Lessons learned from the B3 development and application to model time trends in differentials

Fengqing Chao
 fengqingchao.com

King Abdullah University of Science and Technology (KAUST)

United Nations virtual Expert Group Meeting
Apr 6th, 2020

King Abdullah University of

Science and Technology

Sex-specific under-5 mortality rate (U5MR)

- Estimate sex ratio (ratio of male to female mortality rate) for infant, child and under 5 mortality (IMR, CMR, U5MR) for all countries.
- Due to data quality/availability (e.g. Jordan): curve fitting approach \& data quality model are needed.
- Countries with outlying sex ratios where gender discrimination exists (e.g. India): need to model a global expected sex ratio.

Sex-specific U5MR estimation: method

- Data: all available data (with measures of uncertainty) on infant, child or under-five mortality by sex from vital registration, surveys and census, for all countries.
- Full model:
- Observed sex ratio $=$ true sex ratio (process model) + measurement error (data model).
- Data model for measurement error: accounts for sampling and non-sampling errors, and outlying data points;
- Process model for the true sex ratios:
- Sex ratios for IMR and CMR are modeled as the product of:
(1) the global expected sex ratio for that country-year, and
(2) a country-year-specific multiplier.
- The U5MR sex ratio is derived from sex-specific IMR and CMR.

Global relation: sex ratios and total mortality

The global relation between sex ratios and total mortality are estimated with a flexible B-splines regression model and define the expected sex ratio for any country-year, based on the total mortality rate for that year.

Global relation: sex ratios and total mortality

Global relation between sex ratios and total mortality is modeled as a penalized B-splines regression function with settings:

- Symmetric 3rd-order polynomials;
- Equally spaced knots on the log-scaled input;
- Splines are obtained within [2.5\%; 97.5\%] percentiles of input;
- Penalize the 2nd-order differences in adjacent splines coefficients.

Difference across/within countries over time

India

- Country-year-specific multiplier fluctuates around a country-specific level, estimated with a hierarchical model.
- Within-country fluctuations over time are modeled with a time series model, e.g. to capture trend in India.

Illustration for country estimates

Illustration for country estimates

India

Illustration for country estimates

Jordan

Lessons learned

- The B-splines settings are important for model fitting:
- Interval length between splines:
- Smaller: more parameters to estimate, model run is slower.
- Larger: the model fitting is less smooth.
- The order of penalization: depends on data.
- Range of modeling the splines function:
- We assume splines to be constant at low and high ends of the splines input (here is national IMR and CMR).
- Start with one-country run to set splines settings instead of global run (all countries in the model).
- INLA is a good alternative (under exploration):
- R-package INLA.
- Very fast: < 10 minutes for global run for 1 age group.
- But may not be able to model multiple sets of indicators simultaneously.

For more details, refer to our publication:
Alkema, L., Chao, F., You, D., Pedersen, J., \& Sawyer, C. C. (2014). National, regional, and global sex ratios of infant, child, and under-5 mortality and identification of countries with outlying ratios: a systematic assessment. The Lancet Global Health, 2(9), e521-e530.

Thank you!

Fengqing Chao fengqingchao.com

