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Abstract

In classical and non-adaptive data analysis, the target of interest is typically fixed in
advance, and a fixed number of samples are collected in an i.i.d. manner to conduct statistical
inference on the target. In many cases, however, data are collected and analyzed adaptively. For
example, in the multi-armed bandit setting, data are collected sequentially and adaptively such
that at every round, a sample is drawn from an arm which is selected based on the sampling
history so far. The sampling procedure can be stopped based on a data-driven stopping rule.
Furthermore, the adaptively collected data are often used to identify an interesting target and
the same data are used to conduct statistical inference on this target. Even though this kind
of adaptive scheme is prevalent in data analysis, theoretical justifications for commonly used
inference procedures are not yet sufficiently developed. This disparity challenges the validity
of decisions we make based on adaptive data analyses. In order to close the gap, the thesis
first focuses on the mean estimation problem for multi-armed bandits. We derive a qualitative
characterization of the adaptive mean estimation procedure which determines the sign of bias
of the sample mean for each arm. We provide sharp bounds on both the bias and the risk which
show that even though the sample mean is biased under adaptive schemes, the size of the risk
is as small as one can achieve under the non-adaptive i.i.d. setting.
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Chapter 1

Introduction

In many real-world settings, data are collected in an adaptive manner from several distributions (arms),
as captured by the classic stochastic multi-armed bandits (MAB) framework [Robbins, 1952]. The data
collection procedure (henceforth, algorithm) may have been primarily designed for purposes such as testing
a hypothesis, minimizing regret or identifying the best arm. In each round, the algorithm draws a sample
from one of the arms based on the previously observed data (adaptive sampling). The algorithm may also
be terminated based on a data-driven stopping rule rather than at a fixed time (adaptive stopping).

Even though mean estimation may not have been the primary objective, the sample means of arms
might nevertheless be calculated later on. For example, after identifying the best arm, it is natural to want
an estimate of its mean reward. In “off-policy evaluation” [Li et al., 2015], mean reward estimates from
a current policy are used to evaluate the performance of a different policy before actually implementing
the latter. An analyst can choose a specific target arm based on the collected data (adaptive choosing), for
example focusing on certain “promising” arms. Furthermore, the analyst may wish to analyze the data at
some past times, as if the experiment had stopped earlier (adaptive rewinding).

Among several possible mean estimators, we focus on the sample mean which is arguably the simplest
and most commonly used in practice. In the classical nonadaptive setting, the sample mean has favorable
properties. In particular, it is unbiased, consistent, and converges almost surely to the true mean, µ.
Additionally, under tail assumptions such as sub-Gaussian or sub-exponential conditions, the sample mean
is tightly concentrated around µ. Lastly, the sample mean has minimax optimal risk with respect to suitable
loss functions such as the `2 loss for distributions with a finite variance and the Kullback-Leibler (KL) loss
for distributions in a natural exponential family.

In this thesis, we study the bias, risk and consistency of sample means under all four aforementioned
notions of adaptivity (henceforth called the “fully adaptive setting”). As a qualitative analysis, we first
derive a characterization of the adaptive mean estimation procedure which determines the sign of the
unconditional bias of the sample mean, i.e., the bias obtained by accounting for all possible outcomes of the
MAB experiment (Chapter 2). Then, we extend it to the conditional bias case in which the sample means
of the arms are counted only when certain outcomes have occurred (Chapter 3). As a quantitative analysis,
we provide sharp bounds on both the bias and the risk which show that even though the sample mean is
biased under adaptive schemes, the size of the risk is as small as one can achieve under the non-adaptive
i.i.d. setting which also demonstrates that the size of bias is small(Chapter 4). These results are based on a
recent publication and preprints [Shin et al., 2019a,b, 2020].

Before presenting accomplished results in this thesis , we briefly introduce the stochastic multi-armed
model and formalize the four notions of adaptivity.
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1.1 The stochastic multi-armed bandit model

Let P1, . . . , PK be K distributions of K arms with finite means µk =
R
xdPk(x). If it is clear from

context, every inequality and equality between two random variables is understood in the almost sure sense.

1.1.1 Four sources of adaptivity in MABs

Data collection and inference procedures based on stochastic MAB algorithms consist of the following
sampling, stopping, choosing and rewinding rules:

• Sampling: For each time t � 1, choose a possibly randomized index of arm At from a multinomial
distributionMulti(1, ⌫t) 2 {0, 1, . . . ,K}. Then, we draw a sample (also called a reward) Yt from
the chosen arm PAt . Here, ⌫t 2 [0, 1]K refers to conditional probabilities of sampling each arm
defined by

⌫t(k) := ⌫t(k | Dt�1) 2 [0, 1] 8k 2 [K],

with the constraint
PK

k=1 ⌫t(k) = 1, and Dt�1 refers to observed data up to time t� 1 including all
possible external random sources. If each ⌫t does not depend on the previous data Dt�1, we call it a
nonadaptive sampling rule.
With a proper choice of ⌫t, this sampling rule captures a broad class of existing methods including
fixed design, random allocation, ✏-greedy [Sutton and Barto, 1998], upper confidence bound (UCB)
algorithms [Auer et al., 2002, Audibert and Bubeck, 2009, Garivier and Cappé, 2011, Kalyanakr-
ishnan et al., 2012, Jamieson et al., 2014] and Thompson sampling [Thompson, 1933, Agrawal and
Goyal, 2012, Kaufmann et al., 2012]. To be specific, ✏-greedy, UCB, and Thomson sampling have
the following sampling rules.

✏-greedy algorithm : For any k 2 [K] and t 2 [T ],

⌫t(k) =

(
1� ✏ if k = argmaxj2[K] bµj(t� 1),

✏
K�1 otherwise.

UCB : For any k 2 [K] and t 2 [T ],

⌫t(k) =

(
1 if k = argmaxj2[K] bµj(t� 1) + ut�1(Sj(t� 1), Nj(t� 1)),

0 otherwise,

where (s, n) 7! ut�1(s, n) is a non-negative function which is increasing and decreasing with
respect to the first and second inputs respectively for each t. For example, a simple version of

UCB uses ut�1(s, n) =
q

2 log(1/�)
n for a properly chosen constant � 2 (0, 1).

Thompson sampling : For any k 2 [K] and t 2 [T ],

⌫t(k) / ⇡(k = argmax
j

µj | A1, Y1, . . . , At�1, Yt�1).

where ⇡ is a prior on (µ1, . . . , µK) or, more generally, on parameters of arms (✓1, . . . , ✓K).
In particular, if underlying arms are Gaussian with common variance �

2 and if we impose
independent Gaussian priorN(µk,0,�

2
0) on each arm k, the corresponding Thompson sampling

is statistically equivalent to the following rule.

⌫t(k) =

(
1 if k = argmaxj2[K] eµj(t� 1) + �j(t� 1)Zj,t�1

0 otherwise,

2



where each Zj,t�1 is an independent draw from N(0, 1) and eµj(t � 1),�k(t � 1) are the
posterior mean and standard deviation of arm j, given as

eµj(t� 1) =
µj,0/�

2
0 +Nj(t� 1)bµj(t� 1)/�2

1/�2
0 +Nj(t� 1)/�2

, �j(t� 1) =
�
1/�2

0 +Nj(t� 1)/�2
��1/2

.

With a slight abuse of notation, we denote with ⌫ = {⌫t}t�1 the sampling rule. If, for each t, the
sampling rule ⌫t is independent of the arm realization observed so far, namely Y1, . . . , Yt�1 (but not
necessarily of the sampling history A1, . . . , At�1), we call it a nonadaptive sampling rule.

• Stopping: Given a sampling rule, let {Ft} be a filtration such that each At is F t�1-measurable and
each Yt andDt are F t-measurable. Let T be a stopping time with respect to the filtration {Ft}. Then,
for each time t, the stopping event {T = t} is F t-measurable which can be used to characterize a
stopping rule of a MAB algorithm.
For example, the following stopping time corresponds to the stopping rule in which we stop whenever
the absolute difference between sample means for arm 1 and arm 2 exceeding a fixed threshold
� > 0:

T := inf {t � 1 : |bµ1(t)� bµ2(t)| > �} .
Here, we refer bµk(t) to the sample mean for arm k defined as

bµk(t) :=
Sk(t)

Nk(t)
, (1.1)

where Sk(t) and Nk(t) are the running sum and number of draws for arm k defined respectively
Sk(t) :=

Pt
s=1 (As = k)Ys and Nk(t) :=

Pt
s=1 (As = k) for each k 2 [K] and t � 1.1 Note

that, by the construction, Sk(t), bµk(t) are F t-measurable and Nk(t) is F t�1-measurable for each
k 2 [K] and t � 1.
If a stopping rule is nonadaptive, that is, if the corresponding stopping time is F0-measurable, we
use T instead of T to refer the stopping time which includes all fixed time and, more generally, all
data-independent stopping rules.

• Choosing: After stopping, letDT denote collected data up to the stopping time T . Based onDT with
possible randomization, we choose a data-dependent arm based on a choosing rule  : DT 7! [K].
In this thesis, we denote the index of chosen arm (DT ) by  for simplicity.
For example, in the best arm identification, we often choose the best arm as the arm with the
largest sample mean at the stopping time T . In this case, the choosing rule is given as  =
argmaxk2[K] bµk(T ). If  does not depend on the observed data, we call it a nonadaptive choosing
rule.

• Rewinding: Optionally, we may adaptively rewind the clock to focus on a previous random time
⌧  T to characterize the past behavior of a chosen sample mean bµ(⌧). The rewound time ⌧ is
assumed to be measurable with respect to FT ; in particular, it is not a stopping time. For instance,
⌧ = argmaxtT bµ(t) is a rewound time. We may care about the bias of the sample mean at this
“extreme” time ⌧ . If we do not rewind, then ⌧ = T .

The phrase “fully adaptive setting” refers to the scenario of running an adaptive sampling algorithm
until an adaptive stopping time T , and asking about the sample mean of an adaptively chosen arm  at
an adaptively rewound time ⌧ . When we are not in the fully adaptive setting, we explicitly mention what
aspects are adaptive.

1Throughout this thesis, we assume Nk(t) � 1 whenever we make a statement about the sample mean bµk(t).
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1.1.2 The tabular model of stochastic MABs

To analyze the theoretical properties of a MAB experiment, it is convenient to express it using an infinite
tabular representation of the arm rewards. In the tabular model, we assume that each observation Yt comes
from an imaginary N ⇥ K table or stacks of samples {X⇤

i,k}i2N,k2[K] := X
⇤
1 where each X

⇤
i,k is an

independent draw from Pk, and the observation Yt is equal to X⇤
i,k if Nk(t) = i and At = k. Here, we put

an asterisk to clarify that it is counterfactual and not necessarily observable.
Now, given a MAB algorithm, let Wt be a random variable which accounts for all possible external

randomness of the algorithm for each time t. Next, we define D⇤
1 = X

⇤
1 [ {Wt}1t=0 as the collection

of all possible arm rewards and external randomness. Then, given D⇤
1, every property and outcome of a

MAB experiment becomes a deterministic function of D⇤
1. In particular T ,  and Nk(t), for each t and

k, can be expressed as some functions of D⇤
1. For instance, given the above tabular MAB setup (which

is statistically indistinguishable from the setup described in the previous subsection), one may then find
deterministic functions ft,k and f⇤

k such that

Nk(T ) =
X

t�1

(At = k) (T � t)| {z }
F t�1-measurable

=
X

t�1

ft,k(Dt�1) ⌘ f
⇤
k (D⇤

1). (1.2)

Specifically, the function ft,k(·) evaluates to one if and only if we do not stop at time t� 1, and pull arm k

at time t. Indeed, given D⇤
1, the stopping time T is deterministic and so is the number of times Nk(T )

that a fixed arm k is pulled, and this is what f⇤
k captures. Along the same lines, the number of draws from a

chosen arm  at stopping time T can be written in terms of the tabular data as

N(T ) =
KX

k=1

( = k)Nk(T ) ⌘
kX

k=1

g
⇤
k(D⇤

1)f⇤
k (D⇤

1) (1.3)

for some deterministic set of functions {g⇤k}. Indeed, g⇤k evaluates to one if after stopping, we choose arm
k, which is a fully deterministic choice given D⇤

1.

1.2 What the bias means and why the sample mean is based in MABs

We finish the introduction by defining the notion of the bias and presenting an intuitive explanation why
the sample mean is based in MABs, especially under adaptive sampling, stopping and choosing rules. Let
bµ(T ) be the sample mean of chosen arm  at a stopping time T . We first formally define the bias of the
sample mean as follows:
Definition 1.1. The (unconditional) bias of the sample mean of chosen arm  at a stopping time T is
defined by

E [bµ(T )� µ] =
KX

k=1

P ( = k) {E [bµk(T ) |  = k]� µk} , (1.4)

where each E [bµk(T ) |  = k]� µk is the bias of the sample mean of arm k conditioned on the selection
event { = k}. For general conditioning event C, the conditional bias of the sample mean of arm k defined
by

E [bµk(T ) | C]� µk, (1.5)

for each k 2 [K].

4



Note that the unconditional bias accounts for all possible outcomes of the MAB experiment. On the
other hand, for the conditional bias case, the sample means of the arms are counted only when certain
outcomes have occurred.

Biases induced by adaptive stopping and choosing rules are more straightforward to understand than
the bias from the adaptive sampling rule since many MAB algorithms seem to cherry-pick a specific arm or
time index at which the sample mean of the chosen arm at the chosen time looks like significantly different
from the one of other arms at previous times. As an example of the bias induced by an adaptive stopping
rule, consider sequential testing procedures for detecting the mean difference between two arms. In this
case, most testing procedures are designed to be stopped and reject the null (no difference) whenever a
test statistic based on sample means are crossing a boundary. Since the test statistic can cross boundary
not only because of the underlying true mean difference but also because of random fluctuations, we can
expect that the sample mean is based when the test stopped.

Similarly, as an example of the bias induced by an adaptive choosing rule, suppose we can collect the
same number of observations from each arm and choose the one with the largest sample mean as the best
arm. Again, since the largest sample mean can result both from sizes of true means of underlying arms and
randomness of observations, the sample mean would be biased for the chosen arm.

The bias from the adaptive sampling is more subtle. Suppose we are interested in a predetermined arm
k at a fixed time T . Then, the sample mean of arm k at time t can be written as follows:

bµk(T ) =
1

Nk(T )

TX

t=1

(At = k)Yt

=
1

Nk(T )

Nk(T )X

i=1

X
⇤
i,k,

where Yt is the observation at time t and X
⇤
i,k is the i-th observation from arm k for i = 1, . . . , Nk(T ).

From the second expression of the sample mean, we know that the sample mean can be biased if each X⇤
i,k

and Nk(T ) are correlated. That is, the adaptive sampling rule can induce the bias of the sample mean if
the sampling rule decides whether to draw more or less samples depending on each current observation
from arm k. For example, in many regret minimization MAB algorithms including ✏-greedy, UCB and
Thompson sampling, the sample rule is designed to draw more samples from arms whose sample means
larger than the other. Hence, this type of sampling rule would induce a negative correlation between
1/Nk(T ) and X⇤

i,k which can result in the negative bias of the sample mean.
These intuitive explanations why the sample mean is based in MABs will be formalized by introducing

the notion of “optimality” and “monotonicity” properties of rules in the following chapter.
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Chapter 2

Sign of the unconditional bias of the sample

mean

In this chapter, we provide a comprehensive understanding of the sign of the (unconditional) bias of the
sample mean, decoupling the effects of adaptive sampling, stopping and choosing. Specifically, in a general
and unified MAB framework, we first define natural notions of monotonicity (a special case of which we
call “optimism”) of sampling, stopping and choosing rules. Under no assumptions on the distributions
beyond assuming that their means exist, we show that optimistic sampling provably results in a negative
bias, but optimistic stopping and optimistic choosing both provably result in a positive bias. Thus, the
net bias can be positive or negative in general. This message is in contrast to a recent thought-provoking
work by Nie et al. [2018] titled “Why adaptively collected data has a negative bias...” that is unfortunately
misleading for practitioners, since it only analyzed the bias of adaptive sampling for a fixed arm at a fixed
time.

As a concrete example, consider an offline analysis of data that was collected by an MAB algorithm
(with any aim). Suppose that a practitioner wants to estimate the mean reward of some of the better arms
that were picked more frequently by the algorithm. Nie et al. [2018] proved that the sample mean of each
arm is negatively biased under fairly common adaptive sampling rules. Although this result is applicable
only to a fixed arm at a fixed time, it could instill a possibly false sense of comfort with sample mean
estimates since the practitioner might possibly think that sample means are underestimating the effect size.
However, we prove that if the algorithm was adaptively stopped and the arm index was adaptively picked,
then the net bias can actually be positive. Indeed, we prove that this is the case for the lil’UCB algorithm
(Corollary 2.12), but it is likely true more generally as captured by our main theorem. Thus, the sample
mean may actually overestimate the effect size. This is an important and general phenomenon for both
theoreticians (to study further and quantify) and for practitioners (to pay heed to) because if a particular
arm is later deployed in practice, it may yield a lower reward than was possibly expected from the offline
analysis.

Related work and our contributions. Adaptive mean estimation, in each of the three senses described
above, has received much attention in both recent and past literature. Below, we discuss how our work
relates to past work, proceeding one notion at a time in approximate historical order.

We begin by noting that a single-armed bandit is simply a random walk, where adaptive stopping has
been extensively studied. The book by Gut [2009] on stopped random walks is an excellent reference,
summarizing almost 60 years of advances in sequential analysis. Most of these extensive results on random
walks have not been extended to the MAB setting, which naturally involves adaptive sampling and choosing.
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Of particular relevance is the paper by Starr and Woodroofe [1968] on the sign of the bias under adaptive
stopping, whose work is subsumed by ours in two ways: we not only extend their insights to the MAB
setting, but even for the one-armed setting, our results generalize theirs.

Characterizing the sign of the bias of the sample mean under adaptive sampling has been a recent
topic of interest due to a surge in practical applications. While estimating MAB ad revenues, Xu et al.
[2013] gave an informal argument of why the sample mean is negatively biased for “optimistic” algorithms.
Later, Villar et al. [2015] encountered this negative bias in a simulation study motivated by using MAB for
clinical trials. Most recently, Bowden and Trippa [2017] derived an exact formula for the bias and Nie et al.
[2018] formally provided conditions under which the bias is negative. Our results on “optimistic” sampling
inducing a negative bias generalize the corresponding results in these past works.

Most importantly, however, these past results hold only at a predetermined time and for a fixed
arm. Here, we put forth a complementary viewpoint that “optimistic” stopping and choosing induces a
positive bias. Indeed, one of our central conceptual contributions is an appropriate and crisp definition of
“monotonicity” and “optimism” (Definition 2.1), that enables a clean and general analysis.

Our main theoretical result, Theorem 2.10, allows the determination of the sign of the bias in several
interesting settings. Importantly, the bias may be of any sign when optimistic sampling, stopping and
choosing are all employed together. We demonstrate the practical validity of our theory using some
simulations that yield interesting insights in their own right.

2.1 The sign of the bias under adaptive sampling, stopping and choosing

2.1.1 Examples of positive bias due to “optimistic” stopping or choosing

In MAB problems, collecting higher rewards is a common objective of adaptive sampling rules, and hence
they are often designed to sample more frequently from a distribution which has larger sample mean than
the others. Nie et al. [2018] proved that the bias of the sample mean for any fixed arm and at any fixed
time is negative when the sampling rule satisfies two conditions called “Exploit” and “Independence of
Irrelevant Options” (IIO). However, the emphasis on fixed is important: their conditions are not enough
to determine the sign of the bias under adaptive stopping or choosing, even in the simple nonadaptive
sampling setting. Before formally defining our crucial notions of “optimism” in the next subsection, it is
instructive to look at some examples.
Example 2.1. Suppose we continuously alternate between drawing a sample from each of two Bernoulli
distributions with mean parameters µ1, µ2 2 (0, 1). This sampling rule is fully deterministic, and thus it
satisfies the Exploit and IIO conditions in Nie et al. [2018]. For any fixed time t, the bias equals zero for
both sample means. Define a stopping time T as the first time we observe +1 from the first arm. Then the
sample size of the first arm, N1(T ), follows a geometric distribution with parameter µ1, which implies that
the bias of bµ1(T ) is

E [bµ1(T )� µ1] = E


1

N1(T )

�
� µ1 =

µ1 log(1/µ1)

1� µ1
� µ1,

which is positive for all µ1 2 (0, 1).
This example shows that for nonadaptive sampling, adaptive stopping can induce a positive bias. In fact,

this example is not atypical, but is an instance of a more general phenomenon explored in the one-armed
setting in sequential analysis. For example, Siegmund [1978, Ch. 3] contains the following classical result
for a Brownian motion W (t) with positive drift µ > 0.
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Example 2.2. If we define a stopping time as the first time W (t) exceeds a line with slope ⌘ and intercept
b > 0, that is TB := inf{t � 0 : W (t) � ⌘t+b}, then for any slope ⌘  µ, we have E

h
W (TB)
TB � µ

i
= 1/b.

Note that a sum of Gaussians with mean µ behaves like a time-discretization of a Brownian motion with
drift µ; since EW (t) = tµ, we may interpret W (TB)/TB as a stopped sample mean, and the last equation
implies that its bias is 1/b, which is positive.

Generalizing further, Starr and Woodroofe [1968] proved the following remarkable result.
Example 2.3. If we stop when the sample mean crosses any predetermined upper boundary, the stopped
sample mean is always positive biased (whenever the stopping time is a.s. finite). Explicitly, choosing any
arbitrary sequence of real-valued constants {ck}, define Tc := inf{t : bµ1(t) > ct}, then as long as the
observations Xi have a finite mean and Tc is a.s. finite, we have E [bµ1(Tc)] � µ1.

Surprisingly, we will generalize the above strong result even further. Additionally, stopping times in
the MAB literature can be thought of as extensions of Tc and TB to a setting with multiple arms, and we
will prove that indeed the bias induced will still be positive. We end with an example of the positive bias
induced by “optimistic” choosing:
Example 2.4. Given K standard normals {Zi} (to be thought of as one sample from each of K arms),
let  = argmaxk Zk, that is, we choose the arm with the largest observation. It is well known that
E [Z] = E

⇥
maxk2[K] Zk

⇤
⇣

p
2 logK. Since EZk = 0 for all k, but EZ > 0, the “optimistic” choice

 induces a positive bias.
In many typical MAB settings, we should expect sample means to have two contradictory sources of

bias: negative bias from “optimistic sampling” and positive bias from “optimistic stopping/choosing”.

2.1.2 Positive or negative bias under monotonic sampling, stopping and choosing

Based on the expression (1.3), we formally state a characteristic of MAB algorithms which fully determines
the sign of the bias as follows.
Definition 2.1. For each k 2 [K], we say a MAB algorithm satisfies the “monotonic increasing (or
decreasing) property for arm k” if for any i 2 N, the function D⇤

1 7! ( = k) /Nk(T ), is an increasing
(or decreasing) function of X⇤

i,k while keeping all other entries in D⇤
1 fixed. Further, we say that

• A sampling rule is optimistic for arm k if the function D⇤
1 7! Nk(t) is an increasing function of

X
⇤
i,k while keeping all other entries in D⇤

1 fixed for any fixed i 2 N and t � 1;
• A stopping rule is optimistic for arm k if the function D⇤

1 7! T is a decreasing function of X⇤
i,k

while keeping all other entries in D⇤
1 fixed for any fixed i 2 N;

• A choosing rule is optimistic for arm k if the function D⇤
1 7! ( = k) is an increasing function of

X
⇤
i,k while keeping all other entries in D⇤

1 fixed for any fixed i 2 N.
Note that if a MAB algorithm consists of an optimistic sampling (or stopping or choosing) rule, with

the other components being nonadaptive, then the algorithm satisfies is the monotonically decreasing
(increasing) property. We remark that nonadaptive just means independent of the entries X⇤

i,k, but it is not
necessarily deterministic1. The above definition warrants some discussion to provide intuition.

Roughly speaking, with an optimistic stopping, if a sample from the k-th distribution was increased
while keeping all other values fixed, the algorithm would reach its termination criterion sooner. For instance,
TB from Example 2.2 and the criterion in Example 2.1 are both optimistic stopping rules. Most importantly,
boundary-crossing is optimistic:

1An example of a random but nonadaptive stopping rule: flip a (potentially biased) coin at each step to decide whether to stop.
An example of a random but nonadaptive sampling rule: with probability half pick a uniformly random arm, and with probability
half pick the arm that has been sampled most often thus far.
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Fact 2.5. The general boundary-crossing stopping rule of Starr and Woodroofe [1968], denoted Tc in
Example 2.3, is an optimistic stopping rule (and hence optimistic stopping is a weaker condition).

Optimistic stopping rules do not need to be based on the sample mean; for example, if {ct} is an
arbitrary sequence, then T := inf{t � 3 : Xt + Xt�2 � ct} is an optimistic stopping rule. In fact,
T` := inf{t � 3 : `t(X1, . . . , Xt) � ct} is optimistic, as long as each `t is coordinatewise nondecreasing.

For optimistic choosing, the previously discussed argmax rule (Example 2.4) is optimistic. More
generally, it is easy to verify the following:
Fact 2.6. For any probabilities p1 � p2 · · · � pK that sum to one, a rule that chooses the arm with the
k-th largest empirical mean with probability pk, is an optimistic choosing rule.

