 \cdot \mathrm{~s}^{-1}\right]}{\left[\mathrm{kg} \cdot \mathrm{~m}^{-}\right.}$	[$\left.{ }^{\circ} \mathrm{C}\right]$	[s^{-1}]	$\begin{aligned} & \text { [J•mol- } \\ & \text { 1] } \end{aligned}$		$\begin{aligned} & {\left[\mathrm{V} \cdot \mathrm{~m}^{-1}\right]} \\ & (\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \\ & \hline \end{aligned}$	$\begin{aligned} & {\left[{ }^{[} \mathrm{C}\right]} \\ & ([\mathrm{s}]) \end{aligned}$		[min]	
											$\begin{aligned} & \hline \mathrm{E}_{\text {range }}= \\ & 150 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \end{aligned}$					
Small intestine mucosa 3 (Healthy, Including villi)	$\begin{aligned} & \sigma(\mathrm{E})=\sigma_{\text {init }} \cdot(1+ \\ & \Lambda \cdot 2 \cdot f \mathrm{flc} 2 \mathrm{hs}\left(\mathrm{E}-\mathrm{E}_{\text {alt }}\right. \\ & \left.\left.\mathrm{E}_{\text {range }}\right)\right) \end{aligned}$	1000	3750	0.5	NA	37	NA	NA	$\begin{aligned} & 1.552 \cdot 10 \\ & 67 \end{aligned}$	$4.3 \cdot 10^{5}$	$\begin{aligned} & \sigma_{\text {init }}=\{0.1, \\ & 0.4,0.8\} \\ & S \cdot \mathrm{~m}^{-1} \\ & \Lambda=4 \\ & \mathrm{E}_{\text {alt }}= \\ & 600 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \\ & \mathrm{E}_{\text {range }}= \\ & 150 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \end{aligned}$	$\begin{aligned} & \text { 600•102 } \\ & \text { (NR, NR, NR, } \\ & \text { NR, NR) } \end{aligned}$	NR	0.53	NR	$\begin{aligned} & {[59} \\ & \hline \end{aligned}$
Small intestine submucosa 1 (Healthy)	$\begin{aligned} & \sigma(\mathrm{E})=\sigma_{\text {init }} \cdot(1+ \\ & \Lambda \cdot 2 \cdot f \mathrm{flc} 2 \mathrm{hs}\left(\mathrm{E}-\mathrm{E}_{\text {alt }},\right. \\ & \left.\left.\mathrm{E}_{\text {range }}\right)\right) \end{aligned}$	1000	3750	0.5	NA	37	NA	NA	$\begin{aligned} & 1.552 \cdot 10 \\ & 67 \end{aligned}$	4.3-105	$\begin{aligned} & \sigma_{\text {init }}=\{0.1, \\ & 0.4,0.8\} \\ & S \cdot \mathrm{~m}^{-1} \\ & \Lambda=4 \\ & \mathrm{E}_{\text {alt }}= \\ & 600 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \\ & \mathrm{E}_{\text {range }}= \\ & 150 \cdot 10^{2} \\ & \mathrm{~V} \cdot \mathrm{~m}^{-1} \end{aligned}$	$\begin{aligned} & \text { 600•102 } \\ & \text { (NR, NR, NR, } \\ & \text { NR, NR) } \end{aligned}$	NR	0.53	NR	$\begin{array}{\|l\|} \hline[59 \\] \end{array}$
Soft tissue (Healthy, Combination of muscle, fat and body fluids)	0.2	NR	NA	NR	NR	NR	NR	$\begin{aligned} & \hline 71 \\ & \hline \end{aligned}$								
$\begin{aligned} & \text { Urethra } \\ & \text { (Healthy) } \end{aligned}$	$\sigma(\mathrm{E})=\sigma_{\text {init }}+\left(\sigma_{\text {max }}-\right.$ $\left.\sigma_{\text {init }}\right) \cdot \exp (-\mathrm{a} \cdot \exp (-$ $\mathrm{a}_{2} \cdot \mathrm{E}$)	NTA	NR	NR	$\sigma_{\text {init }}=$ $0.203 \mathrm{~S} \cdot \mathrm{~m}^{-1}$ $\sigma_{\text {max }}=$ $0.337 \mathrm{~S} \cdot \mathrm{~m}^{-1}$ $\mathrm{a}_{1}=3.212$ $\mathrm{a}_{2}=$ 0.002543 $\mathrm{~m} \cdot \mathrm{~V}^{-1}$	NR	NR	NR	NR	$\begin{array}{\|l} \hline[56 \\] \end{array}$						
Urine	1.9	NA	[64													
Well plate	$1 \cdot 10^{-16}$	1050	1300	0.14	NA	22	NA	${ }_{[43}$								

Table A6.3

Table A6.3 Data about the electrode type, pulse parameters and BC at BEM used in the included studies. This table was arranged according to the reference number. The brackets " $\}$ " are defined as a set of elements, " $[a, b]$ " is defined as the range between and including the values a and b assuming $\{a, b\} \in \mathbb{R}$, and " $[a: c: b]$ " is defined as the range between and including the values a and b with step c assuming $\{a, b, c\} \in \mathbb{R}$. The following abbreviations are used: NR (Not reported), NA (Not applicable), NC (Not clear), NTA (No thermal analysis), and ND (Not defined).

Electrodes						Square pulse parameters					Boundary conditions (BC) applied to boundaries between electrodes and medium (BEM)		
Shape	\emptyset	L	Geometry	Number	d	V_{P}	tp_{p}	N_{P}	$\tau_{\text {P }}$	f_{p}	Type electrical BC at BEM	Type thermal BC at BEM	Ref.
	[m]	[m]			[m]	[V]	[s]		[s]	[Hz]			
Circle	$\begin{aligned} & \left\{0.5 \cdot 10^{-3},\right. \\ & 1 \cdot 10^{-3}, \\ & \left.1.5 \cdot 10^{-3}\right\} \\ & \hline \end{aligned}$	NA	Lateral	$\{2,4\}$	$\begin{aligned} & \left\{5 \cdot 10^{-3}, 7.5 \cdot 10^{-3},\right. \\ & \left.10 \cdot 10^{-3}\right\} \end{aligned}$	\{888, 891, 928, 971, 1143, 1212, 1331, $1438,1613,1716\}$	$\begin{aligned} & \left\{200 \cdot 10^{-6},\right. \\ & 400 \cdot 10^{-6}, \\ & \left.800 \cdot 10^{-6}\right\} \\ & \hline \end{aligned}$	1	NA	NA	$\begin{aligned} & \hline \text { Dirichlet } \\ & \left(\left\{V_{P}, 0\right\}\right) \end{aligned}$	Neumann	[3]
Plate	$10 \cdot 10^{-3}$	NA	Lateral	2	$4 \cdot 10^{-3}$	400	$20000 \cdot 10^{-6}$	1	NA	NA	$\begin{aligned} & \text { Dirichlet } \\ & \left(\left\{V_{p}, 0\right\}\right) \\ & \hline \end{aligned}$	Neumann	[24]
Plate	NR	NA	Lateral	2	$\begin{aligned} & \left\{3 \cdot 10^{-3}, 4 \cdot 10^{-3},\right. \\ & \left.5 \cdot 10^{-3}\right\} \end{aligned}$	$\{600,1000\}$	$\begin{aligned} & \left\{100 \cdot 10^{-6},\right. \\ & 800 \cdot 10^{-6}, \\ & \left.1000 \cdot 10^{-6}\right\} \end{aligned}$	$\begin{aligned} & \{1,8,64, \\ & 80\} \end{aligned}$	NA	$\begin{aligned} & \{0.03, \\ & 0.3,1, \\ & 5000\} \end{aligned}$	$\begin{aligned} & \text { Dirichlet } \\ & \left(\left\{V_{p}, 0\right\}\right) \end{aligned}$	$\begin{aligned} & \text { Robin } \\ & (\mathrm{h}=15 \mathrm{~W} \cdot \mathrm{~m} \\ & 2^{\circ} \mathrm{C}^{-1}, \mathrm{~T}_{\text {env }}= \\ & \left.25^{\circ} \mathrm{C}\right) \end{aligned}$	[25]
Circular plate	$\begin{aligned} & \left\{2.5 \cdot 10^{-3},\right. \\ & 5 \cdot 10^{-3}, \\ & \left.10 \cdot 10^{-3}\right\} \\ & \hline \end{aligned}$	NR	Lateral	2	4-10-3	400	NA	NA	NA	NA	Dirichlet	NTA	[26]
Cylinder	$\begin{aligned} & \left\{0.5 \cdot 10^{-3},\right. \\ & 1 \cdot 10^{-3}, \\ & \left.2 \cdot 10^{-3}\right\} \\ & \hline \end{aligned}$	$\begin{aligned} & \left\{2.5 \cdot 10^{-3},\right. \\ & 5 \cdot 10^{-3}, 10 \cdot 10 \\ & \left.3,20 \cdot 10^{-3}\right\} \\ & \hline \end{aligned}$	Lateral	2	$\begin{aligned} & \left\{5 \cdot 10^{-3}, 7.5 \cdot 10^{-3},\right. \\ & \left.10 \cdot 10^{-3}, 17 \cdot 10^{-3}\right\} \end{aligned}$	1000	100.10-6	1	NA	NA	Dirichlet	Neumann	[26]
Plate	∞	NA	Lateral	2	$10 \cdot 10^{-3}$	\{500, 1000, 2000\}	$\begin{aligned} & \left\{8000 \cdot 10^{-6},\right. \\ & 25600 \cdot 10^{-6}, \\ & \left.104000 \cdot 10^{-6}\right\} \end{aligned}$	1	NA	NA	$\begin{aligned} & \text { Dirichlet } \\ & \left(\left\{V_{P}, 0\right\}\right) \end{aligned}$	Neumann	[27]
Cylinder	$1 \cdot 10^{-3}$	NA	Lateral	2	$10 \cdot 10^{-3}$	\{500, 1000, 2000\}	$\begin{aligned} & \left\{510 \cdot 10^{-6},\right. \\ & 2110 \cdot 10^{-6}, \\ & \left.8960 \cdot 10^{-6}\right\} \end{aligned}$	1	NA	NA	$\begin{aligned} & \text { Dirichlet } \\ & \left(\left\{V_{p}, 0\right\}\right) \end{aligned}$	Neumann	[27]
Sphere	$1 \cdot 10^{-3}$	NA	Lateral	2	10-10-3	$\{500,1000,2000\}$	$\begin{aligned} & \left\{51.6^{-10^{-6}},\right. \\ & 242 \cdot 10^{-6}, \\ & \left.864 \cdot 10^{-6}\right\} \\ & \hline \end{aligned}$	1	NA	NA	$\begin{aligned} & \text { Dirichlet } \\ & \left(\left\{V_{p}, 0\right\}\right) \end{aligned}$	Neumann	[27]
Cylinder	$1 \cdot 10^{-3}$	NA	Lateral	2	10-10-3	2000	100.10-6	1	NA	NA	$\begin{aligned} & \hline \text { Dirichlet } \\ & \left(\left\{V_{p}, 0\right\}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} \text { Dirichlet } \\ \left(37^{\circ} \mathrm{C}\right) \end{array} \\ & \hline \end{aligned}$	[28]
Needle	$1 \cdot 10^{-3}$	$8.75 \cdot 10^{-3}$	Lateral	2	$8 \cdot 10^{-3}$	\{4200, 2950, 6850\}	100 10^{-6}	1	NA	NA	Dirichlet	$\begin{aligned} & \text { Robin } \\ & \left(\mathrm{h}=50 \mathrm{Wm}^{-2}\right. \\ & \left.{ }^{\circ} \mathrm{C}-1\right) \end{aligned}$	[29]
Plate	∞	∞	Lateral	2	$2 \cdot 10^{-3}$	$\begin{aligned} & \hline\left[1000 \cdot 10^{2},\right. \\ & \left.7500 \cdot 10^{2}\right] \end{aligned}$	$\begin{aligned} & {\left[250 \cdot 10^{-6},\right.} \\ & \left.7500 \cdot 10^{-6}\right] \end{aligned}$	1	NA	NA	NA	Robin	[30]
Needle	$1 \cdot 10^{-3}$	5-10-3	Lateral	2	$5 \cdot 10^{-3}$	$\{500,1000\}$	50-10-6	9 sets $\times 10$ pulses (Sets were separated by 1 s)	NA	4	Dirichlet ($\left\{V_{P}, 0\right\}$)	$\begin{aligned} & \text { Continuous } \\ & (\mathrm{h}=10 \mathrm{~W} \cdot \mathrm{~m} \\ & 2 .{ }^{\circ} \mathrm{C}-1 \text { with }_{\text {env }} \\ & \left.=23^{\circ} \mathrm{C}\right) \end{aligned}$	[31]

Electrodes						Square pulse parameters					Boundary conditions (BC) applied to boundaries between electrodes and medium (BEM)		
Shape	\emptyset	L	Geometry	Number	d	V_{P}	t_{p}	N_{P}	$\tau_{\text {P }}$	f_{p}	Type electrical BC at BEM	Type thermal BC at BEM	Ref.
	[m]	[m]			[m]	[V]	[s]		[s]	[Hz]			
Circle	$1 \cdot 10^{-3}$	NA	Lateral	2	$10 \cdot 10^{-3}$	$\begin{aligned} & \{0.5,1.5,2.5\} \\ & \text { (Dimensionless) } \end{aligned}$	NA	NA	NA	NA	Dirichlet	NTA	[32]
Endovascular	$\begin{aligned} & 0.1 \cdot 10^{-} \\ & 3 \times 0.5 \cdot 10^{-3} \\ & \text { (Width } \times \\ & \text { Length) } \end{aligned}$	NA	Plus shape	4	$2.12 \cdot 10^{-3}$ (Radius until the top electrode is $1.35 \cdot 10^{-3} \mathrm{~m}$, Angle of 90° to the other electrode)	600	$100 \cdot 10^{-6}$	90	NA	4	$\begin{aligned} & \text { Dirichlet } \\ & \left(\left\{V_{\mathrm{P}}, 0\right\}\right) \end{aligned}$	NR	[33]
Endovascular	$\begin{aligned} & \hline 0.1 \cdot 10^{-} \\ & 3 \times 0.5 \cdot 10^{-3} \\ & \text { (Width } \times \\ & \text { Length) } \end{aligned}$	NA	Plus shape	4	$2.12 \cdot 10^{-3}$ (Radius until the top electrode is $1.35 \cdot 10^{-3} \mathrm{~m}, 90^{\circ}$ angle to the top center of other electrode)	[450:50:750]	100•10-6	90	NA	$\begin{aligned} & \{0.5,1, \\ & 2.5,4, \\ & 5,10\} \end{aligned}$	Dirichlet	NR	[34]
Bipolar	$\begin{aligned} & \left\{0.5 \cdot 10^{-3},\right. \\ & \left.1.2 \cdot 10^{-3}\right\} \end{aligned}$	$\begin{aligned} & \left\{2.15 \cdot 10^{-3},\right. \\ & \left.2.5 \cdot 10^{-3}\right\} \\ & \hline \end{aligned}$	Lateral	2	$4.625 \cdot 10^{-3}$	1300	NA	NA	NA	NA	$\begin{aligned} & \text { Dirichlet } \\ & \left\{V_{p}, 0\right\} \end{aligned}$	NTA	[35]
Rectangular plate	$3 \cdot 10^{-3}$	NA	Lateral	2	$0.4 \cdot 10^{-3}$	70	100•10-6	90	NA	\{1, 4\}	$\begin{aligned} & \text { Dirichlet } \\ & \left(\left\{V_{P}, 0\right\}\right) \end{aligned}$	Continuous	[36]
Rectangular plate	20-10-3	NA	Lateral	2	$10 \cdot 10^{-3}$	1500	100-10-6	99	NA		Dirichlet	Continuous	[37]
Circle	NC	NA	Lateral	2	NC	\{1000, 1500, 2500\}	$\begin{aligned} & \text { NA } \\ & \text { (NTA) } \end{aligned}$	NA	NA	NA	$\begin{aligned} & \hline \text { Dirichlet } \\ & \left\{V_{\mathrm{P},}, 0\right\} \\ & \hline \end{aligned}$	NTA	[38]
Circle	$1 \cdot 10^{-3}$	NA	Lateral	2	$10 \cdot 10^{-3}$	\{1000, 2000, 3000\}	100-10-6	8	1	NA	$\begin{aligned} & \text { Dirichlet } \\ & \left\{V_{p}, 0\right\} \end{aligned}$	Neumann	[39]
Needle	$1 \cdot 10^{-3}$	5-10-3	Lateral	2	$5 \cdot 10^{-3}$	\{500, 1000, 1500\}	50	\{4x20, 80\}	NA	$\begin{aligned} & \{0.5,1, \\ & 4\} \end{aligned}$	$\begin{aligned} & \text { Dirichlet } \\ & \left(\left\{V_{\mathrm{P}}, 0\right\}\right) \end{aligned}$	$\begin{aligned} & \text { Robin } \\ & (\mathrm{h}=10 \mathrm{~W} \cdot \mathrm{~m} \cdot \\ & \left.2 .{ }^{\circ} \mathrm{C}^{-1}\right) \\ & \hline \end{aligned}$	[40]
Circular plate	NR	NA	Lateral	2	$0.4 \cdot 10^{-3}$	70	100•10-6	90	NA	4	$\begin{aligned} & \text { Dirichlet } \\ & \left(\left\{V_{P}, 0\right\}\right) \end{aligned}$	Continuous	[41]
Endovascular	$\begin{aligned} & \hline 0.1 \cdot 10^{-} \\ & 3 \times 0.5 \cdot 10^{-3} \\ & \text { (Width } \times \\ & \text { Length) } \end{aligned}$	NA	Plus shape	4	$2.12 \cdot 10^{-3}$ (Radius until the top electrode is $1.35 \cdot 10^{-3} \mathrm{~m}, 90^{\circ}$ angle to the top center of other electrode)	600	100-10-6	90	NA	4 	$\begin{aligned} & \text { Dirichlet } \\ & \left(\left\{V_{p}, V_{P}, 0,\right.\right. \\ & 0\}) \end{aligned}$	NR	[41]
Cylinder	NR	NR	Rectangular shape	6	NR	500	100-10-6	50	NA	1	Dirichlet	NR	[42]
Needle	1.3•10-3	$2.45 \cdot 10^{-3}$	Lateral	2	$3.35 \cdot 10^{-3}$	$\begin{aligned} & \{150,300,450, \\ & 600\} \end{aligned}$	100-10-6	80	NA	1	Dirichlet ($\left\{V_{P}, 0\right\}$)	Continuous	[43]
\{Internal semispherical surface electrode, External disk electrode $\}$	\{NR, 2•10-3\}	NA	Lateral	2	$6 \cdot 10^{-3}$	[500:250:2000]	$\begin{aligned} & \left\{1 \cdot 10^{-6}, 1 \cdot 10^{-5},\right. \\ & \left.1 \cdot 10^{-4}\right\} \end{aligned}$	90	NA	$\begin{aligned} & {[0.1,} \\ & 0.5,1, \\ & 2,10] \end{aligned}$	$\begin{aligned} & \text { Dirichlet } \\ & \left(\left\{V_{\mathrm{P}}, 0\right\}\right) \end{aligned}$	NR	[44]

