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No species emerged from vacuum
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Incorporating evolution into niche modelling
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How can we best model niches. ..

= accounting for local adaptation/intraspecific variation
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How can we best model niches. ..

= accounting for local adaptation/intraspecific variation

= exploiting knowledge of evolutionary relations (niche
conservatism)

= minimising bias from noisy distribution data
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Niche Estimation Above and Below the
Species Level
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Splitting: fitting independent models
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Splitting: fitting independent models
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Splitting: fitting independent models
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Lumping
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Lumping: model taxa as a group
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Lumping: model taxa as a group
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Lumping: model taxa as a group
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= Cryptic taxa (fossils)

I
3
© 0.50
= = Robust
7]

0.254

0.00

0 5 10 15 20
Temperature



Lumping: model taxa as a group

0.754 = Niche conservatism

= Cryptic taxa (fossils)
Robust

= Underfitting: ignores
differentiation
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Does it matter?
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Splitting/Lumping: niche estimates differ
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Splitting/Lumping: projected distributions differ
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Partial pooling
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Partial pooling
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Partial pooling: many methods

Making more out of sparse data: hierarchical modeling
of species communities
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Generalized linear mixed models for phylogenetic analyses
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Finite Mixture of Regression Modeling
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Data in Ecology
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David I. WARTON

Spatio-phylogenetic multispecies distribution models

Amne Kaldhusdal’, Roland Brand?, Jérg Milller**, Lisa Most' and Torsten Hothorn®*

Joint dynamic species distribution
models: a tool for community ordination
and spatio-temporal monitoring

Combining phylogeny and co-occurrence to improve single
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Partial pooling

Estimating all niches through single joint model

= Phylogenetic
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Partial pooling

Estimating all niches through single joint model

= Phylogenetic
= Non-Phylogenetic
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Partial pooling: middle ground

Degree of niche differentiation determined by data

(and priors if Bayesian)

Ajenb pue Ayjuenb ejeg

Niche differentiation

24



Partial pooling: pros and cons
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Partial pooling: pros and cons
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When to use what?
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The BAM diagram

27



Partial pooling/lumping can reduce overfitting. . .

e.g. if separate ranges actually driven by dispersal (M) or biotic
interactions (B), not niche differences (A)
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Splitting can reduce bias. ..

e.g. if co-occurrence driven by biotic interactions (B) or
dispersal (M), not niche differences (A)
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So...

when to use what?
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Lets’s ask our computer:

simulations
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Simulated niches and phylogeny
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Model comparison

= Splitting: GLM
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» glm(presabs ~ env) (for each taxon)
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Model comparison

= Splitting: GLM
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Model comparison

Splitting: GLM

» glm(presabs ~ env) (for each taxon)

= Lumping: GLM
» glm(presabs ~ env) (all taxa together)
GLMM (partial pooling)
» Imed::glmer(presabs ~ env + (1+env | taxon))

PGLMM: Phylogenetic GLMM (partial pooling)
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Model comparison

Splitting: GLM

» glm(presabs ~ env) (for each taxon)

= Lumping: GLM

» glm(presabs ~ env) (all taxa together)
GLMM (partial pooling)

» Imed::glmer(presabs ~ env + (1+env | taxon))
PGLMM: Phylogenetic GLMM (partial pooling)

» brms::brm(presabs ~ env + (1 + env | taxon) +
(1 + env | phylo))
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Widely different niche estimates

Splitting (GLM) True niches Lumping (GLM)
1.00 1.00 1.00
0.75 I 0.75 0.75
£ £ £
§ 050 § 050 § 050
£ £ £
2] 2] 2]
0.25 0.25 0.25
~
0.00 0.00 0.00
-10 -5 0 5 10 -10 -5 0 5 10
Temperature Temperature Temperature
Pooling (GLMM) True niches Pooling (PGLMM)
1.00 1.00 1.00
0.75 0.75 0.75
£ £ £
§ 050 § 050 § 050
£ £ £
2] 2] 2]
0.25 0.25 0.25
N
0.00 0.00 0.00
-10 -5 0 5 10 -10 -5 o 5 10
Temperature Temperature Temperature

34



Different geographic projections




FEW sites, FEW taxa

10 sites, 5 taxa
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FEW sites, FEW taxa

10 sites, 5 taxa
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FEW sites, MANY taxa

10 sites, 30 taxa
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MANY sites, FEW taxa

100 sites, 5 taxa
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MANY sites, MANY taxa
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No free lunch

Data quantity and quality

Low High
Splitting Fails Good
Lumping Good Depends on data quality
Partial Good, but complex models
Good
: require more data
pooling
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A bright future for partial pooling?
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Future developments/challenges

= Assess model trade-offs (sample size, bias, phylogenetic
signal. . .)
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Future developments/challenges

= Assess model trade-offs (sample size, bias, phylogenetic
signal. . .)

= Model evaluation: Niche-Distribution duality
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