Turning to the intuition for optimistic sampling, if a sample from the k-th distribution was increased
while keeping all other values fixed, the algorithm would sample the k-th arm more often. We claim that
optimistic sampling is a weaker condition than the Exploit and IIO conditions employed by Nie et al.
[2018].
Fact 2.7. The “Exploit” and “IIO” conditions in Nie et al. [2018] together imply that the sampling rule is
optimistic (and hence optimistic sampling is a weaker condition). Further, as summarized in Appendix A.1,
✏-greedy, UCB and Thompson sampling (Gaussian-Gaussian and Beta-Bernoulli, for instance) are all
optimistic sampling rules.

For completeness, we prove the first part formally in Appendix A.1.1, which builds heavily on
observations already made in the proof of Theorem 1 in Nie et al. [2018]. Beyond the instances mentioned
above, Corollary A.2 in the supplement captures a sufficient condition for Thompson sampling with
one-dimensional exponential families and conjugate priors to be optimistic. We now provide an expression
for the bias that holds at any stopping time and for any sampling rule.
Proposition 2.8. Let T be a stopping time with respect to the natural filtration {Ft}. For each fixed
k 2 [K] such that 0 < ENk(T ) < 1, the bias of bµk(T ) is given as

E [bµk(T )� µk] = �Cov (bµk(T ), Nk(T ))

E [Nk(T )]
. (2.1)

The proof may be found in Appendix A.2.3. A similar expression was derived in Bowden and Trippa
[2017], but only for a fixed time T . In order to extend it to stopping times (that are allowed to be infinite,
as long as ENk(T ) < 1), we derive a simple generalization of Wald’s first identity to the MAB setting.
Specifically, recalling that Sk(t) = bµk(t)Nk(t), we show the following:
Lemma 2.9. Let T be a stopping time with respect to the natural filtration {Ft}. For each fixed k 2 [K]
such that ENk(T ) < 1, we have E[Sk(T )] = µkE[Nk(T )].

This lemma is also proved in Appendix A.2.3. Proposition 2.8 provides a simple, and somewhat
intuitive, expression of the bias for each arm. It implies that if the covariance of the sample mean of an arm
and the number of times it was sampled is positive (negative), then the bias is negative (positive). We now
formalize this intuition below, including for adaptively chosen arms. The following theorem shows that if a
MAB algorithm satisfies the monotonically increasing (or decreasing) property then the sample mean is
positively (or negatively) biased.
Theorem 2.10. Let T be a stopping time with respect to the natural filtration {Ft} and let  : DT 7! [K]
be a choosing rule. Suppose each arm has finite expectation and, for all k with P ( = k) > 0, we
have E [Nk(T )] < 1 and Nk(T ) � 1. If, for each arm, the MAB algorithm satisfies the monotonically
decreasing property, for example under optimistic sampling with nonadaptive stopping and choosing, then
we have

E [bµ(T ) |  = k]  µk, 8k : P( = k) > 0, (2.2)
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which also implies that
E [bµ(T )� µ]  0. (2.3)

Similarly if, for each arm, the MAB algorithm satisfies the monotonically increasing property, for example
under optimistic stopping with nonadaptive sampling and choosing, or under optimistic choosing with
nonadaptive sampling and stopping, then we have

E [bµ(T ) |  = k] � µk, 8k : P( = k) > 0, (2.4)

which also implies that
E [bµ(T )� µ] � 0. (2.5)

If each arm has a bounded distribution then the condition E [Nk(T )] < 1 can be dropped.
Remark 2.11. In fact, if each arm has a finite p-th moment for a fixed p > 2 then the conditionE [Nk(T )] <
1 can be dropped.

The proofs of Theorem 2.10 and Remark 2.11 can be found in Appendix A.2.1. See also Appendix A.1.3
for an intuitive explanation of the sign of the bias under optimistic sampling, stopping or choosing rules.
The expression (2.1) intuitively suggests situations when the sample mean estimator bµk(T ) is biased,
while the inequalities in (2.2) and (2.4) determine the direction of bias under the monotonic or optimistic
conditions. Due to Facts 2.5, 2.6 and 2.7, several existing results are immediately subsumed and generalized
by Theorem 2.10. Further, the following corollary is a particularly interesting special case dealing with the
lil’UCB algorithm by Jamieson et al. [2014] which consists of adaptive sampling, stopping and choosing
rules, as summarized in Section 2.2.3.
Corollary 2.12. The lil’UCB algorithm satisfies the monotonically increasing property, and thus the
sample mean of the reported arm when lil’UCB stops is always positively biased.

The proof is described in Appendix A.2.2. The above result is interesting because of the following
reasons: (a) when viewed separately, the sampling, stopping and choosing rules of the lil’UCB algorithm
all are optimistic; hence it is apriori unclear which rule dominates and whether the net bias should be
positive or negative; (b) we did not have to alter anything about the algorithm in order to prove that it is a
monotonically increasing strategy (for any distribution over arms, for any number of arms). The generality
of the above result showcases the practical utility of our theorem, whose message is in sharp contrast to the
title of the paper by Nie et al. [2018].

Next, we provide simulation results that verify that our monotonic and optimistic conditions accurately
capture the sign of the bias of the sample mean.

2.2 Numerical experiments

2.2.1 Negative bias from optimistic sampling rules in multi-armed bandits

Recall Fact 2.7, which stated that common MAB adaptive sampling rules like greedy (or ✏-greedy), upper
confidence bound (UCB) and Thompson sampling are optimistic. Thus, for a deterministic stopping time,
Theorem 2.10 implies that the sample mean of each arm is always negatively biased. To demonstrate this,
we conduct a simulation study in which we have three unit-variance Gaussian arms with µ1 = 1, µ2 = 2
and µ3 = 3. After sampling once from each arm, greedy, UCB and Thompson sampling are used to
continue sampling until T = 200. We repeat the whole process from scratch 104 times for each algorithm
to get an accurate estimate for the bias.2 Due to limited space, we present results from UCB and Thompson

2In all experiments, sizes of reported biases are larger than at least 3 times the Monte Carlo standard error.
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sampling only but detailed configurations of algorithms and a similar result for the greedy algorithm can be
found in Appendix A.3.1. Figure 2.1 shows the distribution of observed differences between sample means
and the true mean for each arm. Vertical lines correspond to biases. The example demonstrates that the
sample mean is negatively biased under optimistic sampling rules.
Remark 2.13. The main goal in our simulations is to visualize and corroborate our theoretical results
about the sign of the bias. As a result, we do not make any attempt to optimize the parameters for UCB
or Thompon sampling for the purpose of minimizing the regret, since the latter is not this chapter’s aim.
However, investigating the relationship between the performance of MAB algorithms and the bias at the
time horizon would be an interesting future direction of research.
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Figure 2.1: Data is collected by UCB (left) and Thompson sampling (right) algorithms from three unit-
variance Gaussian arms with µ1 = 1, µ2 = 2 and µ3 = 3. For all three arms, sample means are negatively
biased (at fixed times). A similar result for the greedy algorithm can be found in Appendix A.3.1.

2.2.2 Bias from stopping a one-sided sequential likelihood ratio test

Suppose we have two independent sub-Gaussian arms with common and known parameter �2 but unknown
means µ1 and µ2. Consider the following testing problem:

H0 : µ1  µ2 vs H1 : µ1 > µ2.

To test this hypothesis, suppose we draw a sample from arm 1 for every odd time and from arm 2 for every
even time. Instead of conducting a test at a fixed time, we can use the following one-sided sequential
likelihood ratio test [Robbins, 1970, Howard et al., 2018b]: for any fixed w > 0 and ↵ 2 (0, 1), define a
stopping time T as

T w := inf

8
<

:t 2 Neven : bµ1(t)� bµ2(t) �
2�

t

vuut(t+ 2w) log

 
1

2↵

r
t+ 2w

2w
+ 1

!9=

; , (2.6)

where Neven := {2n : n 2 N}. For a given fixed maximum even time M � 2, we stop sampling at time
T w
M := min {T w

,M}. Then, we reject the null H0 if T w
M < M . It can be checked [Howard et al., 2018b,

Section 8] that, for any fixed w > 0, this test controls the type-1 error at level ↵ and the power goes to 1 as
M goes to infinity.
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For the arms 1 and 2, these are special cases of optimistic and pessimistic stopping rules respectively.
From Theorem 2.10, we have that µ1  Ebµ1(T w

M ) and µ2 � Ebµ2(T w
M ). To demonstrate this, we conduct

two simulation studies with unit variance Gaussian errors: one under the null hypothesis (µ1, µ2) = (0, 0),
and one under the alternative hypothesis (µ1, µ2) = (1, 0). We chooseM = 200, w = 10 and ↵ = 0.1. As
before, we repeat each experiment 104 times for each setting. Figure 2.2 shows the distribution of observed
differences between sample means and the true mean for each arm under null and alternative hypothesis
cases. Vertical lines correspond to biases. The simulation study demonstrates that the sample mean for arm
1 is positively biased and the sample mean for arm 2 is negatively biased as predicted.

Figure 2.2: Data is collected from the one-sided sequential likelihood ratio test procedure described in
Section 2.2.2. The sample mean for arm 1 is positively biased and the sample mean for arm 2 is negatively
biased under both null and alternative hypothesis cases. Note that the size of the bias under the null
hypothesis is smaller than the one under the alternative hypothesis since the number of collected samples
is larger under the null hypothesis.

2.2.3 Positive bias of the lil’UCB algorithm in best-arm identification

Suppose we haveK sub-Gaussian arms with mean µ1, . . . , µK and known parameter �. In the best-arm
identification problem, our target of inference is the arm with the largest mean. There exist many algorithms
for this task including lil’UCB [Jamieson et al., 2014], Top-Two Thompson Sampling [Russo, 2016] and
Track-and-Stop [Garivier and Kaufmann, 2016].

In Corollary 2.12, we showed that the lil’UCB algorithm is monotonically increasing, and thus the
sample mean of the chosen arm is positively biased. In this subsection, we verify it with a simulation.
It is an interesting open question whether different types of best-arm identification algorithms also yield
positively biased sample means.

The lil’UCB algorithm consists of the following optimistic sampling, stopping and choosing rules:
• Sampling: For any k 2 [K] and t = 1, . . .K, define ⌫t(k) = (t = k). For t > K,

⌫t(k) =

(
1 if k = argmaxj2[K] bµj(t� 1) + u

lil
t (Nj(t� 1)) ,

0 otherwise,

where �, ✏,� and � are algorithm parameters and

u
lil
t (n) := (1 + �)(1 +

p
✏)
p
2�2(1 + ✏) log (log((1 + ✏)n)/�) /n.
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• Stopping: T = inf
n
t > K : Nk(t) � 1 + �

P
j 6=k Nj(t) for some k 2 [K]

o
.

• Choosing:  = argmaxk2[K]Nk(T ).
Once we stop sampling at time T , the lil’UCB algorithm guarantees that  is the index of the arm with

largest mean with some probability depending on input parameters. Based on this, we can also estimate the
largest mean by the chosen stopped sample mean bµ (T ). The performance of this sequential procedure can
vary based on underlying distribution of the arm and the choice of parameters. However, we can check this
optimistic sampling and optimistic stopping/choosing rules which would yield negative and positive biases
respectively, jointly satisfy the monotonically increasing property and thus the chosen stopped sample
mean bµ (T ) is always positively biased for any choice of parameters.

To verify it with a simulation, we set 3 unit-variance Gaussian arms with means (µ1, µ2, µ3) =
(g, 0,�g) for each gap parameter g = 1, 3, 5. We conduct 104 trials of the lil’UCB algorithm with a valid
choice of parameters described in Jamieson et al. [2014, Section 5]. Figure 2.3 shows the distribution
of observed differences between the chosen sample means and the corresponding true mean for each �.
Vertical lines correspond to biases. The simulation study demonstrates that, in all configurations, the chosen
stopped sample mean bµ (T ) is always positively biased. (see Appendix A.2.2 for a formal proof.)

Figure 2.3: Data is collected by the lil’UCB algorithm run on three unit-variance Gaussian arms with
µ1 = g, µ2 = 0 and µ3 = �g for each gap parameter g = 1, 3, 5. For all cases, chosen sample means are
positively biased. The bias is larger for a larger gap since the number of collected samples is smaller on an
easier task.

2.3 Summary

In this chapter, we provide a general and comprehensive characterization of the sign of the bias of the
sample mean in multi-armed bandits. Our main conceptual innovation was to define new weaker conditions
(monotonicity and optimism) that capture a wide variety of practical settings in both the random walk
(one-armed bandit) setting and the MAB setting. Using this, our main theoretical contribution, Theorem
2.10, significantly generalizes the kinds of algorithms or rules for which we can mathematically determine
the sign of the bias for any problem instance. Our simulations confirm the accuracy of our theoretical
predictions for a variety of practical situations for which such sign characterizations were previously
unknown.
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Chapter 3

Sign of the conditional bias of sample mean

and CDF

In the previous chapter, we studied the bias of the sample mean and showed that the sign of the bias can be
related to adaptive sampling, stopping and choosing in precise ways. However, the previous theoretical
understanding of the bias in MAB experiments is limited in two aspects. First, virtually all results concern
the bias in mean estimation and do not cover other functionals of the arms. Secondly, and perhaps more
interestingly, the existing guarantees cover only the unconditional bias of the sample mean, i.e., the bias
obtained by accounting for all possible outcomes of the MAB experiment. However, in practice, one is
often interested in the sample means of the arms only when certain outcomes have occurred. For instance,
the analyst may wish to evaluate the sample mean of a given arm only when that arm was identified as the
best arm or, in a sequential framework corresponding to a MAB experiment with only one arm, when the
null hypothesis has been rejected or when the random criterion for determining whether enough samples
have been collected has been met. In all these cases, it is of interest to compute the conditional bias, i.e.,
the bias of the sample mean given a certain conditioning event, such as that the arm of interest turned out to
be the best arm. A priori, it is not at all clear how the sign of the conditional bias is affected by the choice
of the conditioning event and by other sources of data adaptivity (e.g., sampling and stopping), or whether
the signs of the conditional and unconditional bias should match.

As a concrete example, suppose we haveK prototypes of an online service and wish to test whether the
potential average revenue of each prototype (i.e., arm), µk, would be larger than a pre-specified threshold
µ0 > 0 based on a stream of test user samples. The usual sequential testing approach will be based on an
appropriate upper stopping boundary and will reject each null µk  µ0 if the corresponding sample mean
has crossed such boundary during the testing period. If the null is rejected, then we conclude the prototype
as a promising one. If not, we disregard it. It is well known [see, e.g., Starr and Woodroofe, 1968, Shin
et al., 2019a] that for each prototype, the sample mean based on data collected through this sequential
testing procedure is positively biased: that is, for each k 2 [K] := {1, . . . ,K}, E [bµk] � µk regardless of
whether the true mean µk is larger or smaller than the threshold µ0. This positive bias result can provide
a useful warning signal about possible overestimation of the true revenues. At the same time, however,
without careful consideration of the conditioning effect, we may end up with a false sense of comfort with
low sample mean estimates from “disregarded” prototypes. Indeed, we can naively expect the true revenues
of the disregarded prototypes should be even lower than the observed estimates based on the positive bias
result E [bµk] � µk. In fact, this would be a wrong conclusion: conditioned on the disregarding event C, the
sample mean is negatively biased and we have E [bµk | C]  µk, as demonstrated in Section 3.2.1.

In this chapter, we make the following contributions:
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• We derive in Theorem 3.1 sufficient conditions for determining the sign of the conditional bias that
hold under arbitrary conditioning events and rely on certain natural, highly interpretable monotonicity
properties of the rules used for adaptive sampling, stopping and selecting. Our analysis captures in a
rigorous and intuitive way the interaction between adaptivity arising from the data collection stage
(sampling and stopping) with adaptivity in the choice of the target for inference.

• We characterize the sign of the conditional bias of monotone functions of the rewards of each arm,
which includes the sample mean as a special case.

• In Section 3.2, we demonstrate with several examples in best arm identification and sequential testing
problems how the conditional and unconditional bias of the sample means of the arms can have
opposite signs. These are, we believe, instances of a general, important phenomenon of theoretical
and practical relevance.

Overall, our results advance our ability to assess the impact of the bias in adaptive data analysis problems
and offer several new and interesting insights on this important issue.

3.1 The sign of the conditional bias

In this section, we generalize Theorem 2.10 and derive sufficient conditions for the sign of the conditional
bias under arbitrary conditioning events of monotone functions of the arms rewards.

We first introduce some notation. For each arm k, let Fk denote the corresponding cumulative
distribution function (CDF): y 2 R 7! Fk(y) = P(X  y), whereX ⇠ Pk. Let bFk,t be the empirical CDF
for arm k based on samples up to time t; that is, bFk,t is a random function on R and taking values in [0, 1]
given by

y 2 R 7! bFk,t(y) :=
1

Nk(t)

tX

s=1

(As = k, Ys  y) , (3.1)

which returns the fractions of samples from arm k whose values are no larger than y. For a stopping time
T with respect to the MAB filtration {Ft}, we then define bFk,T to be the empirical CDF of the rewards of
arm k up to time T ; that is, for each y 2 R,

bFk,T (y) := lim
t!1

bFk,T ^t(y).

The use of the limit in the above definition is a necessary technicality in order to allow for the possibility
that T = 1. Note that, on the event {Nk(T ) = 1} = {limt!1Nk(T ^ t) = 1}, we have that, for each
y 2 R, bFk(y) = Fk(y) almost surely, based on the strong law of large numbers; see Theorem 2.1 in Gut
[2009].

Next, for any function f : R ! R integrable with respect to Pk, let Ekf =
R
f(x)dPk(x) be the

corresponding expectation. Similarly, we let

bEk,tf =
1

Nk(t)

tX

s=1

f(Ys) (As = k)

to be the expectation of f under the empirical measure of the k-th arm at time t. Clearly, bEk,tf is a random
variable. If f is the identity function, then it is immediate to see that Ekf = µk and bEk,tf = bµk(t). Also,
for any y 2 R, setting f to be the indicator function x 7! f(x) = (x  y) yields that Ekf = Fk(y) and
bEk,tf = bFk,t(y). Finally, for a (possibly infinite) stopping time T with respect to the filtration {Ft}, we set

bEk,T f = lim
t!1

bEk,T ^tf
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We are now ready to present the main result of this chapter. The proof is given in Appendix B.1.1. For
any event C, we let E[·|C] denote the conditional expectation given C.
Theorem 3.1. Let T be a stopping time with respect to the MAB experiment natural filtration {Ft}. For a
fixed k 2 [K], suppose Nk(T ) � 1. Let C 2 FT be any event at stopping time T with P(C) > 0. Assume
that, for each i, the function D⇤

1 7! (C) /Nk(T ) is a decreasing function ofX⇤
i,k while keeping all other

entries in D⇤
1 fixed. Then, for each y 2 R,

inf
y2R

⇣
E
h
bFk,T (y) | C

i
� Fk(y)

⌘
� 0, (3.2)

or, equivalently, for any non-decreasing function f : R ! R with E
h
bEk,T |f | | C

i
< 1 andEk,T |f | < 1,

E
h
bEk,T f | C

i
 Ekf. (3.3)

Similarly, if, for each i, the function D⇤
1 7! (C) /Nk(T ) is an increasing function of X⇤

i,k while keeping
all other entries in D⇤

1 fixed, then we have

sup
y2R

⇣
E
h
bFk,T (y) | C

i
� Fk(y)

⌘
 0, (3.4)

or, equivalently,
E
h
bEk,T f | C

i
� Ekf, (3.5)

for any non-decreasing function f : R ! R satisfying E
h
bEk,T |f | | C

i
< 1 and Ek,T |f | < 1.

The important conclusion from the above theorem is that the conditional expected value of the empirical
CDF of the rewards of any given arm can be stochastically smaller or greater than the true CDF of the
corresponding arm. And furthermore, the sign of the bias can be determined in the basis of natural and
often verifiable (as shown below) monotonicity conditions that depend on (i) the specific sampling and
stopping rules deployed in the MAB experiment and (ii) the choice of the conditioning event C.

Note that if in the theorem we choose C as the conditioning event { = k} and the function f as the
identity function, Theorem 3.1 yields Theorem 2.10 as a special case (indeed the statements about the
unconditional bias in that result follows from those on the conditional bias given the conditioning event
{ = k}). We emphasize that Theorem 3.1 is a strict generalization of Theorem 2.10 in at least two ways:
(i) it provides a more general guarantee about the conditional bias of monotone functions of the empirical
CDF of the arms as opposed to just the sample mean and (ii) it allows for virtually any conditioning event
that depends on the outcome of the MAB experiment (formally, that is measurable with respect to FT ).

The monotonicity assumption in Theorem 3.1 captures in a mathematically concise yet intuitive manner
how adaptivity in the data collection process combines with adaptivity in the selective data analysis,
exemplified by the conditioning event, to affect the sign of the bias. The interaction between these two
sources of adaptivity is, at least to us, not at all apparent and, in fact, rather subtle. To illustrate this
phenomenon, in the next section, we apply Theorem 3.1 in several, fairly routine, situations in adaptive
data analysis to demonstrates how conditional and unconditional biases may very well have opposite signs.

3.2 Applications

In this section, we discuss several practical examples of the conditional bias results in Theorem 3.1.
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3.2.1 Conditional versus unconditional bias of a stopped sequential test

Suppose we have a stream of samples from a single arm with a finite mean µ. For each t, let bµ(t) be the
sample mean of the rewards observed up to time t.

To test whether µ is larger than a reference value µ0, we may construct an upper boundary t 7! U(t)
and conclude that µ � µ0 if the sample mean ever crosses the upper boundary.

Let T be the first time the sample mean crosses the boundary, i.e. T := inf {t � 1 : bµ(t) � U(t)}.
The stopping time T is an example of an optimistic stopping and, from Theorem 2.10, we can check that
the stopped sample mean bµ(T ) is always positively biased.

However, the stopping time T can be large or even infinite with non-zero probability. Thus, in practice,
we may want to allow for the possibility of stopping the sequential test before reaching the stopping time.
Let M be any fixed predefined time at which we stop the testing procedure (if still ongoing), and let
TM := min {T ,M} be the corresponding stopping time which takes account the early stopping option.
Again, by Theorem 2.10, we know that the stopped sample mean bµ(TM ) is still positively biased, i.e.
E [bµ(TM )] � µ, since the function D⇤

1 7! 1/TM is an increasing function of X⇤
i while keeping all other

entries in D⇤
1 fixed. From Theorem 3.1, we can also check that the expected empirical CDF at stopping

time TM is negatively biased:
sup
y2R

⇣
E
h
bFk,TM (y)

i
� Fk(y)

⌘
 0. (3.6)

Conditioned on the early stopping event {M < T }, however, Theorem 3.1 shows that the early stopped
sample mean and the empirical CDF are negatively and positively biased, respectively, since the function
D⇤

1 7! (M<T )
TM = (M<T )

M is an decreasing function of X⇤
i while keeping all other entries in D⇤

1 fixed.
That is,

E [bµ(M) | M < T ]  µ, (3.7)

inf
y2R

⇣
E
h
bFk,M (y) | M < T

i
� Fk(y)

⌘
� 0. (3.8)

However, we can also check that the function D⇤
1 7! (M�T )

TM = (M�T )
T is an increasing function of

X
⇤
i , which implies that, on the line-crossing event {M � T }, the sample mean and empirical CDF are

positively and negatively biased, respectively. Thus, depending on the conditioning event, the conditional
bias can be positive or negative. Also note that, without the early stopping condition, bµ(M) is an unbiased
estimator of µ.

Experiment: We verify these facts with simulations, where we repeat a stopped sequential test 105

times. In each test, the arm corresponds to a standard normal distribution, and the upper boundary is
constructed by the point-wise upper confidence bounds t 7! U(t) = z↵p

t
, where z↵ is the ↵-upper quantile

of the standard normal distribution. Note that this upper boundary does not yield a valid testing procedure
since it inflates the type 1 error. However, we choose this boundary with unusual parameters ↵ = 0.2 and
M = 10 to manifest the difference between conditional and unconditional biases.

Figure 3.1 shows the point-wise averages of the observed conditional and unconditional CDFs from
the simulated 105 stopped sequential tests. The black dashed line refers to the true CDF of the underlying
arm. The red line corresponds to the average of the empirical CDFs, which lies below the true CDF, as
expected, and thus the corresponding mean bias is positive. The green and blue lines correspond to the
averages of empirical CDFs conditioned on the early stopping and line-crossing events, respectively. As
predicted, conditioned on the early stopping event, the empirical CDF and the sample mean are positively
and negatively biased, respectively. In contrast, conditioned on the line-crossing event, the empirical CDF
and the sample mean are negatively and positively biased, respectively.
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Figure 3.1: Average of unconditional (red) and conditional (green and blue) empirical CDFs from repeated
stopped sequential test as described in Section 3.2.1.

3.2.2 Sequential test for two arms: conditional biases from upper and lower stopping

boundaries

Suppose we have two independent arms with unknown means µ1 and µ2. In this subsection, we consider
the following testing problem:

H0 : µ1  µ2 vs H1 : µ1 > µ2. (3.9)

To test this hypothesis, we draw a sample from arm 1 for every odd time and from arm 2 for every even
time. Then, at each even time t, we check whether the difference between the sample means bµ1(t), bµ2(t)
from the two arms crosses predefined upper and lower stopping boundaries, t 7! U(t) and t 7! L(t).