Electrodes						Square pulse parameters					Boundary conditions (BC) applied to boundaries between electrodes and medium (BEM)		
Shape	\emptyset	L	Geometry	Number	d	V_{P}	t_{p}	N_{P}	$\tau_{\text {P }}$	f_{P}	Type electrical BC at BEM	Type thermal BC at BEM	Ref.
	[m]	[m]			[m]	[V]	[s]		[s]	[Hz]			
\{Internal disk electrode, External disk electrode\}	$\begin{aligned} & \left\{2 \cdot 10^{-3},\right. \\ & \left.2 \cdot 10^{-3}\right\} \end{aligned}$	NA	Lateral	2	$6 \cdot 10^{-3}$	[500:250:2000]	NA	NA	NA	NA	$\begin{aligned} & \hline \text { Dirichlet } \\ & \left(\left\{V_{P}, 0\right\}\right) \end{aligned}$	NR	[44]
\{Internal semispherical surface electrode, External spherical surface electrode $\}$	\{NR, NR \}	NA	Lateral	2	$6 \cdot 10^{-3}$	[500:250:2000]	$\begin{aligned} & \left\{1 \cdot 10^{-6}, 1 \cdot 10^{-5},\right. \\ & \left.1 \cdot 10^{-4}\right\} \end{aligned}$	90	NA	$\begin{aligned} & \hline[0.1, \\ & 0.5,1, \\ & 2,10] \end{aligned}$	$\begin{aligned} & \hline \text { Dirichlet } \\ & \left(\left\{V_{P}, 0\right\}\right) \end{aligned}$	NR	[44]
\{External ring electrode, External disk electrode\}	$\begin{aligned} & \left\{10 \cdot 10^{-3},\right. \\ & \left.2 \cdot 10^{-3}\right\} \end{aligned}$	NA	Lateral	2	$5 \cdot 10^{-3}$	[500:250:2000]	$\begin{aligned} & \left\{1 \cdot 10^{-6}, 1 \cdot 10^{-5},\right. \\ & \left.1 \cdot 10^{-4}\right\} \end{aligned}$	90	NA	$\begin{aligned} & \hline[0.1, \\ & 0.5,1, \\ & 2,10] \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Dirichlet } \\ & \left(\left\{V_{p}, 0\right\}\right) \end{aligned}$	NR	[44]
\{Internal disk electrode, External disk electrode, External disk electrode \}	$\begin{aligned} & \left\{2 \cdot 10^{-3},\right. \\ & 2 \cdot 10^{-3,}, \\ & \left.2 \cdot 10^{-3}\right\} \end{aligned}$	NA	Lateral	3	NR	[500:250:2000]	NA	NA	NA	NA	$\begin{aligned} & \hline \text { Dirichlet } \\ & \left(\left\{V_{P}, 0\right\}\right) \end{aligned}$	NR	[44]
Cylinder	$1 \cdot 10^{-3}$	$10^{-10^{-3}}$	Lateral	2	$10 \cdot 10^{-3}$	2000	$\begin{aligned} & \left\{0,5 \cdot 10^{-6},\right. \\ & 100 \cdot 10^{-6}, \\ & \left.400 \cdot 10^{-6}\right\} \\ & \hline \end{aligned}$	\{1,100\}	NA	1	Dirichlet	NR	[45]
Needle	$1 \cdot 10^{-3}$	$10 \cdot 10^{-3}$	Square	4	$10 \cdot 10^{-3}$	\{1000, 1200\}	NA	NA	NA	NA	$\begin{aligned} & \hline \text { Dirichlet } \\ & \left\{V_{P}, V_{P}, 0,0\right\} \\ & \hline \end{aligned}$	NTA	[46]
Cylinder	$1 \cdot 10^{-3}$	0 (Electrodes touches the surface of tissue)	Lateral	2	$5 \cdot 10^{-3}$	1000	NA	NA	NA	NA	$\begin{aligned} & \text { Dirichlet } \\ & \left(-\mathrm{V}_{\mathrm{P}} / 2,\right. \\ & \left.\mathrm{V}_{\mathrm{P}} / 2\right) \end{aligned}$	NTA	[47]
Rectangular plate	$\begin{aligned} & \hline 5 \cdot 10^{-3} \\ & \text { (Width) } \end{aligned}$	$35 \cdot 10^{-3}$	Lateral	2	$3.98 \cdot 10^{-3}$	500	50•10-6	200	NA	1	$\begin{aligned} & \hline \text { Dirichlet } \\ & \left(\left\{V_{p}, 0 \mathrm{~V}\right\}\right) \end{aligned}$	NR	[48]
Cylinder	$1 \cdot 10^{-3}$	$15 \cdot 10^{-3}$	Lateral	2	$10 \cdot 10^{-3}$	1750	100.10-6	1	NA	NA	NR	NR	[49]
\{Inner electrode: Needle, Outer Electrode: Ring\} (Dorsal Skin Fold Chamber)	$1 \cdot 10^{-3}$ (Inner electrode) 5•10-3 (Outer electrode)	$1 \cdot 10^{-3}$ (Inner electrode) $1 \cdot 10^{-3}$ (Outer electrode)	Coaxial shape	2	$\begin{aligned} & \hline 4.5 \cdot 10^{-3} \\ & \text { (Edge-to-Edge) } \end{aligned}$	500	[10, 50, 100]	[10, 50, 99]	NA	10	$\begin{aligned} & \hline \text { Dirichlet } \\ & \left\{V_{p}, 0\right\} \end{aligned}$	NTA	[50]
Monopolar endorectal probe	$30 \cdot 10^{-3}$	NC	NC	1	NC	[1000:50:2500]	NTA	NTA	NTA	NTA	$\begin{aligned} & \hline \text { Dirichlet } \\ & \left\{V_{p}, 0\right\} \end{aligned}$	NTA	[51]
Bipolar endorectal probe	$30 \cdot 10^{-3}$	$10 \cdot 10^{-3}$	Lateral	2	17-10 ${ }^{-3}$	[1000:50:2500]	NTA	NTA	NTA	NTA	$\begin{aligned} & \text { Dirichlet } \\ & \left\{V_{P}, 0\right\} \\ & \hline \end{aligned}$	NTA	[51]
Monopolar cylinder	$1 \cdot 10^{-3}$	$21 \cdot 10^{-3}$	Lateral	2	NR	\{2000, 2250, 2500\}	NTA	NTA	NTA	NTA	$\begin{aligned} & \text { Dirichlet } \\ & \left(\left\{V_{P}, 0\right\}\right) \end{aligned}$	NTA	[52]
Bipolar cylinder	$1 \cdot 10^{-3}$	$21 \cdot 10^{-3}$	Lateral	2	$\left\{10 \cdot 10^{-3}, 15 \cdot 10^{-3}\right\}$	\{2100, 2400\}	NTA	NTA	NTA	NTA	$\begin{aligned} & \text { Dirichlet } \\ & \left(\left\{V_{P}, 0\right\}\right) \end{aligned}$	NTA	[52]
Bipolar cylinder	$1.65 \cdot 10^{-3}$	$7 \cdot 10^{-3}$	Lateral	2	$15 \cdot 10^{-3}$	\{500, 3000\}	$100 \cdot 10^{-6}$	90	NA	1	Dirichlet	Continuous	[53]
Rectangular plat	NA	$7 \cdot 10^{-3}$	Lateral	2	$3 \cdot 10^{-3}$	360	NA	NA	NA	NA	Dirichlet	NTA	[54]

Electrodes						Square pulse parameters					Boundary conditions (BC) applied to boundaries between electrodes and medium (BEM)		
Shape	\emptyset	L	Geometry	Number	d	V_{P}	t_{p}	N_{P}	τ_{P}	f_{p}	Type electrical BC at BEM	Type thermal BC at BEM	Ref.
	[m]	[m]			[m]	[V]	[s]		[s]	[Hz]			
											$\left\{\mathrm{V}_{\mathrm{P}, 0} \mathrm{O}\right\}$		
Cylinder	$\begin{aligned} & \left\{0.5 \cdot 10^{-3},\right. \\ & 1 \cdot 10^{-3}, \\ & \left.1.5 \cdot 10^{-3}\right\} \end{aligned}$	$\begin{aligned} & \left\{5 \cdot 10^{-3}, 10 \cdot 10^{-}\right. \\ & \left.3,15 \cdot 10^{-3}\right\} \end{aligned}$	Lateral	2	$\begin{aligned} & \left\{2.5 \cdot 10^{-3}, 5 \cdot 10^{-3},\right. \\ & 7.5 \cdot 10^{-3}, 10 \cdot 10^{-3}, \\ & \left.15 \cdot 10^{-3}, 22.5 \cdot 10^{-3}\right\} \end{aligned}$	[500:500:2500]	$\begin{aligned} & \left\{90 \cdot 10^{-6},\right. \\ & 100 \cdot 10^{-6}, \\ & 110 \cdot 10^{-6}, \\ & 120 \cdot 10^{-6}, \\ & 200 \cdot 10^{-6}, \\ & \left.300 \cdot 10^{-6}\right\} \end{aligned}$	1	NA	NA	$\begin{aligned} & \text { Dirichlet } \\ & \left\{V_{P} / 2,-\right. \\ & \left.V_{P} / 2\right\} \end{aligned}$	Continuous	[55]
Cylinder	$1 \cdot 10^{-3}$	$5 \cdot 10^{-3}$	Lateral	2	$\begin{aligned} & \left\{10 \cdot 10^{-2}, 12 \cdot 10^{-2},\right. \\ & \left.14 \cdot 10^{-2}, 15 \cdot 10^{-2}\right\} \end{aligned}$	$\begin{aligned} & \{1250,1800,2100, \\ & 2625\} \end{aligned}$	NA	NA	NA	NA	NR	NTA	[56]
Cylinder	$1 \cdot 10^{-3}$	$5 \cdot 10^{-3}$	Lateral	2	$5 \cdot 10^{-3}$	[500:500:2500]	NA	NA	NA	NA	$\begin{aligned} & \text { Dirichlet } \\ & \left(\left\{V_{P}, 0\right\}\right) \end{aligned}$	NTA	[57]
Cylinder	[0.5•10-3: $0.25 \cdot 10^{-}$ 3:2.10-3]	$\begin{aligned} & {\left[0.5 \cdot 10^{-}\right.} \\ & 3: 0.5 \cdot 10^{-} \\ & \left.3: 5 \cdot 10^{-3}\right] \\ & \hline \end{aligned}$	Lateral	2	$\begin{aligned} & {\left[1 \cdot 10^{-3}: 0.5 \cdot 10^{-}\right.} \\ & \left.3: 5 \cdot 10^{-3}\right] \end{aligned}$	[600, 2000] (With steps of 200 and 250)	$100 \cdot 10^{-6}$	1	NA	NA	Dirichlet	Continuous	[58]
Cylinder	$\begin{aligned} & {\left[0.5 \cdot 10^{-3}:\right.} \\ & 0.25 \cdot 10 \\ & \left.3: 2 \cdot 10^{-3}\right] \end{aligned}$	$\begin{aligned} & {\left[0.5 \cdot 10^{-}\right.} \\ & 3: 0.5 \cdot 10 \\ & \left.3: 5 \cdot 10^{-3}\right] \\ & \hline \end{aligned}$	Rectangular	4	$\begin{aligned} & {\left[1 \cdot 10^{-3}: 0.5 \cdot 10^{-}\right.} \\ & \left.3: 5 \cdot 10^{-3}\right] \end{aligned}$	[600, 2000] (With steps of 200 and 250)	$100 \cdot 10^{-6}$	1	NA	NA	Dirichlet	Continuous	[58]
Cylinder	$\begin{aligned} & {\left[0.5 \cdot 10^{-3}:\right.} \\ & 0.25 \cdot 10^{-} \\ & \left.3: 2 \cdot 10^{-3}\right] \\ & \hline \end{aligned}$	$\begin{aligned} & {\left[0.5 \cdot 10^{-}\right.} \\ & 3: 0.5 \cdot 10 \\ & \left.3: 5 \cdot 10^{-3}\right] \\ & \hline \end{aligned}$	Hexagonal	6	$\begin{aligned} & \left\{\left[1 \cdot 10^{-3 \cdot 5 \cdot 5 \cdot 10-}\right.\right. \\ & \left.3], 4 \cdot 3^{-0.5}\right\} \end{aligned}$	[600, 2000] (With steps of 200 and 250)	100-10-6	1	NA	NA	Dirichlet	Continuous	[58]
Plate	$9.4 \cdot 10^{-3}$	NA	Lateral	2	$1 \cdot 10^{-3}$	200	$70 \cdot 10^{-6}$	50	NA	4	Dirichlet ($\left\{\mathrm{V}_{\mathrm{P}}, 0\right\}$, (Small intestine)	Continuous Robin $\begin{aligned} & \left(\mathrm{h}=10 \mathrm{~W} \cdot \mathrm{~m}^{-}\right. \\ & { }^{\circ} \cdot{ }^{\circ} \mathrm{C} \cdot 1, \mathrm{~T}_{\mathrm{env}}= \\ & \left.20^{\circ} \mathrm{C}\right) \end{aligned}$	[59]
Rectangular plate	$\begin{aligned} & \hline 20 \cdot 10^{-} \\ & 3 \times 10 \cdot 10^{-3} \\ & \text { (Length } \times \\ & \text { Width) } \\ & \hline \end{aligned}$	NA	Lateral	2	$2 \cdot 10^{-3}$	800	$100 \cdot 10^{-6}$	90	NA	1	Dirichlet ($\mathrm{V}_{\mathrm{P}} / 2$, - $\left.\mathrm{V}_{\mathrm{P}} / 2\right\}$)	NR	[60]
Cylinder	$0.87 \cdot 10^{-3}$	$1 \cdot 10^{-3}$	Lateral	2	4.17-10-3	450	$100 \cdot 10^{-6}$	50	NA	1	$\begin{aligned} & \text { Dirichlet } \\ & \left(\left\{V_{P}, 0\right\}\right) \end{aligned}$	Continuous	[61]
Cylinder	NR	NR	Rectangular	4	$\begin{aligned} & \left\{12 \cdot 10^{-3}, 14 \cdot 10^{-3},\right. \\ & 15 \cdot 10^{-3}, 17 \cdot 10^{-3}, \\ & \left.18 \cdot 10^{-3}\right\} \\ & \hline \end{aligned}$	[1540, 3000]	${ }^{90 \cdot 10^{-6}}$	\{20, 70\}	NR	NR	NR	NR	[62]
Cylinder	$1 \cdot 10^{-3}$	$10 \cdot 10^{-3}$	Lateral	2	$\left\{10 \cdot 10^{-3}, 15 \cdot 10^{-3}\right\}$	\{1250, 1750, 2250\}	NA	NA	NA	NA	$\begin{aligned} & \text { Dirichlet } \\ & \left(\left\{V_{\mathrm{p}}, 0\right\}\right) \end{aligned}$	NTA	[63]
Cylinder	$1 \cdot 10^{-3}$	∞	Lateral	2	1-10-2	\{1500, 2000\}	100-10-6	100	NA	1	$\begin{aligned} & \text { Dirichlet } \\ & \left\{V_{\mathrm{P},}, \mathrm{~V}\right\} \\ & \hline \end{aligned}$	NA	[64]
Monopolar needle	NR	10-10-3	Lateral	2	$\left\{10 \cdot 10^{-3}, 15 \cdot 10^{-3}\right\}$	$\begin{aligned} & \{2000,2250,2500, \\ & 2700\} \\ & \hline \end{aligned}$	NA	NA	NA	NA	$\begin{aligned} & \text { Dirichlet } \\ & \left\{V_{P}, 0\right\} \end{aligned}$	NTA	[65]
Bipolar needle	NR	NR	Lateral	2	NR	\{2400, 2700\}	NA	NA	NA	NA	Dirichlet $\left(\left\{V_{p}, 0\right\}\right)$	NTA	[65]
\{Needle, External surface electrode\}	NR	NA	ND	2	29.3-10-3	600	$50 \cdot 10^{-6}$	540	NA	1	Dirichlet $\left(\left\{V_{P}, 0\right\}\right)$	NR	[66]

Electrodes						Square pulse parameters					Boundary conditions (BC) applied to boundaries between electrodes and medium (BEM)		
Shape	\emptyset	L	Geometry	Number	d	V_{P}	t_{p}	N_{P}	τ_{P}	f_{P}	Type electrical BC at BEM	Type thermal BC at BEM	Ref.
	[m]	[m]			[m]	[V]	[s]		[s]	[Hz]			
Needle	NR	NR	NR	$\{3,4,5\}$	$\left[10 \cdot 10^{-3}, 19 \cdot 10^{-3}\right]$	[1650,2850]	NA	NA	NA	NA	NR	NR	[67]
Needle	$0.91 \cdot 10^{-3}$	$\begin{aligned} & \left\{15 \cdot 10^{-3},\right. \\ & \left.20 \cdot 10^{-3}\right\} \\ & \hline \end{aligned}$	NR	$\{4,6\}$	NR	NR	NTA	NTA	NTA	NTA	$\begin{aligned} & \text { Dirichlet } \\ & \left(\left\{V_{P}, 0\right\}\right) \end{aligned}$	NTA	[68]
Cylinder	$1 \cdot 10^{-3}$	NR	NR	\{2, 4, 6\}	NR	[500, 1000]	NA	NA	NA	NA	Dirichlet	NTA	[69]
Needle	NR	NR	ND	3	NR	NR	NR	$\begin{aligned} & \{10,90, \\ & 200\} \\ & \hline \end{aligned}$	NR	NR	Dirichlet $\left(\left\{V_{P}, 0\right\}\right)$	NR	[70]
Cylinder	$1 \cdot 10^{-3}$	$\left\{10 \cdot 10^{-3}\right.$, $15 \cdot 10^{-3}$, $20 \cdot 10^{-3,}$ $\left.25 \cdot 10^{-3}\right\}$	\{Lateral, Triangular, NC for 4 electrode numbers\}	\{2, 3, 4\}	$\begin{aligned} & \left\{10 \cdot 10^{-3}, 15 \cdot 10^{-3},\right. \\ & \left.20 \cdot 10^{-3}, 25 \cdot 10^{-3}\right\} \end{aligned}$	\{2000, 2500, 3000\}	NA	NA	NA	NA	Dirichlet	NTA	[71]
Circle	$0.2 \cdot 10^{-3}$	NA	Lateral	2	$2 \cdot 10^{-3}$	\{150, 350, 500 \}	100.10-6	$\{8,32,64\}$	NA	NA	$\begin{aligned} & \text { Dirichlet } \\ & \left\{V_{P},-V_{P}\right\} \end{aligned}$	NTA	[72]
Cylinder	$1 \cdot 10^{-3}$	$15 \cdot 10^{-3}$	Lateral	2	20-10-3	\{1000, 2000, 3000\}	50-10 ${ }^{-6}$	80	NA	1	$\begin{aligned} & \text { Dirichlet } \\ & \left(\left\{V_{P}, 0\right\}\right) \end{aligned}$	Neumann	[73]
Hollow cylinder	$0.914 \cdot 10^{-3}$	NC	Lateral	2	$4 \cdot 10^{-3}$	450	100-10-6	80	NA	1	$\begin{aligned} & \text { Dirichlet } \\ & \left(\left\{V_{P}, 0\right\}\right) \end{aligned}$	Neumann	[73]
\{Needle, Needle with parylene coating on outer surface $\}$	$1 \cdot 10^{-3}$	$8 \cdot 10^{-3}$	Lateral	2	11-10-3	\{1000, 1250, 1500\}	NTA	NTA	NTA	NTA	$\begin{aligned} & \text { Dirichlet } \\ & \left\{V_{\mathrm{P}}, 0\right\} \end{aligned}$	NTA	[74]
Rectangular plate	$0.15 \cdot 10^{-3}$	NA	Lateral	1 (Use of symmetry, so technically 2)	$0.25 \cdot 10^{-3}$ (In case of 2 electrodes)	\{50, 100\}	NA	NA	NA	NA	Dirichlet (\{ $\mathrm{V}_{\mathrm{P}} / 2$, - $\left.\mathrm{V}_{\mathrm{P}} / 2\right\}$)	NTA	[75]
\{Inner cylinder, Outer ring (Dispersive ground pad) \}	$\begin{aligned} & \left\{0.26 \cdot 10^{-3},\right. \\ & \left.15 \cdot 10^{-3}\right\} \end{aligned}$	NR	Coaxial shape	2	$7 \cdot 10^{-3}$	NR	$100 \cdot 10^{-6}$	100	NA	1	Dirichlet	NR	[76]
Needle-shaped multipolar electrode	$\begin{aligned} & \left\{0.6 \cdot 10^{-3},\right. \\ & \left.3.2 \cdot 10^{-3}\right\} \end{aligned}$	$\begin{aligned} & \left\{9 \cdot 10^{-3},\right. \\ & \left.9.8 \cdot 10^{-3}\right\} \end{aligned}$	NC	5	$\left\{6.2 \cdot 10^{-3}, 10 \cdot 10^{-3}\right\}$	\{1500, 2000\}	NA	NA	NA	NA	NR	NTA	[77]
Cylinder	$1 \cdot 10^{-3}$	NA	Lateral	2	10.10-3	1000	$\begin{aligned} & \left\{50 \cdot 10^{-6}, 75 \cdot 10^{-}\right. \\ & \left.6,100 \cdot 10^{-6}\right\} \\ & \hline \end{aligned}$	NA	NA	NA	$\begin{aligned} & \text { Dirichlet } \\ & \left(\left\{V_{\mathrm{P},}, 0\right\}\right) \end{aligned}$	NTA	[78]
Needle	NR	$25 \cdot 10^{-3}$	Triangular	3	20-10-3	3000	NA	NA	NA	NA	\{Dirichlet, Robin\}	NTA	[79]
Bipolar hollow cylinder	$2.5 \cdot 10^{-3}$	$10 \cdot 10^{-3}$	Lateral	2	$18 \cdot 10^{-3}$	2700	100-10-6	300	NA	1.5	Dirichlet	Robin $\left(30.01 \cdot 10^{2}\right.$ $\mathrm{W} \cdot \mathrm{m}^{-2 .} \mathrm{C}^{-1}$, Cooled electrode $)$ Continuous	[80]

Table A6.4

Table A6.4 Data about surface areas of electric field, mild hyperthermia and thermal damage, maximum temperature increase, experimental pulses, and validated results and parameters obtained from the included studies. This table was arranged according to the reference number. The brackets "\{ $\}$ " are defined as a set of elements, " $[a, b]$ " is defined as the range between and including the values a and b assuming $\{a, b\} \in \mathbb{R}, a n d$ " $[a: c: b]$ " is defined as the range between and including the values a and b with step c assuming $\{a, b, c\} \in \mathbb{R}$. The following abbreviations are used: NR (Not reported), NA (Not applicable), NC (Not clear), NTA (No thermal analysis), and ND (Not defined). In case $\mathrm{E}_{\text {IRE(th) }}$ was defined as a range [a, b] assuming $\{a, b\} \in \mathbb{R}$, then the average of a and b was calculated and used to calculate the surface areas of electric field.

