Supporting Information

Rational Entry to Cyclic Polymers via Thermally Induced Radical Ring-Expansion Polymerization of Macrocycles with one Bis(hindered amino)disulfide Linkage

Rikito Takashima, [†] Daisuke Aoki, *^{†,‡} and Hideyuki Otsuka*[†]

[†]Department of Chemical Science and Engineering, Tokyo Institute of Technology and [‡]JST-PRESTO, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.

Corresponding Authors

* D. Aoki. Email: daoki@polymer.titech.ac.jp

* H. Otsuka. Email: otsuka@polymer.titech.ac.jp

Table of Contents

1.	General information	2
2.	Spectral date of macro cyclic monomers (MCMs)	3
3.	Spectral date of CP(Bu)	7
4.	Depolymerization behavior	8
5.	SEC data of LP(Bu)	9
6.	DSC data of small size CP(Bu)	10
7.	Polymerization behavior	11
8.	Data of cyclic oligomers	12
9.	Functionalized macrocyclic monomer	16
10.	Functionalized cyclic oligomer and polymer	.18
11.	Cyclic copolymer	20
12.	SI reference	21

General information

¹H spectra were recorded on a Bruker AVANCE III HD500 spectrometer. The LED method for DOSY measurement was used. Pulse program: ledbpgp2s, Diffusion time: 40 ms, Diffusion gradient length: 2000 µs, Maximum gradient strength: 51 g/cm.^[1] Analytical size exclusion chromatography (SEC) measurements were carried out at 40 °C on TOSOH HLC-8320 SEC system equipped with a guard column (TOSOH TSK guard column Super H-L), three columns (TOSOH TSK gel SuperH 6000, 4000, and 2500), a differential refractive index detector, and a UV-vis detector. Tetrahydrofuran (THF) was used as the eluent at a flow rate of 0.6 mL/min. Polystyrene (PS) standards (M_n = 4430–3142000; M_w/M_n = 1.03–1.08) were used to calibrate the SEC system. For some of polymers, absolute molecular weights were measured via multiangle laser light scattering size exclusion chromatography (SEC-MALS) in THF at 20 °C and a flowrate of 0.6 mL/min on JASCO ChromNAV Lite system equipped a guard column (TOSOH TSK guard column Super H-L), three columns (TOSOH TSK gel SuperH 6000, 4000, and 2500), a differential refractive index detector, and a UV-vis detector. MALS detection consisted of a Wyatt DOWN EOS LASER PHOTOMETER operating at 658 nm and refractive index increment dn/dc of each samples were measured by OTSUKA ELECTRONICS DRM-3000 at 20 °C. Absolute molecular weights were calculated using the Wyatt ASTRA software. MALDI-TOF MS spectra were determined on a Shimadzu AXIMA-CFR mass spectrometer. The spectrometer was equipped with a nitrogen laser ($\lambda = 337$ nm) and with pulsed ion extraction. Electrospray ionization mass spectrometry (ESI-TOF-MS) measurements were carried out on Bruker micrOTOF II. DSC was carried out using a Shimadzu DSC-60A DSC at a heating rate of 10 °C min⁻¹ under N₂ flow.

Spectral data of macrocyclic monomers (MCMs)

Figure S1. (a) ¹H NMR spectrum of **MCM(Bu)** (500 MHz, 25 °C, CDCl₃). **(b)** SEC chart of **LP(Bu)** and **(c)** SEC chart of **MCM(Bu)** (PS standard, eluent, THF; flow rate, 0.6 mL/min, detected by RI).

Figure S2. (a) ¹H NMR spectrum of **MCM(Ph)** (500 MHz, 25 °C, CDCl₃). **(b)** SEC chart of **LP(Ph)** and **(c)** SEC chart of **MCM(Ph)** (PS standard, eluent, THF; flow rate, 0.6 mL/min, detected by RI).

Figure S3. (a) ¹H NMR spectrum of **MCM(EG)** (500 MHz, 25 °C, CDCl₃). **(b)** SEC chart of **LP(EG)** and **(c)** SEC chart of **MCM(EG)** (PS standard, eluent, THF; flow rate, 0.6 mL/min, detected by RI). **(d)** HPLC profile of **MCM(EG)** (eluent, acetonitrile; flow rate, 1.0 mL/min, monitored by UV).

Figure S4. (a) ¹H NMR spectrum of **MCM(Bu-diol)** (500 MHz, 25 °C, CDCl₃). **(b)** SEC chart of **LP(Bu-diol)** and **(c)** SEC chart of **MCM(Bu-diol)** (PS standard, eluent, THF; flow rate, 0.6 mL/min, detected by RI). **(d)** HPLC profile of **MCM(Bu-diol)** (eluent, acetonitrile; flow rate, 1.0 mL/min, monitored by UV).

Figure S5. ¹³C NMR spectrum of MCM(EG) (125 MHz, 25 °C, CDCl₃).

Figure S6. ¹³C NMR spectrum of MCM(Bu-diol) (125 MHz, 25 °C, CDCl₃).

Figure S7. (a) ¹H NMR spectra of **CP(Bu)** [blue; **LP(Bu)**, red; **MCM(Bu)**, black; **CP(Bu)**] (500 MHz, 25 °C, CDCl₃).

Depolymerization behavior

(Experiment)

In a 20 mL test tube, 1,4-dioxane (2.0 mL) was added to **CP(Bu)** (20 mg) and stirred at 100 °C for 24 hours.

Figure S8. Change in SEC charts in ring-contraction depolymerization of **CP(Bu)** (10 g/L) at 100 °C in dioxane (PS standard, eluent, THF; flow rate, 0.6 mL/min, detected by UV).