To be specific, define stopping times T U and T L as follows:

T U := inf {t 2 Neven : bµ1(t)� bµ2(t) � U(t)} , (3.10)

T L := inf {t 2 Neven : bµ1(t)� bµ2(t)  L(t)} . (3.11)

Let M > 0 be a predetermined maximum time budget. Based on T U
, T L and M , we stop sampling

whenever bµ1(t) � bµ2(t) crosses one of the boundaries or the maximum time budget M is met. Define
the corresponding stopping time as TM := min

�
T U

, T L
,M

 
. At time TM , we accept H1 if TM = T U

(upper-crossing event), and acceptH0 if TM = T L (lower-crossing event). Otherwise, we declare that we
do not have enough evidence to accept either one of two hypotheses.

In this case, we cannot apply Theorem 2.10 to determine the sign of the unconditional bias since
the stopping rule is neither optimistic nor pessimistic, unconditionally. However, we can determine the

sign of the conditional bias based on Theorem 3.1 since the the function D⇤
1 7! (T Umin{T L,M})

T U is an
increasing (resp. decreasing) function of X⇤

i,1 (resp. X
⇤
i,2) for each i, keeping all other entries in D⇤

1 fixed.
In detail, conditioned on the event of accepting H1, the sample mean and empirical CDF for arm 1 are
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Figure 3.2: Average of conditional empirical CDFs of arm 1 from repeated sequential tests for two arms as
described in Section 3.2.2.

positively and negatively biased, respectively. That is,

E
⇥
bµ1(TM ) | TM = T U

⇤

= E
⇥
bµ1(T U ) | T U  min

�
T L

,M
 ⇤

� µ1, (3.12)

sup
y2R

⇣
E
h
bFk,TM (y) | TM = T U

i
� Fk(y)

⌘

= sup
y2R

⇣
E
h
bFk,T U (y) | T U  min

�
T L

,M
 i

� Fk(y)
⌘

 0. (3.13)

Similarly, for arm 2, we have opposite signs of the sample mean and empirical CDF.
By the same reasoning, the signs of the conditional biases conditioned on the event of acceptingH0 are

reversed:

E
⇥
bµ1(TM ) | TM = T L

⇤

= E
⇥
bµ1(T L) | T L  min

�
T U

,M
 ⇤

 µ1, (3.14)

inf
y2R

⇣
E
h
bFk,TM (y) | TM = T L

i
� Fk(y)

⌘

= inf
y2R

⇣
E
h
bFk,T L(y) | T L  min

�
T U

,M
 i

� Fk(y)
⌘

� 0. (3.15)

Thus, we conclude that, in all cases, the expected difference between the sample means are exaggerated
toward “the direction of decision”.
Remark 3.2. These results hold regardless of whether the underlying distribution is under the null or
alternative.

Experiment: To demonstrate the conditional bias result, we set two standard normal arms with same
means µ1 = µ2 = 0. In this experiment, we use upper and lower stopping boundaries based on naive
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point-wise confidence intervals:

U(t) := z↵/2

r
2

t
, and L(t) = �U(t), (3.16)

where ↵ is set to 0.2 to show the bias better. Figure 3.2 show the conditional and unconditional biases of
the empirical CDFs and sample means for arm 1 based on 105 repetitions of the experiment. The dashed
line corresponds to the true underlying CDF. The red line refers to the average of the empirical CDFs, and
the purple line corresponds to the average of the empirical CDFs conditioned on reaching the maximal
time. Note that for these two cases, the empirical CDFs are neither positively nor negatively biased across
all y 2 R.

However, for the cases corresponding to accepting H1 (blue line) and accepting H0 (green line), the
empirical CDFs are negatively and positively biased, respectively: see inequalities (3.13) and (3.15). The
conditional bias of the sample mean is also positive conditioning on the event of acceptingH1 and negative
conditioning on the event of accepting H0: see inequalities (3.12) and (3.14).

3.2.3 Best-arm identification algorithms

Suppose we haveK > 2 sub-Gaussian arms with a common and known parameter �2. In many applications,
we may want to identify which of theK arms has the largest mean parameter by using as few samples as
possible.

In the previous subsection, we observed that, in the two-armed bandit setting, if we use a boundary-
crossing compatible with a best-arm identification style algorithm with deterministic sampling, then the
optimal arm has positive bias and the sub-optimal arm has a negative bias. We also showed that the same
phenomenon happens for the best arm as chosen by the lil’UCB algorithm in Chapter 2. Recall that the
lil’UCB algorithm consists of the following sampling, stopping and choosing rules [Jamieson et al., 2014]:

• Sampling: For t = 1, . . .K, draw a sample from each arm. For t > K, draw a sample from arm k if

k = argmax
j2[K]

bµj(t� 1) + u
lil (Nj(t� 1)) ,

where �, ✏,� > 0 and � > 0 are algorithm parameters and

u
lil (n) :=(1 + �)(1 +

p
✏)

⇥
p
2�2(1 + ✏) log (log((1 + ✏)n)/�) /n.

• Stopping: the stopping time T is defined as the first time at which the following inequality holds for
some k 2 [K]:

Nk(t) � 1 + �

X

j 6=k

Nj(t),

where � > 0 is an algorithm parameter.
• Choosing:  = argmaxk2[K]Nk(T ).

The following corollary to Theorem 3.1 shows a complementary result - the sample mean and the empirical
CDF of a given arm are negatively and positively biased, respectively, conditioned on the event that the arm
is not selected as the best arm. In contrast, on the same conditioning event, the empirical distribution of the
selected arm is negatively biased.
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Figure 3.3: Data from 105 lil’UCB algorithm runs on three unit-variance normal arms with µ1 = 1, µ2 =
0.5 and µ3 = 0, as described in Section 3.2.3.

Corollary 3.3. In the settings of the lil’UCB algorithm, for each k with P( 6= k) > 0, we have that

E [bµk(T ) |  6= k]  µk, (3.17)

inf
y2R

⇣
E
h
bFk,T (y) |  6= k

i
� Fk(y)

⌘
� 0. (3.18)

Also, for each k with P( = k) > 0,

E [bµk(T ) |  = k] � µk, (3.19)

sup
y2R

⇣
E
h
bFk,T (y) |  = k

i
� Fk(y)

⌘
 0. (3.20)

The proof of Corollary 3.3 can be found in Appendix B.1.2.
Remark 3.4. Corollary 3.3 remains true for any other choice of ulil if the function n 7! u

lil(n) is
decreasing.

Experiment: To verify the previous claims, we conducted 105 trials of the lil’UCB algorithm on three
unit-variance normal arms with µ1 = 1, µ2 = 0.5 and µ3 = 0. It is important to note that the signs of the
biases do not depend on the choice of parameters or of the underlying distributions, but the magnitudes of
the biases do. To best illustrates the bias results, we use an unusual set of algorithm parameters as � = 0.2,
✏ = 0.1, � = 0.5 and � = 1 in this experiment.

Figure 3.3 shows the averages of the empirical CDFs of arm 1 (the arm with the larges mean) conditioned
on each arm being chosen as the best arm. The dashed line corresponds to the true underlying CDF. The
red line, which lies below the true CDF, indicates that the empirical CDF of arm 1 conditioned on the event
that the arm 1 is chosen as the best arm (i.e.,  = 1) is negatively biased; this then implies that the sample
mean of the chosen arm is positively biased. In contrast, the green and blue lines, lying above the true CDF,
show that conditioned on the event the arm 1 is not chosen as the best arm (i.e.,  6= 1), the empirical CDF
is positively biased and the sample mean is negatively biased.

Figure 3.4 displays the averages of the empirical CDFs of arm 2. Though arm 2 is not the best arm, we
can check that the signs of the conditional biases follow the same pattern as arm 1. Conditioned on the
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Figure 3.4: Data collected by 105 lil’UCB algorithm runs on three unit-variance normal arms with
µ1 = 1, µ2 = 0.5 and µ3 = 0, as described in Section 3.2.3.

event that arm 2 is chosen as the best arm ( = 2), the empirical CDF is negatively biased (green line), but
conditioned on the event that arm 2 is not chosen as the best arm ( 6= 2), the corresponding CDFs are now
positively biased (red and blue lines), as expected.

3.3 Summary

In this chapter, we have investigated the sign of the conditional bias of monotone functions of the rewards in
the MAB framework under an arbitrary conditioning event, generalizing the results in the previous chapter.
In our analysis, we have exploited certain natural monotonicity properties of MAB experiments and have
characterized the impact on the bias of both adaptivity in the data acquisition process and in the selection
of the target for inference.

Several interesting extensions of our results are worth pursuing. We emphasize two important ones:
• It is still an open problem how to characterize the bias (conditional or unconditional) of other
important functionals that are not necessarily monotone nor linear, such as the sample variance and
sample quantiles.

• Several debiasing methods have been proposed in the MAB literature: see, e.g., Xu et al. [2013],
Deshpande et al. [2018], Neel and Roth [2018], Nie et al. [2018], Hadad et al. [2019]. However,
the existing approaches typically only adjust for adaptive sampling but ignore the other sources of
adaptivity. Furthermore, they do not take account the natural direction of the bias, i.e., its sign. It is
of interest to investigate how our results and techniques can be used in order to design more general
debiased estimators.
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Chapter 4

Consistency and bounds on bias and risks

4.1 Introduction

In previous two chapters, we conducted qualitative analyses of sample means in MABs. Specifically, we
describe a simple monotonicity condition that determines the sign of the bias, including natural examples
where it can be positively or negatively biased. Despite this progress, it is still obscure how large the bias is,
and more generally, how the sample mean estimator behaves around the true mean.

In this chapter, we derive sufficient conditions under which the sample mean is consistent under all
four aforementioned notions of adaptivity (sampling, stopping, choosing and rewinding, henceforth called
the “fully adaptive setting”). Then, we study the magnitude of its bias and risk under general moment/tail
conditions. Adaptive mean estimation, in each of the four senses described above, has received significant
attention in both recent and older literature (only studied one at a time, not together). Below, we briefly
discuss how our work relates to these past works, proceeding one notion at a time in approximate historical
order.

We begin by noting that a single-armed bandit is simply a random walk, a setting where adaptive
stopping has been extensively studied, since even the simplest of asymptotic questions are often nontrivial.
For example, if a random walk is stopped at an increasing sequence of stopping times, the corresponding
sequence of stopped sample means does not necessarily converge to µ, even in probability, without
regularity conditions on the distribution and stopping rules (see Ch.1 of Gut [2009]). The book by Gut
[2009] on stopped random walks is an excellent reference, beginning from the seminal paper of Wald and
Wolfowitz [1948], and summarizing decades of advances in sequential analysis. Some relevant authors
include Anscombe [1952], Richter [1965], Starr [1966], Starr and Woodroofe [1972], since they discuss
inferential questions for stopped random walks or stopped tests, often in parametric and asymptotic settings.
As far as we know, most of these results have not been extended to the MAB setting, which naturally
involves adaptive sampling and choosing. Motivated by this, we provide new consistency results that hold
in the fully adaptive setting.

Next, for the problem of estimation following a sequential test, Cox [1952] and Siegmund [1978]
developed an asymptotic expression for the size of the bias of the sample mean. Further, the moment
bounds derived in de la Pena et al. [2004], Peña et al. [2008] for self-normalized processes can be converted
into bounds, on the `p-risk of the sample mean. However, both sets of results apply only for a fixed arm
(since they work in the one-armed setting), for a specific stopping rule (a sample mean crossing a boundary)
and for a restricted class of arms (in our context, sub-Gaussian arms) and do not directly apply to adaptively
chosen arms in an MAB setting, unlike the results that we derives.

Third, the recent literature on best-arm identification in MABs has often used anytime uniform concen-
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tration bounds for the sample mean of each arm around its true mean [Jamieson et al., 2014, Kaufmann
et al., 2016] also known as finite-LIL bounds. Historically, these were called confidence sequences and
were developed by Darling and Robbins [1967a, 1968], Lai [1976], though both theoretical and practical
advances outside the MAB literature have been made recently [Balsubramani, 2014, Balsubramani and
Ramdas, 2016, Howard et al., 2018b]. While these results yield high probability deviation inequalities that
allow for adaptive rewinding, they cannot be immediately converted into bias and risk bounds. Below, we
develop variants of these bounds and incorporate them into our risk analysis to to cover all the cases in the
fully adaptive setting.

Last, Russo and Zou [2016] recently derived information-theoretic bounds for the selection bias
introduced by adaptive choosing. This work, soon extended by Jiao et al. [2017], showed that if a fixed
number of samples is collected from each distribution, then the bias (or expected `2 loss) of the sample
mean of an adaptively chosen arm can be bounded using the mutual information between the arm index
and the observed data. From our MAB perspective, these bounds only hold for a deterministic sampling
rule that is stopped at a fixed time. We derives new bias and risk bounds based on the mutual information
for the fully adaptive setting.

In sum, characterizing the risk and bias under all four notions of adaptivity simultaneously is an
interesting and challenging problem. Below, we summarize our contributions and describe the organization
of this chapter:

1. We formulate sufficient conditions for consistency of a sequence of sample means in the fully
adaptive setting which only require the existence of a finite mean for each arm (Proposition 4.2).

2. For the `2 loss and for arms with finite moments, we derive risk bounds for the sample mean in the
fully adaptive setting that includes an adaptive arm choice and adaptive rewinding (Theorem 4.6 and
Corollary 4.8).

3. By considering certain Bregman divergences between the sample and true mean as loss functions
and for arms with exponentially decaying tails, we derive sharp risk bounds for a fixed target at a
stopping time (Theorem 4.12) which are in turn used to derive quantitative upper and lower bounds
for the bias under adaptive sampling and stopping (Corollary 4.14).

4. Under the fully adaptive setting including adaptive arm choice and adaptive rewinding, we show
that by inducing a small “adaptive normalizing factor” in a log-log scale, we can extend the above
results to derive bounds on the normalized risk of the sample mean to the fully adaptive setting
(Theorem 4.16 and Corollary 4.19).

4.2 Consistency of the sample mean

In sequential data analysis we often estimate the mean not just once but many times as new data become
available. Let ⌧1  ⌧2  · · · be a sequence of non-decreasing random times, and thusNk(⌧1)  Nk(⌧2) 
· · · . A natural question is to identify conditions under which the sample mean bµt(⌧t) is consistent, in the
sense that the sequence bµt(⌧t)� µt converges to zero, almost surely or in probability, as t ! 1.

It is well known that the condition E [Nk(⌧t)] ! 1 as t ! 1 is not sufficient to guarantee consistency
of the sample mean even for a fixed target arm k, as demonstrated in the next example.
Example 4.1. Let P1 and P2 be standard normal distributions. Set ⌫1(1) = 1, that is, the algorithm always
picks the first distribution at t = 1. For t � 2, set At = (|Y1| > z↵/2) + 1 where z↵ is the ↵-upper
quantile of the standard normal which means that we pick a single (random) arm forever based on the first
observation Y1. Finally, let t⇤ � 2 be a deterministic stopping time. Then, we have

EN1(t
⇤) = 1 + (t⇤ � 1)(1� ↵) �! 1 as t

⇤ �! 1.
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Note however that

P
�
bµ1(t

⇤) > z↵/2

�
� P

�
|Y1| > z↵/2

�
= ↵, 8t⇤ � 2.

Therefore P
�
bµ1(t⇤) > z↵/2

�
does not converge to zero even if t⇤ and EN1(t⇤) approach infinity, and hence

bµ1(t⇤) does not converge to the true mean µ1 = 0 in probability.
For each fixed k 2 [K], Theorem 2.1 in Gut [2009] immediately yields that

if Nk(⌧t)
a.s.! 1 as t ! 1, then bµk(⌧t)

a.s.! µk as t ! 1. (4.1)

Theorem 2.2 in Gut [2009] further implies that, in the previous display (4.1), we can replace almost sure
convergence with the convergence in probability in both the condition and conclusion. In our next result,
we generalize these claims to the multi-armed setting with an adaptively chosen arm. Note that here we
only need the underlying distributions to have finite first moments.
Proposition 4.2. The following statements hold for any sequence of choice functions t : D(⌧t) ! [K]
that are based on data up to time ⌧t:

if Nt(⌧t)
a.s.! 1 as t ! 1, then bµt(⌧t)� µt

a.s.! 0 as t ! 1, and (4.2)

if Nt(⌧t)
p! 1 as t ! 1, then bµt(⌧t)� µt

p! 0 as t ! 1. (4.3)

The proof of the proposition is deferred to Appendix C.5.1.
Since |bµt(⌧t)� µt | =

PK
k=1 (t = k) |bµk(⌧t)� µk|, if we instead assume the stronger condition

that Nk(⌧t) ! 1 for all k 2 [K], almost surely or in probability, Theorem 2.1 and 2.2 in Gut [2009]
immediately imply consistency of the sample means. However, the following example demonstrates that
even if the number of draws for each fixed arm does not converge to infinity, Proposition 4.2 can guarantee
the consistency of the chosen sample mean which, in contrast, cannot be directly implied by Theorem 2.1
and 2.2 in Gut [2009].
Example 4.3. Let P1 and P2 be two identical continuous distributions with finite means. Set ⌫1(1) = 1
and ⌫2(2) = 1, meaning that we begin by sampling each arm once. For all times t � 3, we set At =
(Y1 > Y2) + 1, meaning that we pick a single (random) arm forever. Finally, let t⇤ � 3 be a deterministic

stopping time. The number of draws from each arm does not diverge to infinity either almost surely or in
probability as t⇤ ! 1 since for k = 1, 2, we have

P (Nk(t
⇤)  1) =

1

2
, 8t⇤ � 3.

Now, let  = (N1(t⇤)  N2(t⇤)) + 1, that is, we choose the arm with more data when we stop. Then, the
number of draws from the chosen arm is always equal to t⇤�1 and the sufficient condition in Proposition 4.2
is trivially satisfied. Thus, even though Nk(t⇤) does not diverge to1 (almost surely or in probability) for
any fixed k, our proposition still guarantees that bµ(t⇤)� µ

a.s.�! 0 as t
⇤ ! 1.

The above example demonstrates the additional subtlety in the conditions for consistency when moving
from a fixed arm to an adaptively chosen one.

4.3 Risk of sample mean under arms with finite moments

Having established that the sample means are consistent estimators of the true means of the arms, in the
subsequent sections, we will turn to the more challenging tasks of deriving finite sample bounds on the
magnitude of both the bias and risk under different nonparametric assumptions on the arms. Specifically,
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we will be concerned with two notions of `2 risk for the sample mean estimator: the classic or unnormalized
one, corresponding to the squared error loss and given by

[Unnormalized `2 risk] E
h
(bµ(⌧)� µ)

2
i
, (4.4)

and a weighted or normalized variant, defined as

[Normalized `2 risk] E
h
N(⌧) (bµ(⌧)� µ)

2
i
. (4.5)

As we will see shortly, the unnormalized risk is a function of both sampling and stopping rules, while the
normalized risk is upper bounded by a term that only depends on the choosing rule. The two types of risk
bounds are rather different in both their form and interpretability, and each elucidate complementary aspects
of the problems. In addition to normalized and unnormalized `2 bounds, we will also give analogous `1
bounds.

For each p � 1 and k 2 [K], we define the centered p-norm of arm k as

�
(p)
k :=

✓Z
|x� µk|p dPk(x)

◆1/p

. (4.6)

From Jensen’s inequality, we know that if p1  p2 then �
(p1)
k  �

(p2)
k for each k 2 [K]. With a slight

abuse of notation, below we will denote the standard deviation of the k-th arm with �k instead of �(2)
k .

4.3.1 Unnormalized and normalized `2 risks under nonadaptive sampling and stopping

Recall that if the sampling (or stopping) rule is independent of the realizations of the arms, we call it a
nonadaptive sampling (or stopping) rule, respectively. Under nonadaptive sampling and stopping rules, the
unnormalized `2-risk of the sample mean for arm k is given by

E (bµk(T )� µk)
2 = E

h
E
h
(bµk(T )� µ)2 | {At}Tt=1

ii

= E


�
2
k

Nk(T )

�
,

(4.7)

where the second equality comes from the independence assumption on the sampling nd stopping rules
and the fact that E (bµk(n)� µk)

2 =
�2
k
n where bµk(n) is a sample average of n i.i.d. observations from a

distribution with mean µk and variance �2
k. Next, define the effective sample size for arm k as

n
e↵
k := [E (1/Nk(T ))]

�1
. (4.8)

Then, under nonadaptive sampling and stopping, the `2 risk of the sample mean for arm k can immediately
be derived to equal

E (bµk(T )� µk)
2 =

�
2
k

n
e↵
k

.

Clearly, the effective sample size ne↵
k depends on both the nonadaptive sampling and stopping rules, as

it quantifies the combined effects of these rules on the `2 risk of bµk(T ). In contrast, the normalized risk
is agnostic to the choices of such rules. In detail, we show next that the minimax normalized `2 risk for
estimating the mean of the kth arm over all nonadaptive data collection procedures is �2

k, and this risk value
is achieved by the sample mean.
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Proposition 4.4. For any fixed k 2 [K], let Pk(µk,�k) be the class of distributions on an arm k with
mean µk and variance �2

k. Let V and T be classes of nonadaptive sampling and stopping rules satisfying
Nk(T ) � 1. Finally, let Q = Q(Pk, ⌫, T ) be the induced distribution on observations from the arm k with
Pk distribution under nonadaptive sampling ⌫ and stopping T . Then, the minimax normalized `2 risk is
given by

inf
bµk

sup
Pk2Pk(µk,�k)

⌫2V,T2T

EQ

h
Nk(T ) (bµk(T )� µk)

2
i
= �

2
k, (4.9)

where the infimum is over all estimators. Furthermore, for any given Pk 2 Pk(µ,�
2
k), ⌫ 2 V and T 2 T,

the sample mean estimator achieves the minimax risk.
The proof of the proposition is based on standard decision-theoretic arguments and can be found in

Appendix C.5.2.
In practice, we often do not know ahead of time which arm k would be the most interesting to study

before looking at the data. For instance, we may want to estimate the mean for the arm with the largest
observed empirical mean, or the second largest, or even the smallest. In this case, the target of inference is
µ, where  is an adaptive choice which possibly depend on the collected data DT .

Following Jiao et al. [2017], to quantify dependence between  and DT , we adopt an information
theoretic dependence measure (fq-divergence):

Iq(;DT ) := Dfq

⇣
P(,DT )|P ⌦ PDT

⌘
, (4.10)

where q � 1, fq(x) := |x � 1|q and Dfq(Q
0|Q) :=

R
fq

⇣
dQ0

dQ

⌘
dQ, assuming that Q0 ⌧ Q. It can be

easily checked that Iq(;DT ) � 0 and that Iq(;DT ) = 0 if and only if  and DT are independent. It can
be also showed that Iq(,DT ) can be upper bounded as

Iq(,DT )  1 +
KX

k=1

p
2
k

✓����
1

pk
� 1

����
q

� 1

◆
,

where pk := P ( = k) , 8k 2 [K]. In particular,

Iq(,DT ) 
K � 1

K

⇥
(K � 1)q�1 + 1

⇤
< 1 + (K)q�1

,

for 1  q  2 [see Jiao et al., 2017, Lemma 1].
For nonadaptive sampling and stopping (and hence T = T ), Jiao et al. [2017] showed how to bound

the bias of adaptively chosen random variables with finite moments by using Iq(;DT ). More precisely,
suppose each bµk � µk has zero mean and its p-norm is given by (E (bµk � µk)

p)1/p = �
(p)
k . Also, for any

r � 1, let k�(p)
 kr be the r-norm of �(p)

 , naturally defined by

k�(p)
 kr =

 
KX

k=1

P( = k)
⇣
�
(p)
k

⌘r
!1/r

. (4.11)

Then, Jiao et al. [2017] proved that, for any p, q > 1 with 1/p+ 1/q = 1, the bias of bµ can be bounded as

|Ebµ � µ|  k�(p)
 kpI1/qq (,DT ). (4.12)

This result can be extended to a bound on the `2 risk of an adaptively chosen sample mean (under
nonadaptive sampling and stopping) as follows.
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Proposition 4.5. Consider some nonadaptive sampling and stopping rules, and assume that each arm has
a finite 2p-norm for a given p > 1. Then, the normalized `2 risk of the sample mean can be bounded as

E
h
N(T ) (bµ(T )� µ)

2
i
 k�k22 + Cp

����(2p)


���
2

2p
I
1/q
q (,DT ), (4.13)

where Cp is a constant depending only on p and q > 1 is such that 1/p+ 1/q = 1.
The proof of Proposition 4.5 can be found in Appendix C.5.3 and is based on a variational representation

of the fq-divergence along with the Marcinkiewicz–Zygmund inequality [Marcinkiewicz and Zygmund,
1937]. Note that if P ( = k) = 1 then the mutual dependence term I

1/q
q (,DT ) is equal to 0 and we

recover the exact `2 risk �2
k. Similarly, if the selected armK is chosen in a random but nonadaptive manner,

we have that I1/qq (K,DT ) = 0 and thus, the bound in (4.13) reduces to k�Kk22.

4.3.2 Normalized `2 risk and unnormalized `1 risk under fully adaptive settings

The techniques used in the previous section deliver risk bounds only under nonadaptive sampling and
stopping rules but they do not generalize readily to fully adaptive settings. In particular, the bias bound in
Jiao et al. [2017] and the risk bound in Proposition 4.5 are not directly applicable because each bµk(⌧)� µk

is no longer centered, due to the bias caused by adaptive sampling, stopping and rewinding. Furthermore,
the bound for the bias given in equation (4.12) no longer holds under the fully adaptive setting because the
bias can be non-zero even if  is independent of D.