Simulations of electric-field distribution				Simulations of temperature distribution								Parameters for meta-analysis			Validation				
SE-RE(th)				$\mathrm{S}_{3 \Delta \mathrm{~T} 13}$			$\mathrm{S}_{\Delta \mathrm{T} 13}$												
Average $\mathrm{E}_{\text {IRE(th) }}$	Size	Position	Number	Size	Position	Number	$\mathrm{S}_{\Delta \mathrm{T} 13}$	Position	Number	$\mathrm{T}_{\text {init }}$ and $\mathrm{T}_{\text {max }}$ range	Additional Details	$\mathrm{S}_{\mathrm{E}-\mathrm{REE}(\mathrm{th}), \Sigma}$	$\mathrm{R}_{3 \Delta 713}$	$\mathrm{R}_{\Delta \mathrm{T} 13}$			Experiment al Pulse Parameters (V_{p}, t_{p}, N_{p}, $\tau_{\mathrm{P}}, \mathrm{f}_{\mathrm{P}}$)	Paramet ers attempt ed to validate	$\begin{aligned} & \hline \mathrm{Re} \\ & \mathrm{f} \end{aligned}$
[$\left.\mathrm{V} \cdot \mathrm{m}^{-1}\right]$	[${ }^{2}$]			[m²]			[m²]			[${ }^{\circ} \mathrm{C}$]		[m²]	[\%]	[\%]	$\begin{aligned} & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \\ & \hline \end{aligned}$				
$680 \cdot 10^{2}$	$8.80 \cdot 10^{-5}$	Center	1	0	NA	NA	0	NA	NA	[37, 40]	$\begin{aligned} & \hline \varnothing=1 \cdot 10^{-3} \\ & \mathrm{~m} \\ & \mathrm{~d}=10 \cdot 10^{-} \\ & 3 \mathrm{~m} \\ & \text { Electrodes } \\ & \text { number }= \\ & 2 \\ & \mathrm{~V}_{\mathrm{P}}=1331 \\ & \mathrm{~V} \\ & \mathrm{t}_{\mathrm{p}}= \\ & 200 \cdot 10^{-6} \mathrm{~s} \\ & \hline \end{aligned}$	$8.80 \cdot 10^{-5}$	0	0	NA	NA	$\begin{aligned} & {[3} \\ & \hline \end{aligned}$		
680•102	$8.80 \cdot 10^{-5}$	Center	1	7.73-10-7	\{Left, Right $\}$	2	0	NA	NA	[37, 43]	$\begin{aligned} & \emptyset=1 \cdot 10^{-3} \\ & \mathrm{~m} \\ & \mathrm{~d}=10 \cdot 10^{-} \\ & { }^{3} \mathrm{~m} \\ & \text { Number }= \\ & 2 \\ & \mathrm{~V}_{\mathrm{P}}=1331 \\ & \mathrm{~V} \\ & \mathrm{t}_{\mathrm{P}}= \\ & 400 \cdot 10^{-6} \mathrm{~s} \end{aligned}$	8.80-10-5	1.76	0	NA	NA	$\begin{aligned} & \hline[3 \\ & \hline \end{aligned}$		
$680 \cdot 10^{2}$	$8.80 \cdot 10^{-5}$	Center	1	$2.15 \cdot 10^{-6}$	\{Left, Right	2	0	NA	NA	[37, 50]	$\begin{aligned} & \emptyset=1 \cdot 10^{-3} \\ & \mathrm{~m} \\ & \mathrm{~d}=10 \cdot 10 \cdot \\ & { }^{3} \mathrm{~m} \\ & \text { Number }= \\ & 2 \\ & \mathrm{~V}_{\mathrm{P}}=1331 \\ & \mathrm{~V} \\ & \hline \end{aligned}$	$8.80 \cdot 10^{-5}$	4.9	0	NA	NA	$\begin{aligned} & {[3} \\ & \hline \end{aligned}$		

Simulations of electric-field distribution				Simulations of temperature distribution													
SE-RE(th)				$\mathrm{S}_{3 \text { ST13 }}$			$\mathrm{S}_{\text {tT13 }}$			Tinit and $\mathrm{T}_{\text {max }}$ range	Additional Details	Parameters for meta-analysis			Validation		$\begin{aligned} & \mathrm{Re} \\ & \mathrm{f} \end{aligned}$
Average $\mathrm{E}_{\text {IRE(}}(\mathrm{th})$	Size	Position	Number	Size	Position	Number	$\mathrm{S}_{\triangle \text { T13 }}$	Position	Number			$\mathrm{SEFIRE}^{\text {(th), }}$	$\mathrm{R}_{3} \mathrm{TVT13}$	$\mathrm{R} \Delta \mathrm{T} 13$	Experiment al Pulse Parameters $\left(V_{p}, t_{p}, N_{p}\right.$, $\tau_{\mathrm{P}}, \mathrm{f}_{\mathrm{P}}$)	Paramet ers attempt ed to validate	
[$\left.\mathrm{V} \cdot \mathrm{m}^{-1}\right]$	[${ }^{2}$]			[m²]			[m²]			[${ }^{\circ} \mathrm{C}$]		[m²]	[\%]	[\%]	$\begin{aligned} & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \\ & \hline \end{aligned}$		
											$\begin{aligned} & \hline \mathrm{tp}= \\ & 800 \cdot 10^{-6} \mathrm{~s} \\ & \hline \end{aligned}$						
400-102	$4.83 \cdot 10^{-5}$	Central	1	1.11-10-6	\{Top left, Top right, Bottom left, Bottom right $\}$	4	$3.89 \cdot 10^{-8}$	\{Top left, Top right, Bottom left, Bottom right $\}$	4	NA	NA	$4.83 \cdot 10^{-5}$	9.19	0.32	$\begin{aligned} & \hline(400, \\ & 2000 \cdot 10^{-6}, \\ & 1, \mathrm{NA}, \mathrm{NA}) \end{aligned}$	$\begin{aligned} & \{\sigma, \\ & \operatorname{EIRE}(t h)\} \end{aligned}$	$\begin{aligned} & \hline[2 \\ & 4] \end{aligned}$
NA (No 2D figures of E- and T- distribut ions)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E - and Tdistributi ons)	NA (No 2D figures of E - and T distributi ons)	NA (No 2D figures of E - and T- distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E - and T - distributi ons)	NA (No 2D figures of E - and Tdistributi ons)	$\begin{aligned} & \hline[37, \\ & 37.5] \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{p}}=1000 \\ & \mathrm{~V} \\ & \mathrm{t}_{\mathrm{p}}= \\ & 100 \cdot 10^{-6} \mathrm{~s} \\ & \mathrm{~N}_{\mathrm{p}}=80 \\ & \mathrm{f}_{\mathrm{p}}=0.3 \mathrm{~Hz} \\ & \mathrm{~d}=4 \cdot 10^{-3} \\ & \mathrm{~m} \end{aligned}$	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E - and Tdistributi ons)	$\begin{aligned} & \hline(\{600, \\ & 1000\}, \\ & \left\{100 \cdot 10^{-6},\right. \\ & 800 \cdot 10^{-6}, \\ & 100 \cdot 10 \cdot 6, \\ & \{1,8,(4 \text { sets } \\ & \times 2 \text { pulses }), \\ & (16 \text { sets } \times 4 \\ & \text { pulses }),(4 \\ & \text { sets } \times 20 \\ & \text { pulses })\}, \\ & \text { NA, }\{0.03, \\ & 0.3,1, \\ & 5000\}) \\ & \hline \end{aligned}$	NA	$\begin{aligned} & \hline[2 \\ & 5] \end{aligned}$
NA (No 2D figures of E- and Tdistribut ions)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E - and Tdistributi ons)	NA (No 2D figures of E - and T distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E - and Tdistributi ons)	NA (No 2D figures of E - and T - distributi ons)	NA (No 2D figures of E - and Tdistributi ons)	[37, 38]	$\begin{aligned} & \hline V_{p}=1000 \\ & V \\ & t_{p}= \\ & 100 \cdot 10^{-6} \mathrm{~s} \\ & N_{p}=64 \\ & f_{p}=1 \mathrm{~Hz} \\ & d=4 \cdot 10^{-3} \\ & m \end{aligned}$	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	(\{600, 1000\}, \{100-10-6, $800 \cdot 10^{-6}$, $\left.1000 \cdot 10^{-6}\right\}$, \{1, 8, (4 sets $\times 2$ pulses), (16 sets $\times 4$ pulses), (4 sets $\times 20$ pulses) \}, $\mathrm{NA},\{0.03$, 0.3, 1, 5000\})	NA	$\begin{aligned} & \hline[2 \\ & 5] \end{aligned}$
NA (No 2D figures of E- and Tdistribut ions)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E-and T- distributi ons)	$\begin{aligned} & \text { NA } \\ & \text { (No 2D } \\ & \text { figures of } \\ & \text { E- and T- } \\ & \text { distributi } \\ & \text { ons) } \end{aligned}$	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E - and T distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E-and T- distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E-and T- distributi ons)	[37, 38]	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{P}}=600 \\ & \mathrm{~V} \\ & \mathrm{t}_{\mathrm{P}}= \\ & 100 \cdot 10^{-6} \mathrm{~s} \\ & \mathrm{~N}_{\mathrm{P}}=8 \\ & \mathrm{f}_{\mathrm{P}}=1 \mathrm{~Hz} \\ & \mathrm{~d}=3 \cdot 10^{-3} \\ & \mathrm{~m} \end{aligned}$	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	$\begin{aligned} & \hline\{600, \\ & 1000\}, \\ & \left\{100 \cdot 10^{-6},\right. \\ & 800 \cdot 10^{-6}, \\ & \left.1000 \cdot 10^{-6}\right\}, \\ & \{1,8,(4 \text { sets } \\ & \times 2 \text { pulses }), \\ & (16 \text { sets } \times 4 \\ & \hline \end{aligned}$	NA	$\begin{aligned} & \hline[2 \\ & 5] \\ & \hline \end{aligned}$

Simulations of electric-field distribution				Simulations of temperature distribution											Validation		
SE-1RE(th)				$\mathrm{S}_{3 \Delta 113}$			$S_{\text {ST13 }}$			Tinit and $\mathrm{T}_{\text {max }}$ range	Additional Details	Parameters for meta-analysis					Re f
Average EIRE(th)	Size	Position	Number	Size	Position	Number	$\mathrm{S}_{\Delta \mathrm{T} 13}$	Position	Number			$\mathrm{SE}_{\text {E-IRE }}(\mathrm{th}, \mathrm{E}$	$\mathrm{R}_{3} \mathrm{TVT13}$	$\mathrm{R} \Delta$ т13	Experiment al Pulse Parameters $\left(V_{p}, t_{p}, N_{p}\right.$, $\tau_{\mathrm{p}}, \mathrm{f}_{\mathrm{p}}$)	Paramet ers attempt ed to validate	
[$\mathrm{V} \cdot \mathrm{m}^{-1}$]	[${ }^{2}$]			[m²]			[m²]			[${ }^{\circ} \mathrm{C}$]		[m²]	[\%]	[\%]	$\begin{aligned} & \text { ([V], [s], [-], } \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$		
															$\begin{aligned} & \text { pulses), }(4 \\ & \text { sets } \times 20 \\ & \text { pulses) }\}, \\ & \text { NA, }\{0.03, \\ & 0.3,1, \\ & 500\}) \\ & \hline \end{aligned}$		
NA (No 2D figures of E - and Tdistribut ions)	NA (No 2D figures of E-and T- distributi ons)	NA (No 2D figures of E-and T- distributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E-and T- distributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and T- distributi ons)	[37, 38]	$\begin{aligned} & \mathrm{V}_{\mathrm{P}}=1000 \\ & \mathrm{~V} \\ & \mathrm{t}_{\mathrm{p}}= \\ & 100 \cdot 10^{-6} \mathrm{~s} \\ & \mathrm{~N}_{\mathrm{P}}=8 \\ & \mathrm{f}_{\mathrm{p}}=1 \mathrm{~Hz} \\ & \mathrm{~d}=5 \cdot 10^{-3} \\ & \mathrm{~m} \end{aligned}$	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E-and T- distributi ons)	(\{600, $1000\}$, $\left\{100 \cdot 10^{-6}\right.$, $800 \cdot 10^{-6}$, $\left.1000 \cdot 10^{-6}\right\}$, $\{1,8,(4$ sets $\times 2$ pulses $),$ $(16$ sets $\times 4$ pulses), $(4$ sets $\times 20$ pulses $)\}$ NA, $\{0.03$, $0.3,1$, $5000\})$	NA	$\begin{aligned} & \hline[2 \\ & 5] \end{aligned}$
NA (No 2D figures of E - and Tdistribut ions)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E-and T- distributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and T- distributi ons)	[37, 39]	$\begin{aligned} & \mathrm{V} \mathrm{~V}_{\mathrm{P}}=600 \\ & \mathrm{~V} \\ & \mathrm{t}_{\mathrm{p}}= \\ & 800 \cdot 10^{-6} \mathrm{~s} \\ & \mathrm{~N}_{\mathrm{P}}=1 \\ & \mathrm{f}_{\mathrm{P}}=1 \mathrm{~Hz} \\ & \mathrm{~d}=3 \cdot 10^{-3} \\ & \mathrm{~m} \end{aligned}$	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E-and T- distributi ons)	$(\{600$, $1000\}$, $\left\{100 \cdot 10^{-6}\right.$, $800 \cdot 10^{-6}$, $\left.1000 \cdot 10^{-6}\right\}$, $\{1,8$, , 4 sets $\times 2$ pulses $),$ $(16$ sets $\times 4$ pulses $),(4$ sets $\times 20$ pulses $)\}$, NA, $\{0.03$, 0.3, $5000\})$ 5	NA	$\begin{aligned} & {[2} \\ & 5] \\ & 5] \end{aligned}$
NA (No 2D figures of E - and Tdistribut ions)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E - and Tdistributi ons)	$\begin{aligned} & \text { NA } \\ & \text { (No 2D } \\ & \text { figures of } \\ & \text { E- and T- } \\ & \text { distributi } \\ & \text { ons) } \end{aligned}$	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	[37, 39]	$\begin{aligned} & \mathrm{V}_{\mathrm{P}}=1000 \\ & \mathrm{~V} \\ & \mathrm{t}_{\mathrm{p}}= \\ & 800 \cdot 10^{-6} \mathrm{~s} \\ & \mathrm{~N}_{\mathrm{P}}=1 \\ & \mathrm{f}_{\mathrm{p}}=1 \mathrm{~Hz} \\ & \mathrm{~d}=5 \cdot 10^{-3} \\ & \mathrm{~m} \end{aligned}$	NA (No 2D figures of E - and Tdistributi ons)	NA (No 2D figures of E - and Tdistributi ons)	NA (No 2D figures of E - and Tdistributi ons)	(\{600, 1000\}, $\left\{100 \cdot 10^{-6}\right.$, $800 \cdot 10^{-6}$, 1000.10-6\}, \{1, 8, (4 sets $\times 2$ pulses), (16 sets $\times 4$ pulses), (4 sets $\times 20$ pulses) \},	NA	$\begin{aligned} & \hline[2 \\ & 5] \end{aligned}$

Simulations of electric-field distribution				Simulations of temperature distribution													
SE-REE(th)				$\mathrm{S}_{3 \Delta 713}$			$\mathrm{S}_{\text {tT13 }}$			Tinit and $\mathrm{T}_{\text {max }}$ range	Additional Details	Parameters for meta-analysis			Validation		$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{Re} \\ \mathrm{f} \end{array} \\ \hline \end{array}$
Average $\mathrm{E}_{\text {IRE(}}$ (h)	Size	Position	Number	Size	Position	Number	$\mathrm{S}_{\triangle \text { T13 }}$	Position	Number			$\mathrm{S}_{\text {E-IRE }}(\mathrm{th}), \Sigma$	R3AT13	$\mathrm{R} \Delta \mathrm{T} 13$	Experiment al Pulse Parameters ($\mathrm{V}_{\mathrm{p}}, \mathrm{t}_{\mathrm{p}}, \mathrm{N}_{\mathrm{P}}$, $\tau_{\mathrm{p}}, \mathrm{f}_{\mathrm{p}}$)	Paramet ers attempt ed to validate	
[$\left.\mathrm{V} \cdot \mathrm{m}^{-1}\right]$	[m²]			[m²]			[m²]			[${ }^{\circ} \mathrm{C}$]		[m²]	[\%]	[\%]	$\begin{aligned} & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$		
															$\begin{aligned} & \mathrm{NA},\{0.03, \\ & 0.3,1, \\ & 5000\}) \\ & \hline \end{aligned}$		
NA (No 2D figures of E- and T- distribut ions)	NA (No 2D figures of E - and T- distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E - and Tdistributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	[37, 40]	$\begin{aligned} & \mathrm{V}_{\mathrm{P}}=1000 \\ & \mathrm{~V} \\ & \mathrm{t}_{\mathrm{P}}= \\ & 100 \cdot 10^{-6} \mathrm{~s} \\ & \mathrm{~N}_{\mathrm{P}}=64 \\ & \mathrm{f}_{\mathrm{p}}=5000 \\ & \mathrm{~Hz} \\ & \mathrm{~d}=5 \cdot 10^{-3} \\ & \mathrm{~m} \end{aligned}$	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E - and T distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	$\begin{aligned} & (\{600, \\ & 1000\}, \\ & \left\{100 \cdot 10^{-6},\right. \\ & 800 \cdot 10^{-6}, \\ & 1000 \cdot 10 \cdot 6\}, \\ & \{1,8,(4 \text { sets } \\ & \times 2 \text { pulses }), \\ & (16 \text { sets } \times 4 \\ & \text { pulses }),(4 \\ & \text { sets } \times 20 \\ & \text { pulses })\}, \\ & \text { NA, }\{0.03, \\ & 0.3,1, \\ & 5000\}) \\ & \hline \end{aligned}$	NA	$\begin{aligned} & \hline[2 \\ & 5] \end{aligned}$
NA (No 2D figures of E - and Tdistribut ions)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	[37, 40]	$\begin{aligned} & \mathrm{V}_{\mathrm{P}}=1000 \\ & \mathrm{~V} \\ & \mathrm{t}_{\mathrm{P}}= \\ & 100 \cdot 10^{-6} \mathrm{~s} \\ & \mathrm{~N}_{\mathrm{P}}=80 \\ & \mathrm{f}_{\mathrm{p}}=3 \mathrm{~Hz} \\ & \mathrm{~d}=4 \cdot 10^{-3} \\ & \mathrm{~m} \end{aligned}$	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	$\begin{aligned} & \hline\{600, \\ & 1000\}, \\ & \left\{100 \cdot 10^{-6},\right. \\ & 800 \cdot 10^{-6}, \\ & \left.1000 \cdot 10^{-6}\right\}, \\ & \{1,8,(4 \text { sets } \\ & \times 2 \text { pulses }), \\ & (16 \text { sets } \times 4 \\ & \text { pulses }),(4 \\ & \text { sets } \times 20 \\ & \text { pulses })\}, \\ & \text { NA, }\{0.03, \\ & 0.3,1, \\ & 5000\}) \\ & \hline \end{aligned}$	NA	$\begin{aligned} & {[2} \\ & 5] \\ & 5] \end{aligned}$
NA (No 2D figures of E- and T- distribut ions)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E - and Tdistributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E - and T- distributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	[37, 40]	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{P}}=1000 \\ & \mathrm{~V} \\ & \mathrm{t}_{\mathrm{p}}= \\ & 1000 \cdot 10^{-6} \\ & \mathrm{~s} \\ & \mathrm{~N}_{\mathrm{P}}=8 \\ & \mathrm{f}_{\mathrm{P}}=0.03 \\ & \mathrm{~Hz} \\ & \mathrm{~d}=4 \cdot 10^{-3} \\ & \mathrm{~m} \end{aligned}$	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and T- distributi ons)	$\begin{aligned} & \hline(\{600, \\ & 1000\}, \\ & \left\{100 \cdot 10^{-6},\right. \\ & 800 \cdot 10^{-6}, \\ & \left.1000 \cdot 10^{-6}\right\}, \\ & \{1,8,(4 \text { sets } \\ & \times 2 \text { pulses }), \\ & (16 \text { sets } \times 4 \\ & \text { pulses }),(4 \\ & \text { sets } \times 20 \\ & \text { pulses })\}, \\ & \text { NA, }\{0.03, \\ & 0.3,1, \\ & 5000\}) \\ & \hline \end{aligned}$	NA	$\begin{aligned} & \hline[2 \\ & 5] \end{aligned}$