Figure S9. (a) SEC-MALS charts of CP(Bu) (Cyclic) and LP(Bu)-dianthracene synthesized by ring-opening polymerization (Linear) (eluent, THF; flow rate, 0.6 mL/min, detected by RI).
(b) Plot of logarithm of absolute molecular weight versus retention time. [red; CP(Bu), blue; LP(Bu)-dianthracene].

Figure S10. SEC charts of **LP(Bu)** synthesized by polyaddition for DSC analysis (PS standard, eluent, THF; flow rate, 0.6 mL/min, detected by RI).

DSC data of small size CP(Bu).

The synthesis of cyclic polymers was carried out in 1,4-dioxane (400 g/L) at 100 °C. In a 20 mL test tube, 1,4-dioxane (250 μ L) was added to **MCM(Bu)** (100 mg) and stirred at 100 °C for 3 h. Then, the mixture was poured into hexane/ethanol (30 mL, 8/2, v/v). The obtained precipitate was separated by filtration and dried under reduced pressure to obtain **CP(Bu)** as a white solid.

Figure S11. (a) SEC elution curve for small size **CP(Bu)** (polystyrene (PS) standards; eluent: THF; flow rate: 0.6 mL/min; detected by RI). (b) DSC curves for small size **CP(Bu)**.

Polymerization behavior of MCM(Bu).

In a 20 mL test tube, 1,4-dioxane (1 mL) was added to **MCM(Bu)** [(a) 20 mg, (b) 30 mg, (c) 50 mg, (d) 100 mg, (e) 200 mg, and (f) 400 mg] and stirred at 100 °C for 24 hours. (g) 50 mg of **MCM(Bu)** was heated without any solvent.

Figure S12. (a) Peak top molecular weight from SEC vs. Time (PS standard, eluent, THF; flow rate, 0.6 mL/min, detected by UV). (b) Conversion estimated by SEC vs. time (PS standard, eluent, THF; flow rate, 0.6 mL/min, detected by UV). (c) Peak top molecular weight from SEC vs. Reaction Time (PS standard, eluent, THF; flow rate, 0.6 mL/min, detected by UV) compared with ring-opening polymerization we previously reported.

Figure S13. Change in SEC charts in polymerization reaction of **MCM(Bu)** at 100 °C in 1,4dioxane. **(a)** 20 mg/mL, **(b)** 30 mg/mL, **(c)** 50 mg/mL, **(d)** 100 mg/mL, **(e)** 200 mg/mL, **(f)** 400 mg/mL, and **(g)** bulk (PS standard, eluent, THF; flow rate, 0.6 mL/min, detected by UV).

Data of Cyclic oligomers

Figure S14. (a) SEC chart of obtained *Oligo* MCM(Ph) (PS standard, eluent, THF; flow rate, 0.6 mL/min, detected by UV). (b) ESI-TOF MS spectrum of obtained *Oligo* MCM(Ph) ($M_n < 3500$, all peaks were detected as [M+Na]⁺).

Figure S15. (a) SEC chart of obtained *Oligo* MCM(EG) (PS standard, eluent, THF; flow rate, 0.6 mL/min, detected by UV). (b) ESI-TOF MS spectrum of obtained *Oligo* MCM(EG) ($M_n < 3500$, all peaks were detected as [M+Na]⁺).

Figure S16. (a) SEC chart of obtained *Oligo* MCM(Bu-diol) (PS standard, eluent, THF; flow rate, 0.6 mL/min, detected by UV). (b) ESI-TOF MS spectrum of obtained *Oligo* MCM(Bu-diol) ($M_n < 3500$, all peaks were detected as [M+Na]⁺).

Functionalized macro cyclic monomer.

Figure S17. (a) ¹H NMR spectrum of **MCM(Bu-diacrylate)** (500 MHz, 25 °C, CDCl₃). **(b)** SEC chart of **MCM(Bu-diol)** and **(c)** SEC chart of **MCM(Bu-diacrylate**) (eluent, acetonitrile; flow rate, 1.0 mL/min, monitored by UV).

Figure S18. ¹³C NMR spectrum of MCM(Bu-dacrylate) (125 MHz, 25 °C, CDCI₃).

Functionalized cyclic oligomer and polymer.

Figure S19. (a) SEC chart of obtained *Oligo* MCM(Bu-diacrylate) (PS standard, eluent, THF; flow rate, 0.6 mL/min, detected by UV). (b) ESI-TOF MS spectrum of obtained *Oligo* MCM(Bu-diacrylate) ($M_n < 4500$, all peaks were detected as [M+Na]⁺).

Figure S20. (a) ¹H NMR spectrum of **CP(Bu-diacrylate)**, its monomer, and their precursor (500 MHz, 25 °C, CDCl₃). **(b)** SEC charts of **CP(Bu-diacrylate)**, its monomer, and their precursor (PS standard, eluent, THF; flow rate, 0.6 mL/min, detected by RI).

Cyclic copolymer.

Figure S21. SEC chart of obtained *Oligo* **MCM(Bu+Ph)** (PS standard, eluent, THF; flow rate, 0.6 mL/min, detected by UV).

Figure S22. (a) SEC chart of **CP(Bu+Ph)** and (b) SEC-MALS charts of **CP(Bu+Ph)** and **LP(Bu+Ph)-dialkyne** synthesized by ring-opening polymerization (PS standard, eluent, THF; flow rate, 0.6 mL/min, detected by RI).

Figure S23. DOSY spectra of LP(Bu+Ph)-dialkyne (500 MHz, 25 °C, CDCl₃).

SI reference

(1) Wu, D.; Chen, A.; Johnson, C. S. An Improved Diffusion-Ordered Spectroscopy
Experiment Incorporating Bipolar-Gradient Pulses. *J. Margn. Reson. A.* 1995, *115* (2), 260–264.