Below we show that the normalized `2 risk bound for nonadaptive sampling and stopping strategies
given in Proposition 4.5 generalizes to the fully adaptive setting, assuming the existence of higher moments
and with a slightly stronger risk normalization factor of Nk(⌧)/ logNk(⌧), which can be regarded as a
(small) price for adaptivity.

For any t such that Nk(t) > 1 for all k 2 [k⇤], we define

eNk(t) :=
Nk(t)

logNk(t)
, k 2 [K]. (4.14)

We now present the main result of this section.
Theorem 4.6. Suppose each arm has a finite 2(p + ✏)-norm for some p � 1 and ✏ > 0. Consider any
adaptive sampling rule and stopping time T such thatmink2[K]Nk(⌧) � 3 almost surely for an adaptive
rewound time ⌧  T . Then, for any adpatively chosen arm , it holds that

E
h
eN(⌧) (bµ(⌧)� µ)

2
i
 C1,✏k�k22 + Cp,✏k�k22pI1/qq (,DT ) , (4.15)

where q > 1 satisfies 1/p + 1/q = 1 and C1,✏ is a positive constant depending only on ✏, and Cp,✏ is a
positive constant depending only on p, ✏.

Compared to the nonadaptive risk bound in Proposition 4.5, the bound (4.15) under the fully adaptive
setting only suffers a multiplicative logarithmic normalization term logN(⌧) under slightly stronger
moment condition. It is also important to note that the bound (4.15) depends on the second moment terms
{�k}Kk=1 only, and not on any higher moment.

The proof of Theorem 4.6, given in Section C.2.2, combines the novel deviation inequality for the
normalized `2 loss of Lemma 4.7 below, which holds for a fixed arm k, with the variational representation
of the fq-divergence which handles adaptive choosing.
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Lemma 4.7. Consider some adaptive sampling and stopping rules. For a fixed arm k 2 [K] with a finite
2p-norm, where p > 1, and any random time ⌧ such that Nk(⌧) � 3 almost surely, it holds that, for any
� � 0,

P
 
eNk(⌧)

✓
bµk(⌧)� µk

�k

◆2

� �

!
 Cp

�p
, (4.16)

where Cp is a constant depending only on p.
We believe this is the first polynomially decaying tail bound on the `2 risk of the sample mean that

holds at any arbitrary random time and only assuming arms with finite first 2p moments. This inequality is
thus possibly of independent interest; its proof is based on the `p-version of the Dubins-Savage inequality
given by Khan [2009]; see Appendix C.2.1.

Now, for any r > 0, define the r-th order logarithmically discounted sample size of an adaptively
chosen arm as

ene↵,r
 :=

h
E
h
1/ eN r

(⌧)
ii�1/r

, r > 0, (4.17)

where the expectation is over the randomness in all four sources of adaptivity. This quantity is nonrandom,
and the subscript  merely differentiates it from the effective sample size of a fixed arm, and is not to be
interpreted as residual randomness. It is easy to check that ene↵,r

 is decreasing with respect to r, by Jensen’s
inequality. The following corollary provides bounds for the unnormalized `2r risk of the sample mean for
all r 2 (0, 1) based on ene↵,r

 . The proof of the corollary can be found in Appendix C.2.3.
Corollary 4.8. Suppose each arm has a finite 2(p + ✏)-norm for some p � 1 and ✏ > 0. Then, for any
r 2 (0, 1), the r-quasi-norm of the `2-loss is bounded as

h
E (bµ(⌧)� µ)

2r
i1/r


C1,✏k�k22 + Cp,✏k�k22pI

1/q
q (,DT )

ene↵,r/(1�r)


. (4.18)

In particular, by choosing r = 1/2, the above results immediately yields a bound for the `1 risk:

E |bµ(⌧)� µ| 

vuutC1,✏k�k22 + Cp,✏k�k22pI
1/q
q (,DT )

ene↵,1


. (4.19)

Note that if the choosing rule  is equal to k (so that Iq(,DT ) = 0), the `1 risk bound (4.19) matches
to the nonadaptive standard `1 risk bound, of order of �k/

p
n, with the sample size n replaced by the

logarithmically discounted effective sample size ene↵,1
k . In Section 4.4.2, we derive an alternative bound

that depend on the undiscounted effective sample size ne↵
k , for a fixed target arm and at a stopping time, by

assuming stronger tail conditions.
One may wonder whether the logarithmic discounting factor in the normalized risk is necessary to

derive a finite upper bound. For arms with finite variance, we can show that in general there is no finite
upper bound on the normalized risk E

h
Nk(T ) (bµk(T )� µk)

2
i
by using the following example.

Example 4.9. Suppose each arm has a finite variance �2
k. For a fixed k, assume that Nk(t) ! 1 almost

surely as t ! 1. For any b � 3, we define the following stopping rule.

Tb := inf

(
t � 1 : Nk(t) � b and

Sk(t)� µkNk(t)

�k

p
Nk(t) log logNk(t)

� 1

)
. (4.20)

Due to the law of the iterated logarithm, we know that P (Tb < 1) = 1. From the definition of Tb, we
immediately infer that

�
2
kE [log logNk(Tb)]  E

h
Nk(Tb) (bµk(Tb)� µk)

2
i
. (4.21)
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Since the left hand side approaches infinity as b ! 1, we see that there is no finite upper bound on the
normalized risk E

h
Nk(T ) (bµk(T )� µk)

2
i
in general.

The above example demonstrates that some correction to the normalized risk, such as the logarithmic
discounting of the sample size in (4.14), is necessary to derive a finite risk bound like in Theorem 4.6. It is
unclear whether the logarithmic discounting we used is optimal or if a smaller factor would have sufficed.

In the next section we show that, for arms with exponentially decaying tails, we can deploy a smaller
discounting factor, measured on a log-log scale, that leads to upper and lower bounds matching up to a
constant term; see Theorem 4.16.

4.4 Risk bounds for arms with exponential tails

In this section we will assume stronger tail-decaying conditions on the arms and derive risk bounds for the
sample means under various degree of adaptivity. While the analysis and results might be cleanest for the
mean-squared error of sub-Gaussian distributions (as is commonly assumed in the bandit literature), the
proof for the more general case involving Bregman risks of sub- distributions follows the same line of
argument and hence we choose to present the results in a unified way. The sub-Gaussian results can be
easily inferred as a special case.

4.4.1 Sub- arms and Bregman divergences as loss functions

For fixed numbers �min < 0 < �max, let ⇤ = (�min,�max) ✓ R be an open interval that contains 0. A
function  : ⇤ ! [0,1) is called CGF-like if it obeys natural properties of a cumulant generating function
(CGF), specifically that it is a non-negative, twice-continuously differentiable and strictly convex function
 (0) =  

0(0) = 0.
A probability distribution P is called sub- if the CGF of the centered distribution exists and is equal

to or upper bounded by a “CGF-like” function  , that is,

logEY⇠P [e
�(Y�µ)]   (�), 8� 2 ⇤ ✓ R. (4.22)

This assumption is quite general and applies to all distributions with a CGF, including natural exponential
family distributions, sub-Gaussian and sub-exponential distributions. Throughout this section, we assume
each arm is in a sub- class unless otherwise specified.

Our analyses make frequent use of  ⇤
µ : ⇤⇤ ! R, the convex conjugate of  µ(�) := �µ+ (�) defined

as

 
⇤
µ(z) := sup

�2⇤
�z �  µ(�), 8z 2 ⇤⇤ :=

⇢
x 2 R : sup

�2⇤
�x�  µ(�) < 1

�
. (4.23)

For arms in a sub- class, it turns out to be natural to define the loss function as the Bregman divergence
with respect to  ⇤

µ:
D ⇤

µ
(bµ, µ) =  

⇤
µ(bµ)�  

⇤
µ(µ)�  

⇤0
µ (µ) (bµ� µ) . (4.24)

For instance, if the underlying distribution is sub-Gaussian, then the Bregman divergence reduces to
the scaled `2 loss. For more examples, see Appendix C.1. More generally, the Bregman divergence is
equivalent to the KL loss when the underlying distribution is a natural univariate exponential family with a
density

p✓(x) = exp {✓x�B(✓)} , ✓ 2 ⇥ ⇢ R,
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with respect to a reference measure �, where ⇥ ⇢
�
✓ 2 R :

R
e
✓x
�(dx) < 1

 
is the natural parameter

space and B : ⇥ ! R is a strictly convex function given by ✓ 7!
R
e
✓x
�(dx). We assume throughout that

⇥ is nonempty and open.
For a fixed ✓ 2 ⇥, define ⇤✓ := {� 2 R : �+ ✓ 2 ⇥} and, for each � 2 ⇤✓, let  (�) =  (�; ✓) :=

B(�+ ✓)�B(✓)� �B
0(✓). Using the properties of the log-partition function B, it can be easily checked

that p✓ is sub- . Since B is strictly convex, there is a one-to-one correspondence between the natural
parameter space and the mean value parameter space M = {µ 2 R : µ = B

0(✓), ✓ 2 ⇥}. For any µ0, µ1 in
the mean parameter space, let ✓0, ✓1 be corresponding natural parameters. The KL divergence between p✓1
and p✓0 induces a natural loss between µ1 and µ0 which is often called the KL loss:

`KL(µ1, µ0) := DKL (p✓1kp✓0) .

The following well-known fact, based on the properties of the CGF of an exponential family and the
duality of Bregman divergence, formally captures how the KL loss is related to the Bregman loss. For
completeness, we present a proof in Appendix C.5.4.
Fact 4.10. Let  be the CGF of a centered distribution in a one-dimensional exponential family. Then, for
any µ1 and µ0 in the mean parameter space, we have

`KL(µ1, µ0) = D ⇤
µ0
(µ1, µ0) =  

⇤
µ0
(µ1) =  

⇤(µ1 � µ0). (4.25)

Further, the last two equalities hold for any CGF-like  .
Since the identity (4.25) recovers the `2 loss for sub-Gaussian arms and the KL loss for exponential

family arms, the Bregman divergence D ⇤
µ
(bµ(⌧), µ) is a natural loss function for the mean value

parameter when the arms are sub- .
Below, we will show that in the deterministic setting where a fixed number n of independent observa-

tions are drawn from a single fixed distribution, the minimax Bregman risk for distributions belonging to an
exponential family is of order 1

n , and that the sample mean is minimax rate-optimal. To get a lower bound,
we need an additional regularity condition on the loss function. For any function d : M ⇥M ! [0,1),
we say that d satisfies the local triangle inequality condition [Yang and Barron, 1999] if there exist posi-
tive constants M  1 and ✏0 such that for any µ0, µ1, µ2 2 M, if max {d(µ1, µ0), d(µ2, µ0)}  ✏0, then
d(µ1, µ0)+d(µ2, µ0) � M max {d(µ1, µ2), d(µ2, µ1)}. The local triangle inequality condition is satisfied
by the square root KL divergence between Gaussian distributions with M = 1. For general exponential
family distributions, we may restrict the parameter space to make the condition satisfied. In particular, if
inf✓2⇥B

00(✓) > 0 and sup✓2⇥B
00(✓) < 1, the condition satisfied with M =

q
inf✓2⇥ B00(✓)
sup✓2⇥ B00(✓) 2 (0, 1).

Under the local triangle inequality condition, we can prove that the minimax rate of convergence is 1
n

and it can be achieved by the sample mean. The proof can be found in Appendix C.5.5. Note that, for the
sub-Gaussian case, the risk reduces to the normalized `2 risk we studied in the previous section.
Proposition 4.11. Let {Xi}ni=1 be an i.i.d. sample from a distribution in a natural exponential family
{p✓ : ✓ 2 ⇥}. For each ✓ 2 ⇥, let µ be the mean parameter and  µ is the cumulant generating function
corresponding to ✓. Then the risk of the sample mean, bµ(n) = 1

n

Pn
i=1Xi, is bounded as

EP✓

h
nD ⇤

µ
(bµ(n), µ)

i
 2, 8✓ 2 ⇥. (4.26)

Also, if
q

D ⇤
µ
satisfies the local triangle inequality condition, then, for a large enough n, the minimax risk

is lower bounded as
inf
bµ
sup
✓2⇥

EP✓

h
nD ⇤

µ
(bµ(n), µ)

i
� M log 2

16
. (4.27)
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Proposition 4.11 provides the inspiration for the results of the subsequent sections, where we will
establish various upper bounds on both normalized and unnormalized versions the Bregman divergence
risk under various degrees of adaptivity. Specifically, starting with the simple settings of a fixed target
arm at a stopping time, we derive a tight upper bound on the unnormalized Bregman risk based on the
effective sample. Then we move to the fully adaptive setting and show that by inducing a small “adaptive
normalizing factor” in a log-log scale, we can extend the bound (4.26) on the normalized risk of the sample
mean to the fully adaptive setting.

4.4.2 Bregman divergence risk bounds for a fixed target arm at a stopping time

Recall that for each k 2 [K], the effective sample size for arm k is defined as ne↵
k := [E [1/Nk(T )]]�1.

Similarly, for any r > 1, the r-th order effective sample size is defined as ne↵,r
k := [E [1/N r

k (T )]]�1/r.
Our next result exhibits a general risk bound on the Bregman risk that depends on the effective sample size.
Theorem 4.12. Consider some adaptive sampling and stopping rules, and a fixed arm k. If there exists a
constant b � 1 such that Nk(T ) � b almost surely, then the risk of bµk(T ) is bounded as

E
h
D ⇤

µk
(bµk(T ), µk)

i
 min

(
2e

1 + log(ne↵
k /b)

n
e↵
k

, inf
r>1

Cr

n
e↵,r
k

)
, (4.28)

where, for any r > 1,

Cr := inf
q2(1,r)

2q/r

e

r
2

(r � q)(q � 1)
. (4.29)

In particular, Cr ! 1 as r ! 1.
Note that the bound in (4.28) is always non-negative since n

e↵
k � b by assumption. Further, if we

always begin by sampling every arm once, then we may take b = 1 for T � K. Of course, if we can choose
a larger b, then the bound will be stronger. The proof of Theorem 4.12 can be found in Appendix C.3.2 and
is based on the following deviation inequality for the unnormalized Bregman divergence loss, which is
proved in Appendix C.3.1.
Lemma 4.13. Under the assumptions in Theorem 4.12 we have that, for any � � 0,

P
⇣
D ⇤

µk
(bµk(T ), µk) � �

⌘
 2 inf

q�1

h
Ee�(q�1)�Nk(T )

i1/q
 2e��b

. (4.30)

We remark that the results in Caballero et al. [1998], Peña et al. [2008] imply similar deviation
inequalities and moment bounds for sub-Gaussian arms. The bound in Lemma 4.13 can be viewed as a
generalization to sub- arms.

We now convert the risk bound (4.28) into a bound on the expected `1 loss, and on the bias |bµk(T )�µk|.
A minor complication arises due to the fact that the function  ⇤ is strictly convex around 0 and, therefore,
not invertible. Instead, we consider two invertible variants of  ⇤, both defined on ⇤⇤ \ [0,1) and taking
values in [0,1):

z 7!  
⇤
+(z) =  

⇤(z) and z 7!  
⇤
�(z) =  

⇤(�z).

Corollary 4.14. Suppose the assumptions in Theorem 4.12 hold. For each k 2 [K] and b > 0, define

Uk,b := min

(
2e

1 + log(ne↵
k /b)

n
e↵
k

, inf
r>1

Cr

n
e↵,r
k

)
. (4.31)
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Then, the bias of the sample mean is bounded as

�  
⇤
�
�1 (Uk,b)  E [bµk(T )]� µk   

⇤
+
�1 (Uk,b) . (4.32)

Furthermore, if  ⇤ is symmetric around zero, then the `1 risk can be bounded as

E |bµk(T )� µk|   
⇤
+
�1 (Uk,b) . (4.33)

The proof can be found in Appendix C.3.3. As one explicit example, if the underlying distribution is
sub-Gaussian,  ⇤�1

+ (l) = �
p
2l and the `1 risk of the sample mean is bounded as

E |bµk(T )� µk|  �
p

2Uk,b = �min

(s

4e
1 + log(ne↵

k /b)

n
e↵
k

, inf
r>1

s
2Cr

n
e↵,r
k

)
. (4.34)

We remark that the above bound on the bias is not improvable beyond the log factor in general by using the
following stopped Brownian motion example [Siegmund, 1985, Ch. 3].
Example 4.15. If we define a stopping time as the first timeW (t) exceeds a line with slope ⌘ and intercept
b > 0, that is TB := inf{t � 0 : W (t) � ⌘t+b}, then for any slope ⌘  µ, we have E

h
W (TB)
TB � µ

i
= 1/b.

Note that a sum of Gaussians with mean µ behaves like a time-discretization of a Brownian motion
with drift µ; since EW (t) = tµ, we may interpret W (TB)/TB as a stopped sample mean, and the last
equation implies that its bias is 1/b for any slope ⌘  µ. In particular, if we set ⌘ = µ, it is easy to deduce
that E[1/TB] = 1/b2 and thus that

1/ne↵ = E [1/TB] = 1/b2.

As a result, the bias of WTB/TB as a stopped sample mean is exactly equal to
p
1/ne↵ which matches

(4.34) up to a log factor.
We end this section by discussing whether tight risk bounds can be obtained based on ENk(T ). By

Jensen’s inequality, it can be easily checked that ne↵
k  ENk(T ). One may wonder if it is possible to obtain

tighter bounds on both bias and risk that scale with 1/ENk(T ) instead of ne↵
k . However, we can show that

this is not possible in general. For instance, in the previous stopped Brownian motion case with ⌘ = µ, we
checked that the bias is equal to 1/b = 1/

p
ne↵ > 0. However, under the same setting, it is well-known

that ENk(T ) = 1. Therefore, the bias (namely 1/b) can never be bounded by 1/EN(T ) = 0. Also, a
risk bound in terms of 1/ENk(T ) would imply consistency whenever ENk(T ) ! 1, but Example 4.1
shows that bµk can be inconsistent even when ENk(T ) ! 1.

4.4.3 Bregman divergence risk bounds under fully adaptive settings

Let I(;DT ) be the mutual information between  and the dataset DT . When the dataset DT is collected
in a deterministic manner, Russo and Zou [2016] showed how to bound the bias and expected `1 and `2

loss of adaptively chosen centered sub-Gaussian random variables by using I(;DT ). In particular, if each
bµk � µk has mean zero and is (�/

p
n)-sub-Gaussian, then Russo and Zou [2016] proved that

p
n |Ebµ � µ|  �

p
2I(;DT ), (4.35)

E
⇥p

n |bµ � µ|
⇤
 �

⇣
1 + c1

p
2I(;DT )

⌘
(4.36)

E
h
n (bµ � µ)

2
i
 �

2 (1.25 + c2I(;DT )) , (4.37)
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where c1 < 36 and c2  10 are universal constants.
For the reasons discussed in Section 4.3, however, these bounds are not directly applicable to the fully

adaptive setting since each bµk � µk is no longer centered, due to the bias caused by adaptive sampling,
stopping and rewinding. In particular, the bound for the bias given in equation (4.35) no longer holds under
the fully adaptive setting because the bias can be non-zero even if  is independent of DT .

In this subsection we show that, by introducing an additional small “penalty for adaptivity”, measured
on the log-log scale, the bounds for deterministic and nonadpative sampling and stopping can be basically
extended to the fully adaptive setting. Towards that end, and assuming that Nk(t0) > 3 for all k 2 [K], we
set

⇡
Nk(t) :=

Nk(t)

log logNk(t)
, 8k 2 [K], 8t � t0. (4.38)

We now present the main result of this section.
Theorem 4.16. For any adaptive sampling and stopping rule and any adaptively chosen arm , suppose
mink2[K]Nk(⌧) � b � 3 almost surely for an adaptively rewound time ⌧  T . Then, the risk of bµ(⌧) is
bounded as

E
h ⇡
N(⌧)D ⇤

µ
(bµ(⌧), µ)

i
 Cb [I (;DT ) + 1.25] , (4.39)

where Cb := 4e
⇣
1 + 1

log log b

⌘
.

Note that for the sub-Gaussian case, the inequality (4.39) is reduced to the following bound on the
normalized `2 risk.

E
h ⇡
N(⌧) (bµ(⌧)� µ)

2
i
 2Cb�

2 [I (;DT ) + 1.25] . (4.40)

By comparing the above bound with the bound (4.37) of Russo and Zou [2016], we can notice that our
bound (4.39) under the fully adaptive setting only suffers a multiplicative normalization term which is
of order log logN(⌧). Also, for a fixed target, the following example demonstrates that, in general, the
bound (4.39) cannot be improved upon, aside from constants.
Example 4.17 (Example 4.9 revisited). In the same setting of Example 4.9, we further assume that each
arm has a normal distribution variance �

2
k. Then, from the definition of the stopping time Tb and the

bound (4.39), we have following upper and lower bounds on the normalized `2 risk for a fixed target.

�
2
k  E

h ⇡
Nk(Tb) (bµk(Tb)� µk)

2
i
 2.5Cb�

2
k, (4.41)

in which upper and lower bounds are matched to each other up to a constant factor.
The proof of Theorem 4.16 in Appendix C.4.2 relies on the following deviation inequality for the

normalized Bregman divergence loss, along with the Donsker-Varadhan variational representation of the
KL divergence.
Lemma 4.18. Consider some adaptive sampling and stopping rules. For a fixed k 2 [K] and a random
time ⌧ , assume Nk(⌧) � b almost surely. Then, for any � � 1,

P
⇣ ⇡
N(⌧)D ⇤

µk
(bµk(⌧), µk) � Cb�

⌘
 2 exp {��} . (4.42)

The proof of the lemma is deferred to Appendix C.4.1. Similar inequalities have been developed in
the context of always valid confidence sequences or finite-LIL bounds. Except in the sub-Gaussian case,
the existing inequalities cannot be directly converted into bounds on the Bregman divergence. Recently,
Garivier [2013] provided concentration inequalities for the KL loss, and Kaufmann and Koolen [2018]
derived similar inequalities for the additive KL loss across several arms. However, their bounds depend on
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� in a complicated way making it difficult to develop bounds for the risk. In contrast, the bound in (4.42) is
linear in � which makes it easy to derive a bound of the risk in a simple form.

Next, for any r > 0, define the r-th order iterated logarithmically discounted effective sample size of
an adaptively chosen arm as

⇡
n
e↵,r
 :=

h
E
h
1/

⇡
N

r
(⌧)

ii�1/r
, 8r > 0, (4.43)

where the expectation is over the randomness in all four sources of adaptivity. This quantity is nonrandom,
and the subscript  merely differentiates it from the effective sample size of a fixed arm, and is not to be
interpreted as residual randomness. We can also easily check that ⇡

n
e↵,r
 is decreasing with respect to r by

using Jensen’s inequality. The following corollary shows how to control risks of various orders by using
⇡
n
e↵,r
 . The proof of the corollary can be found in Appendix C.4.3.

Corollary 4.19. For any r 2 (0, 1), the r-quasi-norm of the divergence can be bounded as

h
EDr

 ⇤
µ

(bµ(⌧), µ)
i1/r

 Cb
⇡
n
e↵,r/(1�r)


[I (;DT ) + 1.25] . (4.44)

In the sub-Gaussian setting, by choosing r = 1/2, the above results immediately yields the bound for the
`1 risk

E |bµ(⌧)� µ| 
�p⇡
ne↵

p
2Cb [I (;DT ) + 1.25], (4.45)

which is also comparable with the bound (4.36) on the `1 risk given by Russo and Zou [2016],

E |bµ(n)� µ| 
�p
n

⇣
c1

p
2I(;DT ) + 1

⌘
. (4.46)

We quickly point out that the above theorem and corollary immediately yield results for the setting
where we adaptively rewind to time ⌧ , but choose a fixed arm  = k, since I(,DT ) = 0 in this case. We
also remark that by letting r ! 1, we get ⇡

n
e↵,r/(1�r)
 ! b/ log log b which implies the following bound on

the risk:
ED ⇤

µ
(bµ(⌧), µ)  Cb

log log b

b
[I (;DT ) + 1.25] . (4.47)

It is an open question whether it is possible to get a bound based on ⇡
n
e↵ instead of b in the fully adaptive

setting.

4.5 Summary of the main theorems and proof techniques

In this chapter, we have analyzed the behavior of the sample mean under four types of adaptivity implied by
arbitrary rules for sampling, stopping, choosing and rewinding. Table 4.1 summarizes the risk bounds we
have derived under different conditions on the distributions of the arms and under different data collection /
analysis procedures.

The derivation of the upper bounds for the various notions of risks of the chosen means are based on the
variational representations of the fq-divergence (Theorem 4.6) and of the KL divergence (Theorem 4.16).
These are given respectively by

1

q
Dfq(P ||Q) = sup

f2Cp
EP [f(X)]� EQ [f(X)]� EQ


|f(X)|p

p

�
, (4.48)
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Table 4.1: Summary of normalized and unnormalized risk bounds under different conditions.
(Recall that eN := N/ logN and

⇡
N := N/ log logN.)