Simulations of electric-field distribution				Simulations of temperature distribution											Validation		
SE-RE(th)				$\mathrm{S}_{3 \Delta \mathrm{~T} 13}$			$\mathrm{S}_{\text {tT13 }}$					Parameters for meta-analysis					
Average $\mathrm{E}_{\text {IRE(}}$ (h)	Size	Position	Number	Size	Position	Number	$\mathrm{S}_{\triangle \text { T13 }}$	Position	Number	Tinit and $\mathrm{T}_{\text {max }}$ range	Additional Details	$\mathrm{S}_{\text {E-IRE }}(\mathrm{th}), \Sigma$	$\mathrm{R}_{3} \mathrm{TVT13}$	$\mathrm{R} \Delta \mathrm{T} 13$	Experiment al Pulse Parameters ($\mathrm{V}_{\mathrm{p}}, \mathrm{t}_{\mathrm{p}}, \mathrm{N}_{\mathrm{P}}$, $\tau_{\mathrm{p}}, \mathrm{f}_{\mathrm{p}}$)	Paramet ers attempt ed to validate	$\begin{aligned} & \hline \mathrm{Re} \\ & \mathrm{f} \end{aligned}$
[$\left.\mathrm{V} \cdot \mathrm{m}^{-1}\right]$	[${ }^{2}$]			[m²]			[m²]			[${ }^{\circ} \mathrm{C}$]		[m²]	[\%]	[\%]	$\begin{aligned} & \text { ([V], [s], [-], } \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$		
NA (No 2D figures of E- and Tdistribut ions)	NA (No 2D figures of E - and Tdistributi ons)	NA (No 2D figures of E - and Tdistributi ons)	NA (No 2D figures of E - and T distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E - and Tdistributi ons)	NA (No 2D figures of E - and T distributi ons)	NA (No 2D figures of E - and T distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	[37, 41]	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{p}}=1000 \\ & \mathrm{~V} \\ & \mathrm{t}_{\mathrm{p}}= \\ & 100 \cdot 10^{-6} \mathrm{~s} \\ & \mathrm{~N}_{\mathrm{p}}=64 \\ & \mathrm{f}_{\mathrm{p}}=5000 \\ & \mathrm{~Hz} \\ & \mathrm{~d}=4 \cdot 10^{-3} \\ & \mathrm{~m} \end{aligned}$	NA (No 2D figures of E - and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E - and T distributi ons)	$\begin{aligned} & \hline\{600, \\ & 1000\}, \\ & \left\{100 \cdot 10^{-6},\right. \\ & 800 \cdot 10^{-6}, \\ & \left.1000 \cdot 60^{-6}\right\}, \\ & \{1,8,(4 \text { sets } \\ & \times 2 \text { pulses }), \\ & (16 \text { sets } \times 4 \\ & \text { pulses), }(4 \\ & \text { sets } \times 20 \\ & \text { pulses })\}, \\ & \text { NA, }\{0.03, \\ & 0.3,1, \\ & 5000\}) \\ & \hline \end{aligned}$	NA	$\begin{aligned} & \hline[2 \\ & 5] \end{aligned}$
NA (No 2D figures of E - and Tdistribut ions)	NA (No 2D figures of E - and Tdistributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E - and T distributi ons)	NA (No 2D figures of E - and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E - and T distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	[37, 43]	$\begin{aligned} & \mathrm{V}_{\mathrm{P}}=1000 \\ & \mathrm{~V} \\ & \mathrm{t}_{\mathrm{p}}= \\ & 800 \cdot 10^{-6} \mathrm{~s} \\ & \mathrm{~N}_{\mathrm{p}}=8, \mathrm{f}_{\mathrm{p}} \\ & =1 \mathrm{~Hz} \\ & \mathrm{~d}=5 \cdot 10^{-3} \\ & \mathrm{~m} \end{aligned}$	NA (No 2D figures of E - and T distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E - and T distributi ons)	$\begin{aligned} & \hline\{600, \\ & 1000\}, \\ & \left\{100 \cdot 10^{-6},\right. \\ & 800 \cdot 10^{-6}, \\ & \left.1000 \cdot 10^{-6}\right\}, \\ & \{1,8,(4 \text { sets } \\ & \times 2 \text { pulses }), \\ & (16 \text { sets } \times 4 \\ & \text { pulses }),(4 \\ & \text { sets } \times 20 \\ & \text { pulses })\}, \\ & \text { NA, }\{0.03, \\ & 0.3,1, \\ & 5000\}) \\ & \hline \end{aligned}$	NA	$\begin{array}{\|l\|} \hline[2 \\ 5] \\ \hline \end{array}$
NA (No 2D figures of E - and Tdistribut ions)	NA (No 2D figures of E - and Tdistributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E - and T distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E - and T distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E - and T distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	[37, 46]	$\begin{aligned} & \mathrm{V}_{\mathrm{P}}=1000 \\ & \mathrm{~V} \\ & \mathrm{t}_{\mathrm{p}}= \\ & 800 \cdot 10^{-6} \mathrm{~s} \\ & \mathrm{~N}_{\mathrm{P}}=8 \\ & \mathrm{f}_{\mathrm{p}}=1 \mathrm{~Hz} \\ & \mathrm{~d}=4 \cdot 10^{-3} \\ & \mathrm{~m} \end{aligned}$	NA (No 2D figures of E - and T distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	$\begin{aligned} & \hline\{6000, \\ & 1000\}, \\ & \left\{100 \cdot 10^{-6},\right. \\ & 800 \cdot 10^{-6}, \\ & \left.1000 \cdot 10^{-6}\right\}, \\ & \{1,8,(4 \text { sets } \\ & \times 2 \text { pulses }), \\ & (16 \text { sets } \times 4 \\ & \text { pulses }),(4 \\ & \text { sets } \times 20 \\ & \text { pulses })\}, \\ & \text { NA, }\{0.03, \\ & 0.3,1, \\ & 5000\}) \\ & \hline \end{aligned}$	NA	$\begin{aligned} & \hline[2 \\ & 5] \end{aligned}$
NA (No 2D figures	NA (No 2D figures of	NA (No 2D figures of	NA (No 2D figures of	NA (No 2D figures of	NA (No 2D figures of	NA (No 2D figures of	NA (No 2D figures of	NA (No 2D figures of	NA (No 2D figures of	[37, 51]	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{P}}=1000 \\ & \mathrm{~V} \end{aligned}$	NA (No 2D figures of	NA (No 2D figures of	NA (No 2D figures of	$\begin{aligned} & \hline(\{600, \\ & 1000\}, \\ & \left\{100 \cdot 10^{-6},\right. \end{aligned}$	NA	$\begin{array}{\|l\|} \hline[2 \\ 5] \end{array}$

Simulations of electric-field distribution				Simulations of temperature distribution											Validation		
$\mathrm{S}_{\mathrm{E}-\mathrm{RE}(\mathrm{th})}$				$\mathrm{S}_{3 \Delta \mathrm{~T} 13}$			$\mathrm{S}_{\text {tT13 }}$					Parameters for meta-analysis					
Average $\mathrm{E}_{\text {IRE }}(\mathrm{th})$	Size	Position	Number	Size	Position	Number	$\mathrm{S}_{\Delta \mathrm{T} 13}$	Position	Number	$T_{\text {init }}$ and $\mathrm{T}_{\text {max }}$ range	Additional Details	SE --1RE(th), $^{\text {c }}$	$\mathrm{R}_{3 \Delta \mathrm{~T} 13}$	$\mathrm{R}_{\triangle \text { t } 13}$	Experiment al Pulse Parameters $\left(V_{P}, t_{p}, N_{P}\right.$, $\tau_{\mathrm{p}}, \mathrm{f}_{\mathrm{p}}$)	$\begin{aligned} & \hline \text { Paramet } \\ & \text { ers } \\ & \text { attempt } \\ & \text { ed to } \\ & \text { validate } \\ & \hline \end{aligned}$	$\overline{\mathrm{Re}}$
[$\mathrm{V} \cdot \mathrm{m}^{-1}$]	[m²]			[m²]			[m²]			[${ }^{\circ} \mathrm{C}$]		[m²]	[\%]	[\%]	$\begin{aligned} & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$		
$\begin{aligned} & \hline \text { of E- and } \\ & \text { T-- } \\ & \text { distribut } \\ & \text { ions) } \end{aligned}$	E- and Tdistributi ons)		$\begin{aligned} & \hline \mathrm{tp}= \\ & 1000 \cdot 10^{-6} \\ & \mathrm{~s} \\ & \mathrm{~N}_{\mathrm{p}}=8 \\ & \mathrm{fp}=0.3 \mathrm{~Hz} \\ & \mathrm{~d}=4 \cdot 10^{-3} \\ & \mathrm{~m} \end{aligned}$	E- and Tdistributi ons)	E- and Tdistributi ons)	E- and Tdistributi ons)	$\begin{aligned} & 800 \cdot 10^{-6}, \\ & \left.1000 \cdot 10^{-6}\right\}, \\ & \{1,8,(4 \text { sets } \\ & \times 2 \text { pulses }), \\ & (16 \text { sets } \times 4 \\ & \text { pulses }),(4 \\ & \text { sets } \times 20 \\ & \text { pulses })\}, \\ & \mathrm{NA},\{0,03, \\ & 0.3,1, \\ & 5000\}) \\ & \hline \end{aligned}$										
NA (No 2D figure of T- distribut ion)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	$\begin{aligned} & \hline[37, \\ & 37.7] \end{aligned}$	Shape cylinder $\emptyset=$ $0.5 \cdot 10^{-3} \mathrm{~m}$ $\mathrm{d}=10 \cdot 10$ ${ }^{3} \mathrm{~m}$ $\mathrm{V}_{\mathrm{P}}=1000$ 2D ND tissue 1	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA	NA	$\begin{aligned} & \hline[2 \\ & 6] \end{aligned}$
NA (No 2D figure of T- distribut ion)	NA (No 2D figure of T- distributi on)		NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	$\begin{aligned} & \hline[37, \\ & 37.6] \end{aligned}$	Shape cylinder $\emptyset=1 \cdot 10^{-3}$ m $\mathrm{d}=10 \cdot 10$ ${ }^{3} \mathrm{~m}$ $\mathrm{V}_{\mathrm{P}}=1000$ 2D ND tissue 1	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA	NA	$\begin{aligned} & {[2} \\ & 6] \end{aligned}$
NA (No 2D figure of T- distribut ion)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	$\begin{aligned} & \hline[37, \\ & 37.4] \end{aligned}$	Shape cylinder $\emptyset=2 \cdot 10^{-3}$ m $\mathrm{d}=10 \cdot 10$ ${ }^{3} \mathrm{~m}$ $\mathrm{V}_{\mathrm{P}}=1000$ 2D ND tissue 1	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA	NA	$\begin{aligned} & {[2} \\ & 6] \end{aligned}$
NR	$\begin{aligned} & \hline \text { NA } \\ & \text { (EIRE(th) } \\ & \text { NR) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (ERE(th) } \\ & \text { NR) } \end{aligned}$	NA (EIRE(th) NR)	$\begin{aligned} & \hline \text { NA } \\ & \left(E_{\text {IRE }(\mathrm{th})}\right. \\ & \text { NR) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \left(E_{\text {IRE }(\mathrm{th})}\right. \\ & \text { NR) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (EREE(th) } \\ & \text { NR) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \left(E_{\text {IRE }(\mathrm{th})}\right. \\ & \text { NR) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (ERE(th) } \end{aligned}$ NR)	$\begin{aligned} & \text { NA } \\ & \text { (EIRE(th) } \\ & \text { NR) } \end{aligned}$	[37, 50]	(Shape: Sphere; V_{P} $=500 \mathrm{~V}$ $\mathrm{t}_{\mathrm{p}}=$	$\begin{aligned} & \hline \text { NA } \\ & \left(E_{\text {IRE }(\mathrm{th})}\right. \\ & \text { NR) } \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { (EIRE(th) } \\ & \text { NR) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (EIRE(th) } \end{aligned}$ NR)	NA	NA	$\begin{aligned} & \hline[2 \\ & 7] \end{aligned}$

