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Figure S1: (a) Conductance map of Figure 2a. The position of the dots plotted on the reso-
nance between x = 6.0 – 6.8 nm correspond to the traces shown in (b). In this region, there
are no surface defects as seen from the plotted topography above. (b) Single conductance
traces of the conductance map in (a) between x = 6.0 – 6.8 nm. As expected, the position
of the resonance peak in Vs, indicated by the green arrows does not shift significantly in this
interval. As a result, the peak we attribute to the resonance indicated in Figure 2b for the
trace at x = 6.4 nm is due to resonant tunnelling through the QD.
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Figure S2: (a) Spectroscopy measurements for a line 58 nm away from Figure 2a. The QD
resonance is disturbed by a step edge with accumulated negative charge (x = 24 nm) and a
negatively charged dangling bondS1 (x = 32 nm) both identified in topography. The dangling
bond is momentarily positive when imaged by the tip. As the tip approaches and enters the
reservoir, the QD resonance broadens and disappears. Taken at Vg = −1.6 V. (b) STM
topography taken at Vs = −1.6 V, with white line showing where measurement in (a) was
taken. The marker on the line indicates the position of the tip during the measurement of
(d). The arrow indicates the dangling bond the QD interacts with at x = 32 nm. Scale: 0 –
0.36 nm. (c) Close up of the map in (a) and the topography for x = 8 – 22 nm. The relatively
small disturbances (green lines) cannot be attributed to defects due to lower resolution of
the data. (d) Gating characteristics of the resonance taken at the position indicated by the
marker on the line of the STM image (b). The same gating behaviour is seen for the QD
when compared to Figure 4b.
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Figure S3: Current traces used to extract ∆I in Figure 3b, taken at the positions of the blue
dots plotted on the conductance map of Figure 3a. The traces are plotted with increasing x
from bottom to top. The fitting function I = ∆I exp(∆Γ(V − Vthresh))(1/(1 + exp(−α0(V −
Vthresh)/kBT ))) + A exp(βV ) is used, where ∆I is the step height of the trace at V =
Vthresh, the voltage at which the QD state is on resonance with the source reservoir, ∆Γ the
barrier lowering parameter, α0 the source-tip lever arm and A and β are parameters of the
exponential background current.
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10 nm

Figure S4: Conductance map during resonant tunnelling as a function of tip height z demon-
strating the tunnelling regime Γin � Γout for all measurements for tip position at the marker
in the STM inset at x = 18 nm. Γin here is larger than at x ≈ 4 nm. No significant change
in the conductance peak height and lineshape is observed ± 20 pm from z = −200 pm, the
tip height setpoint used for the measurement of Figure 2. As z is increased, the resonance
weakens and is eventually not visible as expected. Inset scale: 0 – 0.38 nm.
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Quantum dot tunnel coupled to a reservoir
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Figure S5: Simplified schematic model of reservoir/QD wavefunction overlap.

Assuming the QD potential VQD is parabolic around the tip (∼ QD centre)S2 while

slowly varying in x and y to 0 far away from the tip, we approximate the tail of ψQD with an

exponentially decaying function ψQD = A exp(−|x|/λ) and assume the donor reservoir ψres

as homogeneous, normalized to 1 for x > x0, the distance between QD centre and reservoir

edge, and 0 otherwise. This is schematically illustrated in Figure S5.

t = 〈ψQD|VQD|ψres〉

= AVQD

∫ ∞
−∞

exp(−|x|/λ)ψresdx

= AVQD

∫ ∞
x0

exp(−|x|/λ)dx

= −AVQDλ [exp(−|x|/λ)]∞x0

= AVQDλ exp(−|x0|/λ)

I ∼ t2 ∼ exp(−2|x0|/λ) as exp(−2|x0|/λ) is faster than λ2. So as the QD approaches the

reservoir i.e. x increases, x0 decreases and the current I increases exponentially as measured.
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Calculation of the gate lever arm and additional capaci-

tance ratios

Figure S6: Stability diagram of a single-electron transistor. One of the measured slopes and
a measured lever arm parameter are used together to deduce the gate lever arm αG, which
could not be deduced directly from our experiment.

The two measured quantities ∂Vs/∂Vg and the bias lever arm α0 can be deduced using

only slopes from the Coulomb diagram pattern of the orthodox model for single-electron

tunneling. This model is defined in terms of the source capacitance CS, the gate capacitance

CG, the tip capacitance CT , and a stray capacitance C0 (see Figure 4a), and the total QD

self-capacitance CΣ = CS + CG + CT + C0, and the stability diagram is shown in Figure S6

from referenceS3.

First, from Figure S6 we can deduce that for VS < 0, the measured parameter ∂Vs/∂Vg

corresponds to CG/(CΣ − CS), which was experimentally determined to be 0.77. Second,

from Figure S6 we can also deduce that α0 = (CΣ − CS)/CΣ, which was experimentally

determined to be α0 ≈ 0.1, and α1 = CS/CΣ. We can re-write the definition of the gate

lever arm αG ≡ CG/CΣ in terms of measured quantities α0 and ∂Vs/∂Vg as follows:

αG ≡
CG

CΣ

=
CG

CΣ − CS

CΣ − CS

CΣ

which is equivalent to αg = α0∂Vs/∂Vg ≈ 0.1×0.77 ≈ 0.08 as discussed in the main text.
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Additional capacitance ratios comparing the coupling between the QD and source, gate

and tip are calculated (assuming negligible stray capacitance C0) as follows:

CG

CT

=
CG/(CG + CT )

1− CG/(CG + CT )
=

0.77

1− 0.77
≈ 3.4

CS

CG

=
1− α0

α0CG/(CG + CT )
=

1− 0.1

0.1× 0.77
≈ 12

CS

CT

=
CS

CG

CG

CT

≈ 39
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