Tail condition Data collection Risk bound

�
(2)
k < 1 Nonadaptive E

h
Nk(T ) (bµk(T )� µk)

2
i
= �

2
k (Prop 4.4)

maxk �
(2p)
k < 1 Adaptive choosing E

h
N(T ) (bµ(T )� µ)

2
i
 k�k22 + Cp

����(2p)


���
2

2p
I
1/q
q (,DT ) (Prop 4.5)

maxk �
(2(p+✏))
k < 1 Fully adaptive E

h
eN(⌧) (bµ(⌧)� µ)

2
i
 C1,✏k�k22 + Cp,✏k�k22pI

1/q
q (,DT ) (Thm 4.6)

sub- Adaptive sampling
and stopping E

h
D ⇤

µk
(bµk(T ), µk)

i
 min

n
2e 1+log(neff

k /b)
neff
k

, infr>1
Cr

neff,r
k

o
(Thm 4.12)

sub- Fully adaptive E
h ⇡
N(⌧)D ⇤

µ
(bµ(⌧), µ)

i
 Cb [I (;DT ) + 1.25] (Thm 4.16)

and
DKL(P ||Q) = sup

f2Cexp
EP [f(X)]� logEQ

h
e
f(X)

i
, (4.49)

where P , Q are probability measures on X . In the first equation (4.48), Cp denotes the set of measurable
functions f : X 7! R such that EQ |f(X)|p < 1, with p, q > 1 satisfying 1/p + 1/q = 1, while in the
second equation (4.49), Cexp is the set of measurable functions f : X 7! R such that EQ

⇥
e
f(X)

⇤
< 1.

Now, for each k 2 [K], set Pk = L (DT | = k), Q = L (DT ) and

fk =

(
� eNk(⌧) (bµk(⌧)� µk)

2 (Theorem 4.6),
�

⇡
Nk(⌧)D ⇤

µk
(bµk, µk) (Theorem 4.16).

(4.50)

By plugging these choices of Pk, Q and fk in the right hand sides of (4.48) and (4.49), we obtain lower
bounds on the fq divergence and the KL divergence between the conditional and unconditional laws of the
data. Next, based on these lower bounds, we derive upper bounds on the normalized risk of the chosen
mean in Theorem 4.6 and 4.16. Detailed derivations can be found in Appendix C.2.2 (Theorem 4.6) and
Appendix C.4.2 (Theorem 4.16).

This style of proof was originally developed by Russo and Zou [2016] and Jiao et al. [2017] for the
fixed sample size setting. The main technical hurdle to extend it to the fully adaptive setting is to find tight
upper bounds on the expectations of the pth power and the exponential moment of the normalized losses,
defined for each k 2 [K] by

E
h���� eNk(⌧) (bµk(⌧)� µk)

2
���
pi

(Theorem 4.6),

E
h
exp

n
�

⇡
Nk(⌧)D ⇤

µk
(bµk, µk)

oi
(Theorem 4.16),

where � > 0 is a parameter to be chosen appropriately. To derive upper bounds independent of sampling
and stopping rules, we use the deviation inequalities in Lemma 4.7 and 4.18 in conjunction with the
following facts:

E|X|p  1 +

Z 1

1
P(|X| > �

1/p)d�,

E
⇥
e
X
⇤
 e+

Z 1

1
P(X > �)e�d�.
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In the proofs of Lemma 4.7 and 4.18 we deploy martingale inequalities to obtain high probability
bounds on events where the running sum {Sk(t)} eventually exceeds certain linear functions of the number
of draws {Nk(t)}. Specifically, in Lemma 4.7 we use the `p-version of the Dubins-Savage inequality
[Khan, 2009], while in Lemma 4.18 our arguments are directly inspired by the proof of the exponential
line-crossing inequality of [Howard et al., 2018a].

The derivation of the bound in Theorem 4.12 is based on the deviation inequality for unnormalized loss
in Lemma 4.13 and the fact that E|X| = ✏+

R1
✏ P(|X| > �)d� for any choice of ✏ � 0; utilizing both, we

have the following intermediate bound:

E
h
D ⇤

µk
(bµk(T ), µk)

i
 ✏+ 2

Z 1

✏


E exp

⇢
�q

p
�Nk(T )

��1/q
d�, (4.51)

where ✏ � 0 and p, q > 1 with 1/p+ 1/q = 1. By carefully choosing ✏, p and q we then arrive at the final
bounds in terms of effective sample sizes. The proof the deviation inequality in Lemma 4.13 is based on
the following process:

{exp {� (Sk(t)� µkNk(t))�Nk(t) (�)}} ,

which is martingale with respect to the filtration {Ft}t�0, for any fixed � 2 ⇤.

4.6 Discussion and future work

We build on a line of interesting work that considered one type of adaptivity at a time. For example,
the important work of Russo and Zou [2016] and its extensions by Jiao et al. [2017] can be viewed as
understanding the bias of the sample mean under nonadaptive sampling, nonadaptive stopping and adaptive
choosing. Similarly, the work by Nie et al. [2018] can be seen as providing a qualitative understanding of the
sample mean under “optimistic” adaptive sampling, but for a deterministic arm stopped at a deterministic
time. Further, while these past works have primarily focused on the bias, our work answers natural questions
involving the estimation risk and consistency.

Several interesting questions remain fruitful for future research. The first one revolves around the
choice of loss function for calculating the risk. Arguably, we picked the most natural loss function, which
is the `2 loss for heavy-tailed arms and the Bregman divergence with respect to the convex conjugate of the
CGF, also known as the KL-loss for exponential families. However, it is likely that the bounds achieved
as implications of our results are not tight for other loss functions, and newer direct techniques may be
more suitable. A second, related, question involves proving minimax lower bounds for risk (for various
loss functions) under all kinds of adaptivity. The work of Sackrowitz and Samuel-Cahn [1986] on Bayes
and minimax approaches towards evaluating a selected population may be a relevant starting point.

A final question revolves around possibly moving away from the sample mean, specifically whether
there exist generic methods to either (a) alter the process of collecting the data to produce an unbiased
estimator of the mean, or (b) to debias the sample mean posthoc given explicit knowledge of the exact
sampling, stopping and choosing rule used. For aim (b), sample splitting was proposed by Xu et al. [2013],
techniques from conditional inference were suggested by Nie et al. [2018], and a “one-step” estimator was
suggested by Deshpande et al. [2018]. However, all three methods seemed to account for adaptive sampling,
but not adaptive stopping or choosing, but their techniques seem to provide a good starting point. More
recently, ideas from differential privacy were exploited by Neel and Roth [2018] for aim (a). It remains
unclear what the theoretical and practical tradeoffs are between these methods, and how much they improve
on the risk of the sample mean in a nonparametric and nonasymptotic sense in the fully adaptive setting.
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Overall, we anticipate much progress on the above and other related questions in future years, due to
the pressing concerns raised by the need to perform statistical inference on data collected via adaptive
schemes that are common in the tech industry.
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Appendix A

Appendix for Chapter 2

A.1 ✏-greedy, UCB and Thompson sampling are optimistic sampling rules

A.1.1 Exploit and IIO conditions are sufficient for optimistic sampling

In Fact 2.7, we claimed that “Exploit” and “IIO” conditions in Nie et al. [2018] are jointly a sufficient
condition for a sampling rule being optimistic. In this subsection, we formally restate Exploit and IIO
conditions of Nie et al. [2018] in terms of our notations and prove Fact 2.7.

First, fix a deterministic stopping time T . Given any t 2 [T ], k 2 [K], define respectively the data from
arm k until time t, and the data from all arms except k until time t, as

D(k)
t :=

�
X

⇤
i,k

 Nk(t)

i=1
and D(�k)

t := Dt \ D(k)
t =

[

j 6=k

�
X

⇤
i,j

 Nj(t)

i=1
[ {W�1,W0, . . . ,Wt},

where Dt is the sample history up to time t under a tabular model D⇤
1. Let D⇤0

1 be another tabular model.
Under D⇤0

1, we define D0
t,D0(k)

t and D0(�k)
t in the same way. The Exploit condition in Nie et al. [2018] can

be rewritten as following.
Definition A.1 (Exploit). Given any t 2 [T ], k 2 [K], suppose D(k)

t and D0(k)
t have the same size (that is

N
0
k(t) = Nk(t)) and D(�k)

t = D0(�k)
t . If the sample mean bµk(t) under D

(k)
t is less than or equal to the

sample mean bµ0
k(t) under D

0
t
(k), then

(At = k) := ft,k

⇣
D(k)

t [D(�k)
t

⌘
 ft,k

⇣
D0(k)

t [D(�k)
t

⌘
=: (A0

t = k).

For the IIO condition, we present a specific version in the MAB setting which was originally used in
Eq.(8) in the proof of Theorem 1 in Nie et al. [2018].
Definition A.2 (Independence of Irrelevant Options (IIO)). For each t, k, the sampling random variable
At can be written in terms of deterministic functions ft,k and gt,k such that

At =

(
k if ft,k (Dt�1) = 1

j if ft,k (Dt�1) = 0 and gt,k

⇣
D(�k)

t�1

⌘
= j for some j 6= k.

Intuitively, ft,k is simply the indicator of whether arm k was pulled at time t; the crucial part is gt,k,
which specifies which arm is selected when arm k is not, and the IIO condition requires that gt,k ignores
the data from arm k in order to determine which j 6= k to pull instead.
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It can be checked that ✏-greedy, UCB and Thompson sampling under Gaussian arms and Gaussian
priors satisfy both conditions. Indeed, if arm k is not the arm with the highest mean or highest UCB
(for example), determining which other arm does get pulled in the next step does not depend on the data
from arm k. In Appendix A.1.2, we present a sufficient condition for Thompson sampling to satisfy both
conditions, and thus to be optimistic which shows Thompson sampling is optimistic for many commonly
used exponential family arms including Gaussian, Bernoulli, exponential and Possion arms with their
conjugate priors.

Before we prove Fact 2.7, we first introduce a lemma related to the IIO condition as follows.
Lemma A.1. Fix a k 2 [K]. Let D⇤

1 and D⇤0
1 be two MAB tabular representation that agree with each

other except in their k-th column. Let Nj(t) and N 0
j(t) be the numbers of draws from arm j for all j 2 [K]

under D⇤
1 and D⇤0

1 respectively. Then, under IIO, the following implication holds:

Nk(t)  N
0
k(t) ) Nj(t) � N

0
j(t), for all j 6= k. (A.1)

By switching the roles of D⇤
1 and D⇤0

1, we also have

Nk(t) � N
0
k(t) ) Nj(t)  N

0
j(t), for all j 6= k, (A.2)

and therefore,
Nk(t) = N

0
k(t) ) Nj(t) = N

0
j(t), for all j 6= k. (A.3)

Proof of Lemma A.1. It is enough to prove the first statement. We follow the logic in the proof of Property 1
in Nie et al. [2018]. If Nk(t) = t or N 0

k(t) = t then the claimed statement holds trivially since Nj(t) +
Nk(t)  t and N

0
j(t) + N

0
k(t)  t for all j 6= k. Therefore, for the rest of the proof, we assume

Nk(t)  N
0
k(t) < t.

For each t, define s1 < · · · < st�Nk(t) to be the sequence of times at which arm k was not sampled
before time t under D⇤

1. Similarly, let s01 < · · · < s
0
t�Nk(t)

be the sequence of times at which arm k was
not sampled before time t under D⇤0

1. From the IIO condition and the assumption that D⇤
1 and D⇤0

1 agree
with each other except in their k-th column, we have

Asu = As0u , for all u 2 {1, . . . , t�N
0
k(t)}, (A.4)

which implies that

N
0
j(t) = N

0
j(s

0
t�N 0

k(t)
) = Nj(st�N 0

k(t)
)  Nj(st�Nk(t)) = Nj(t),

where the first and the last identities stem from the definition of s and s0, the second identity is due to (A.4),
and the inequality follows from the assumption that Nk(t)  N

0
k(t) along with the fact that u 7! su and

s 7! Nj(s) are increasing.

Proof of Fact 2.7. Let us fix an arm k and a deterministic stopping time T , and a time t  T , as required
by Exploit and IIO conditions. The arguments below are inspired by case 1 in the proof of Theorem 1 in
Nie et al. [2018].

Let X⇤0
i,k be an independent copy of X⇤

i,k and define X⇤0
1 as a N ⇥K table which equals X⇤

1 on all
entries except the (i, k)-th entry, which contains X⇤0

i,k. Let D⇤0
1 = X

⇤0
1 [ {W�1,W0, . . . } denote the

corresponding dataset, which only differs from D⇤
1 in one element. Let Nk(T ) and N 0

k(T ) be numbers of
draws from arm k up to time T based on D⇤

1 and D⇤0
1 respectively. Also for each t  T , let At and A0

t be
sampled arms based on D⇤

1 and D⇤0
1 respectively.
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To prove the claim, it is enough to show that if X⇤
i,k  X

⇤0
i,k then Nk(T )  N

0
k(T ) under Exploit and

IIO conditions. Suppose, for the sake of deriving a contradiction, that there exist i 2 N and k 2 [K] such
that X⇤

i,k  X
⇤0
i,k but Nk(T ) > N

0
k(T ). Note that since As and A

0
s are functions of the history up to time

s� 1, we know that As = A
0
s for all s  t, where t is defined as t = min {s � 1 : Nk(s) = N

0
k(s) = i}.

If t � T , we have that Nk(T ) = Nk(t) = N
0
k(t) = N

0
k(T ), which contradicts our assumption. Hence, we

may assume t < T for the rest of the proof.
Define s0 := min {s � 1 : Nk(s) > N

0
k(s)}. From the definition of s0, we know that Nk(s0 � 1) =

N
0
k(s0 � 1). Since D⇤

1 and D⇤0
1 are identical except for their (i, k)-th entry, by Lemma A.1, we have that

Nj(s0 � 1) = N
0
j(s0 � 1) for all j, which also implies that Ds0�1 and D0

s0�1 are identical except for the
Nk(t)-th observation from arm k. Therefore, the sample mean from arm k up to time s0 � 1 under D0

s0�1

is larger than the one under Ds0�1.
Then, by the Exploit condition, As0 = k implies that A0

s0 = k. This contradicts the assumption that
Nk(s0) > N

0
k(s0). Therefore, if X

⇤
i,k  X

⇤0
i,k then Nk(T ) must be less than or equal to N

0
k(T ). Since it

holds for any i 2 N, k 2 [K] and T , the sampling strategy is optimistic, proving our claim that Exploit and
IIO conditions are jointly a special case of an optimistic sampling rule.

A.1.2 Sufficient conditions for Thompson sampling to be optimistic

In the previous subsection A.1.1, we show that Exploit and IIO conditions are jointly a sufficient condition
for a sampling rule to be optimistic. In this subsection, we present a sufficient condition for Thompson
sampling to satisfy both conditions, and thus to be optimistic.

For each k, let ✓k be the parameter of the distribution of arm k, and let µk = µ(✓k). If we use an
independent prior ⇡ on ✓ := (✓1, . . . , ✓K), it can be easily shown that posterior distributions of ✓ and
µ(✓) := (µ(✓1), . . . , µ(✓K)) are also coordinate-wise independent conditionally on the data. Therefore, the
IIO condition is trivially satisfied for the Thompson sampling algorithms. However, it is difficult to check
whether the Exploit condition is satisfied because there is no closed form for ⇡(k = argmaxj2[K] µ(✓j)|Dt)
in general.

One way to detour this issue is to study whether there exists a posterior sampling method such that the
following statistically equivalent sampling algorithm satisfies the Exploit condition.

⌫t(k) =

(
1 if k = argmaxj2[K] µj(✓j,t�1)

0 otherwise,

where ✓j,t�1 is a draw from the posterior distribution ⇡(✓j |Dt�1) at time t�1. If there exists such sampling
method, we know that the sample mean from this Thompson sampling is negatively biased for any fixed k
and T . With a slight abuse of notation, we say the Thompson sampling is optimistic in this case.

For example, in Appendix A.1.1, we show that Thompson sampling under Gaussian arm and Gaussian
prior is optimistic by using a standard Gaussian posterior sampling method described in Section 1.1. Simi-
larly, for the Bernoulli arm with parameters {pk}Kk=1 and beta prior with non-negative integer parameters
(n,m) case, we can check that the corresponding Thompson sampling is optimistic using the equivalent
optimistic sampling rule

⌫t(k) =

(
1 if k = argmaxj2[K]

aj,t�1

aj,t�1+bj,t�1

0 otherwise,

where aj,t�1 = �
Pn+Sk(t�1)

i=1 logUi,k, bj,t�1 = �
Pm+Nk(t�1)�Sk(t�1)

i=1 logWi,k and each Ui,k andWi,k

are independent draws from U(0, 1).
In general, we have the following sufficient condition for the Thompson sampling to be optimistic.
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Corollary A.2. Suppose the distributions of the arms belong to a one-dimensional exponential family with
density p⌘(x) = exp{⌘T (x) � A(⌘)} with respect to some dominating measure � and with ⌘ 2 E. Let
⇡ be a conjugate prior on ⌘ with a density proportional to exp{⌧⌘ � n0A(⌘)}. If ⇡(⌘  x | ⌧, n0) is a
decreasing function of ⌧ for any given x and n0, and if ⌘ 7! µ(⌘) and x 7! T (x) are both increasing or
decreasing mappings, then Thompson sampling is optimistic.

Proof. Fix a an arm k 2 [K]. By the conjugacy, the posterior distribution for ⌘k given the data up to time t
is given by

⇡ (⌘k|Dt) / exp
��

⌧ + S
T
k (t)

�
⌘k � (n0 +Nk(t))A(⌘k)

 
,

where ST
k (t) :=

Pt
s=1 (As = k)T (Ys). Let F

�
x|ST

k (t), Nk(t)
�
:= ⇡ (⌘k  x|Dt). From the condition

on the prior, we know that ST
k (t) 7! F

�
x|ST

k (t), Nk(t)
�
is a decreasing mapping for any given x,Nk(t)

and indices i, k and t. Therefore ST
k (t) 7! F

�1
�
y|ST

k (t), Nk(t)
�
is an increasing mapping for any given

y,Nk(t) and indices i, k and t. Now, we can check that the Thompson sampling is equivalent to the
following sampling rule.

⌫t(k) =

(
1 if k = argmaxj2[K] µ (⌘j,t�1)

0 otherwise,

where ⌘j,t�1 := F
�1

�
Uj,t�1|ST

k (t� 1), Nk(t� 1)
�
and each Uj,t�1 is an independent draw from U(0, 1).

Since ⌘ 7! µ(⌘) and x 7! T (x) are both increasing (or decreasing), this sampling rule and the correspond-
ing Thompson sampling is optimistic.

We can check many commonly used one-dimensional exponential family arms with its conjugate
prior satisfying the condition in Corollary A.2 which includes Gaussian distributions with a Gaussian
prior, Bernoulli distributions with a beta prior, Poisson distributions with a gamma prior and exponential
distributions with a gamma prior

A.1.3 Intuitions for the sign of the bias under each optimistic sampling and stopping

Under an optimistic sampling rule with a fixed stopping time and a fixed target, Xu et al. [2013] and Nie
et al. [2018] provided some intuitions as to why the sample mean is negatively biased. In this subsection, we
presents a similar intuitive explanation for the negative bias of the sample mean due to adaptive sampling.
We also offer some intuition in order to explain the positive bias stemming from optimistic stopping rules
in the one-armed case.

For an optimistic sampling rule with a fixed stopping time, assume for simplicity that we have a fixed
target arm with a symmetric distribution around its true mean. Consider two equally possible realization
of the experiment up to time t. In one realization, the sample mean at time t happens to be larger than its
true mean. On the other hand, in the other scenario, the sample mean at time t happens to be smaller than
its true mean. In the first case, the optimistic sampling rule will draw samples more often from the target
arm, and thus the sample mean will regress more easily to its true mean. In contrast, in the other case, the
optimistic sampling rule will draw samples less often and thus the sample mean is less likely to regress to
its true mean due to the smaller sample size. Since these two realizations are equally likely, on average, the
sample mean is negatively biased. See Figure A.1 for an illustration of this intuition.

For optimistic stopping in the one-armed case, consider the stopping rule that terminates the experiment
when the sample mean crosses a predetermined upper boundary. See Figure A.2 for an illustrative stopping
boundary. As we did for the sampling case, we again assume that the distribution of the arm is symmetric
around its true mean. As before, consider two equally possible realizations. In one realization, the sample
mean at early times happens to be larger than the true mean. On the other hand, in the other realization, the
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sample means at early times is smaller than its true mean. In the first realization, the sample mean will
cross the upper stopping boundary at an earlier time and thus the sample mean at the crossing time will be
large. In contrast, in the other realization, the sample mean will cross the boundary at a later time and thus
the optimistic stopping rule ensures that we will draw more samples in this realization and thus the sample
mean is more likely to regress to its true mean due to the larger sample size. Since these two realizations
are equally likely, on average, the sample mean is positively biased. See Figure A.2 for an illustration of
this intuition.

Figure A.1: An illustration of the intuition for why optimistic sampling results in negative bias.

Figure A.2: An illustration of the intuition for why optimistic stopping results in positive bias.

A.2 Proofs

A.2.1 Proof of Theorem 2.10

Suppose that the data collecting strategy is monotonically increasing for the k-th distribution with P( =
k) > 0. From Theorem 3.1, it is sufficient to prove

E [|bµk(T )� µk| |  = k] < 1 () E [|bµk(T )� µk| ( = k)] < 1 (A.5)

From the strong law of large numbers, we know that |bµk(T )� µk| (Nk(T ) = 1) = 0 almost surely.
Hence, to prove Theorem 2.10, we can further refine the sufficient condition and it is enough to show

E [|bµk(T )� µk| ( = k) (Nk(T ) < 1)] < 1. (A.6)
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For each t � 0, define a process such that L0 = 0 and

Lt :=
tX

s=1

( = k)

Nk(T )
(Nk(T ) < 1) (As = k) (Ys � µk) , 8t 2 N. (A.7)

Note that Lt ! (bµk(T )� µk) ( = k) (Nk(T ) < 1) as t ! 1 almost surely since it is understood
that (At = k) = 0 for all t > T . Therefore, to prove E [|bµk(T )� µk| ( = k) (Nk(T ) < 1)] < 1,
it is enough show that there exists a random variable U with E[U ] < 1 such that |Lt|  U for all t � 0.
Define U as

U =
TX

s=1

|Ls � Ls�1| =
1X

s=1

|Ls � Ls�1| (T � s) . (A.8)

Clearly, |Lt|  U for all t. In order to show that E[U ] < 1, first note that for any t � 1, we have

E [|Lt+1 � Lt| | F t] = E


( = k)

Nk(T )
(Nk(T ) < 1) (At+1 = k) |Yt+1 � µk| | Ft

�

 E [ (At+1 = k) |Yt+1 � µk| | F t]

= (At+1 = k)E [|Yt+1 � µk| | F t]

= (At+1 = k)

Z
|x� µk|dPk(x)

:= ck (At+1 = k),

(A.9)

where the first inequality comes from the assumption Nk(T ) � 1 for all k with P( = k) > 0, and the
following equality holds because (At+1 = k) 2 Ft. The third equality stems from the observation that,
on the event (At+1 = k), Yt+1 ⇠ Pk and it is independent of the previous history. Therefore, we obtain
that

E[U ] =
1X

s=1

E [E [|Ls � Ls�1| (T � s) | Fs�1]]

=
1X

s=1

E [ (T � s)E [|Ls � Ls�1| | Fs�1]] (since (T � s) 2 Fs�1.)

 ck

1X

s=1

E [ (As = k) (T � s)] (by the inequality (A.9))

= ckENk(T ) < 1,

where the finiteness of the last term follows from the assumptionENk(T ) < 1 for all k with P( = k) > 0.
This proves the inequality (2.2). The next inequality (2.3) follows immediately from this result and the
identity

E [bµ(T )� µ] =
X

k:P(=k)>0

E [bµ(T )� µ |  = k]P( = k).

Thus, the sample mean at the stopping time T is negatively biased.
If the data collecting strategy is monotonically increasing, the supermartingale is replaced by a

submartingale and the inequalities are reversed. This observation completes the proof.
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Now, suppose each arm has a bounded distribution. without loss of generality, assume there exists a
fixedM > 0 such that Pk ([µk �M,µk +M ]) = 1 for all k 2 [K]. Then for any t � 1, we have

E [|Lt+1 � Lt| | F t] = E


( = k)

Nk(T )
(Nk(T ) < 1) (At+1 = k) |Yt+1 � µk| | Ft

�

 ME


(At+1 = k)

Nk(T )
(Nk(T ) < 1) | Ft

�
.

(A.10)

Therefore, we obtain that

E[U ] =
1X

s=1

E [E [|Ls � Ls�1| (T � s) | Fs�1]]

=
1X

s=1

E [ (T � s)E [|Ls � Ls�1| | Fs�1]] (since (T � s) 2 Fs�1)

 M

1X

s=1

E


(As = k)

Nk(T )
(Nk(T ) < 1) (T � s)

�
(by the inequality (A.10))

= M < 1 (by the definition of Nk(T )),

which implies that if each arm has a bounded distribution, we can determine the sign of the bias of the
sample mean at the stopping time T without assuming ENk(T ) < 1 for all k with P( = k) > 0.