Simulations of electric-field distribution				Simulations of temperature distribution								Parameters for meta-analysis					
SE-RE(th)				$\mathrm{S}_{3 \Delta \mathrm{~T} 13}$			$\mathrm{S}_{\text {tT1 }}$								Validation		
Average $\mathrm{E}_{\text {IRE(th) }}$	Size	Position	Number	Size	Position	Number	$\mathrm{S}_{\triangle \mathrm{TT13}}$	Position	Number	Tinit and $\mathrm{T}_{\text {max }}$ range	Additional Details	SE-IRE(th),	$\mathrm{R}_{3 \Delta \mathrm{~T} 13}$	$\mathrm{R} \Delta \mathrm{T} 13$	Experiment al Pulse Parameters $\left(V_{p}, t_{p}, N_{p}\right.$, $\left.\tau_{\mathrm{p}}, \mathrm{f}_{\mathrm{p}}\right)$	Paramet ers attempt ed to validate	$\overline{\mathrm{Re}}$
[$\mathrm{V} \cdot \mathrm{m}^{-1}$]	[m²]			[m²]			[m²]			[${ }^{\circ} \mathrm{C}$]		[m²]	[\%]	[\%]	$\begin{aligned} & \begin{array}{l} ([\mathrm{V}],[\mathrm{s}],[-], \\ [\mathrm{s}],[\mathrm{Hz}]) \\ \hline \end{array} \end{aligned}$		
											$\begin{aligned} & \hline 864 \cdot 10^{-6} \\ & \text { s) } \\ & \hline \end{aligned}$						
NR	NA (EIRE(th) NR)	$\begin{aligned} & \text { NA } \\ & \left(\mathrm{E}_{\mathrm{IRE}(\mathrm{th})}\right. \end{aligned}$ NR)	NA (EIRE(th) NR)	NA $\left(\mathrm{E}_{\text {IRE }}(\mathrm{th})\right.$ NR)	NA (EIRE(th) NR) NR)	$\begin{aligned} & \hline \text { NA } \\ & \left(\mathrm{E}_{\operatorname{lRE}(\mathrm{th})}\right. \end{aligned}$ NR)	$\begin{aligned} & \hline \text { NA } \\ & \left(\mathrm{E}_{\mathrm{IRE}(\mathrm{th})}\right. \end{aligned}$ NR)	NA (EIRE(th) NR)	NA (EIRE(th) NR)	[37, 50]	$\begin{aligned} & \text { (Shape: } \\ & \text { Sphere; } \mathrm{V}_{\mathrm{p}} \\ & =1000 \mathrm{~V} ; \\ & \mathrm{t}_{\mathrm{p}}= \\ & 242 \cdot 10^{-6} \\ & \mathrm{~s}) \\ & \hline \end{aligned}$	NA (EIRE(th) NR) NR)	NA (EIRE(th) NR)	NA (EIRE(th) NR) NR)	NA	NA	$\begin{aligned} & \hline[2 \\ & 7] \end{aligned}$
NR	NA (EIRE(th) NR) NR)	$\begin{aligned} & \hline \text { NA } \\ & \left(\mathrm{E}_{\mathrm{REE}(\mathrm{th})}\right. \\ & \mathrm{NR}) \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { (ERE(th) } \\ & \text { NR) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \left(\mathrm{E}_{\text {IRE(th })}\right. \\ & \mathrm{NR}) \end{aligned}$	NA (EIRE(th) NR) NR)	$\begin{aligned} & \hline \text { NA } \\ & \left(\mathrm{E}_{\text {IRE }(\mathrm{th})}\right. \end{aligned}$ NR)	$\begin{aligned} & \text { NA } \\ & \left(\mathrm{E}_{\mathrm{IRE}(\mathrm{th})}\right. \end{aligned}$ NR)	$\begin{aligned} & \text { NA } \\ & \left(\mathrm{E}_{\mathrm{IRE}(\mathrm{th})}\right. \end{aligned}$ NR)	NA (EIRE(h) NR) NR)	[37, 50]	$\begin{aligned} & \text { (Shape: } \\ & \text { Sphere; } \mathrm{V}_{\mathrm{p}} \\ & =2000 \mathrm{~V} ; \\ & \mathrm{t}_{\mathrm{p}}= \\ & 51.6 \cdot 10^{-6} \\ & \mathrm{~s}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { (ERE(th) } \\ & \text { NR) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \left(\mathrm{E}_{\mathrm{IRE}(\mathrm{th})}\right. \end{aligned}$ NR)	$\begin{aligned} & \text { NA } \\ & \left(\mathrm{E}_{\mathrm{IRE}(\mathrm{th})}\right. \end{aligned}$ NR)	NA	NA	$\begin{aligned} & \hline[2 \\ & 7] \end{aligned}$
NR	NA (EIRE(th) NR)	$\begin{aligned} & \begin{array}{l} \text { NA } \\ \left(\mathrm{E}_{\mathrm{REE}(\mathrm{th})}\right. \\ \mathrm{NR}) \end{array} \end{aligned}$	NA (EIRE (h) NR)	NA (EIRE(th) NR) NR)	NA (EIRE(th) NR) NR)	$\begin{aligned} & \hline \text { NA } \\ & \left(\mathrm{E}_{\operatorname{lRE}(\mathrm{th})}\right. \end{aligned}$ NR)	$\begin{aligned} & \hline \text { NA } \\ & \left(\mathrm{E}_{\mathrm{IRE}(\mathrm{th})}\right. \end{aligned}$ NR)	NA (EIRE(h) NR)	NA (EIRE(h) NR) NR)	[37, 50]	(Shape: Cylinder; $\mathrm{V}_{\mathrm{P}}=500$ V ; $\mathrm{t}_{\mathrm{p}}=$ $8960 \cdot 10^{-6}$ s)	NA (EIRE(th) NR) NR)	NA (EIRE(th) NR)	NA (EIRE(h) NR)	NA	NA	$\begin{aligned} & \hline[2 \\ & 7] \end{aligned}$
NR	NA (EIRE(th) NR)	$\begin{aligned} & \text { NA } \\ & \left(\mathrm{E}_{\mathrm{IRE}(\mathrm{th})}\right. \end{aligned}$ NR)	$\begin{aligned} & \text { NA } \\ & \left(\mathrm{E}_{\mathrm{IRE}(\mathrm{th})}\right. \end{aligned}$ NR)	$\begin{aligned} & \text { NA } \\ & \text { (EIRE(th) } \\ & \text { NR) } \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \left(\mathrm{E}_{\mathrm{IRE}(\mathrm{th})}\right. \end{aligned}$ NR)	$\begin{aligned} & \text { NA } \\ & \left(\mathrm{E}_{\mathrm{IRE}(\mathrm{th})}\right. \end{aligned}$ NR)	$\begin{aligned} & \text { NA } \\ & \left(\mathrm{E}_{\mathrm{IRE}(\mathrm{th})}\right. \end{aligned}$ NR)	NA (EIRE(h) NR)	NA (EIRE (h) NR)	[37, 50]	$\begin{aligned} & \text { (Shape: } \\ & \text { Cylinder; } \\ & V_{P}=1000 \\ & V^{2} ; t_{P}= \\ & 2110 \cdot 10^{-6} \\ & \text { s) } \end{aligned}$	NA (EIRE(th) NR) NR)	NA (EIRE(th) NR)	NA (EIRE(th) NR)	NA	NA	$\begin{aligned} & {[2} \\ & 7] \\ & \hline \end{aligned}$
NR	$\begin{aligned} & \hline \text { NA } \\ & \left(\text { EIRE (h) }^{2}\right. \\ & \text { NR) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \left(\mathrm{E}_{\mathrm{REE}(\mathrm{th})}\right. \\ & \text { NR) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (ERE(th) } \\ & \text { NR) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \left(\mathrm{E}_{\operatorname{lRE}(\mathrm{th})}\right. \end{aligned}$ NR)	$\begin{aligned} & \hline \text { NA } \\ & \left(\text { EIRE(th }^{\text {NR }}\right. \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (EIRE(th) } \\ & \text { NR) } \end{aligned}$	NA (EIRE(th) NR)	$\begin{aligned} & \hline \text { NA } \\ & \left(\mathrm{E}_{\text {IRE }(\mathrm{h})}\right) \\ & \text { NR) } \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { (EIRE(th) } \\ & \text { NR) } \end{aligned}$	[37, 50]	(Shape: Cylinder; $\begin{aligned} & V_{P}=2000 \\ & V ; t_{p}= \\ & 510 \cdot 10^{-6} \end{aligned}$ s)	$\begin{aligned} & \hline \text { NA } \\ & \text { (EIRE(th) } \\ & \text { NR) } \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { (ERE(th) } \\ & \text { NR) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (EIRE(th) } \\ & \text { NR) } \end{aligned}$	NA	NA	$\begin{aligned} & \hline[2 \\ & 7] \end{aligned}$
NR	NA (EIRE(th) NR)	$\begin{aligned} & \text { NA } \\ & \text { (EREE(h) } \\ & \text { NR) } \end{aligned}$	NA (EIRE(th) NR)	NA (EIRE(th) NR)	NA (EIRE(th) NR)	NA (EIRE(th) NR) NR)	$\begin{aligned} & \hline \text { NA } \\ & \left(\mathrm{E}_{\mathrm{IRE}(\mathrm{th})}\right. \end{aligned}$ NR)	NA (EIRE(th) NR)	NA (EIRE (h) NR)	[37, 50]	$\begin{aligned} & \text { (Shape: } \\ & \text { Plate: } \mathrm{V}_{\mathrm{P}}= \\ & 500 \mathrm{~V} ; \mathrm{t}_{\mathrm{p}} \\ & = \\ & 104000 \cdot 1 \\ & 0^{-6} \mathrm{~s} \text {) } \end{aligned}$	NA (EIRE(th) NR) NR)	NA (EIRE(th) NR)	NA (EIRE(th) NR)	NA	NA	$\begin{aligned} & \hline[2 \\ & 7] \end{aligned}$
NR	NA (EIRE (th) NR)	$\begin{aligned} & \hline \text { NA } \\ & \text { (ERE(th) } \\ & \text { NR) } \end{aligned}$	NA (EIRE(th) NR) NR)	NA (EIRE(th) NR) NR)	NA (EIRE(th) NR)	$\begin{aligned} & \text { NA } \\ & \left(\mathrm{E}_{\mathrm{IRE}(\mathrm{th})}\right. \end{aligned}$ NR)	NA (EIRE(th) NR)	NA (EIRE(th) NR)	NA (EIRE(h) NR)	[37, 50]	$\begin{aligned} & \text { (Shape: } \\ & \text { Plate: } \mathrm{V}_{\mathrm{P}}= \\ & 1000 \mathrm{~V} ; \mathrm{t}_{\mathrm{P}} \\ & = \\ & = \\ & 25600 \cdot 10- \\ & 6 \mathrm{~s} \text {) } \\ & \hline \end{aligned}$	NA (EIRE(th) NR)	NA (EIRE(th) NR)	NA (EIRE(th) NR) NR)	NA	NA	$\begin{aligned} & \hline[2 \\ & 7] \end{aligned}$

Simulations of electric-field distribution				Simulations of temperature distribution											Validation		
SE-RE(th)				$\mathrm{S}_{3 \Delta \mathrm{~T} 13}$			$\mathrm{S}_{\Delta \mathrm{T} 13}$					Parameters for meta-analysis					
Average $\mathrm{E}_{\text {IRE(th) }}$	Size	Position	Number	Size	Position	Number	$\mathrm{S}_{\Delta \mathrm{T} 13}$	Position	Number	Tinit and $\mathrm{T}_{\text {max }}$ range	Additional Details	SE -IRE(th), ,	$\mathrm{R}_{3 \Delta \mathrm{~T} 13}$	$\mathrm{R}_{\Delta \mathrm{T} 13}$	Experiment al Pulse Parameters $\left(V_{p}, t_{p}, N_{p}\right.$, $\left.\tau_{\mathrm{P}}, \mathrm{f}_{\mathrm{P}}\right)$	$\begin{aligned} & \hline \text { Paramet } \\ & \text { ers } \\ & \text { attempt } \\ & \text { ed to } \\ & \text { validate } \\ & \hline \end{aligned}$	$\overline{\mathrm{Re}}$
[$\left.\mathrm{V} \cdot \mathrm{m}^{-1}\right]$	[${ }^{2}$]			[m²]			[m²]			$\left.{ }^{[}{ }^{\circ} \mathrm{C}\right]$		[m²]	[\%]	[\%]	$\begin{aligned} & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \\ & \hline \end{aligned}$		
NR	$\begin{aligned} & \text { NA } \\ & \left(E_{\text {IRE }(\mathrm{th})}\right. \\ & \text { NR) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \left(\mathrm{E}_{\mathrm{REE}(\mathrm{th})}\right. \\ & \mathrm{NR}) \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \left(\mathrm{E}_{\text {RE }(\mathrm{th})}\right. \\ & \text { NR) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \left(\mathrm{E}_{\mathrm{REE}(\mathrm{th})}\right. \\ & \mathrm{NR}) \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (ERE(th) } \\ & \text { NR) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (EREE(th) } \\ & \text { NR) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \left(E_{\text {IRE }(\mathrm{th})}\right. \\ & \text { NR) } \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \left(\mathrm{E}_{\text {IRE }(\mathrm{th})}\right) \\ & \mathrm{NR}) \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \left(E_{\text {IRE }(\mathrm{th})}\right. \\ & \text { NR) } \end{aligned}$	[37,50]	(Shape: Plate; $\mathrm{V}_{\mathrm{P}}=$ 2000 V; t_{p} = $8000 \cdot 10^{-6}$ s)	$\begin{aligned} & \hline \text { NA } \\ & \text { (ERE(th) } \\ & \text { NR) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (ERE(th) } \\ & \text { NR) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (ERE(th) } \\ & \text { NR) } \end{aligned}$	NA	NA	$\begin{array}{\|l\|} \hline[2 \\ 7] \\ \hline \end{array}$
NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	$\begin{aligned} & \hline \text { NA } \\ & \text { (2D } \\ & \text { figures } \\ & \text { NC) } \\ & \hline \end{aligned}$	NA (2D figures NC)	$\begin{aligned} & \hline[37.08, \\ & 41.8] \end{aligned}$	Homogene ous prostate	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA	NA	$\begin{array}{\|l} \hline[2 \\ 8] \\ \hline \end{array}$
NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	$\begin{aligned} & \hline[37.08, \\ & 41.82] \end{aligned}$	Prostate including axon and myelin	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA	NA	$\begin{aligned} & \hline[2 \\ & 8] \end{aligned}$
NA (2D figures NC)	$\begin{aligned} & \text { NA } \\ & \text { (2D } \\ & \text { figures } \\ & \text { NC) } \\ & \hline \end{aligned}$	NA (2D figures NC)	$\begin{aligned} & \text { NA } \\ & (2 \mathrm{D} \\ & \text { figures } \\ & \mathrm{NC}) \\ & \hline \end{aligned}$	NA (2D figures NC)	$\begin{aligned} & \hline \text { [37.08, } \\ & 41.35] \end{aligned}$	Prostate including blood vessel	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA	NA	$\begin{array}{\|l\|} \hline[2 \\ 8] \end{array}$					
NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	$\begin{aligned} & \hline[37.08, \\ & 37.5] \end{aligned}$	Homogene ous fatty breast	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA	NA	$\begin{aligned} & \hline[2 \\ & 8] \end{aligned}$			
NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	$\begin{aligned} & \hline[37.08, \\ & 37.35] \end{aligned}$	Fatty breast tissue including breast gland and myoepithe lial cells	NA (2D figures NC)	NA (2D figures NC)	NA (2D figures NC)	NA	NA	$\begin{array}{\|l\|} \hline[2 \\ 8] \end{array}$
NA (No 2D figure of Tdistribut ion)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of Tdistributi on) on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (σ for both tissues NR)	NA	NA (No 2D figure of Tdistributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	$\begin{aligned} & \hline \text { (NR, } \\ & 100 \cdot 10^{-6}, \\ & 80, \mathrm{NA}, 1) \end{aligned}$	$E_{\text {IRE(th) }}$	$\begin{aligned} & \hline[2 \\ & 9] \end{aligned}$					
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NR	NA	NA	NA	NA	(\{200, 300, 500, 800, 1500\}, \{100, 350, 500, 750, 1000, 2000, 5000 \}, 1, NA, NA)	NA	$\begin{aligned} & \hline[3 \\ & 0] \end{aligned}$

Simulations of electric-field distribution				Simulations of temperature distribution											Validation		
SE-RE(th)				$\mathrm{S}_{3 \Delta \mathrm{t} 13}$			$\mathrm{S}_{\text {tT13 }}$					Parameters for meta-analysis					
Average $\mathrm{E}_{\text {IRE(}}$ (h)	Size	Position	Number	Size	Position	Number	$\mathrm{S}_{\triangle \text { T13 }}$	Position	Number	Tinit and $\mathrm{T}_{\text {max }}$ range	Additional Details	$\mathrm{SEFIRE}^{\text {(th), }}$	$\mathrm{R}_{3} \mathrm{TVT13}$	$\mathrm{R} \Delta \mathrm{T} 13$	Experiment al Pulse Parameters ($\mathrm{V}_{\mathrm{P}}, \mathrm{t}_{\mathrm{p}}, \mathrm{N}_{\mathrm{P}}$, $\tau_{\mathrm{p}}, \mathrm{f}_{\mathrm{p}}$)	Paramet ers attempt ed to validate	$\begin{aligned} & \hline \mathrm{Re} \\ & \mathrm{f} \end{aligned}$
$\left[\mathrm{V} \cdot \mathrm{m}^{-1}\right]$	[m^{2}]			[m²]			[${ }^{2}$]			[${ }^{\circ} \mathrm{C}$]		[${ }^{2}$]	[\%]	[\%]	$\begin{aligned} & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$		
$510 \cdot 10^{2}$	$6.97 \cdot 10^{-5}$	Center	1	6.18•10-5	Center	1	6.14-10-6	Center	1	[37,52]	$\begin{aligned} & \hline\left(\mathrm{V}_{\mathrm{P}}=\right. \\ & 1000 \mathrm{~V}) \end{aligned}$	$6.97 \cdot 10^{-5}$	88.67	8.81	$\begin{aligned} & \hline(\{500, \\ & 1000\}, \\ & 50 \cdot 10^{-6}, \\ & 9 \times 10 \\ & \text { Pulses, } 4) \\ & \text { (Sets were } \\ & \text { separated } \\ & \text { by 1s) } \\ & \hline \end{aligned}$	EIre(th)	$\begin{array}{\|l\|} \hline[3 \\ 1] \end{array}$
NR	NTA	NA	NTA	NTA	NTA	NA	NA	$\begin{array}{\|l\|} \hline[3 \\ 2] \\ \hline \end{array}$									
NA (No 2D figure of T- distribut ion)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on) NA	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	$\begin{aligned} & \hline[37, \\ & 66.8] \end{aligned}$	NA	NA (No 2D figure of T-- distributi on) NA	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	$\begin{aligned} & \hline(600, \\ & 100 \cdot 10 \cdot 6, \\ & 90, \mathrm{NA}, 4) \end{aligned}$	NA	$\begin{array}{\|l\|} \hline[3 \\ 3] \\ \hline \end{array}$
NA (No 2D figure of T- distribut ion)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	$\begin{aligned} & {[37,66.7} \\ &] \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{P}}=600 \\ \mathrm{~V} \\ \mathrm{f}_{\mathrm{P}}=4 \mathrm{~Hz} \\ \sigma=0.6 \\ \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ \mathrm{wb}=0.5 \\ \mathrm{~kg} \cdot \mathrm{~m}^{-3} \cdot \mathrm{~s}^{-1} \\ \hline \end{array}$	NA (No 2D figure of T- distributi on)		NA (No 2D figure of T- distributi on)	NA	NA	$\begin{aligned} & \hline[3 \\ & 4] \end{aligned}$
NA (No 2D figure of T- distribut ion)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	[37,58]	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{p}}=600 \\ & \mathrm{~V} \\ & \mathrm{f}_{\mathrm{p}}=2 \mathrm{~Hz} \\ & \sigma=0.6 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \mathrm{wb}=0.5 \\ & \mathrm{~kg} \cdot \mathrm{~m}^{-3} \cdot \mathrm{~s}^{-1} \\ & \hline \end{aligned}$	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA	NA	$\begin{array}{\|l\|} \hline[3 \\ 4] \end{array}$
NA (No 2D figure of T- distribut ion)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	[37,51]	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{P}}=600 \\ \mathrm{~V} \\ \mathrm{f}_{\mathrm{P}}=1 \mathrm{~Hz} \\ \sigma=0.6 \\ \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ \mathrm{~W}=0.5 \\ \mathrm{~kg} \cdot \mathrm{~m}^{-3} \cdot \mathrm{~s}^{-1} \\ \hline \end{array}$	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA	NA	$\begin{array}{\|l\|} \hline[3 \\ 4] \end{array}$
NA (No 2D figure of Tdistribut ion)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	[37, 40]	$\begin{aligned} & \mathrm{V}_{\mathrm{P}}=450 \\ & \mathrm{~V} \\ & \mathrm{f}_{\mathrm{p}}=0.5 \mathrm{~Hz} \\ & \sigma=0.6 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \mathrm{w}_{\mathrm{b}}=0.5 \\ & \mathrm{~kg} \mathrm{~m}^{-3} \mathrm{~s}^{-1} \\ & \hline \end{aligned}$	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA	NA	$\begin{array}{\|l\|} \hline[3 \\ 4] \end{array}$

Simulations of electric-field distribution				Simulations of temperature distribution											Validation		
$\mathrm{S}_{\mathrm{E}-\mathrm{REE}(\mathrm{~h})}$				$\mathrm{S}_{3 \Delta T 13}$			$\mathrm{S}_{\text {tT13 }}$			Tinit and $\mathrm{T}_{\text {max }}$ range	Additional Details	Parameters for meta-analysis					$\begin{array}{\|l} \hline \mathrm{Re} \\ \mathrm{f} \end{array}$
Average $\mathrm{E}_{\text {IRE(}}$ (h)	Size	Position	Number	Size	Position	Number	$\mathrm{S}_{\triangle \text { T13 }}$	Position	Number			$\mathrm{S}_{\text {E-IRE }}(\mathrm{th}), \Sigma$	$\mathrm{R}_{3 \Delta T 13}$	$\mathrm{R}_{\Delta \mathrm{T} 13}$	Experiment al Pulse Parameters ($\mathrm{V}_{\mathrm{p}}, \mathrm{t}_{\mathrm{p}}, \mathrm{N}_{\mathrm{P}}$, $\tau_{\mathrm{p}}, \mathrm{f}_{\mathrm{p}}$)	Paramet ers attempt ed to validate	
[$\left.\mathrm{V} \cdot \mathrm{m}^{-1}\right]$	[m²]			[m²]			[m²]			[${ }^{\circ} \mathrm{C}$]		[m²]	[\%]	[\%]	$\begin{aligned} & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$		
NA (No 2D figure of T- distribut ion)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	[37, 49]	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{P}}=450 \\ & \mathrm{~V} \\ & \mathrm{f}_{\mathrm{p}}=10 \mathrm{~Hz} \\ & \sigma=0.6 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \mathrm{w}_{\mathrm{b}}=0.5 \\ & \mathrm{~kg} \cdot \mathrm{~m}^{-3} \cdot \mathrm{~s}^{-1} \\ & \hline \end{aligned}$	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA	NA	$\begin{array}{\|l\|} \hline[3 \\ 4] \\ \hline \end{array}$
NA (No 2D figure of T- distribut ion)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of Tdistributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	[37, 55]		NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA	NA	$\begin{aligned} & \hline[3 \\ & 4] \end{aligned}$
NA (No 2D figure of T- distribut ion)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)		NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)		[37, 87]	$\begin{aligned} & \mathrm{V}_{\mathrm{P}}=750 \\ & \mathrm{~V} \\ & \mathrm{f}_{\mathrm{p}}=10 \mathrm{~Hz} \\ & \sigma=0.6 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \mathrm{w}_{\mathrm{b}}=0.5 \\ & \mathrm{gg} \cdot \mathrm{~m}^{-3} \cdot \mathrm{~s}^{-1} \end{aligned}$	NA (No 2D figure of T- distributi on)		NA (No 2D figure of T- distributi on)	NA	NA	$\begin{array}{\|l\|} \hline[3 \\ 4] \end{array}$
1000-102	$\begin{aligned} & \hline \text { NA } \\ & \text { (NTA) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (NTA) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (NTA) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (NTA) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (NTA) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (NTA) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (NTA) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (NTA) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (NTA) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (NTA) } \end{aligned}$	NA	$\begin{aligned} & \hline \text { NA } \\ & \text { (NTA) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (NTA) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (NTA) } \end{aligned}$	$\begin{aligned} & \hline([1100: 100: \\ & 1300], \\ & 100 \cdot 10 \cdot 6, \\ & 100,3, \mathrm{NA}) \\ & \hline \end{aligned}$	NA	$\begin{array}{\|l\|} \hline[3 \\ 5] \end{array}$
NA (No 2D figure of T- distribut ion) (NA (No 2D figure of T- distributi on) NA	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on) PA	NA (No 2D figure of T- distributi on) NA	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on) RA	$\begin{aligned} & \hline[37, \\ & 40.13] \end{aligned}$	$\mathrm{ff}_{\mathrm{p}}=1 \mathrm{~Hz}$	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on) NA	NA (No 2D figure of T- distributi on)	$\begin{aligned} & (70,100 \cdot 10 \\ & 6,90,\{1,4\}) \end{aligned}$	EIrE(th)	$\begin{array}{\|l} \hline[3 \\ 6] \end{array}$
NA (No 2D figure of Tdistribut ion)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of Tdistributi on) \qquad	NA (No 2D figure of Tdistributi on) \qquad	NA (No 2D figure of T- distributi on)	NA (No 2D figure of Tdistributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of Tdistributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	$\begin{aligned} & \hline[37, \\ & 40.93] \end{aligned}$	$\mathrm{f}_{\mathrm{P}}=4 \mathrm{~Hz}$	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	$\begin{aligned} & \hline\left(70,100 \cdot 10^{-}\right. \\ & 6,90,\{1,4\}) \end{aligned}$	$\mathrm{EIIRE}_{\text {(th) }}$	$\begin{aligned} & \hline[3 \\ & 6] \end{aligned}$
423•102	$1.54 \cdot 10^{-4}$	Center	1	$6.86 \cdot 10^{-5}$	Center	1	$6.36 \cdot 10^{-5}$	Center	1	$\begin{aligned} & \hline[21, \\ & 35.5] \end{aligned}$	NA	$1.54 \cdot 10^{-4}$	44.5	41.3	$\begin{aligned} & \hline(1500, \\ & 100 \cdot 10^{-6}, \\ & 99, \mathrm{NA}, \\ & \{0.25,0.5,1, \\ & 4\}) \\ & \hline \end{aligned}$	$\mathrm{EIIRE}_{\text {(th) }}$	$\begin{aligned} & \hline[3 \\ & 7] \end{aligned}$
680-102	$\begin{aligned} & \hline \text { NA } \\ & \text { (NTA) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (NTA) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (NTA) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (NTA) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (NTA) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (NTA) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (NTA) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (NTA) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (NTA) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (NTA) } \end{aligned}$	NA	$\begin{aligned} & \hline \text { NA } \\ & \text { (NTA) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (NTA) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (NTA) } \end{aligned}$	$\begin{aligned} & \hline(\{1000, \\ & 1500, \\ & 2500\}, \\ & 100 \cdot 10^{-6}, 8, \\ & \hline \end{aligned}$	$\mathrm{EIRE}_{\text {IR (h) }}$	$\begin{aligned} & \hline[3 \\ & 8] \\ & \hline \end{aligned}$

