Incorporating evolution in ecological niche modelling

Francisco Rodríguez-Sánchez @frod_san

Species: aggregates of (different) populations

No species emerged from vacuum

SPECIES

distribution modelling

Incorporating evolution into niche modelling

Evans et al. 2009

How can we best model niches...

accounting for local adaptation/intraspecific variation

How can we best model niches...

- accounting for local adaptation/intraspecific variation
- exploiting knowledge of evolutionary relations (niche conservatism)

How can we best model niches...

- accounting for local adaptation/intraspecific variation
- exploiting knowledge of evolutionary relations (niche conservatism)
- minimising bias from noisy distribution data

NIMBioS Investigative Workshop Species' Range Shifts in a Warming World

Review

Niche Estimation Above and Below the Species Level

Adam B. Smith ⁶,^{1,*} William Godsoe,² Francisco Rodríguez-Sánchez,³ Hsiao-Hsuan Wang,⁴ and Dan Warren^{5,6}

https://doi.org/10.1016/j.tree.2018.10.012

Splitting

Splitting

Accounts for differentiation/LA

- Accounts for differentiation/LA
- Data-demanding

- Accounts for differentiation/LA
- Data-demanding
- Bias/Overfitting

- Accounts for differentiation/LA
- Data-demanding
- Bias/Overfitting
- Where to split?

Lumping

Lumping

Niche conservatism

- Niche conservatism
- Cryptic taxa (fossils)

- Niche conservatism
- Cryptic taxa (fossils)
- Robust

- Niche conservatism
- Cryptic taxa (fossils)
- Robust
- Underfitting: ignores differentiation

Does it matter?

Splitting/Lumping: niche estimates differ

Mota-Vargas & Rojas-Soto 2016

Splitting/Lumping: projected distributions differ

Hallfors et al. 2016

CC-BY zeevveez

Partial pooling

Partial pooling

Partial pooling: many methods

Making more out of sparse data: hierarchical modeling of species communities

Otso Ovaskainen^{1,3} and Janne Soininen²

Spatio-phylogenetic multispecies distribution models

Arne Kaldhusdal¹, Roland Brandl², Jörg Müller^{3,4}, Lisa Möst¹ and Torsten Hothorn^{5,4}

Generalized linear mixed models for phylogenetic analyses of community structure

Anthony R. Ives^{1,3} and Matthew R. Helmus²

Joint dynamic species distribution models: a tool for community ordination and spatio-temporal monitoring

James T. Thorson¹*, James N. Ianelli², Elise A. Larsen³, Leslie Ries⁴, Mark D. Scheuerell⁵, Cody Szuwalski^{6,7} and Elise F. Zipkin^{8,9}

Finite Mixture of Regression Modeling for High-Dimensional Count and Biomass Data in Ecology

Piers K. DUNSTAN, Scott D. FOSTER, Francis K.C. HUI, and David I. WARTON Combining phylogeny and co-occurrence to improve single species distribution models

Partial pooling

Estimating all niches through single joint model

Phylogenetic

Partial pooling

Estimating all niches through single joint model

- Phylogenetic
- Non-Phylogenetic

Partial pooling: middle ground

Degree of niche differentiation determined by data (and priors if Bayesian)

Partial pooling: pros and cons

Partial pooling: pros and cons

- 'Borrowing strength'
- Best for rare taxa

Partial pooling: pros and cons

- 'Borrowing strength'
- Best for rare taxa
- Reduce overfitting

Partial pooling: pros and cons

- 'Borrowing strength'
- Best for rare taxa
- Reduce overfitting
- Complex models

Partial pooling: pros and cons

- Borrowing strength'
- Best for rare taxa
- Reduce overfitting
- Complex models
- Oversmoothing divergent taxa

When to use what?

The BAM diagram

Partial pooling/lumping can reduce overfitting...

e.g. if separate ranges actually driven by dispersal (M) or biotic interactions (B), not niche differences (A)

Splitting can reduce bias...

e.g. if co-occurrence driven by biotic interactions (B) or dispersal (M), not niche differences (A)

So... when to use what?

Lets's ask our computer: simulations

Simulated niches and phylogeny

• **Splitting**: GLM

- **Splitting**: GLM
 - glm(presabs ~ env) (for each taxon)

- **Splitting**: GLM
 - glm(presabs ~ env) (for each taxon)
- Lumping: GLM

- **Splitting**: GLM
 - glm(presabs ~ env) (for each taxon)
- Lumping: GLM
 - glm(presabs ~ env) (all taxa together)

- Splitting: GLM
 - glm(presabs ~ env) (for each taxon)
- Lumping: GLM
 - glm(presabs ~ env) (all taxa together)
- GLMM (partial pooling)

- Splitting: GLM
 - glm(presabs ~ env) (for each taxon)
- Lumping: GLM
 - glm(presabs ~ env) (all taxa together)
- GLMM (partial pooling)
 - lme4::glmer(presabs ~ env + (1+env | taxon))

- **Splitting**: GLM
 - glm(presabs ~ env) (for each taxon)
- Lumping: GLM
 - glm(presabs ~ env) (all taxa together)
- GLMM (partial pooling)
 - lme4::glmer(presabs ~ env + (1+env | taxon))
- PGLMM: Phylogenetic GLMM (partial pooling)

- Splitting: GLM
 - glm(presabs ~ env) (for each taxon)
- Lumping: GLM
 - glm(presabs ~ env) (all taxa together)
- GLMM (partial pooling)
 - lme4::glmer(presabs ~ env + (1+env | taxon))
- PGLMM: Phylogenetic GLMM (partial pooling)
 - brms::brm(presabs ~ env + (1 + env | taxon) +
 (1 + env | phylo))

Widely different niche estimates

Different geographic projections

FEW sites, FEW taxa

FEW sites, FEW taxa

FEW sites, MANY taxa

MANY sites, FEW taxa

100 sites, 5 taxa

MANY sites, MANY taxa

No free lunch

Data quantity and quality

	Low	High
Splitting	Fails	Good
Lumping	Good	Depends on data quality
Partial pooling	Good, but complex models require more data	Good

A bright future for partial pooling?

Future developments/challenges

Assess model trade-offs (sample size, bias, phylogenetic signal...)

Future developments/challenges

- Assess model trade-offs (sample size, bias, phylogenetic signal...)
- Model evaluation: Niche-Distribution duality