About Remark 2.11. In our recent work [Shin et al., 2019a], we showed that if arm k has a finite p-th
moment for a fixed p > 2, the following bound on the normalized `2 risk of the sample mean holds:

E


Nk(T )

logNk(T )
(bµk(T )� µk)

2
�
< 1, (A.11)

provided that Nk(T ) � 3. In this case, we can show that E[U ] < 1 without assuming ENk(T ) < 1,
where U is defined in (A.8). For each k, set ck :=

R
|x � µk|dPk(x). Let bck(T ) be the sample mean

estimator of ck at the stopping time T . Then, we have

E[U ] =
1X

s=1

E [E [|Ls � Ls�1| (T � s) | Fs�1]]

=
1X

s=1

E


( = k)

Nk(T )
(As = k) |Ys � µk| (T � s)

�

 E
" 1X

s=1

(As = k)

Nk(T )
|Ys � µk| (T � s)

#

:= E [bck(T )]

 E |bck(T )� ck|+ ck

 E
"s

Nk(T )

logNk(T )
|bck(T )� ck|

#
+ ck



s

E


Nk(T )

logNk(T )
(bck(T )� ck)

2
�
+ ck < 1,
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where in the last bound we have used (A.11). Thus, if each arm has a finite p-th moment for a fixed
p > 2, we can determine the sign of the bias of the sample mean at the stopping time T without assuming
ENk(T ) < 1 for all k with P( = k) > 0.

A.2.2 Proof of Corollary 2.12 (The lil’UCB algorithm results in positive bias)

Before presenting a formal proof of Corollary 2.12, we first provide an intuitive explanation why any
reasonable and efficient algorithm for the best-arm identification problem would result in positive bias.
For any k 2 [K] and i 2 N, let D⇤

1 and D⇤0
1 be two MAB tabular representation that agree with each

other except X⇤
i,k < X

⇤0
i,k. Since we have a larger value from arm k in the second scenario D⇤0

1, if  = k

under the first scenario D⇤
1, any reasonable algorithm would also pick the arm k under the more favorable

scenario D⇤0
1. In this case, we know that  = k implies 0 = k. Also note that any efficient algorithm

should be able to exploit the more favorable scenario D
⇤0
1 to declare arm k as the best arm by using less

samples from arm k. Therefore, we would have Nk(T ) � N
0
k(T 0). In sum, we can expect that, from any

reasonable and efficient algorithm, we would have (=k)
Nk(T )  (0=k)

N 0
k(T 0) which shows that the algorithm would

be monotonically increasing and thus the sample mean of the chosen arm is positively biased. Below, we
formally verify that this intuition works for the lil’UCB algorithm.

Proof of Corollary 2.12. For any given i, k, let X⇤0
i,k be an independent copy of X⇤

i,k and define X⇤0
1 as

a N ⇥ K table which equals X
⇤
1 on all entries except the (i, k)-th entry, which contains X

⇤0
i,k. Let

D⇤0
1 = X

⇤0
1 [ {W�1,W0, . . . } denote the corresponding dataset, which only differs from D⇤

1 in one
element. Let (Nk(T ), N 0

k(T )) denote the numbers of draws from arm k up to time T . Let (T , T 0) be the
stopping times and (,0) be choosing functions as determined by the lil’UCB algorithm under D⇤

1 and
D⇤0

1 respectively.
Suppose X

⇤
i,k  X

⇤0
i,k. Proving that the lil’UCB algorithm is monotonically increasing (and hence

results in positive bias) corresponds to showing that the following inequality holds:

( = k)

Nk(T )
 (0 = k)

N
0
k(T 0)

. (A.12)

If  6= k, the inequality (A.12) holds trivially. Therefore, for the rest of the proof, we assume  = k

which also implies T < 1. (If not, the lil’UCB algorithm is not stopped, and thus  6= k.)
First, we can check that the lil’UCB sampling is a special case of UCB-type sampling algorithms.

Therefore, it is an optimistic sampling method which implies that for any fixed t > 0, and fixed arm k, we
have Nk(t)  N

0
k(t). Since

P
j 6=k Nj(t) = t�Nk(t) for all t, we can rewrite the lil’UCB stopping rule

as stopping the sampling whenever there exists a k such that Nk, which is a non-decreasing function of t,
crosses the strictly increasing linear boundary

n
(n, t) : n = 1+�t

1+�

o
for a fixed � > 0. SinceNk(t)  N

0
k(t)

for all t, we know that T 0  T .
Since the linear boundary is increasing, we can check N

0
k(T 0)  Nk(T ) if 0 = k. Therefore, to

complete the proof, it is enough to show that  = k implies 0 = k. For the sake of deriving a contradiction,
assume  = k but 0 6= k. Then, there exists j 6= k such that 0 = j. By the definition of 0, it is equivalent
to N 0

j(T 0) = maxl2[K]N
0
l (T 0). Hence, we have that

N
0
j(T 0) > N

0
k(T 0). (A.13)

Similarly, we can show that
Nj(T ) < Nk(T ). (A.14)
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Since T 0 is the first time t such that, for some l, N 0
l (t) has crossed the boundary, we know that j is also

the index of the arm which has crossed the boundary first time. Also, since the lil’UCB sampling satisfies
the IIO condition, Lemma A.1 along with the fact that Nk(t)  N

0
k(t) for all t implies that Nj(t) � N

0
j(t)

for all j 6= k. From the two observations above, we have the following inequalities:

1 + �T 0

1 + �
 N

0
j(T 0)  Nj(T 0),

which implies that t 7! Nj(t) is crossing the boundary at time T 0. By the definition of T and, by
assumption,  = k, we obtain that T  T 0.

Similarly, from the fact that Nk(t)  N
0
k(t) for all t along with the definition of T , we have that

1 + �T
1 + �

 Nk(T )  N
0
k(T ),

which implies that t 7! N
0
k(t) is crossing the boundary at time T , and thus T 0  T since 

0 6= k by
assumption.

From the two observations above, we have T 0 = T . Finally, note that

N
0
k(T 0) < N

0
j(T 0)  Nj(T 0) = Nj(T ) < Nk(T )  N

0
k(T ) = N

0
k(T 0)

where the first inequality comes from the inequality (A.13). The second inequality come from N
0
j  Nj .

The first equality comes from T 0 = T and the third inequality comes from the inequality (A.14). The last
inequality comes from Nk  N

0
k and the final equality comes from T = T 0.

This is a contradiction, and, therefore,  = k implies that 0 = k. This proves that the lil’UCB
algorithm is monotonically increasing and the chosen stopped sample mean from the lil’UCB algorithm is
positively biased.

A.2.3 Proof of Proposition 2.8 (bias expression) via Lemma 2.9 (Wald’s identity for MAB)

By direct substitution, we first note that

E |Sk(T )� µkNk(T )| = E
" 1X

t=1

(At = k) |Yt � µk| (T � t)

#

=
1X

t=1

E [ (At = k) |Yt � µk| (T � t)]

=
1X

t=1

E [ (At = k) (T � t)E [|Yt � µk| | Ft�1]]

=
1X

t=1

E


(At = k) (T � t)

Z
|x� µk|dPk(x)

�

=

Z
|x� µk|dPk(x)E

" 1X

t=1

(At = k) (T � t)

#

=

Z
|x� µk|dPk(x)E [Nk(T )] < 1,

where the second equality comes from the Tonelli’s theorem and the third equality stems from the facts
that (At = k) and (T � t) are Ft�1 measurable. The fourth equality comes from the fact that, on
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event (At = k), Yt ⇠ Pk and it is independent of the previous history. Finally, the finiteness of the last
term comes from the assumption of the existence of the first moment of k-th arm and E[Nk(T )] < 1.
Therefore, by the dominated convergence theorem, we have

E [Sk(T )� µkNk(T )] = E
" 1X

t=1

(At = k) [Yt � µk] (T � t)

#

=
1X

t=1

E [ (At = k) [Yt � µk] (T � t)]

=
1X

t=1

E [ (At = k) (T � t)E [Yt � µk | Ft�1]]

= 0,

which implies µkE [Nk(T )] = E [Sk(T )], which proves the generalization of Wald’s first identity.
Since E [Nk(T )] > 0, one can then express µk as

µk =
E [Sk(T )]

E[Nk(T )]
.

By direct substitution, the bias of the sample mean can thus be expressed as

E [bµk(T )� µk] = E

bµk(T )

✓
1� Nk(T )

E[Nk(T )]

◆�

= Cov

✓
bµk(T ),

✓
1� Nk(T )

E[Nk(T )]

◆◆

= �Cov (bµk(T ), Nk(T ))

E[Nk(T )]
.

This completes the proof of the proposition.

A.3 Additional simulation results

A.3.1 More on negative bias due to optimistic sampling

We conduct a simulation study in which we have three unit-variance Gaussian arms with µ1 = 1, µ2 = 2
and µ3 = 3. After sampling once from each arm, greedy, UCB and Thompson sampling are used to
continue sampling until T = 200. We repeat the whole process from scratch 104 times for each algorithm
to get an accurate estimate for the bias.

For UCB, we use ut�1(s, n) =
q

2 log(1/�)
n with � = 0.1. For Thompson sampling, we use independent

standard Normal priors for simplicity. We repeat the whole process from scratch 2000 times for each
algorithm to get an accurate estimate for the bias.

Figure A.3 shows the distribution of observed differences between sample means and the true mean
for each arm under the greedy algorithm. Vertical lines correspond to biases. The example demonstrates
that the sample mean is negatively biased under optimistic sampling rules. Similar results from UCB /
Thompson sampling algorithms can be found in Section 2.2.1.
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Figure A.3: Data is collected by the greedy algorithm from three unit-variance Gaussian arms with
µ1 = 1, µ2 = 2 and µ3 = 3. For all three arms, sample means are negatively biased.

A.3.2 Positive bias from optimistic choosing and stopping in identifying the largest mean

Suppose we haveK arms with mean µ1, . . . , µK . As we were in Section 2.2.3, we are interested not in each
individual arm but in the arm with the largest mean. That is, our target of inference is µ⇤ := maxk2[K] µk.

Instead of using the lil’UCB algorithm, we can draw a sample from each arm in a cyclic order for each
time t and use a naive sequential procedure based on the following stopping time.

T �
M := inf

�
t 2 {K, 2K, . . . ,MK} : bµ(1)(t) > bµ(2)(t) + �

 
, (A.15)

whereM, � > 0 are prespecified constants and bµ(k)(t) is the k-th largest sample mean at time t. Once we
stop sampling at time T �

M , we can estimate the largest mean by the largest stopped sample mean bµ(1)

�
T �
M

�
.

The performance of this sequential procedure can vary based on underlying distribution of the arm
and the choice of � andM . However, we can check this optimistic choosing and stopping rules are jointly
monotonic increasing and thus the largest stopped sample mean bµ(1)

�
T �
M

�
is always positively based for

any choice of � andM .
To verify it with a simulation, we set 3 unit-variance Gaussian arms with means (µ1, µ2, µ3) =

(g, 0,�g) for each gap parameter g = 1, 3, 5. We conduct 104 trials of this sequential procedure with
M = 1000 and � = 0.7 ⇥ g. Figure A.4 shows the distribution of observed differences between the
chosen sample means and the corresponding true mean for each �. Vertical lines correspond to biases. The
simulation study demonstrate that, in all configurations, the largest stopped sample mean bµ(1)

�
T �
M

�
is

always positively biased. Note, in contrast to the lil’UCB case in Section 2.2.3, we have a larger bias for a
smaller gap since the number of sample sizes are similar for each gaps due to the adaptive (and oracle)
choice of the parameter � but a smaller gap makes more difficult to identify largest mean correctly.
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Figure A.4: Data is collected by the sequential procedure described in Appendix A.3.2 under unit-variance
Gaussian arms with µ1 = g, µ2 = 0 and µ3 = �g for each gap parameter g = {1, 3, 5}. For each gap
g, we set the parameter � = 0.7⇥ g and M = 1000. For all cases, chosen sample means are positively
biased.
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Appendix B

Appendix for Chapter 3

B.1 Proofs

B.1.1 Proof of Theorem 3.1

Under the condition in Theorem 3.1, we first prove that if the function D⇤
1 7! (C) /Nk(T ) is an

decreasing function of X⇤
i,k while keeping all other entries in D⇤

1 fixed for each i then, for any t 2 N and
y 2 R, the following inequality holds.

E


(C)

Nk(T )
(Nk(T ) < 1) (At = k) [ (Yt  y)� Fk(y)]

�
� 0 (B.1)

Proof of inequality (B.1). First note that if D⇤
1 7! (C) /Nk(T ) is a decreasing function ofX⇤

i,k then the
following function is also a decreasing function of X⇤

i,k:

D
⇤
1 7! (C)

Nk(T )
(Nk(T ) < 1) := h(D⇤

1) (B.2)

Then, by the tabular representation of MAB, we can rewrite the LHS of inequality (B.1) as follows:

E


(C)

Nk(T )
(Nk(T ) < 1) (At = k) [ (Yt  y)� Fk(y)]

�

= E
h
h(D⇤

1) (At = k)
h

(X⇤
Nk(t),k

 y)� Fk(y)
ii

= E
tX

i=1

⇥
h(D⇤

1) (At = k,Nk(t) = i)
⇥

(X⇤
i,k  y)� Fk(y)

⇤⇤

=
tX

i=1

E
⇥
h(D⇤

1) (At = k,Nk(t) = i)
⇥

(X⇤
i,k  y)� Fk(y)

⇤⇤
,

where the third equality comes from the fact Nk(t) 2 {1, . . . , t}. Therefore, to prove the inequality (B.1),
it is enough to show the following inequality:

E
⇥

(At = k,Nk(t) = i)h(D⇤
1)

⇥
(X⇤

i,k  y)� Fk(y)
⇤⇤

� 0. (B.3)

Note that the term (At = k,Nk(t) = i) does not depend on X⇤
i,k by the definition of At and Nk(t).
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Now, let D⇤0
1 be an other the tabular representation which is identical to D⇤

1 except the (i, k)-th entry
of X⇤

1 in D⇤
1 being replaced with an independent copy X⇤0

i,k from the same distribution Pk.
Since the function h is a decreasing function of X⇤

i,k while keeping all other entries in D⇤
1 fixed, we

have that h
h(D⇤

1)� h(D⇤0
1)

i h
(X⇤

i,k  y)� (X⇤0
i,k  y)

i
� 0, (B.4)

which implies that

h(D⇤
1)

⇥
(X⇤

i,k  y)� Fk(y)
⇤
+ h(D⇤0

1)
h

(X⇤0
i,k  y)� Fk(y)

i
+

� h(D⇤0
1)

⇥
(X⇤

i,k  y)� Fk(y)
⇤
+ h(D⇤

1)
h

(X⇤0
i,k  y)� Fk(y)

i
.

(B.5)

By multiplying (At = k,Nk(t) = i) and taking expectations on both sides, we can show the inequal-
ity (B.1) hold as follows:

2E
⇥

(At = k,Nk(t) = i)h(D⇤
1)

⇥
(X⇤

i,k  y)� Fk(y)
⇤⇤

(B.6)

� 2E
h

(At = k,Nk(t) = i)h(D⇤
1)

h
(X⇤0

i,k  y)� Fk(y)
ii

(B.7)

= 2E [ (At = k,Nk(t) = i)h(D⇤
1)]E

h
(X⇤0

i,k  y)� Fk(y)
i

(B.8)

� 0, (B.9)

where the first equality comes from the independence between (At = k,Nk(t) = i)h(D⇤
1) and X

⇤0
i,k,

and the second inequality holds since E
h

(X⇤0
i,k  y)

i
= Fk(y).

Based on the inequality (B.1), we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. First, suppose the function D⇤
1 7! (C) /Nk(T ) is an decreasing function of X⇤

i,k
while keeping all other entries in D⇤

1 fixed for each i. Let {Lt}t2N be a sequence of random variables
defined as follows:

Lt :=
tX

s=1

(C)

Nk(T )
(Nk(T ) < 1) (As = k) [ (Ys  y)� Fk(y)] , 8t 2 N. (B.10)

From the inequality (B.1), we have

E [Lt] =
tX

s=1

E


(C)

Nk(T )
(As = k) (Nk(T ) < 1) [ (Ys  y)� Fk(y)]

�
� 0, 8t 2 N. (B.11)

Note that Nk(T ) :=
PT

t=1 (At = k) =
P1

t=1 (At = k) since it is understood that for t > T ,
(At = k) = 0. Therefore, we know that, for each y 2 R, the sequence of random variables {Lt}t2N

converges to
h
bFk,T (y)� Fk(y)

i
(C) (Nk(T ) < 1) almost surely. Also, it can be easily checked

for each t 2 N, |Lt| is upper bounded by 2. Hence, from the dominated convergence theorem and the
inequality (B.11), we have

0  lim
t!1

E[Lt] = E
hh
bFk,T (y)� Fk(y)

i
(C) (Nk(T ) < 1)

i
(B.12)

= E
h
bFk,T (y) (C) (Nk(T ) < 1)

i
� Fk(y)P(C \ {Nk(T ) < 1}). (B.13)
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Since bFk,T (y) (Nk(T ) = 1) = Fk(y) (Nk(T ) = 1) almost surely, the last inequality also implies that

Fk(y)P(C)  E
h
bFk,T (y) (C)

i
(B.14)

Since we assumed P(C) > 0, by multiplying 1/P(C) on both sides, we have

Fk(y)  E
h
bFk,T (y) | C

i
, (B.15)

as desired. The inequality (B.15) shows that the underlying distribution of arm k stochastically dominates
the empirical distribution of arm k in the conditional expectation. In this case, it is well-known that for any
non-decreasing integrable function f , the following inequality holds

Ekf � E
h
bEk,T f | C

i
. (B.16)

For the completeness of the proof, we formally prove the inequality (B.16). Since f is integrable, without
loss of generality, we may assume f � 0. For any x 2 R, define f�1(x) := inf{y : f(y) > x}. Since f is
non-decreasing, for any probability measure P , the following equality holds

P ({y : f(y) > x}) = P
��

y : y > f
�1(x)

 �
,

for all but at most countably many x 2 R which implies that

Ekf =

Z 1

0
Pk ({y : f(y) > x}) dx (B.17)

=

Z 1

0
1� Fk

�
f
�1(x)

�
dx (B.18)

�
Z 1

0
1� E

h
bFk,T

�
f
�1(x)

�
| C

i
dx (B.19)

=

Z 1

0
E
h
bPk,T ({y : f(y) > x}) | C

i
dx (B.20)

= E
h
bEk,T f | C

i
, (B.21)

where the first and last equalities come from the Fubini’s theorem with the integrability condition on f , and
the first inequality comes from the inequality (B.15).

From the same argument with reversed inequalities, it can be shown that if the function D⇤
1 7!

(C) /Nk(T ) is an increasing function of X⇤
i,k while keeping all other entries in D⇤

1 fixed for each i, we
have

Fk(y) � E
h
bFk,T (y) | C

i
, 8y 2 R. (B.22)

Equivalently, for any non-decreasing integrable function f , we have

Ekf  E
h
bEkf | C

i
, (B.23)

which completes the proof of Theorem 3.1.
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B.1.2 Proof of Corollary 3.3

Before proving Corollary 3.3 formally, we first provide an intuition as to why, for any reasonable and
efficient algorithm for the best-arm identification problem, the sample mean and empirical CDF of an arm
are negative and positive biases, respectively, conditionally on the event that the arm is not chosen as the
best arm.

For any k 2 [K] and i 2 N, letD⇤
1 andD⇤0

1 be two collections of all possible arm rewards and external
randomness that agree with each other except X⇤

i,k � X
⇤0
i,k. Since we have a smaller reward from arm k

in the second scenario D⇤0
1, if  6= k under the first scenario D⇤

1, any reasonable algorithm also would
not pick the arm k as the best arm under the more unfavorable scenario D⇤0

1. In this case, we know that
 6= k implies 0 6= k. Also note that any efficient algorithm should be able to exploit the more unfavorable
scenario D⇤0

1 to easily identify arm k as a suboptimal arm and choose another arm as the best one by using
less samples from arm k. Therefore, we would have Nk(T ) � N

0
k(T 0). As a result, we can expect that,

from any reasonable and efficient algorithm, we would have (6=k)
Nk(T )  (0 6=k)

N 0
k(T 0) which implies that for each

i, the functionD⇤
1 7! (C) /Nk(T ) is a decreasing function ofX⇤

i,k while keeping all other entries inD
⇤
1

fixed. Then, from Theorem 3.1, we have that the sample mean and empirical CDF of arm k are negatively
and positively biased conditionally on the event  6= k, respectively. Below, we formally verify that this
intuition works for the lil’UCB algorithm. The proof is based on the following two facts about the lil’UCB
algorithm:

• Fact 1. The lil’UCB algorithm has an optimistic sampling rule. That is, for any fixed , i, t 2 N and
k 2 [K], the function D⇤

1 7! Nk(t) is an increasing function of X⇤
i,k while keeping all other entries

in D⇤
1 fixed [see Fact 3 in Shin et al., 2019a].

• Fact 2. Let D⇤
1 and D⇤0

1 be two collections of all possible arm rewards and external randomness that
agree with each other except in their k-th column of stacks of rewards X⇤

1 and X
⇤0
1. For j 2 [K],

let Nj(t) and N 0
j(t) be the numbers of draws from arm j under D⇤

1 and D⇤0
1 respectively. Then for

each t 2 N, the following implications hold for lil’UCB algorithm [see Fact 3 and Lemma 9 in Shin
et al., 2019a]:

Nk(t)  N
0
k(t) ) Nj(t) � N

0
j(t), for all j 6= k,

Nk(t) � N
0
k(t) ) Nj(t)  N

0
j(t), for all j 6= k,

which also implies that

Nk(t) = N
0
k(t) ) Nj(t) = N

0
j(t), for all j 6= k.

Proof of Corollary 3.3. For any given i 2 N and k 2 [K], let D⇤
1 and D⇤0

1 be two collections of all
possible arm rewards and external randomness that agree with each other except (i, k)-th entries, X⇤

i,k and
X

⇤0
i,k of their stacks of rewards. Let (Nk(t), N 0

k(t)) denote the numbers of draws from arm k up to time t.
Let (T , T 0) be the stopping times and (,0) be choosing functions of the lil’UCB algorithm under D⇤

1
and D⇤0

1 respectively.
Suppose X

⇤
i,k � X

⇤0
i,k. To prove the claimed bias result, it is enough to show that the function

D⇤
1 7! (C) /Nk(T ) is a decreasing function of X⇤

i,k while keeping all other entries in D⇤
1 fixed which

corresponds to prove the following inequality holds:

( 6= k)

Nk(T )
 (0 6= k)

N
0
k(T 0)

. (B.24)
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Note that if  = k or Nk(T ) = 1, the inequality (B.24) holds trivially. Therefore, for the rest of the proof,
we assume  6= k and Nk(T ) < 1.

We will first prove the inequalityNk(T ) � N
0
k(T 0) holds. From Fact 1 and the assumptionX⇤

i,k � X
⇤0
i,k,

we haveNk(t) � N
0
k(t) for any fixed t > 0. Then, by Fact 2, we also haveNj(t)  N

0
j(t) for any j 6= k.

Since
P

i 6=j Ni(t) = t�Nj(t) for all t, we can rewrite the lil’UCB stopping rule as stopping whenever
there exists j 2 [K] such that the inequality Nj(t) � 1+�t

1+� holds. Therefore, from the definition of the
stopping rule with the fact Nj(t)  N

0
j(t) for any t � 1 and j 6= k, at the stopping time T , we have

1 + �T
1 + �

 Nj(T )  N
0
j(T ), (B.25)

for some j 6= k which also implies that the stopping condition is also satisfied for arm j at time T under
D⇤0

1 which implies that the stopping time under D⇤0
1 must be at most T . Therefore we have T 0  T . Now,

since the inequality Nk(t) � N
0
k(t) holds for any t � 1, we have Nk(T ) � N

0
k(T ). Finally, since

t 7! N
0
k(t) is a non-decreasing function, we can conclude Nk(T ) � N

0
k(T ) � N

0
k(T 0).

Since we proved Nk(T ) � N
0
k(T 0), to complete the proof of Corollary 3.3, it is enough to show that

 6= k implies 0 6= k. We prove this statement by the proof by contradiction. Suppose  6= k but 0 = k.
Then, there exists j 6= k such that  = j. By the definition of T and , we know that

Nj(T ) > Nk(T ). (B.26)

Similarly, we can show that
N

0
j(T 0) < N

0
k(T 0). (B.27)

It is important to note that these inequalities are strict. Note that since we draw a singe sample at each
time, if Nj(T ) = Nk(T ) then at the time T � 1, either arm j or k should satisfy the stopping rule which
contradicts to the definition of T .

Recall that, in Equation (B.25), we showed that if  = j, at stopping time T , we have

1 + �T
1 + �

 Nj(T )  N
0
j(T ),

which implies T 0  T . By the same argument, at the stopping time T 0 with the assumption 
0 = k, we

have
1 + �T 0

1 + �
 N

0
k(T 0)  Nk(T 0),

which also implies T  T 0. From these two inequalities on stopping times, we have T 0 = T . Finally, by
combining inequalities between pairs of Nk, N

0
k, Nj , N

0
j with the observation T 0 = T , we have

N
0
j(T 0) < N

0
k(T 0)  Nk(T 0) = Nk(T ) < Nj(T )  N

0
j(T ) = N

0
j(T 0)

where the first inequality comes from the inequality (B.27). The second inequality come from N
0
k  Nk.

The first equality comes from T 0 = T and the third inequality comes from the inequality (B.26). The last
inequality comes from Nj  N

0
j and the final equality comes from T = T 0.