Simulations of electric-field distribution				Simulations of temperature distribution								Parameters for meta-analysis					
SE-RE(th)				$\mathrm{S}_{3 \Delta \mathrm{~T} 13}$			$S_{\text {ST13 }}$								Validation		
Average $\mathrm{E}_{\text {IRE(} \mathrm{th})}$	Size	Position	Number	Size	Position	Number	$\mathrm{S}_{\Delta \mathrm{T} 13}$	Position	Number	$\mathrm{T}_{\text {init }}$ and $\mathrm{T}_{\text {max }}$ range	Additional Details	$\mathrm{SEFIRE}^{\text {(th), }}$	$\mathrm{R}_{3 \Delta \mathrm{~T} 13}$	$\mathrm{R} \Delta \mathrm{T} 13$	Experiment al Pulse Parameters $\left(V_{p}, t_{p}, N_{p}\right.$, $\tau_{\mathrm{p}}, \mathrm{f}_{\mathrm{p}}$)	Paramet ers attempt ed to validate	$\overline{\mathrm{Re}}$
[$\left.\mathrm{V} \cdot \mathrm{m}^{-1}\right]$	[m²]			[m²]			[m²]			[$\left.{ }^{\circ} \mathrm{C}\right]$		[${ }^{2}$]	[\%]	[\%]	$\begin{aligned} & \text { ([V], [s], [-], } \\ & [\mathrm{s}],[\mathrm{Hz}]) \\ & \hline \end{aligned}$		
															$\begin{aligned} & 100 \cdot 10^{-3}, \\ & \mathrm{NA}) \end{aligned}$		
$680 \cdot 10^{2}$	$4.05 \cdot 10^{-4}$	Center	1	$\begin{aligned} & \hline \text { NA } \\ & \text { (Tinit is } \\ & \text { not } \\ & \text { shown in } \\ & \text { figure) } \end{aligned}$	NA (Tinit is not shown in figure)	$\begin{aligned} & \text { NA } \\ & \left(T_{\text {init }}\right. \text { is } \\ & \text { not } \\ & \text { shown in } \\ & \text { figure }) \end{aligned}$	0	Center	1	$\begin{aligned} & \hline[37, \\ & 56.4] \end{aligned}$	$\begin{aligned} & \hline \text { Saline }\{\sigma \\ & =1 \mathrm{~S} \cdot \mathrm{~m}^{-1} \\ & \text { Thickness } \\ & =1 \cdot 10^{-3} \\ & \mathrm{~m}\}, \mathrm{V}_{\mathrm{P}}= \\ & 3000 \mathrm{~V}) \\ & \hline \end{aligned}$	$4.05 \cdot 10^{-4}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (T Tinit is } \\ & \text { not } \\ & \text { shown in } \\ & \text { figure) } \end{aligned}$	0	NA	NA	$\begin{aligned} & \hline[3 \\ & 9] \end{aligned}$
680-102	5.17-10-4	Center	1	NA ($\mathrm{T}_{\text {init }}$ is not shown in figure)	$\begin{aligned} & \hline \text { NA } \\ & \text { (T Tinit is } \\ & \text { not } \\ & \text { shown in } \\ & \text { figure) } \end{aligned}$	NA ($\mathrm{T}_{\text {init }}$ is not shown in figure)	3•10-6	\{Left, Right $\}$	2	$\begin{aligned} & \hline[37, \\ & 53.7] \end{aligned}$	$\begin{aligned} & \hline \text { Saline }\{\sigma \\ & =8 \mathrm{~S} \cdot \mathrm{~m}^{-1}, \\ & \text { Thickness } \\ & =1 \cdot 10^{-3} \\ & \mathrm{~m}\}, \mathrm{V}_{\mathrm{P}}= \\ & 3000 \mathrm{~V}) \end{aligned}$	5.17-10-4	NA ($\mathrm{T}_{\text {init }}$ is not shown in figure)	1.16	NA	NA	$\begin{aligned} & \hline[3 \\ & 9] \end{aligned}$
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	$\begin{aligned} & \hline[37, \\ & 63.3] \end{aligned}$	(No Saline, V_{P} $=3000 \mathrm{~V}$)	NA	NA	NA	NA	NA	$\begin{aligned} & \hline[3 \\ & 9] \end{aligned}$
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	$\begin{aligned} & \hline[37, \\ & 57.1] \end{aligned}$	(Saline \{Thicknes $\mathrm{s}=$ $0.25 \cdot 10^{-3}$ $\mathrm{m}, \sigma=1$ $\left.\mathrm{S} \cdot \mathrm{m}^{-1}\right\}, \mathrm{V}_{\mathrm{P}}$ $=3000 \mathrm{~V}$)	NA	NA	NA	NA	NA	$\begin{aligned} & \hline[3 \\ & 9] \end{aligned}$
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	$\begin{aligned} & \hline[37, \\ & 39.4] \end{aligned}$	(Saline \{Thicknes $\mathrm{s}=$ $0.25 \cdot 10^{-3}$ $\mathrm{m}, \sigma=8$ $\left.S \cdot \mathrm{~m}^{-1}\right\}, \mathrm{V}_{\mathrm{P}}$ $=1000 \mathrm{~V}$)	NA	NA	NA	NA	NA	$\begin{aligned} & \hline[3 \\ & 9] \end{aligned}$
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	$\begin{aligned} & \hline[37, \\ & 55.2] \end{aligned}$	(Saline \{Thicknes $\mathrm{s}=0.5 \cdot 10$. ${ }^{3} \mathrm{~m}, \sigma=1$ $\left.\mathrm{S} \cdot \mathrm{m}^{-1}\right\}, \mathrm{V}_{\mathrm{P}}$ $=3000 \mathrm{~V}$)	NA	NA	NA	NA	NA	$\begin{aligned} & \hline[3 \\ & 9] \end{aligned}$
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	$\begin{aligned} & \hline[37, \\ & 39.2] \end{aligned}$	(Saline \{Thicknes $\mathrm{s}=0.5 \cdot 10$ ${ }^{3} \mathrm{~m}, \sigma=8$ $\left.\mathrm{S} \cdot \mathrm{m}^{-1}\right\}, \mathrm{V}_{\mathrm{P}}$ $=1000 \mathrm{~V}$)	NA	NA	NA	NA	NA	$\begin{aligned} & \hline[3 \\ & 9] \end{aligned}$

Simulations of electric-field distribution				Simulations of temperature distribution											Validation		
Ster				$\mathrm{S}_{3 \Delta \mathrm{~T} 13}$			$\mathrm{S}_{\text {tT13 }}$			Tinit and $\mathrm{T}_{\text {max }}$ range	Additional Details	Parameters for meta-analysis					
Average $\mathrm{E}_{\text {IRE(th) }}$	Size	Position	Number	Size	Position	Number	$\mathrm{S}_{\Delta \mathrm{T} 13}$	Position	Number			SE --1RE(th), $^{\text {c }}$	$\mathrm{R}_{3 \Delta \mathrm{~T} 13}$	R Δ т13	Experiment al Pulse Parameters $\left(V_{p}, t_{p}, N_{p}\right.$, $\tau_{\mathrm{p}}, \mathrm{f}_{\mathrm{p}}$)	$\begin{aligned} & \hline \text { Paramet } \\ & \text { ers } \\ & \text { attempt } \\ & \text { ed to } \\ & \text { validate } \\ & \hline \end{aligned}$	Re
[$\mathrm{V} \cdot \mathrm{m}^{-1}$]	[${ }^{2}$]			[m²]			[m²]			[${ }^{\circ} \mathrm{C}$]		[m²]	[\%]	[\%]	$\begin{aligned} & \text { ([V], [s], [-], } \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$		
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	$\begin{aligned} & {[37,} \\ & 60.2] \end{aligned}$	(Saline \{Thicknes $\mathrm{s}=2 \cdot 10^{-3}$ $\mathrm{m}, \sigma=1$ $\left.\mathrm{S} \cdot \mathrm{m}^{-1}\right\}, \mathrm{V}_{\mathrm{P}}$ $=3000 \mathrm{~V}$)	NA	NA	NA	NA	NA	$\begin{aligned} & {[3} \\ & 9] \end{aligned}$
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	$\begin{aligned} & \hline[37, \\ & 38.9] \end{aligned}$	(Saline \{Thicknes $\mathrm{s}=1 \cdot 10^{-3}$ $\mathrm{m}, \sigma=8$ $\left.\mathrm{S} \cdot \mathrm{m}^{-1}\right\}, \mathrm{V}_{\mathrm{P}}$ $=1000 \mathrm{~V}$)	NA	NA	NA	NA	NA	$\begin{aligned} & \hline[3 \\ & 9] \end{aligned}$
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	$\begin{aligned} & \hline[37, \\ & 39.6] \end{aligned}$	(Saline \{Thicknes $\mathrm{s}=2 \cdot 10^{-3}$ $\mathrm{m}, \sigma=8$ $\left.\mathrm{S} \cdot \mathrm{m}^{-1}\right\}, \mathrm{V}_{\mathrm{P}}$ $=1000 \mathrm{~V}$)	NA	NA	NA	NA	NA	$\begin{aligned} & \hline[3 \\ & 9] \end{aligned}$
$500 \cdot 10^{2}$	NR	$\begin{aligned} & {[33.3,} \\ & 34.3] \end{aligned}$	$\begin{aligned} & \left(\mathrm{V}_{\mathrm{P}}=500\right. \\ & \mathrm{V}, \mathrm{~Np}= \\ & 4 \times 20, \mathrm{f}_{\mathrm{p}}= \\ & 1 \mathrm{~Hz}, \\ & \text { Additional } \\ & \text { waiting } \\ & \text { time of } 3.5 \\ & \mathrm{~s}) \\ & \hline \end{aligned}$	NR	NR	NR	$\begin{aligned} & \left(500,50 \cdot 10^{-}\right. \\ & 6,4 \times 20, \text { NR, } \\ & \text { NR, } \sim 1) \end{aligned}$	T	$\begin{aligned} & {[4} \\ & 0] \end{aligned}$								
$500 \cdot 10^{2}$	$8.94 \cdot 10^{-5}$	Center	1	NA (Tempera tures below 43 ${ }^{\circ} \mathrm{C}$ were not shown)	NA (Tempera tures below 43 ${ }^{\circ} \mathrm{C}$ were not shown)	NA (Tempera tures below 43 ${ }^{\circ} \mathrm{C}$ were not shown)	0	NA	NA	$\begin{aligned} & \hline[37, \\ & 47.8] \end{aligned}$	$\begin{aligned} & \left(\mathrm{V}_{\mathrm{P}}=\right. \\ & 1000 \mathrm{~V}, \mathrm{~N}_{\mathrm{P}} \\ & =80, \mathrm{f}_{\mathrm{P}}= \\ & 1 \mathrm{~Hz}) \end{aligned}$	$8.94 \cdot 10^{-5}$	NA	0	NA	NA	$\begin{aligned} & \hline[4 \\ & 0] \end{aligned}$
NA (No 2D figure of T- distribut ion)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of Tdistributi on)	$\begin{aligned} & \hline[37, \\ & 45.25] \end{aligned}$	Circular plate	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of Tdistributi on)	$\begin{aligned} & (\{70,600\}, \\ & 100 \cdot 10^{-6}, \\ & 90, \mathrm{NA}, 4) \end{aligned}$	$\mathrm{E}_{\text {IRE(}}$ (h)	$\begin{aligned} & {[4} \\ & 1] \end{aligned}$
NA (No 2D figure of T- distribut ion)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	$\begin{aligned} & {[37,} \\ & 66.8] \end{aligned}$	Endovasc ular	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	$\begin{aligned} & (\{70,600\}, \\ & 100 \cdot 10^{-6}, \\ & 90, \mathrm{NA}, 4) \end{aligned}$	EIRE(th)	$\begin{aligned} & {[4} \\ & 1] \end{aligned}$

Simulations of electric-field distribution				Simulations of temperature distribution													
SE-RE(th)				$\mathrm{S}_{34 \mathrm{~T} 13}$			$\mathrm{S}_{\text {tT13 }}$			$\begin{aligned} & \hline \mathrm{T}_{\text {init }} \text { and } \\ & \mathrm{T}_{\max } \\ & \text { range } \end{aligned}$	Additional Details	Parameters for meta-analysis			Validation		$\begin{aligned} & \mathrm{Re} \\ & \mathrm{f} \end{aligned}$
Average $\mathrm{E}_{\text {IRE (th) }}$	Size	Position	Number	Size	Position	Number	$\mathrm{S}_{\triangle \text { T13 }}$	Position	Number			$\mathrm{SEFIRE}^{\text {(th), }}$	$\mathrm{R}_{3} \mathrm{TVT13}$	$\mathrm{R}_{\Delta \mathrm{T} 13}$	Experiment al Pulse Parameters $\left(V_{p}, t_{p}, N_{p}\right.$, $\tau_{\mathrm{P}}, \mathrm{f}_{\mathrm{P}}$)	Paramet ers attempt ed to validate	
[$\mathrm{V} \cdot \mathrm{m}^{-1}$]	[m²]			[m²]			[m²]			[${ }^{\circ} \mathrm{C}$]		[m²]	[\%]	[\%]	$\begin{aligned} & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$		
NA (No 2D figure of Edistribut ion)	NA (No 2D figure of E- distributi on)	NA (No 2D figure of E- distributi on)	NA (No 2D figure of E- distributi on)	NA (No 2D figure of E- distributi on)	NA (No 2D figure of E- distributi on)	NA (No 2D figure of E- distributi on)	NA (No 2D figure of E- distributi on)	NA (No 2D figure of Edistributi on)	NA (No 2D figure of E- distributi on)	$\begin{aligned} & {[37,} \\ & 39.3] \end{aligned}$	Temperat ure calculated using Pennes Bioheat Equation E-field distributio n of all electrode pairs was simultane ously used for calculatio n of T	NA (No 2D figure of E- distributi on)	NA (No 2D figure of E- distributi on)	NA (No 2D figure of E- distributi on)	NA	NA	$\begin{aligned} & \hline[4 \\ & 2] \\ & \hline \end{aligned}$
NA (No 2D figure of E- distribut ion)	NA (No 2D figure of E- distributi on)	NA (No 2D figure of E- distributi on)	NA (No 2D figure of E- distributi on)	NA (No 2D figure of E- distributi on)	NA (No 2D figure of E- distributi on)	NA (No 2D figure of E- distributi on)	NA (No 2D figure of E- distributi on)	NA (No 2D figure of E- distributi on)	NA (No 2D figure of E- distributi on)	$\begin{aligned} & \hline[37, \\ & 67.3] \end{aligned}$	Temperat ure calculated using simplified Pennes Bioheat equation E-field distributio n of all electrode pairs was simultane ously used for calculatio n of T	NA (No 2D figure of E- distributi on)	NA (No 2D figure of E- distributi on)	NA (No 2D figure of E- distributi on)	NA	NA	$\begin{array}{\|l\|} \hline[4 \\ 2] \end{array}$
NA (No 2D figure of T- distribut ion)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on) NA	NA (No 2D figure of T- distributi on) NA	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on) PA	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	[22,23]	$\begin{aligned} & \mathrm{V}_{\mathrm{P}}=150 \\ & \mathrm{~V} \end{aligned}$	NA (No 2D figure of T- distributi on) NA	NA (No 2D figure of T- distributi on) N	NA (No 2D figure of T- distributi on)	$\begin{aligned} & ([0: 150: 600 \\ &], 100 \cdot 10^{-6}, \\ & 80, \mathrm{NA}, 1) \end{aligned}$	$\begin{aligned} & \{\mathrm{T}, \sigma, \\ & \left.\mathrm{E}_{\text {IRE }}(\mathrm{th})\right\} \end{aligned}$	$\begin{aligned} & {[4} \\ & 3] \end{aligned}$
NA (No 2D figure of T-	NA (No 2D figure of T-	NA (No 2D figure of T-	NA (No 2D figure of T-	NA (No 2D figure of T-	NA (No 2D figure of T-	NA (No 2D figure of T-	NA (No 2D figure of T-	NA (No 2D figure of T-	NA (No 2D figure of T-	[22,27]	$\begin{aligned} & \mathrm{V}_{\mathrm{P}}=300 \\ & \mathrm{~V} \end{aligned}$	NA (No 2D figure of T-	NA (No 2D figure of T-	NA (No 2D figure of T-	$\begin{aligned} & ([0: 150: 600 \\ &], 100 \cdot 10^{-6}, \\ & 80, \mathrm{NA}, 1) \end{aligned}$	$\begin{aligned} & \hline\{\mathrm{T}, \sigma, \\ & \left.\mathrm{E}_{\mathrm{IRE}(\mathrm{th})}\right\} \end{aligned}$	$\begin{array}{\|l\|} \hline[4 \\ 3] \end{array}$

