Supporting information

be estimated by using Monte Carlo algorithm.

S2 Appendix. Generalized pivotal quantities and generalized confidences

This appendix details the basic concepts of generalized pivotal quantities and generalized confidence intervals proposed by Weerahandi [11].

A random quantity $R = R(\mathbf{X}; \mathbf{x}, \zeta)$ is called a generalized pivotal quantity (GPQ) if following two properties hold.

Property D: The distribution of R is free of unknown parameters.

Property E: The observed value of R, $r_{obs} = R(\mathbf{x}; \mathbf{x}, \zeta)$, does not depend on nuisance parameters η .

Accordingly, the two-sided equal tailed $100(1 - \alpha)\%$ generalized confidence interval for θ is given by $(R_{\alpha/2}, R_{1-\alpha/2})$, where $R_{\alpha/2}$ and $R_{1-\alpha/2}$ are the $100(\alpha/2)$ th and $100(1 - \alpha/2)$ th percentiles of the distribution of R. Moreover, the percentiles of R can 1

2

5

7

8

g

10

11

12

13