This is a contradiction, and, therefore,  6= k implies that 0 6= k. This proves that for each i, the
function D⇤

1 7! (C) /Nk(T ) is a decreasing function of X⇤
i,k while keeping all other entries in D⇤

1
fixed and, from Theorem 3.1, we can conclude that the sample mean and empirical CDF of arm k from the
lil’UCB algorithm are negatively and positive biased conditionally on the event the arm k is not chosen as
the best arm, respectively.
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Figure B.1: Average of conditional empirical CDFs of arm 1 from repeated sequential tests for two arms
under the alternative hypothesis (µ1 = 1, µ2 = 0). See Section 3.2.2 for the detailed explanation about the
sequential test.

B.2 Additional Simulations results

In this section, we present additional simulation results for Section 3.2 and 3.3 which are omitted from the
main part for the simple presentation.

B.2.1 Conditional bias under alternative hypothesis in Section 3.2.2

As we conducted in Section 3.2.2, we have two standard normal arms with means µ1 and µ2. Then, we use
the following upper and lower stopping boundaries to test whether µ1  µ2 or not:

U(t) := z↵/2

r
2

t
, and L(t) = �U(t), (B.28)

where ↵ is set to 0.2 to show the bias better. In contrast to the experiment in Section 3.2.2 in which the
true means are equal to each other, in this experiment, we set µ1 = 1 and µ2 = 0 to make the alternative
hypothesis is true.

Figure B.1 show the conditional and unconditional biases of the empirical CDFs and sample means
for arm 1 based on 105 repetitions of the experiment. The dashed line corresponds to the true underlying
CDF. The red line refers to the average of the empirical CDFs, and the purple line corresponds to the
average of the empirical CDFs conditionally on reaching the maximal time. For these two cases, although
the unconditional CDF is negatively and the conditional CDF is positively biased, these are not general
phenomena and the sign of bias can be changed as we change mean parameters.

However, for the cases corresponding to accepting H1 (blue line) and accepting H0 (green line), we
can check that signs of biases of CDFs and sample means are consistent with what Theorem 3.1 and
corresponding inequalities (3.12) to (3.15) described. Also note that the bias results do not depend on
whether the arms are under the null or alternative hypotheses.

58



0.00

0.25

0.50

0.75

0 1 2 3 4 5
Sample variance

de
ns

ity

Unconditional Early stopping Line−crossing

Mean variance = (0.99, 0.94, 1.04)
Stopped sequential test (σ2 = 1)

0.0

0.5

1.0

−2 0 2
Sample median

de
ns

ity

Unconditional Early stopping Line−crossing

Mean median = (0.23, −0.16, 0.76)
Stopped sequential test (µ = m = 0)

Figure B.2: Left: Densities of observed sample variances from repeated stopped sequential test as described
in Section 3.2.1. Right: Densities of observed sample median from the same repeated stopped sequential
test. For both figures, vertical dashed lines correspond to averages of sample variances and medians on
each conditions.

B.2.2 Experiments on conditional biases of sample variance and median in MABs

As stated in Section 3.3, characterizing the bias of other important functionals such as sample variance and
sample quantiles is an important open problem. In this subsection, we present a simulation study on the
bias of sample variance and median.

For a given n � 2 i.i.d. samplesX1, . . . , Xn from a distribution P , the sample variance b�2 and median
bm are defined by

b�2 =
1

n� 1

nX

i=1

(Xi � X̄n)
2 (B.29)

bm =

(
1
2

�
X(n/2) +X(n/2+1)

�
if n is even,

X(n+1
2 ) if n is odd,

(B.30)

where X̄n corresponds to the sample mean and X(i) refers to the i-th smallest sample.
It is well-known that for any distribution P with finite variance �

2, the sample variance b�2 is an
unbiased estimator of �2. Also, though the sample median is not necessarily unbiased, for any symmetric
distribution P including the normal distribution as a special case, the sample median is unbiased. However,
for adaptively collected data from a MAB experiment, it is unclear whether the sample variance and median
are unbiased or not. Furthermore, it is an open question how to characterize the bias of sample variance
and median estimators if they are biased estimators.

As an initial step, we conduct the repeated sequential experiments described in Section 3.2.1 and
empirically investigate the biases of the sample variance and median estimators. Figure B.2 describes
a simulation study on the bias of the sample variance in the sequential testing setting of Section 3.2.1.
Recall that, in this experiment, we have a stream of samples from a standard normal distribution. Each test
terminates once either the number of samples reaches a fixed early stopping timeM = 10 or the sample
mean crosses the upper boundary t 7! z↵p

t
with ↵ = 0.2.
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Figure B.2 shows the conditional and unconditional distributions of the sample variance and median
from 105 stopped sequential tests. Vertical lines correspond to averages of the sample variances and
medians over repetitions of the experiment and under different conditions. For the sample variance, the
simulation shows that the sample variance is negatively biased unconditionally and conditionally on the
early stopping event. On the other hand, conditionally on the line-crossing event, the sample variance has a
heavy right tail and is positively biased. For the sample median, we can check that, unconditionally and
conditionally on the line-crossing event, the sample median is positively biased. In contrast, the sample
median is negatively biased conditionally on the early stopping event. Note that, for the sample median,
sizes of biases of the sample median are similar to ones from the sample means which were equal to
(0.22,�0.16, 0.75).
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Appendix C

Appendix for Chapter 4

C.1 Examples of the Bregman divergences as a loss function

In this section, we present examples of Bregman divergences under commonly used assumptions on the
underlying distribution.

Using the same notation as in Section 4.4.1, the convex conjugate of the function � 2 ⇤ 7!  µ(�) :=
�µ+  (�) is the function  ⇤

µ on ⇤⇤ := {x 2 R : sup�2⇤ �x�  µ(�) < 1} given by

 
⇤
µ(z) := sup

�2⇤
�z �  µ(�), z 2 ⇤⇤

. (C.1)

The Bregman divergence with respect to  ⇤
µ is then defined as

D ⇤
µ
(bµ, µ) =  

⇤
µ(bµ)�  

⇤
µ(µ)�  

⇤0
µ (µ) (bµ� µ) , bµ, µ 2 ⇤⇤

. (C.2)

Below we provide some examples demonstrating thatD ⇤
µ
(bµ, µ) is a natural loss for the mean estimation

problem when the underlying distribution is sub- .
Example C.1. If the data are generated from a sub-Gaussian distribution with parameter �, then  µ(�) is
defined for all � 2 R as  µ(�) := µ�+ �2

2 �
2, the Bregman divergence is defined over R and is equal to

the scaled `2 loss:

D ⇤
µ
(bµ, µ) := (bµ� µ)2

2�2
. (C.3)

Example C.2. If the data are generated from sub-exponential distributions with parameter (⌫,↵), then
 µ(�) is defined for � 2 (�1/↵, 1/↵) as  µ(�) = µ� + ⌫2

2 �
2, and the Bregman divergence is defined

over R and is given as:

D ⇤
µ
(bµ, µ) =

(
1

2⌫2 (bµ� µ)2 , if |bµ� µ|  ⌫2

↵ ,

1
2↵ |bµ� µ| , if |bµ� µ| > ⌫2

↵ .
(C.4)

Example C.3. If the data-generating distribution P satisfies the Bernstein condition
���EX⇠P (X � µ)k

��� 
1

2
k!�2

b
k�2

, for k = 3, 4, . . . ,

for some b > 0, where �
2 = EX⇠P (X � µ)2, then, it can be shown that P is sub- , where  µ(�) is

defined for � 2 (�1/b, 1/b) as  µ(�) = µ�+ �2�2

2(1�b|�|) . In this case, the Bregman divergence is defined
on R and can be lower bounded by

D ⇤
µ
(bµ, µ) � 1

2

(bµ� µ)2

�2 + b |bµ� µ| . (C.5)
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Example C.4. If the data are generated from a Bernoulli distribution, then recalling that the uncentered
CGF is given by  µ(�) = log(1� µ+ µe

�), for µ 2 (0, 1), the Bregman divergence is defined on (0, 1)
and is given by

D ⇤
µ
(bµ, µ) = bµ log

bµ
µ
+ (1� bµ) log 1� bµ

1� µ
. (C.6)

C.2 Proof of Theorem 4.6 and related statements

Recall that we assume that there exists a time t0 such that, almost surely, T � ⌧ � t0 and Nk(t0) � 3 for
all k 2 [K]. For ease of readability, we drop the subscript k throughout this section. We begin with the
proof of the adaptive deviation inequality (4.16) of Lemma 4.7, which is a fundamental component of the
proof of Theorem 4.6 and related statements.

C.2.1 Proof of Lemma 4.7

The proof strategy involves splitting the deviation event into simpler sub-events and then find exponential
bounds for the probability of each sub-event. In detail, for each t � 0 and j � 2, define the events

Ft :=

⇢
N(t) > e,

N(t)

4�2
(bµt � µ)2 > e� logN(t)

�
,

Gt := {bµ(t) � µ} , and
H

j
t :=

�
e
j�1  N(t) < e

j
 
.

We remark that the use of constant e above is purely for mathematical convenience; any other constant
would have also sufficed. To bound the probability of the aforementioned events, we prove the following
lemma.
Lemma C.5. For any fixed � > 0, there exists a deterministic �j � 0 such that

n
Ft \Gt \H

j
t

o
⇢
�
�j [S(t)� µN(t)]� �

2
j�

2
N(t) � �j

 
, (C.7)

and a deterministic �0
j < 0 such that
n
Ft \G

c
t \H

j
t

o
⇢
n
�
0
j [S(t)� µN(t)]� �

0
j
2
�
2
N(t) � �j

o
. (C.8)

Proof of Lemma C.5. The proof borrows arguments from the proof of Theorem 11 in Garivier and Cappé
[2011]. On the event Ft \ Gt \ H

j
t , since e  e

j�1  N(t) < e
j and v 7! log v

v is non-increasing on
[e,1), we have that

1

4�2
(bµ(t)� µ)2 >

e� logN(t)

N(t)
� �j

ej�1
> 0. (C.9)

Now, pick a deterministic real number zj � 0 such that

1

4�2
z
2
j =

�j

ej�1
.

Since bµ(t) � µ � 0 and x 7! x
2 is an increasing function on [0,1), our choice of zj along with the

inequalities in (C.9) implies that bµ(t)� µ � zj , on the event Ft \Gt \H
j
t . Define �j :=

zj
2�2 , then, on

the event Ft \Gt \H
j
t , we have that

�j [bµ(t)� µ]� �
2
j�

2 � �jzj � �
2
j�

2 =
1

4�2
z
2
j =

�j

ej�1
� �j

N(t)
.
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Re-arranging, we get that
�j [S(t)� µN(t)]� �

2
j�

2
N(t) � �j.

which proves the first statement in the lemma. For the second statement, set z0j := �zj . Note that, since
bµ(t)� µ < 0 and x 7! x

2 is an decreasing function on (�1, 0], the choice of z0j and the inequalities in

(C.9) yield that bµ(t)� µ < zj , on the event Ft \G
c
t \H

j
t . Let �0

j :=
z0j
2�2 . Then, by the same argument

used for bµ(t)� µ � 0 case, the second statement holds which completes the proof.

We now return to the proof of Lemma 4.7. The adaptive deviation inequality (4.16) can be re-written as
the following inequality,

P
✓
N(⌧)

4�2
(bµ(⌧)� µ)2 � e� logeN(⌧)

◆
 Cp

�p
, (C.10)

where Cp is a constant depending only on p. To prove the above inequality, it suffices to show that it
holds uniformly over time (e.g., see Lemma 3 in Howard et al. [2018b]). Therefore, below, we prove the
following uniform concentration inequality:

P
✓
9t 2 N : N(t) � e,

N(t)
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(bµ(t)� µ)2 � e� logN(t)
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�p
. (C.11)

The event on the left-hand side of (C.11) is equal to
S1

t=1 Ft, and its probability can be bounded follows:
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By Lemma C.5, we have that
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(by Lemma C.5.)
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�
,

where the last inequality stems from the union bound. To get a bound for each probability term, we use the
following inequality from Khan [2009] which is a generalization of the Dubins-Savage inequality [Darling
and Robbins, 1967b].
Proposition C.6 (`p-version of the Dubins-Savage inequality [Khan, 2009]). Let

�
M(t) =

Pt
s=1Xs

 
be

a martingale with respect to a filtration {F t}t�0 such that M(0) = 0 and E
h
X

2p
t | F t�1

i
< 1 for all
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t � 1. Let ⌫t be the conditional variance given by ⌫t = E
⇥
X

2
t |Ft�1

⇤
. Then, there exist a constant C 0

p

depending only on p such that for any a � 0, b > 0, the following inequality holds.
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Applying inequality (C.12) with M(t) = �j [S(t)� µN(t)],
Pt

s=1 ⌫s = �
2
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2
N(t), a = �j and b = 1,

we have the following bound,
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Similarly, it can be shown that
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By combining two bounds, we get that
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N(t)
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(bµt � µ)2 > e� logN(t)

◆


2C 00
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�p
,

which implies the desired bound on the adaptive deviation probability in (4.16) with Cp := 2(4e)pC 00
p . This

completes the proof of Lemma 4.7.

C.2.2 Proof of Theorem 4.6

The proof of Theorem 4.6 borrows arguments from Jiao et al. [2017], like the following lower bound of
Dfq .
Lemma C.7. Let P , Q be probability measures on X and let f : X 7! R be a function satisfying
EQ [fp(X)] < 1 for some p � 1. Then, for q such that 1/p+ 1/q = 1, we have

1

q
Dfq(P ||Q) � EP [f(X)]� EQ [f(X)]� EQ


|f(X)|p

p

�
. (C.13)

To apply the above inequality, we need the following bound on the expectation of the 2p-norm of the
stopped adaptive process, which is based on the adaptive deviation inequality in Lemma 4.7.
Claim C.8. Under the assumptions of Theorem 4.6, for each k 2 [K] and for any ↵  p we have that

�����
Nk(⌧)

logNk(⌧)

✓
bµk(⌧)� µk

�k

◆2
�����
↵

 C↵,✏, (C.14)

where C↵,✏ is a constant depending only on ↵ and ✏.
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Proof of Claim C.8. Since ↵  p, arm k also has a finite 2(↵+ ✏)-norm. Therefore, applying Lemma 4.7
with p = ↵, we get

E
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(C.15)

The claim readily follows by letting C↵,✏ :=
⇣
1 + C↵+✏

✏/↵

⌘1/↵
.

We now have all the components in place to complete the proof of Theorem 4.6. For k 2 [K], set
Pk = L (DT | = k), Q = L (DT ) and

fk = �
Nk(⌧)

logNk(⌧)
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2
.

for a � > 0. Then, from Lemma C.7, we can lower bound Iq (,DT ) as follows:
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Since this inequality holds for any � > 0, we get

E
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logN(⌧)
(bµ(⌧)� µ)
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�
= C1,✏k�k22 + inf

�>0
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q
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p
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p
k�k2p2p

�

= C1,✏k�k22 + Cp,✏k�k22pI1/qq (,DT ) ,

thus completing the proof of the theorem.
We conclude this section with a short proof of Corollary 4.8.
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C.2.3 Proof of Corollary 4.8

For any p, q > 1 with 1
p + 1

q = 1, Hölder’s inequality along with the bound on the adaptive risk in (4.15)
implies that
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i
.

By setting r := 1/p, we infer inequality (4.18), completing the proof.

C.3 Proofs of Theorem 4.12 and related statements

The proof of Theorem 4.12 is based on the deviation inequality given in Lemma 4.13, which we prove first.

C.3.1 Proof of Lemma 4.13

The proof of the deviation inequality in Lemma 4.13 is based on the following bound on the expectation of
the exponential of the stopped process. Similar versions of this bound has been exist in the literature: see,
e.g., see Garivier and Cappé [2011], Howard et al. [2018a]. For the completeness, we provide the proof of
the bound.
Claim C.9. Under the assumptions of Theorem 4.12, for any � 2 ⇤, it holds that

E [exp {� (Sk(T )� µkNk(T ))�Nk(T ) (�)}]  1. (C.16)

Proof of Claim C.9. Set Lk
t (�) := exp {� (Sk(t)� µkNk(t))�Nk(t) (�)}. First note that, for any

t � 0,

E [exp {� [(Sk(t+ 1)� µkNk(t+ 1))� (Sk(t)� µkNk(t))]} | Ft]

= E [exp {� (At+1 = k) [Yt+1 � µk]} | Ft]

= E [ (At+1 = k) exp {� (Yt+1 � µk)}+ (At+1 6= k) | Ft]

= (At+1 = k)E [exp {� (Yt+1 � µk)} | Ft] + (At+1 6= k) (since (At+1 = k) 2 Ft.)
 (At+1 = k) exp { (�)}+ (At+1 6= k) (since k-the distribution is sub- .)
= exp { (At+1 = k) (�)}
= exp {[Nk(t+ 1)�Nk(t)] (�)} .
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Thus, we obtain that

E
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k
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Therefore {Lk
t (�)}t�0 is a non-negative super-martingale, and the result follows from the optional stopping

theorem.

Returning to the proof of Lemma 4.13, we first consider the case P(T  M) = 1 for some constant
M > 0. Since Nk(T )  T , we must also have that P(Nk(T )  M) = 1. Next, for any ✏ � 0 and
� 2 [0,�max/p) ⇢ ⇤, we have

P (Sk(T )/Nk(T )� µk � ✏) = P (Sk(T ) � Nk(T )(✏+ µk))

= P (exp {�Sk(T )� �(✏+ µk)Nk(T )} � 1)

 E [exp {�Sk(T )� �(✏+ µk)Nk(T )}] ,

where in the final step we have used Markov’s inequality. By using Hölder’s inequality with any conjugate
pairs p, q > 1 with 1/p+ 1/q = 1, the last term can be bounded as follows:
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where the last inequality follows from Claim C.9. Thus we have established the following intermediate
bound on the deviation probability:
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Since ✏ � 0, the convex conjugate of  at ✏ can be written as

 
⇤(✏) = sup

�2⇤
{�✏�  (�)} = sup
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{�✏�  (�)} .
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Using this identity, the deviation probability can be further bounded as
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Using the same argument, it also follows that
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Since  ⇤ is a non-negative convex function with  
⇤(0) = 0, for any � � 0, there exist ✏1, ✏2 � 0 with

 
⇤(✏1) =  

⇤(�✏2) = � such that

{z 2 R :  ⇤(z) � �} = {z 2 R : z � µk + ✏1, z  µk � ✏2} .

Therefore, for any � � 0 and p, q > 1 with 1/p+ 1/q = 1, we conclude that
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For general T , let TM := min {T ,M} for allM > 0. Since TM is a stopping time with P(TM  M) = 1,
we have
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for any � � 0 and p, q > 1 with 1/p+ 1/q = 1. Then, we have
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where the first inequality comes from the Fatous’s lemma and the continuity of the Bregman divergence,
the second one from the inequality (C.18) and the last one from the monotone convergence theorem, along
with the facts that

0  exp

⇢
�q

p
�Nk(TM )

�
 1, 8M > 0,

and that exp
n
� q

p�Nk(TM )
o
is decreasing in M and converges almost surely to exp

n
� q

p�Nk(T )
o
as

M ! 1.
Finally, from the identity q/p = q � 1, we have that
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Since choosing q = 1 gives a valid, albeit trivial, bound, we can take the infimum over q � 1, which proves
the first inequality in (4.30). The second inequality follows from the assumption that Nk(T ) � b and the
inequality

2 inf
q�1

[E exp {�(q � 1)�Nk(T )}]1/q  2 inf
q�1

[exp {�(q � 1)�b}]1/q

= 2 exp {��b} .

This completes the proof of Lemma 4.13.

C.3.2 Proof of Theorem 4.12

In Lemma 4.13, we have established the the deviation inequality
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for any p, q > 1 with 1
p + 1

q = 1. We first prove Theorem 4.12 by consider the case of P(T  M) = 1
for a M > 0. Since Nk(T )  T , we then have that P(Nk(T )  M) = 1. By using the above deviation
inequality and the well-known identity E|X| =

R1
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we have
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using Jensen’s inequality we have that
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where in the last inequality we have used the bound
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Since the above bound holds for any p, q > 1 with 1/p+ 1/q = 1, by taking infimum over all p > 1, we
then have that
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where the second equality is justified by the continuity of the exponential and logarithmic functions. The
third equality follows from the fact that if a � e,

log p+
1

p
log a � log log a+ 1, 8p � 1,

with equality if and only if p = log a. Since, by assumption Nk(T ) � b, we have that ne↵
k � b and

therefore we can set p = log(ene↵
/b) � 1. Thus, the first part of the claimed bound on the risk in (4.28) is

proven.
To prove the second part of the upper bound, we use the deviation inequality in a slightly different way

which is motivated from the proof of Theorem 12.1. in Peña et al. [2008]. Specifically, for any ✏ > 0 and
r > 1, we have
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Nk(T ) . Therefore we have that
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which implies that

ED ⇤
µk

(bµk(T ), µk)  ✏+ 2

Z 1

✏
�
�r


E sup

�>0
�
qr exp

⇢
�q

p
�Nk(T )

��1/q
d�

= ✏+ 2

Z 1

✏
�
�r

h
E
⇣
pr

N

⌘qr
e
�qr

i1/q
d�

= ✏+ 2
⇣
pr

e

⌘r 
E
✓

1

N qr

◆�1/q Z 1

✏
�
�rd�

= ✏+
2

(r � 1)✏r�1

⇣
pr

ene↵,qr

⌘r
.

Since the above bound holds for any ✏ > 0, by taking infimum on the RHS over ✏ > 0, we have the
following upper bound.
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.
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By setting r0 = qr, we can write the above inequality as

ED ⇤
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(bµk(T ), µk)  Cq,r0
1

ne↵,r0
, (C.22)

where

Cq,r0 =
2q/r

0

e

r
02

(r0 � q)(q � 1)
.

Since this upper bound holds for any choice of r0 > q > 1, the second part of the upper bound is proved.
For general T , let TM := min {T ,M} for allM � t0. Since TM is a stopping time with TM � t0 and

P(TM  M) = 1, we have that
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where n
e↵^M,r
k is the corresponding effective sample size [E [1/N r

k (TM )]]�r with n
e↵^M
k = n
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k .

Then, we have

ED ⇤
µk

(bµk(T ), µk)  lim inf
M!1

ED ⇤
µk

(bµk(TM ), µk)

 lim inf
M!1

min

(
2e

1 + log(ne↵^M
k /b)

n
e↵
k

, inf
r>1

Cr

n
e↵^M,r
k

)

 min

(
2e

1 + log(ne↵
k /b)

n
e↵
k

, inf
r>1

Cr

n
e↵,r
k

)
,

as desired, where the first inequality comes from Fatous’s lemma, the second one follows from the
inequality (C.23) and the last one comes from the monotone convergence theorem along with the facts that
0  1/N r

k (TM )  1/br for all M � t0 and that {1/N r
k (TM )}M�t0 is a non-negative decreasing sequence

converging to 1/N r
k (T ) almost surely which also implies ne↵^M,r

k ! n
e↵,r
k asM ! 1.

The proof of Theorem 4.12 is completed. In the following subsection, we present a simple proof of
Corollary 4.14.

C.3.3 Proof of Corollary 4.14

By the equation (4.25), we have that

D ⇤
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(bµk(T ), µk) =  
⇤
µk

(bµk(T )) =  
⇤ (bµk(T )� µk) .

Since ⇤ is convex, applying the Jensen’s inequality to the risk bound in the equation (4.28) of Theorem 4.12,
we get that
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If the bias E [bµk(T )� µk] is positive,  ⇤ can be replaced with  
⇤
+, which implies that

 
⇤
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Since  ⇤
+ is an increasing and invertible function, we get the desired upper bound on bias, namely

E [bµk(T )� µk]   
⇤
+
�1 (Uk,b) .

Applying the same argument to the case of a negative bias, we arrive at the analogous lower bound

� 
⇤
�
�1 (Uk,b)  E [bµk(T )� µk] .

This completes the proof of the expression (4.32).
If  ⇤ is symmetric around zero,  ⇤(z) =  

⇤
+(|z|) for all z 2 ⇤⇤. Therefore, by the same steps,
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Applying  
⇤
+
�1 to the both sides, we arrive at the bound on the expected `1 loss given in (4.33) which

completes the proof.

C.4 Proofs of Theorem 4.16 and related statements

In this section, Theorem 4.16 and related statements are proved. Recall that we assume that there exists a
time t0 such that, almost surely, T � ⌧ � t0 and Nk(t0) � b � 3 for all k 2 [K]. Let h : [log b,1) !
[1,1) be a non-decreasing function such that

P1
j=1

1
h(log b+j)  1 and v 2 [b,1) 7! log h(log v)

v is
non-increasing. It can be easily checked that the function hb(x) := x

2
/ log b satisfies the condition above.

For ease of readability, we drop the subscript k throughout this section. We first provide the proof
to the adaptive deviation inequality of Lemma 4.18, which is a fundamental component of the proof of
Theorem 4.16 and related statements.

C.4.1 Proof of Lemma 4.18

The proof strategy of the adaptive deviation inequality (4.42) is based on splitting the deviation event into
simpler sub-events and then find exponential bounds for the probability of each sub-event. In detail, for
each t � 0 and j 2 log b+ N := {log b+ i : i 2 N}, define the events

Ft := {N(t) � b,N(t) ⇤(bµt � µ) > e (� + log h (logN(t)))} ,
Gt := {bµ(t) � µ} , and
H

j
t :=

�
e
j�1  N(t) < e

j
 
.