Simulations of electric-field distribution				Simulations of temperature distribution											Validation		
SE-IRE(th)				$\mathrm{S}_{3 \Delta \mathrm{t} 13}$			$\mathrm{S}_{\text {tT13 }}$					Parameters	for meta-an	ysis			
Average $\mathrm{E}_{\text {IRE(}}$ (h)	Size	Position	Number	Size	Position	Number	$\mathrm{S}_{\Delta \mathrm{T} 13}$	Position	Number	Tinit and $\mathrm{T}_{\text {max }}$ range	Additional Details	SE -IRE(th), $^{\text {c }}$	$\mathrm{R}_{3 \Delta T 13}$	$\mathrm{R}_{\Delta \mathrm{T} 13}$	Experiment al Pulse Parameters ($\mathrm{V}_{\mathrm{p}}, \mathrm{t}_{\mathrm{p}}, \mathrm{N}_{\mathrm{P}}$, $\tau_{\mathrm{p}}, \mathrm{f}_{\mathrm{p}}$)	Paramet ers attempt ed to validate	$\begin{aligned} & \hline \mathrm{Re} \\ & \mathrm{f} \end{aligned}$
[$\mathrm{V} \cdot \mathrm{m}^{-1}$]	[m²]			[m²]			[m²]			[${ }^{\circ} \mathrm{C}$]		[m²]	[\%]	[\%]	$\begin{aligned} & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$		
$\begin{aligned} & \hline \text { distribut } \\ & \text { ion) } \\ & \hline \end{aligned}$	distributi on)	distributi on)	$\begin{aligned} & \text { distributi } \\ & \text { on) } \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \text { distributi } \\ \text { on) } \end{array}$	$\begin{aligned} & \text { distributi } \\ & \text { on) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { distributi } \\ & \text { on) } \\ & \hline \end{aligned}$	distributi on)	$\begin{aligned} & \text { distributi } \\ & \text { on) } \\ & \hline \end{aligned}$	distributi on)			$\begin{aligned} & \text { distributi } \\ & \text { on) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { distributi } \\ & \text { on) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { distributi } \\ & \text { on) } \\ & \hline \end{aligned}$			
NA (No 2D figure of T- distribut ion)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on) A	[22,35]	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{P}}=450 \\ \mathrm{~V} \end{array}$	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	$\begin{aligned} & \hline[0: 150: 600 \\ &], 100 \cdot 10^{-6}, \\ & 80, \mathrm{NA}, 1) \end{aligned}$	$\begin{aligned} & \{\mathrm{T}, \sigma, \\ & \left.\mathrm{E}_{\mathrm{IRE}(\mathrm{th})}\right\} \end{aligned}$	$\begin{aligned} & \hline[4 \\ & 3] \end{aligned}$
NA (No 2D figure of T- distribut ion)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on) ([22,51]	$\mathrm{V}_{\mathrm{P}}=600 \mathrm{~V}$	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T-- distributi on) NA	NA (No 2D figure of T- distributi on)	$\begin{aligned} & \hline[0: 150: 600 \\ &], 100 \cdot 10 \cdot 6 \\ & 80, \mathrm{NA}, 1) \end{aligned}$	$\begin{aligned} & \{T, \sigma, \\ & \left.\mathrm{E}_{\operatorname{IRE} E(t h)}\right\} \end{aligned}$	$\begin{array}{\|l\|} \hline[4 \\ 3] \end{array}$
NA (No 2D figure of T- distribut ion)	$\begin{aligned} & \text { NA } \\ & \text { (No 2D } \\ & \text { figure of } \\ & \text { T- } \\ & \text { distributi } \\ & \text { on) } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (No 2D } \\ & \text { figure of } \\ & \text { T- } \\ & \text { distributi } \\ & \text { on) } \end{aligned}$	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	$\begin{aligned} & {[36.6,} \\ & 55.3] \end{aligned}$	(Sclera, \{External ring electrode, External disk electrode\}, $V_{P}=2000$ $\mathrm{V}, \mathrm{t}_{\mathrm{p}}=$ $100 \cdot 10^{-6} \mathrm{~s}$, $\mathrm{N}_{\mathrm{P}}=90, \mathrm{f}_{\mathrm{P}}$ $=1 \mathrm{~Hz}$)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA	NA	$\begin{aligned} & \hline[4 \\ & 4] \end{aligned}$
NA (No 2D figure of Tdistribut ion)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of Tdistributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	$\begin{aligned} & \hline[36.65, \\ & 49.75] \end{aligned}$	(Retina, \{External ring electrode, External disk electrode\}, $V_{P}=2000$ $\mathrm{V}, \mathrm{t}_{\mathrm{p}}=$ $100 \cdot 10^{-6} \mathrm{~s}$, $\mathrm{N}_{\mathrm{P}}=90, \mathrm{f}_{\mathrm{P}}$ $=1 \mathrm{~Hz}$)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA	NA	$\begin{aligned} & \hline[4 \\ & 4] \end{aligned}$
NA (No 2D figure of T- distribut ion)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	$\begin{aligned} & \hline[36.71, \\ & 48.19] \end{aligned}$	(Ocular tumor, \{External ring electrode, External disk	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA	NA	$\begin{array}{\|l\|} \hline[4 \\ 4] \end{array}$

Simulations of electric-field distribution				Simulations of temperature distribution													
SE-IRE(th)				$\mathrm{S}_{3 \Delta \mathrm{tat}}$			$\mathrm{S}_{\text {¢T1 }}$					Parameters for meta-analysis			Validation		
Average $\mathrm{E}_{\text {IRE(}}$ (h)	Size	Position	Number	Size	Position	Number	$\mathrm{S}_{\triangle \text { T13 }}$	Position	Number	Tinit and $\mathrm{T}_{\text {max }}$ range	Additional Details	$\mathrm{SEFIRE}^{\text {(th), }}$	$\mathrm{R}_{3 \Delta T 13}$	$\mathrm{R}_{\Delta \mathrm{T} 13}$	Experiment al Pulse Parameters ($\mathrm{V}_{\mathrm{p}}, \mathrm{t}_{\mathrm{p}}, \mathrm{N}_{\mathrm{P}}$, $\tau_{\mathrm{p}}, \mathrm{f}_{\mathrm{p}}$)	Paramet ers attempt ed to validate	$\begin{aligned} & \hline \mathrm{Re} \\ & \mathrm{f} \end{aligned}$
[$\left.\mathrm{V} \cdot \mathrm{m}^{-1}\right]$	[m²]			[m²]			[m²]			[${ }^{\circ} \mathrm{C}$]		[m²]	[\%]	[\%]	([V], [s], [-], $[\mathrm{s}],[\mathrm{Hz}])$		
											$\begin{aligned} & \hline \text { electrode }\}, \\ & \sigma= \\ & 0.3322 \\ & \mathrm{~S} \cdot \mathrm{~m}^{-1}, \mathrm{~V}_{\mathrm{P}}= \\ & 2000 \mathrm{~V}, \mathrm{tp}_{\mathrm{p}} \\ & =100 \cdot 10 \\ & =10 \\ & 6 \mathrm{~S}, \mathrm{~Np}= \\ & 90, \mathrm{fp}_{\mathrm{p}}= \\ & 1 \mathrm{~Hz}) \end{aligned}$						
500-102	NA (No 2D figure of temperat ure)	NA (No 2D figure of temperat ure)	NA (No 2D figure of temperat ure)	NA (No 2D figure of temperat ure)	NR	NA	NA (No 2D figure of temperat ure)	NA (No 2D figure of temperat ure)	NA (No 2D figure of temperat ure)	(\{[100:50:5 00], 750, 1000\}, $\left\{100 \cdot 10^{-6}\right.$, $\left.500 \cdot 10^{-6}\right\}$, 10, 200, NA, 1)	σ	$\begin{aligned} & \hline[4 \\ & 5] \end{aligned}$					
NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NA	NTA	NTA	NTA	NA	NA	$\begin{array}{\|l\|} \hline[4 \\ 6] \\ \hline \end{array}$
$1250 \cdot 10^{2}$	NA		$\mathrm{EIRE}_{\text {IR (th) }}$	$\begin{array}{\|l\|} \hline[4 \\ 7] \\ \hline \end{array}$													
NA (No 2D figure of T- distribut ion) N	NA (No 2D figure of T- distributi on) NA	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on) PA	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on) NA	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on) NA	$\begin{aligned} & {[37.2,} \\ & 39.4] \end{aligned}$	NA	NA (No 2D figure of T- distributi on) NA	NA (No 2D figure of T- distributi on) NA	NA (No 2D figure of T- distributi on) RA	$\begin{aligned} & \text { (500, } 50 \cdot 10 \\ & 6,200, \mathrm{NA}, \\ & \text { 1) } \end{aligned}$	NA	$\begin{aligned} & \hline[4 \\ & 8] \end{aligned}$
NA (No 2D figures of E and T- distribut ions)	NA (No 2D figures of E and T- distributi ons)	NA (No 2D figures of E and T- distributi ons)	NA (No 2D figures of E and T- distributi ons)	NA (No 2D figures of E and Tdistributi ons)	NA (No 2D figures of E and T- distributi ons)	NA (No 2D figures of E and T- distributi ons)	NA (No 2D figures of E and Tdistributi ons)	NA (No 2D figures of E and T- distributi ons)	NA (No 2D figures of E and T- distributi ons)	[37, 39]	(No seed array)	NA (No 2D figures of E and T- distributi ons)	NA (No 2D figures of E and T- distributi ons)	NA (No 2D figures of E and T- distributi ons)	$\begin{aligned} & \hline(\{1250, \\ & 2625\}, \\ & 100 \cdot 10^{-6}, \\ & 100, \mathrm{NA}, 1) \end{aligned}$	NA	$\begin{array}{\|l\|} \hline[4 \\ 9] \end{array}$
NA (No 2D figures of E and Tdistribut ions)	NA (No 2D figures of E and Tdistributi ons)	NA (No 2D figures of E and Tdistributi ons)	NA (No 2D figures of E and T- distributi ons)	NA (No 2D figures of E and T distributi ons)	NA (No 2D figures of E and Tdistributi ons)	NA (No 2D figures of E and T- distributi ons)	NA (No 2D figures of E and Tdistributi ons)	NA (No 2D figures of E and Tdistributi ons)	NA (No 2D figures of E and T- distributi ons)	[37, 39]	$\begin{aligned} & \text { (9-seed } \\ & \text { array) } \end{aligned}$	NA (No 2D figures of E and Tdistributi ons)	NA (No 2D figures of E and T- distributi ons)	NA (No 2D figures of E and T - distributi ons)	$\begin{aligned} & \hline(\{1250, \\ & 2625\}, \\ & 100 \cdot 10^{-6}, \\ & 100, \mathrm{NA}, 1) \end{aligned}$	NA	$\begin{array}{\|l\|} \hline[4 \\ 9] \end{array}$

Simulations of electric-field distribution				Simulations of temperature distribution											Validation		
SE-IRE(th)				$\mathrm{S}_{3 \Delta \mathrm{t} 13}$			$\mathrm{S}_{\text {tT13 }}$					Parameters for meta-analysis					
Average $\mathrm{E}_{\text {IRE(} \mathrm{th})}$	Size	Position	Number	Size	Position	Number	$\mathrm{S}_{\triangle \text { T13 }}$	Position	Number	Tinit and $\mathrm{T}_{\text {max }}$ range	Additional Details	$\mathrm{S}_{\text {E-IRE }}(\mathrm{th}), \Sigma$	$\mathrm{R}_{3} \mathrm{TVT13}$	$\mathrm{R} \Delta \mathrm{T} 13$	Experiment al Pulse Parameters ($\mathrm{V}_{\mathrm{p}}, \mathrm{t}_{\mathrm{p}}, \mathrm{N}_{\mathrm{P}}$, $\tau_{\mathrm{p}}, \mathrm{f}_{\mathrm{p}}$)	Paramet ers attempt ed to validate	$\begin{aligned} & \hline \mathrm{Re} \\ & \mathrm{f} \end{aligned}$
[$\left.\mathrm{V} \cdot \mathrm{m}^{-1}\right]$	[m²]			[m²]			[m²]			[${ }^{\circ} \mathrm{C}$]		[m²]	[\%]	[\%]	$\begin{aligned} & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$		
NA (No 2D figures of E and T- distribut ions)	NA (No 2D figures of E and T - distributi ons)	NA (No 2D figures of E and T- distributi ons)	NA (No 2D figures of E and T- distributi ons)	NA (No 2D figures of E and Tdistributi ons)	NA (No 2D figures of E and T distributi ons)	NA (No 2D figures of E and T - distributi ons)	NA (No 2D figures of E and Tdistributi ons)	NA (No 2D figures of E and Tdistributi ons)	NA (No 2D figures of E and T- distributi ons)	[37,39]	$\begin{aligned} & \text { (39-seed } \\ & \text { array) } \end{aligned}$	NA (No 2D figures of E and T distributi ons)	NA (No 2D figures of E and T- distributi ons)	NA (No 2D figures of E and T distributi ons)	$\begin{aligned} & (\{1250, \\ & 2625\}, \\ & 100 \cdot 10^{-6}, \\ & 100, \mathrm{NA}, 1) \end{aligned}$	NA	$\begin{aligned} & \hline[4 \\ & 9] \\ & \hline \end{aligned}$
950.102	NTA	NA	NTA	NTA	NTA	$\begin{aligned} & \hline(500,\{10, \\ & 50,100\}, \\ & \{10,50,99\}, \\ & 10) \end{aligned}$	$\mathrm{E}_{\text {IRE(th) }}$	$\begin{aligned} & \hline[5 \\ & 0] \end{aligned}$									
$\begin{aligned} & 387.5 \cdot 10 \\ & 2 \end{aligned}$	NTA	NA	NTA	NTA	NTA	$\begin{aligned} & \hline(\{[1050, \\ & 1125], \\ & 2100\}, \\ & 100 \cdot 10-6, \\ & 90, \mathrm{NA}, \mathrm{NR}) \\ & \text { (Monopolar } \\ & \text { electrode) } \\ & \hline \end{aligned}$	NA	$\begin{aligned} & \hline[5 \\ & 1] \end{aligned}$									
$\begin{aligned} & 387.5 \cdot 10 \\ & 2 \end{aligned}$	NTA	NA	NTA	NTA	NTA	$\begin{aligned} & \hline(\{1500, \\ & 20000, \\ & 100 \cdot 10^{-6}, \\ & 90, \text { NA, NR) } \\ & \text { (Bipolar } \\ & \text { electrode) } \\ & \hline \end{aligned}$	NA	$\begin{aligned} & \hline[5 \\ & 1] \end{aligned}$									
650-102	NTA	NA	NTA	NTA	NTA	$\begin{aligned} & \hline(\{2000, \\ & 2100,2250, \\ & 2400, \\ & 2500\}, \\ & \left\{70 \cdot 10^{-6},\right. \\ & \left.100 \cdot 10^{-6}\right\}, \\ & \{70,90\}, \\ & \text { NR, NR }) \\ & \hline \end{aligned}$	$\mathrm{EIIRE}_{\text {(th) }}$	$\begin{aligned} & \hline[5 \\ & 2] \end{aligned}$									
580.102	NA (No 2D Tempera ture)	NA (No 2D Tempera ture)	NA (No 2D Tempera ture)	NA (No 2D Temperat ure)	NA (No 2D Temperat ure)	NA (No 2D Temperat ure)	NA (No 2D Tempera ture)	NA (No 2D Tempera ture)	NA (No 2D Tempera ture)	NR	NA	NA (Reason: No 2D Tempera ture)	NA (Reason: No 2D Tempera ture)	NA (Reason: No 2D Tempera ture)	NA	NA	$\begin{aligned} & \hline[5 \\ & 3] \end{aligned}$
NA	NTA		NTA	NTA	NTA	$\begin{aligned} & \hline([120,240, \\ & 360,480, \\ & 600,720], \\ & 50 \cdot 10^{-6}, 99, \\ & \mathrm{NA}, 4) \\ & \hline \end{aligned}$	NA	$\begin{aligned} & \hline[5 \\ & 4] \end{aligned}$									
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	$\begin{aligned} & \Delta \mathrm{T}=34 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \left(\mathrm{V}_{\mathrm{P}}=\right. \\ & 1000 \mathrm{~V}, \emptyset \end{aligned}$	NA	NA	NA	NA	NA	[5 $5]$

Simulations of electric-field distribution				Simulations of temperature distribution											Validation		
				$\mathrm{S}_{3 \Delta \mathrm{~T} 13}$			$\mathrm{S}_{\Delta T 13}$					Parameters for meta-analysis					
Average $\mathrm{E}_{\text {IRE(} \mathrm{H})}$	Size	Position	Number	Size	Position	Number	$\mathrm{S}_{\Delta T 113}$	Position	Number	$\mathrm{T}_{\text {init }}$ and $\mathrm{T}_{\text {max }}$ range	Additional Details	SE-IRE(th),	$\mathrm{R}_{3} \mathrm{TVT13}^{\text {a }}$	$\mathrm{R}_{\triangle \text { ¢ }} 13$	Experiment al Pulse Parameters $\left(V_{p}, t_{p}, N_{p}\right.$, $\left.\tau_{\mathrm{p}}, \mathrm{f}_{\mathrm{p}}\right)$	Paramet ers attempt ed to validate	fe
[$\left.\mathrm{V} \cdot \mathrm{m}^{-1}\right]$	[m²]			[m²]			[m²]			${ }^{[} \mathrm{C}$]		[${ }^{2}$]	[\%]	[\%]	$\begin{aligned} & \text { ([V], [s], [-], } \\ & [\mathrm{s}],[\mathrm{Hz}]) \\ & \hline \end{aligned}$		
											$\begin{aligned} & \hline 300 \cdot 10^{-6} \\ & \text { s) } \\ & \hline \end{aligned}$						
NA	NTA	NA	NTA	NTA	NTA	$\begin{aligned} & (\{1250, \\ & 1800,2100, \\ & 2625\}, \\ & \{70 \cdot 10 \cdot 6, \\ & 100 \cdot 10 \cdot 6\}, \\ & \{90,100\}, \\ & \text { NA, }\{1, \\ & \text { CAR }\}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline\left\{\text { EIrE }^{\text {(th) }},\right. \\ & \sigma_{\text {init }} \\ & \left.\sigma_{\text {max }}\right\} \end{aligned}$	$\begin{aligned} & \hline[5 \\ & 6] \end{aligned}$									
NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NA	NTA	NTA	NTA	$\begin{aligned} & \{\{0: 200: 800 \\ & 1600\}, \\ & 50 \cdot 10-6, \\ & \{0: 10: 100\}, \\ & 1) \end{aligned}$	$\mathrm{E}_{\text {IRE(th) }}$	$\begin{aligned} & \hline[5 \\ & 7] \end{aligned}$
NA (No 2d temperat ure distribut ion)	NA (No 2d temperat ure distributi on) PA	NA (No 2d temperat ure distributi on)	NA (No 2d temperat ure distributi on) N	NA (No 2d temperat ure distributi on)	NA (No 2d temperat ure distributi on) NA	NA (No 2d temperat ure distributi on) 符	NA (No 2d temperat ure distributi on)	NA (No 2d temperat ure distributi on) NA	NA (No 2d temperat ure distributi on) NA	NA (No 2d tempera ture distribu tion)	NA	NA (No 2d temperat ure distributi on)	NA (No 2d temperat ure distributi on) NA	NA (No 2d temperat ure distributi on) NA	NA	No	$\begin{aligned} & {[5} \\ & 8] \end{aligned}$
NA (No 2D figure of T- distribut ion)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on) R	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on) R		$\begin{aligned} & \hline[37, \\ & 46.49] \end{aligned}$	$\begin{aligned} & \hline \text { (Homogen } \\ & \text { eous } \\ & \text { model) } \end{aligned}$	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T-- distributi on)	$\begin{aligned} & (200,70 \cdot 10- \\ & 6,50, \mathrm{NA}, 4) \end{aligned}$	NA	$\begin{aligned} & \hline[5 \\ & 9] \end{aligned}$
NA (No 2D figure of T- distribut ion)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	$\begin{aligned} & \hline[37, \\ & 42.66] \end{aligned}$	(Heteroge neous model; σ; Submucos a: $\sigma_{\text {init }}=$ $0.1 \mathrm{~S} \cdot \mathrm{~m}^{-1}$; Mucosa (No villi): $\sigma_{\text {init }}=0.8$ $\mathrm{S} \cdot \mathrm{m}^{-1}$; Mucosa (Villi): $\sigma_{\text {init }}$ $=0.8 \mathrm{~S} \cdot \mathrm{~m}^{-}$ 1)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	NA (No 2D figure of T- distributi on)	$\begin{aligned} & \left(200,70 \cdot 10^{-}\right. \\ & 6,50, \mathrm{NA}, 4) \end{aligned}$	NA	$\begin{aligned} & \hline[5 \\ & 9] \end{aligned}$
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	$\begin{aligned} & {[20,} \\ & 39.5] \end{aligned}$		NA	NA	NA	$\begin{aligned} & ([0: 100: 800 \\ &],\left\{50 \cdot 10^{-6},\right. \\ & 100 \cdot 10^{-6}, \\ & 200 \cdot 10-6\}, \\ & \hline \end{aligned}$	T	$\begin{aligned} & {[6} \\ & 0] \end{aligned}$

Simulations of electric-field distribution				Simulations of temperature distribution													
SE-IRE(th)				S 3 IT13			$S_{\text {ST13 }}$			Tinit and $\mathrm{T}_{\text {max }}$ range	Additional Details	Parameters for meta-analysis			Validation		$\begin{aligned} & \text { Re } \\ & \mathrm{f} \end{aligned}$
Average $\mathrm{E}_{\text {IRE(}}(\mathrm{th})$	Size	Position	Number	Size	Position	Number	$\mathrm{S}_{\Delta \mathrm{T} 13}$	Position	Number				$\mathrm{R}_{3} \mathrm{TVT13}$	$\mathrm{R}_{\triangle \text { t } 13}$	Experiment al Pulse Parameters ($\mathrm{V}_{\mathrm{P}}, \mathrm{t}_{\mathrm{p}}, \mathrm{N}_{\mathrm{P}}$, $\left.\tau_{\mathrm{p}}, \mathrm{f}_{\mathrm{p}}\right)$	Paramet ers attempt ed to validate	
[$\mathrm{V} \cdot \mathrm{m}^{-1}$]	[m²]			[m²]			[m²]			[$\left.{ }^{\circ} \mathrm{C}\right]$		[m²]	[\%]	[\%]	$\begin{aligned} & ([\mathrm{V}],[\mathrm{s}],[-], \\ & [\mathrm{s}],[\mathrm{Hz}]) \\ & \hline \end{aligned}$		
															$\begin{aligned} & \{8, \\ & [30: 20: 90]\}, \\ & \mathrm{NA}, 1) \\ & \hline \end{aligned}$		
NA (No 2D figures of E- and T- distribut ions)	NA (No 2D figures of E - and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E - and T distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E - and T distributi ons)	NA (No 2D figures of E - and Tdistributi ons)	NA (No 2D figures of E - and T distributi ons)	NR	NA	NA (No 2D figures of E - and Tdistributi ons)	NA (No 2D figures of E - and Tdistributi ons)	NA (No 2D figures of E - and Tdistributi ons)	$\begin{aligned} & (450, \\ & 100 \cdot 10^{-6}, \\ & 50, \mathrm{NA}, 1) \end{aligned}$	$\mathrm{E}_{\text {IRE(}}$ (h)	$\begin{aligned} & {[6} \\ & 1] \end{aligned}$
NA (No 2D figures of E- and Tdistribut ions)	NA (No 2D figures of E- and T- distributi ons)	$\begin{aligned} & \text { NA } \\ & \text { (No 2D } \\ & \text { figures of } \\ & \text { E- and T- } \\ & \text { distributi } \\ & \text { ons) } \end{aligned}$	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and T- distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	$\begin{aligned} & {[37,} \\ & 100] \end{aligned}$	$\begin{aligned} & \hline \text { (Paramete } \\ & \text { rs used } \\ & \text { NC) } \end{aligned}$	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E - and Tdistributi ons)	$\begin{aligned} & \hline([1540, \\ & 3000], \\ & 90 \cdot 10^{-6},\{20, \\ & 70\} \text { NR, NR) } \end{aligned}$	NA	$\begin{aligned} & \hline[6 \\ & 2] \end{aligned}$
NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NA	NTA	NTA	NTA	$\begin{aligned} & \hline(\{1250, \\ & 1750, \\ & 2250\}, \\ & 100 \cdot 10-6, \\ & 100, \mathrm{NA}, 1) \end{aligned}$	$\begin{aligned} & \{\sigma, \\ & \left.\mathrm{E}_{\operatorname{IRE}(\mathrm{th})}\right\} \end{aligned}$	$\begin{aligned} & {[6} \\ & 3] \end{aligned}$
NA (1D simulati on)	NA (1D simulatio n)	NA (1D simulatio n)	NA (1D simulatio n)	NA (1D simulatio n)	NA (1D simulatio n)	NA (1D simulatio n)	$\begin{aligned} & \hline \text { NA } \\ & \text { (1D } \\ & \text { simulatio } \\ & \text { n) } \end{aligned}$	NA (1D simulatio n)	NA (1D simulatio n)	[37, 92]	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{P}}= \\ & 1500 \mathrm{~V}, \\ & \text { model } \\ & \text { excluding } \\ & \text { blood } \\ & \text { perfusion }) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { (1D } \\ & \text { simulatio } \\ & \text { n) } \end{aligned}$	NA (1D simulatio n)	$\begin{aligned} & \hline \text { NA } \\ & \text { (1D } \\ & \text { simulatio } \\ & \mathrm{n} \text {) } \end{aligned}$	NA	NA	$\begin{aligned} & \hline[6 \\ & 4] \end{aligned}$
NA (1D simulati on)	$\begin{aligned} & \hline \text { NA } \\ & \text { (1D } \\ & \text { simulatio } \\ & \text { n) } \end{aligned}$	NA (1D simulatio n)	NA (1D simulatio n)	NA (1D simulatio n)	NA (1D simulatio n)	$\begin{aligned} & \hline \text { NA } \\ & (1 \mathrm{D} \\ & \text { simulatio } \\ & \mathrm{n}) \end{aligned}$	NA (1D simulatio n)	NA (1D simulatio n)	$\begin{aligned} & \hline \text { NA } \\ & \text { (1D } \\ & \text { simulatio } \\ & \text { n) } \end{aligned}$	[37, 53]	${ }^{\left(V_{P}\right.}=$ 2000V, model including blood perfusion)	NA (1D simulatio n)	$\begin{aligned} & \hline \text { NA } \\ & \text { (1D } \\ & \text { simulatio } \\ & \mathrm{n}) \end{aligned}$	NA (1D simulatio n)	NA	NA	$\begin{aligned} & \hline[6 \\ & 4] \end{aligned}$
NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NA	NTA	NTA	NTA	(\{2000, 2250, 2400, 2500, 2700\}, $\left\{70 \cdot 10^{-6}\right.$, $\left.100 \cdot 10^{-6}\right\}$, $\{70,90\}$, NR, NR)	EIRE(h)	$\begin{aligned} & \hline[6 \\ & 5] \end{aligned}$
$700 \cdot 10^{2}$	$\begin{aligned} & 5.078 \cdot 10^{-} \\ & 5 \end{aligned}$	Surroun ding	1	0	0	0	0	0	0	$\begin{aligned} & \hline[37, \\ & 38.9] \\ & \hline \end{aligned}$	NA	$\begin{aligned} & 6.635 \cdot 10 \\ & 5 \end{aligned}$	0	0	$\begin{aligned} & 600,50 \cdot 10 \\ & 6,\{10,45, \\ & \hline \end{aligned}$	NA	[6 $6]$

Simulations of electric-field distribution				Simulations of temperature distribution								Parameters for meta-analysis			Validation				
SE-RE(th)				$\mathrm{S}_{3 \Delta \mathrm{t} 13}$			$\mathrm{S}_{\text {tT13 }}$												
Average $\mathrm{E}_{\text {IRE(} \mathrm{th})}$	Size	Position	Number	Size	Position	Number	$\mathrm{S}_{\Delta \mathrm{T} 13}$	Position	Number	$\begin{aligned} & \hline \mathrm{T}_{\text {init }} \text { and } \\ & \mathrm{T}_{\max } \\ & \text { range } \end{aligned}$	Additional Details		$\mathrm{R}_{3 \Delta \mathrm{~T} 13}$	$\mathrm{R} \Delta \mathrm{T} 13$			Experiment al Pulse Parameters ($\mathrm{V}_{\mathrm{p}}, \mathrm{t}_{\mathrm{p}}, \mathrm{N}_{\mathrm{p}}$, $\tau_{\mathrm{p}}, \mathrm{f}_{\mathrm{p}}$)	Paramet ers attempt ed to validate	$\overline{\mathrm{Re}}$
[$\left.\mathrm{V} \cdot \mathrm{m}^{-1}\right]$	[m²]			[m²]			[m²]			[$\left.{ }^{\circ} \mathrm{C}\right]$		[${ }^{2}$]	[\%]	[\%]	$\text { ([V], [s], , }[-],$ $[\mathrm{s}],[\mathrm{Hz}])$				
		$\begin{aligned} & \text { needle } \\ & \text { electrode } \end{aligned}$													$\begin{aligned} & 90,180, \\ & 270,450, \\ & 540\}, \mathrm{NA}, 1) \end{aligned}$				
700-102	$\begin{aligned} & 1.557 \cdot 10- \\ & 5 \end{aligned}$	At the outer edge of the surface electrode , close to the needle electrode	1	0	0	0	0	0	0	NA	NA	$\begin{aligned} & 6.635 \cdot 10^{-} \\ & 5 \end{aligned}$	0	0	$\begin{aligned} & (600,50 \cdot 10 \\ & 6,\{10,45, \\ & 90,180, \\ & 270,450 \\ & 540\}, \mathrm{NA}, 1) \end{aligned}$	NA	$\begin{aligned} & {[6} \\ & 6] \end{aligned}$		
NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NA	NTA	NTA	NTA	$\begin{aligned} & \text { ([1650,285 } \\ & 0], 90 \cdot 10-6, \\ & \text { NR, NR, NR) } \\ & \hline \end{aligned}$	Eire(th)	$\begin{aligned} & \hline[6 \\ & 7] \end{aligned}$		
NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NA	NTA	NTA	NTA	$\begin{aligned} & \text { (NR, [70•10- } \\ & \left.6,90 \cdot 10^{-6}\right], \\ & \{10,80\}, \\ & \mathrm{NA}, \mathrm{NR} \text {) } \\ & \\ & \text { (Per } \\ & \text { treatment, a } \\ & \text { patient } \\ & \text { received } 90 \\ & \text { pulses) } \\ & \hline \end{aligned}$	$\mathrm{EIRE}_{\text {(th) }}$	$\begin{aligned} & {[6} \\ & 8] \end{aligned}$		
NTA	NA	NTA	NA	NTA	NA	NTA	NA	NTA	NA	NTA	NA	NTA	NA	NTA	$\begin{aligned} & \text { ([500, } \\ & 1000], \text { NR, } \\ & \text { NR, NR, NR) } \end{aligned}$	NC	$\begin{aligned} & \hline[6 \\ & 9] \end{aligned}$		
NA (No 2D figures of E - and T- distribut ions)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E - and T - distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E - and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E - and Tdistributi ons)	NA (No 2D figures of E - and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E - and Tdistributi ons)	$\begin{aligned} & \hline[37, \\ & 45.2] \end{aligned}$	$\left(\mathrm{N}_{\mathrm{P}}=90\right)$	NA (No 2D figures of E - and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA	NA	$\begin{aligned} & \hline[7 \\ & 0] \end{aligned}$		
NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NA	NTA	NTA	NTA	NA	NA	[7 $1]$ 1		
NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NA	NTA	NTA	NTA	$\begin{aligned} & \hline\{150,350, \\ & 500\}, \\ & 100 \cdot 10 \cdot 6,\{8, \\ & 32,64\}, \mathrm{NA} . \\ & \text { 1) } \end{aligned}$	NA	$\begin{array}{\|l\|} \hline[7 \\ \hline 2] \\ 2] \end{array}$		

Simulations of electric-field distribution				Simulations of temperature distribution													
$\mathrm{S}_{\mathrm{E}-\mathrm{REE} \text { (th) }}$				$\mathrm{S}_{3 \Delta \mathrm{~T} 13}$			$\mathrm{S}_{\Delta T 13}$			$\begin{aligned} & \hline \mathrm{T}_{\text {init }} \text { and } \\ & \mathrm{T}_{\max } \\ & \text { range } \end{aligned}$	Additional Details	Parameters for meta-analysis			Validation		$\begin{array}{\|l\|} \hline \mathrm{Re} \\ \mathrm{f} \end{array}$
Average EIRE(th)	Size	Position	Number	Size	Position	Number	$\mathrm{S}_{\Delta \mathrm{T} 13}$	Position	Number			SE -IRE(th), $^{\text {c }}$	$\mathrm{R}_{3 \Delta \mathrm{~T} 13}$	$\mathrm{R} \Delta \mathrm{T} 13$	Experiment al Pulse Parameters $\left(V_{P}, t_{p}, N_{P}\right.$, $\left.\tau_{\mathrm{p}}, \mathrm{f}_{\mathrm{P}}\right)$	Paramet ers attempt ed to validate	
[$\left.\mathrm{V} \cdot \mathrm{m}^{-1}\right]$	[m²]			[m²]			[m²]			[$\left.{ }^{\circ} \mathrm{C}\right]$		[${ }^{2}$]	[\%]	[\%]	$\begin{aligned} & \text { ([V], [s], , [-], } \\ & [\mathrm{s}],[\mathrm{Hz}]) \end{aligned}$		
745-10 ${ }^{2}$	$\begin{aligned} & 5.532 \cdot 10^{-} \\ & 4 \end{aligned}$	Center	1	$\begin{aligned} & 5.821 \cdot 10^{-} \\ & 4 \end{aligned}$	Center	1	$\begin{aligned} & 1.2305 \cdot 1 \\ & 0^{-4} \end{aligned}$	\{Left, Right $\}$	2	[37, 67]	$\begin{aligned} & \text { (Cylinder, } \\ & \emptyset=1 \cdot 10^{-3} \\ & \mathrm{~m}, \mathrm{~V}_{\mathrm{P}}= \\ & 3000 \mathrm{~V}) \\ & \hline \end{aligned}$	$\begin{aligned} & 5.532 \cdot 10^{-} \\ & 4 \end{aligned}$	105.2	44.5	$\begin{aligned} & (450, \\ & 100 \cdot 10^{-6}, \\ & 80, \mathrm{NA}, 1) \end{aligned}$	Eire(th)	$\begin{aligned} & {[7} \\ & 3] \end{aligned}$
NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NA	NTA	NTA	NTA	$\begin{aligned} & \hline\{1000, \\ & 1250, \\ & 1500\}, \\ & 100 \cdot 10-6, \\ & 90, \mathrm{NA}, 1) \\ & \hline \end{aligned}$	EIre(th)	$\begin{aligned} & \hline[7 \\ & 4] \end{aligned}$
NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NA	NTA	NTA	NTA	$\begin{aligned} & (\{50,100\}, \\ & 100 \cdot 10^{-6}, \\ & 90,1, \mathrm{NA}) \\ & \hline \end{aligned}$	$\mathrm{E}_{\text {IRE(}}$ (h)	$\begin{aligned} & \hline[7 \\ & 5] \end{aligned}$
NA (No 2D figures of E - and T- distribut ions)	NA (No 2D figures of E - and T distributi ons)	NA (No 2D figures of E - and T distributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E - and Tdistributi ons)	NA (No 2D figures of E - and Tdistributi ons)	NA (No 2D figures of E - and Tdistributi ons)	NA (No 2D figures of E - and Tdistributi ons)	NR	NA	NA (No 2D figures of E- and Tdistributi ons)	NA (No 2D figures of E - and Tdistributi ons)	NA (No 2D figures of E - and Tdistributi ons)	$\begin{aligned} & (\{0,75,90, \\ & 100,115, \\ & 150,200, \\ & 300,400\}, \\ & 100 \cdot 10^{-6}, \\ & 100, \text { NA, } 1) \end{aligned}$	EIRE(th)	$\begin{aligned} & \hline[7 \\ & 6] \end{aligned}$
NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NA	NTA	NTA	NTA	$\begin{array}{\|l\|} \hline\left(100 \cdot 10^{-6},\right. \\ 70,1) \\ \hline \end{array}$	NA	$\begin{aligned} & \hline[7 \\ & 7] \\ & \hline \end{aligned}$
NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NA	NTA	NTA	NTA	$\begin{aligned} & \hline(\{200,400, \\ & 600,800, \\ & 1800\}, \\ & \left\{75 \cdot 10^{-6},\right. \\ & \left.100 \cdot 10^{-6}\right\}, \\ & \{1,10,30, \\ & 60\}, \mathrm{NA}, 1) \\ & \hline \end{aligned}$	NA	$\begin{aligned} & \hline[7 \\ & 8] \end{aligned}$
NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NTA	NA	NTA	NTA	NTA	$\begin{aligned} & \text { (3000, } \\ & 70 \cdot 10^{-6}, \\ & 200, \mathrm{NR}, \\ & \mathrm{NR}) \\ & \hline \end{aligned}$	NA	$\begin{aligned} & \hline[7 \\ & 9] \end{aligned}$
700-10 ${ }^{2}$	$4.26 \cdot 10^{-4}$	Center	1	${ }_{4} .592 \cdot 10^{-}$	Center	1	1.43•10 ${ }^{-4}$	Center	1	[26,65]	$\begin{aligned} & \hline\left(\omega_{b}=\right. \\ & 3.575 \cdot 10^{-3} \\ & \mathrm{~s}^{-1}, \text { Un- } \\ & \text { cooled } \\ & \text { electrode }) \end{aligned}$	$4.26 \cdot 10^{-4}$	37.4	33.57	$\begin{aligned} & ([2700, \\ & 3000], \\ & 100 \cdot 10^{-6}, \\ & \{300,400\}, \\ & \text { NA, } 1.5) \end{aligned}$	T	$\begin{aligned} & \hline[8 \\ & 0] \end{aligned}$
700-102	$4.06 \cdot 10^{-4}$	Center	1	$\begin{aligned} & 5.324 \cdot 10^{-} \\ & 5 \end{aligned}$	$\begin{aligned} & \hline \text { \{Left, } \\ & \text { Right }\} \end{aligned}$	2	0	NA	NA	[26, 46]	$\begin{aligned} & \left(\omega_{\mathrm{b}}=\right. \\ & 3.575 \cdot 10^{-3} \\ & \mathrm{~s}^{-1}, \text { Cooled } \\ & \text { electrode }) \end{aligned}$	$4.08 \cdot 10^{-4}$	26.1	0	$\begin{aligned} & ([2700, \\ & 3000], \\ & 100 \cdot 10^{-6}, \\ & \{300,400\}, \\ & \text { NA, } 1.5) \end{aligned}$	T	$\begin{aligned} & \hline[8 \\ & 0] \end{aligned}$

Simulations of electric-field distribution				Simulations of temperature distribution								Parameters for meta-analysis			Validation				
$\mathrm{S}_{\mathrm{E}-\mathrm{REP} \text { (H) }}$				${ }_{\text {Sasr13 }}$			$S_{\text {ST13 }}$												
Average EIRE(th)	Size	Position	Number	Size	Position	Number	$\mathrm{S}_{\text {¢ } 113}$	Position	Number	$\begin{aligned} & \hline \begin{array}{l} \text { Tinta } \\ \text { Tmax } \\ \text { Tran } \\ \text { range } \end{array} \end{aligned}$	Additional Details	SE-1/RE(t),	R3at13	Ratr ${ }^{\text {a }}$			Experiment al Pulse ($\mathrm{V}_{\mathrm{p},}, \mathrm{tp}_{\mathrm{p}}, \mathrm{N}_{\mathrm{p}}$,	Paramet ers attempt ed to validate	$\mathrm{c}_{\text {Re }}^{\text {f }}$
[$\left.\mathrm{V} \cdot \mathrm{m}^{-1}\right]$	[m^{2}]			[m²]			[m²]			[${ }^{\circ} \mathrm{C}$]		[m^{2}]	[\%]	[\%]	([V], [s], [-], [s], [Hz])				
$700 \cdot 10^{2}$	$2.04 \cdot 10^{-6}$	Top	1	0	NA	NA	0	NA	NA	NA	$\begin{aligned} & \hline \omega_{b}= \\ & 3.575 \cdot 10^{-3} \\ & \mathrm{~s}^{-1}, \text { Cooled } \\ & \text { electrode } \end{aligned}$	4.08:10.4	26.1	0	$([2700$, $300]$, $100 \cdot 10^{-6}$, $\{300,400\}$, NA, 1.5 $)$	Temper ature increase	${ }_{0}^{[8}$		