To bound the probability of these events, we rely on the following result, which we establish using
arguments borrowed from the proof of Theorem 11 in Garivier and Cappé [2011], See also Garivier [2013].
Lemma C.10. Let h : [log b,1) ! [1,1) be a non-decreasing function which makes v 7! log h(log v)

v
non-increasing on [b,1). Then, for any fixed � > 0, there exist a deterministic �j � 0 such that
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j
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o
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and a deterministic �0
j < 0 such that
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73



Proof of Lemma C.10. On the event Ft \ Gt \H
j
t , since b  e

j�1  N(t) < e
j and v 7! log h(log v)

v is
non-increasing on [b,1), we have that
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Since, by assumption,  is a non-negative convex function such that  (0) =  
0(0) = 0. its convex

conjugate  ⇤ is an increasing function on [0,1) with  
⇤(0) = 0. Therefore, we can pick a deterministic

real number zj � 0 such that
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+
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.

Note that, since bµ(t)� µ � 0 and  
⇤ is an increasing function on [0,1), our choice of zj along with the

inequalities in (C.26) implies that bµ(t)� µ � zj , on the event Ft \Gt \H
j
t .

Let �j be the convex conjugate of zj with respect to  , which is given by
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Re-arranging, we get that

�j [S(t)� µN(t)]�  (�j)N(t) � � + log h(j).

which proves the first statement in the lemma. For the second statement, since  ⇤ is a decreasing function
on (�1, 0] with  ⇤(0) = 0 we can pick a deterministic real number z0j < 0 such that

 
⇤(z0j) =

�

ej�1
+

log h(j)
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.

Note that, since bµ(t) � µ < 0 and  
⇤ is an decreasing function on (�1, 0], the choice of z0j and the

inequalities in (C.26) yield that bµ(t)� µ < zj , on the event Ft \G
c
t \H

j
t . Let �0

j be the convex conjugate
of z0j . Since z

0
j < 0, it is also the case that �0

j < 0. Then, by the same argument used for bµ(t) � µ � 0
case, the second statement holds which completes the proof.

Now, we continue to prove Lemma 4.18. In Fact 4.10, we showed that D ⇤
µ
(bµ, µ) =  

⇤(bµ� µ). Thus,
the adaptive deviation inequality (4.42) can be re-stated in the general setting as the inequality
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where Ch,b := e

⇣
1 + 1

log h(log b)

⌘
, which can be derived from the following more general inequality.

P (N(⌧) ⇤ (bµ(⌧)� µ) � e (� + log h (logN(⌧))))

 2 exp {��} , 8� � 0.
(C.28)
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To show the above bound, it is sufficient to show that the inequality holds uniformly for all time. (e.g., see
Lemma 3 in Howard et al. [2018b]). Therefore, in this proof, we prove the following uniform concentration
inequality:

P (9t 2 N : N(t) � b,N(t) ⇤ (bµ(t)� µ) � e (� + log h (logN(t))))

 2 exp {��} , 8� � 0.
(C.29)

The event on the left-hand side of (C.29) is equal to
S1

t=1 Ft, and its probability can be bounded as follows:
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For each � and t, define Lt(�) := exp {� (S(t)� µN(t))�N(t) (�)}. We show in the proof of
Lemma 4.13, that, for each � 2 ⇤, {Lt(�)}t�0 is a non-negative super-martingale with EL0(�) = 1. By
Lemma C.10, we have that
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where the last inequality stems from the union bound. Since {Lt}t�0 is a non-negative super-martingale
with L0 = 1, by applying Ville’s maximal inequality [Ville, 1939], we conclude that
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Similarly, it can be shown
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By combining two bounds, we get that

P (9t � 0 : N(t) � b,N(t) ⇤(bµt � µ) > e (� + log h (logN(t))))  2e��
,

which implies the desired bound on the adaptive deviation probability in (C.27).

75



C.4.2 Proof of Theorem 4.16

The proof of Theorem 4.16 relies on the Donsker-Varadhan representation of the KL divergence and
arguments in Russo and Zou [2016], Jiao et al. [2017]. For completeness, we cite the following form of
Donsker-Varadhan representation theorem [see, e.g. Donsker and Varadhan, 1983, Jiao et al., 2017]:
Lemma C.11. Let P , Q be probability measures on X and let C denote the set of functions f : X 7! R
such that EQ

⇥
e
f(X)

⇤
< 1. If DKL(P ||Q) < 1 then for every f 2 C the expectation EP [f(X)] exists

and furthermore

DKL(P ||Q) = sup
f2C

EP [f(X)]� logEQ

h
e
f(X)

i
, (C.30)

where the supremum is attained when f = log dP
dQ .

To apply Donsker-Varadhan representation, we need the following bound on the expectation of the
exponentiated stopped adaptive process, which is based on the adaptive deviation inequality in Lemma 4.18.
Claim C.12. Under the assumptions of Theorem 4.12, for each k 2 [K] we have that
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Proof of Claim C.12. Using the inequality
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we can bound the left hand side of (C.31) as follows:
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By applying the adaptive deviation inequality (4.42) Lemma 4.18, the last term can be further bounded by
e+

R1
1 2e��d� = e+ 2/e < 3.46. The claimed result readily follows.

Coming back to the proof of Theorem 4.16, for each k 2 [K], set Pk = L (DT | = k), Q = L (DT )
and

fk =
1

2Ch,b
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�
.

Then, from the Donsker-Varadhan representation, we can lower bound the mutual information between the
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adaptive query  and the data DT in the following way:
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where the second inequality is due to the inequality (C.31) in Claim C.12. The risk bound (4.39) now
follows from rearranging with h(x) = x

2
/ log b and Cb := 4Ch,b which completes the proof.

The only remaining proof in this section is that of Corollary 4.19, which we present below.

C.4.3 Proof of Corollary 4.19

For any p, q > 1 with 1
p + 1

q = 1, Hölder’s inequality along with the bound on the adaptive risk in (4.39)
implies that
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By setting r := 1/p, we proves the inequality (4.44), as desired.

C.5 Proofs of propositions and facts

In this section, we provide formal proofs of propositions and facts which are omitted in the main text.

C.5.1 Proof of Proposition 4.2

For any k 2 [K], the strong law of large numbers and Theorem 2.1. in Gut [2009] implies that

if Nk(⌧t)
a.s.! 1 as t ! 1 then bµk(⌧t)

a.s.! µk as t ! 1. (C.33)

77



For each k 2 [K], define events Ek and Fk such that

Ek = (bµk(⌧t) ! µk as t ! 1) , (C.34)
Fk = (Nk(⌧t) ! 1 as t ! 1) . (C.35)

The statement (C.33) implies that P(Ek [ F
c
k ) = 1. If not, suppose P(Fk) = 1, then 0 < P(Ec

k \
Fk) = P(Ec

k) which contradicts to the statement P(Ek) = 1. Hence we also have P(D) = 1 where
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T
k2[K]Ek [ F

c
k .

Now, we prove that, for any random sequence {⌧t 2 [K]},
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For notational simplicity, let Yk(t) := bµk(⌧t),Mk(t) := Nk(⌧k), and Ct := ⌧t . First, define events G and
H such that

G = (YCt(t) ! µCt as t ! 1) , (C.37)
H = (MCt(t)) ! 1 as t ! 1) . (C.38)
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Since P(D) = 1, if P(H) = 1 we have
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which proves the claimed statement (C.36). From the standard subsequence argument, it also implies that
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(⌧t)� µ⌧t
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as desired.
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C.5.2 Proof of Proposition 4.4

For any fixed nonadaptive sampling scheme ⌫ 2 V, stopping time T 2 T satisfying Nk(T ) � 1,
and for Gaussian arms with mean µ1, . . . , µK and variance �

2, the likelihood function of given data
DT = {A1, Y1, . . . , AT , YT }with respect to µ := (µ1, . . . , µK) is proportional to the following expression:
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2

)
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µ
2
k

)

/
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(
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2�2
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(At = k)
�
µ
2
k � 2Ytµk

�
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2
µ
2
k

)

=
KY
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exp

⇢
� 1

2�2

⇥�
Nk(T ) + ⇢�

2
�
µ
2
k � 2Nk(T )Y k(T )µk

⇤�

/
KY

k=1

exp

(
�Nk(T ) + ⇢�

2

2�2

✓
µk �

Nk(T )

Nk(T ) + ⇢/�2
Y k(T )

◆2
)
,

where Y k(T ) is the sample average of observations from k-th arm. Therefore, the posterior distribution of
(µ1, . . . , µk) is coordinate-wisely independent given data and, for each arm, the posterior distribution is
given as

µk|DT ⇠ N

✓
Nk(T )

Nk(T ) + ⇢/�2
Y k(T ),

�
2

Nk(T ) + ⇢�2

◆
.

Hence, for each k, bµB
k := Nk(T )

Nk(T )+⇢/�2Y k(T ) is the Bayes estimator for `2 loss under the Gaussian
prior with precision ⇢. Denote PN |µ be the distribution of the data DT under Gaussian arms with mean
µ = (µ1, . . . , µK) and variance �2, and let PN,⇡ be the posterior predictive distribution under a prior ⇡ on
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µ. Then, we have the following lower bound on the Bayes risk.

inf
bµk

Eµ⇠⇡EDT⇠PN |µNk(T ) (bµk � µk)
2 = inf

bµk

EDT⇠PN,⇡Nk(T )Eµ⇠⇡(·|DT ) (bµk � µk)
2

� EDT⇠PN,⇡Nk(T ) inf
bµk

Eµ⇠⇡(·|DT ) (bµk � µk)
2

= EDT⇠PN,⇡Nk(T )Eµ⇠⇡(·|DT )

�
bµB
k � µk

�2

� EDT⇠PN,⇡


�
2
Nk(T )

Nk(T ) + ⇢�2

�

= EDT⇠PN,⇡


�
2

1 + ⇢�2/Nk(T )

�
,

where the last equality comes from the assumption Nk(T ) � 1.
Based on the Bayes risk calculation above, we can find a lower bound on the minimax normalized `2

risk for each ⇢ > 0 as follows:

inf
bµk

sup
Pk2Pk(µk,�k)

⌫2V,T2T

EQNk(T ) (bµk � µk)
2 � inf

bµk

Eµ⇠⇡EDT⇠PN |µNk(T ) (bµk � µk)
2

� EDT⇠PN,⇡


�
2

1 + ⇢�2/Nk(T )

�
.

Since we assume sampling and stopping strategies are nonadaptive, the distribution of Nk(T ) does not
depend on ⇡. Therefore, by the monotone convergence theorem with ⇢ & 0, we have the following lower
bound on the minimax normalized `2 risk.

inf
bµk

sup
Pk2Pk(µk,�k)

⌫2V,T2T

EQNk(T ) (bµk � µk)
2 � �

2
. (C.40)

From the nonadaptivity of data collecting procedure, it can be easily shown that, for any choice of
Pk 2 Pk(µk,�k), ⌫ 2 V, T 2 T and the corresponding Q = Q(Pk, ⌫, T ), we have

EQNk(T )
�
Y k(T )� µk

�2
= �

2
k,

which shows that the minimax risk is equal to �
2
k and the sample mean estimator achieves it as claimed.

C.5.3 Proof of Proposition 4.5

The proof of Proposition 4.5 relies on a lower bound of Dfq and arguments in Jiao et al. [2017] which is
summarized in Lemma C.7 in Section C.2.2.

To apply the lemma, we first prove the following bound on the expectation of the p-norm of the
normalized `2 loss.
Claim C.13. Under the assumptions of Proposition 4.5, for each k 2 [K] and for any fixed p > 1 we have
that ���Nk(T ) (bµk(T )� µk)

2
���
p
 Cp

⇣
�
(2p)
k

⌘2
, (C.41)

where Cp is a constant depending only on p.
The proof of the claim is based on the Marcinkiewicz-Zygmund (M-Z) inequality. We cite the following

form of the inequality for completeness.
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Lemma C.14 ( Marcinkiewicz and Zygmund [1937]). For any p � 1, if X1, . . . Xn are independent
random variables with E[Xi] = 0 and E|Xi|p < 1 for all i = 1, . . . , n then the following inequality
holds.

E
"�����

nX

i=1

Xi

�����

p#
 BpE

2

4
 

nX

i=1

|Xi|2
!p/2

3

5 , (C.42)

where Bp > 0 is a constant depending only on p.

Proof of Claim C.13. For simple notations, let Wt := (At = k) and Zt = Yt � µk. Then from the M-Z
inequality, we have

E
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2
���
p

= E
�����

1p
Nk(T )

TX

t=1

WtZt

�����

2p

= E

2

4E

2

4
�����

1p
Nk(T )

TX

t=1

WtZt

�����

2p

| {Wt}t�1

3

5

3

5

 BpE
"
E
" 

1

Nk(T )

TX

t=1

Wt|Zt|2
!p

| {Wt}t�1

##
(by M-Z inequality and W

2
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##
(by Jensen’s inequality with Nk(T ) =

TX

t=1

Wt)

 Bp

⇣
�
(2p)

⌘2p
,

which implies the claimed inequality with Cp := (Bp)1/p.

Now, we have all building blocks to complete the proof of Proposition 4.5. For each k 2 [K], set
Pk = L (DT | = k), Q = L (DT ) and

fk = �Nk(T ) (bµk(T )� µk)
2
.

81



for a � > 0. Then, from Lemma C.7, we can lower bound Iq (,DT ) in the following way:

1
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Since this inequality holds for any � > 0, we get

E
h
N(T ) (bµ(T )� µ)

2
i
= k�k22 + inf

�>0

1

�

⇢
Iq (,DT )

q
+

�
p
C

p
p

p
k�(2p)

 k2p2p
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= k�k22 + Cpk�(2p)
 k22pI1/qq (,DT ) ,

which completes the proof.

C.5.4 Proof of Fact 4.10

Let ✓1 and ✓0 be natural parameters corresponding to µ1 and µ0 such that µ1 = B
0(✓1) and µ0 = B

0(✓0).
From well-known fact about the KL divergence in exponential family theory,

`KL(µ1, µ0) = DKL (✓1k✓0)
= B

0(✓1) (✓1 � ✓0)�B(✓1) +B(✓0).

Since µ = B
0(✓) and  µ(�) := �µ+ (�; ✓) = B(�+ ✓)�B(✓), its derivative with respect to � is equal

to  0
µ(�) = B

0(�+ ✓). Thus,

DKL (✓1k✓0) = B
0(✓1) (✓1 � ✓0)�B(✓1) +B(✓0)

=  
0
µ0
(✓1 � ✓0) (✓1 � ✓0)�  µ0(✓1 � ✓0)

=  µ0(0)�  µ0(✓1 � ✓0)�  
0
µ0
(✓1 � ✓0) (0� (✓1 � ✓0)) (since  µ0(0) = 0.)

= D µ0
(0, ✓1 � ✓0)

= D ⇤
µ0

�
 
0
µ0
(✓1 � ✓0), µ0

�

= D ⇤
µ0
(µ1, µ0),

where the last equality comes from the fact that  0
µ0
(✓1 � ✓0) = B

0(✓1) = µ1. The second-to-last equality
stems instead from the duality of the Bregman divergence, which we state below.
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Fact C.15. Let f : ⇤ ! R be a strictly convex and continuously differentiable on a open interval ⇤ ⇢ R.
For any ✓1, ✓0 2 ⇤, let µ1, µ2 be the corresponding dual points satisfying f

0(✓j) = µj for j = 0, 1. Then,
we have

Df (✓0, ✓1) = Df⇤(µ1, µ0), (C.43)

where f⇤ is the convex conjugate of f .
Therefore, we have the first claimed equality, `KL(µ1, µ0) = D ⇤

µ0
(µ1, µ0). To show the second one,

first note that  0
µ0
(0) = B

0(✓0) = µ0, so that  ⇤
µ0
(µ0) =  

⇤0
µ0
(µ0) = 0. Therefore, we have that

D ⇤
µ0
(µ1, µ0) =  

⇤
µ0
(µ1)�  

⇤
µ0
(µ0)�  

⇤0
µ0
(µ0) (µ1 � µ0) =  

⇤
µ0
(µ1),

which verifies the second claimed equality. The last equality can be established as follows:

 
⇤
µ0
(µ1) = sup

�
�µ1 �  µ0(�)

= sup
�

�µ1 � [�µ0 +  (�)]

= sup
�

� (µ1 � µ0)�  (�)

=  
⇤(µ1 � µ0),

as desired.

C.5.5 Proof of Proposition 4.11

By following similar arguments to the ones used in the proof of Lemma 4.13, we first show that, for any
� > 0, the following deviation inequality holds.

P
⇣
D ⇤

µ
(bµ(n), µ) � �

⌘
 2e�n�

. (C.44)

Proof of inequality (C.44). For any ✏ � 0 and � 2 [0,�max) ⇢ ⇤, we have

P (Sk(n)/n� µk � ✏) = P (Sk(n)� nµk � n✏)

= P
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�(Sk(n)�nµk) � e

�n✏
⌘

 e
��n✏E

h
e
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i
,

where in the final step we have used Markov’s inequality. The last term can be bounded as follows:

e
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i

= e
n( (�)��✏)

.

Since the bound holds for any � 2 [0,�max), we have the following intermediate bound on the deviation
probability:

P (Sk(n)/n� µk � ✏)  inf
�2[0,�max)

e
n( (�)��✏)

. (C.45)
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Since ✏ � 0, the convex conjugate of  at ✏ can be written as

 
⇤(✏) = sup

�2⇤
{�✏�  (�)} = sup

�2[0,�max)
{�✏�  (�)} .

Using this identity, the deviation probability can be further bounded as
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!

= e
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Using the same argument, it also follows that

P (Sk(n)/n� µk  �✏)  e
�n ⇤(�✏)

Since  ⇤ is a non-negative convex function with  
⇤(0) = 0, for any � � 0, there exist ✏1, ✏2 � 0 with

 
⇤(✏1) =  

⇤(�✏2) = � such that

{z 2 R :  ⇤(z) � �} = {z 2 R : z � µk + ✏1, z  µk � ✏2} .

Therefore, for any � � 0, we conclude that

P
⇣
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µk
(bµk(n), µk) � �

⌘
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�
 
⇤
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�
(By the equality (4.25) in Fact 4.10.)

 P (Sk(n)/n)� µk � ✏1) + P (Sk(n)/n)� µk  �✏2)

 2e�n�
,

as desired.

Now, we return to the proof of Proposition 4.11. Based on the deviation inequality (C.44), the risk
under the non-adaptive setting can be bounded as

E✓D ⇤
µ
(bµ(n), µ) =

Z 1

0
P
⇣
D ⇤

µ
(bµ(n), µ) � �

⌘
d�

 2

Z 1

0
e
�n�d�

=
2

n
,

which completes the proof of the upper bound. To get a lower bound on the minimax risk, we use the
following lemma.
Lemma C.16 (Modified version of Theorem 2.2 in Tsybakov [2008]). Let {P✓ : ✓ 2 ⇥} be a family of
probability measures parameterized by ✓ 2 ⇥ and let s > 0. Suppose a loss function l : ⇥⇥⇥ 7! [0,1)
satisfies the local triangle inequality condition with positive numbers M  1 and ✏0. Also assume that
there exist ✓1, ✓0 2 ⇥ such that `(✓1, ✓0) � 2s for some s  ✏0. Then, if DKL(P✓1kP✓0)  ↵ < 1, we
have

inf
b✓
sup
✓2⇥

P✓

⇣
`(b✓, ✓) � s

⌘
� M

4
exp(�↵). (C.46)
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Note that, for any ✓1, ✓0 2 ⇥, the KL divergence can be written as

DKL(P
n
✓1 ||P

n
✓0) = nDKL(✓1||✓0) = nD ⇤

µ0
(µ1, µ0),

where µ1 and µ0 are corresponding mean parameters. If n is large enough such that log 2
2n  ✏0, we can

always find ✓1, ✓0 2 ⇥ such thatD ⇤
µ0
(µ1, µ0) =

log 2
n . Then, the condition in Lemma C.16 can be satisfied

with ` = D ⇤
µ
, s = log 2

2n and ↵ = log 2. Therefore,

inf
bµ
sup
µ

E✓D ⇤
µ
(bµ, µ) � s inf

bµ
sup
µ

P
⇣
D ⇤

µ
(bµ, µ) � s

⌘

� sM

4
exp(�↵)

=
M log 2

16n
,

as desired.

C.6 Equivalence between ne↵
t

! 1 and N(t)
a.s.! 1

Before we state and formally prove our claim, we first state a useful fact.
Fact C.17 (Theorem 13.7 in Williams [1991] withX = 0). Let {Xt}t2N be a sequence of random variables
with finite first moments. Then E |Xt| ! 0 if and only if the following conditions are satisfied:

1. Xt
p! 0.

2. {Xt}t2N is uniformly integrable.
Recall that ne↵

t = [1/N(t)]�1, we are now in place to prove the following claim.
Proposition C.18. As long as N(t) � b > 0, we have that ne↵

t ! 1 as t ! 1 if and only if N(t)
p! 1

t ! 1.

Proof. The assumption of N(t) � b > 0 ensures that the sequence {1/N(t)}t2N is uniformly integrable.
Substituting Xt = 1/N(t) into the aforementioned fact, we have that

n
e↵
t ! 1 as t ! 1 , E [1/N(t)] ! 0 as t ! 1

fact, 1/N(t)
p! 0 as t ! 1

, N(t)
p! 1 as t ! 1,

as desired.

Proposition C.19. If {N(t)} is a nondecreasing sequence, we have that N(t)
p! 1 as t ! 1 implies

N(t)
a.s.! 1 as t ! 1.

Proof. If N(t)
p! 1 as t ! 1, there exists a subsequence goes to 1 almost surely. Therefore, we must

have lim sup
t!1

N(t) = 1 almost surely. By the monotonicity of {N(t)}, we have lim sup
t!1

N(t) = lim
t!1

N(t)

which implies that N(t)
a.s.! 1 as t ! 1.

Returning to the MABs setting, the previous propositions show that, as long as Nk(t) � b > 0, the
condition n

e↵
k,t ! 1 implies that Nk(t)

a.s.! 1 since {Nk(t)} is monotone for each arm k 2 [K]. For a
sequence of chosen arms, however, if the sequence {Nt(Tt)} is not monotone, ne↵

t,t ! 1 does not imply
Nt(⌧t)

a.s.! 1 as shown in the next example.
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Example C.20. Consider a two-armed bandit; pull the first arm at time 1 and the second arm forever after.
Thus, N1(t) = 1 for all t � 1, and N2(t) = t� 1 for all t � 2 with N2(1) = 0. Define ⌧t = t+ 1 and let
{t} be a sequence of random choice functions defined by a uniform random variable U 2 Unif [0, 1] such
that t = 1 if U 2

h
j
2k
,
j+1
2k

i
where k and j are given by k = blog2(t)c and t = 2k + j. if U /2

h
j
2k
,
j+1
2k

i
,

define t = 2. It is clear Nt(⌧t)
p! 1, and the Proposition C.18 implies that ne↵

t,t ! 1. However, for
any given U , Nt(⌧t) 6! 1 and thus P (Nt(⌧t) ! 1) = 0.

C.7 Alternative bounds using sub-Gaussian self-normalized process

For sub-Gaussian arms, it is known that E
h
exp

n
� (S(T )� µN(T ))� �2�2

2 N(T )
oi

 1 for all � 2 R.
In this sub-Gaussian case (only), one may use the following moment bound from the literature on self-
normalized processes.
Fact C.21 (Theorem 2.1 in de la Pena et al. [2004]). If E

p
N(T ) < 1,

E exp

(
eNE(T )

(bµ(T )� µ))2

4�2

)


p
2, (C.47)

where eNE(T ) := N
2(T )/

✓
N(T ) +

⇣
E
p
N(T )]

⌘2◆
.

We can use the above fact and the Donsker-Varadhan representation to derive an alternative bound for
the l2 risk of the chosen sample mean at a stopping time T as follows:
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KX
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�
KX
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KX

k=1

P( = k)

(
E
"
eNE
k (T )

(bµk(T )� µk))
2

4�2
|  = k

#
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 (T )

(bµ(T )� µ))
2

4�2

#
� log 2

2
.

By rearranging terms, we have the following bound on the `2 risk.

E
h
eNE
 (T ) (bµ(T )� µ))

2
i
 4�2


I(;DT ) +

log 2

2

�
. (C.48)

Recall that, for sub-Gaussian arms, the bound in Theorem 4.16 can be written as

E
h ⇡
N(⌧) (bµ(⌧)� µ))

2
i
 2Cb�

2 [I(;DT ) + 1.25] . (C.49)
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Bounds (C.48) and (C.49) are matched to each other up to a constant factor. However, corresponding
normalized `2 risks in LHS shows interesting differences. First, the bound (C.48) based on Fact C.21 holds
only at a stopping time but our bound holds at an arbitrary random time. Second, the bound (C.48) is
applicable only to the sub-Gaussian case since it is non-trivial to extend the Fact C.21 to general sub- 
cases. Third, if the random sample size N is highly concentrated at a constant, the normalizing factor eNE



tends to be larger than our normalizing factor
⇡
N and thus the bound (C.48) yields a tighter control on the

`2 risk. On the other hand, if the random sample size N has a large variability, our normalizing factor
⇡
N

tends to be larger than eNE
 since (E

p
N)2 can be significantly larger than N with a high probability. In

this case, our bound (C.49) yields a tighter control on the `2 risk than the bound (C.48).
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