Supporting Information

Protolysis of Seven-Membered Zirconacyclocumulene Complexes of Zirconocene

Vladimir V. Burlakov,[†] Maxim V. Andreev,[†] Vyacheslav S. Bogdanov,[†] Perdita Arndt,[‡] Wolfgang Baumann,[‡] Anke Spannenberg,[‡] Uwe Rosenthal,[‡] and Vladimir B. Shur^{*,†}

* A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences,
 Vavilov Street 28, 119991 Moscow, Russia

[‡] Leibniz-Institut f
ür Katalyse e.V. an der Universit
ät Rostock, Albert-Einstein-Strasse 29a,
 D-18059 Rostock, Germany

Table of Contents:

1. Crystal Data and Structure Refinement Parameters for 4, 10, 11	S2
2. ¹ H and ¹³ C NMR spectra of $4-11$	S3
3. ²⁹ Si NMR spectra of 5 , 6 , 10	S5, S6, S9

	4	10 •Et ₂ O	11
formula	C ₃₀ H ₄₇ ClSi ₄ Zr	C ₃₄ H ₅₈ OSi ₄ Zr	$C_{40}H_{68}Si_4Zr$
molecular wt	646.70	686.38	752.52
<i>T</i> (K)	150(2)	150(2)	150(2)
cryst syst	Triclinic	Monoclinic	Monoclinic
space group	<i>P</i> -1	$P2_{1}/c$	C2/c
Ζ	4	4	12
<i>a</i> (Å)	12.7748(5)	11.1132(2)	36.1895(5)
<i>b</i> (Å)	16.4250(7)	14.0202(2)	24.7016(4)
<i>c</i> (Å)	17.5631(7)	24.6769(4)	15.3660(2)
α (deg)	105.2479(11)	90	90
β (deg)	90.9179(11)	94.7277(5)	114.8684(6)
$\gamma(\text{deg})$	90.5160(11)	90	90
$V(Å^3)$	3554.7(3)	3831.81(11)	12462.6(3)
D_{calc} (g cm ⁻³)	1.208	1.190	1.203
μ (cm ⁻¹)	5.36	4.35	4.06
T_{\min}/T_{\max}	0.97/0.94	0.93/0.88	0.91/0.95
F(000)	3264	1464	4848
reflection collected	129047	43717	79292
independent reflections	18003	9687	15033
$R_{ m int}$	0.0536	0.0292	0.0392
observed reflections with $I > 2\sigma(I)$	13657	8061	12230
no. of params	673	375	642
R_1	0.0312	0.0316	0.0326
wR_2	0.0720	0.0780	0.0847
GOF	1.010	1.016	1.023
largest diff. peak and hole ($e \cdot Å^{-3}$)	0.382/-0.377	0.484/-0.304	0.639/-0.393

Table S1. Crystal Data and Structure Refinement Parameters for 4, 10, 11

NMR spectra of the mixture of **5** and **6**

¹H NMR, benzene-*d*6

Benzene-d6

Pos.		$1_{\rm H}$				¹³ C [¹ <i>J</i> (H,C)]		29 _{Si}	$[^{1}J]$	(Si,C)]
1 1 (SiMe 2 3	e3) a	0,14	ppm	(s*)	E B H K	100,4 ₅ -0,42 105,61 142,95	mqq mqq mqq	В	-18,4	ppm	[56,5]
3 (CH)	е	5,95	ppm	(s**)	J	139,26	ppm		,		[62,9]
3 (SiMe 4	e3) c	0,27	ppm	(s*)	A L	-0,97 159,78	ppm ppm	С	-8,8	ppm	[56,5] [59,8]
4 (SiMe 5 6 7	e3) d f	0,48 6,50	ppm ppm	(s*) (s**)	D I G F	0,03 121,80 105,48 102.07	ppm ppm ppm	D	-4,9	ppm	[53,0]
7 (SiMe	e3) p	0,17	ppm	(s*)	C	-0,31	ppm	A	- <mark>18</mark> ,5	ppm	[52,8]
* ² J(S	L,H): a-B	7,1 H	łz; b	- <mark>A</mark> 7,0	H	z; c-C	6,8 Hz;	d-D (6,8 Hz		

** J(Si,H): e-C 4,5 Hz; f-D 11,1 Hz; J(H,H) nicht aufgelöst


```
Benzene-d<sub>6</sub>
```

H

SiMe₃

¹³C [¹J(H,C)] ²⁹Si [¹J(Si,C)] $1_{\rm H}$ Pos. E 98,49 ppm 1 (SiMe₃) a 0,15 ppm (s*) C -0,37 ppm 1 B -18,6 ppm [] 2 3 H 106,05 ppm J 138,77 ppm 3 (CH) f 5,83 ppm (d**) K 141,25 ppm [138] [] B -0,79 ppm L 159,74 ppm 3 (SiMe₃) d 0,38 ppm (s*) C -8,8 ppm [] 4 [] A -1,22 ppm I 117,72 ppm [164] -3,0 ppm [] 4 (SiMe₃) b 0,16 ppm (s*) D 5 e 6,30 ppm (d**) G 103,31 ppm 6 7 F 100,52 ppm 7 (SiMe₃) c 0,21 ppm (s*) D 0,05 ppm A -18,6 ppm [] * $^{2}J(Si,H)$: a-B / b-D / c-A / d-C alle ca. 7 Hz ** J(Si,H): e-D 6,9 Hz; f-C 4,8 Hz; J(He,Hf) 0,4 Hz

NMR spectra of the mixture of 7 and 8

¹H NMR, benzene-*d*6

Compound 9

$Cp_2Zr(C_8H_2TMS_4)$ (10)

Benzene- d_6

Pos.	1 _H	¹³ C [¹ J _C ,H] [¹ J _C ,	si] 29 _{Si}
1 1-SiMe ₃	a 0,23	м 238,20 [50] С 2,8 ₅ [119][50]	A -12,3
2 3	f 6,50	K 154,08 F 134,84 [166][71]	
4 4-SiMe ₃ 5	c 0,36	J 150,13 [68] B 1,60 [120] G 139 08 [71]	D -8,1
5-SiMe ₃ 6	d 0,53	D 3,08 [119][52] H 143,01	B -10,8
7 8 9 0 0 1 1	g 7,39	L 201,80 I 145,70 [126][75]	
8-SiMe ₃ C ₅ H ₅	e 5,90	A 1,14 [118][51] E 111,40	C -10,6
n _J (H-C or 1	H-Si):		
Pos.	Labels	n	J
3-н/С2 3-н/С4	f/K f/J	2 2	10 Hz 8 Hz
3-H/C5 8-H/C7	f/G g/L	3 2	11 Hz 12 Hz
8-H/C6 1-Me/1-Si 4-Me/4-Si	g/H a/A c/D	3 2 2	15 HZ 6,3 HZ 6,4 HZ
5-Me/5-Si 8-Me/8-Si	d/B b/C	2 2	6,4 Hz 6,4 Hz
8-H/8-Si 3-H/4-Si	g/C f/D	2 3	6,0 Hz 4,3 Hz

Stereochemistry: There is a strong NOE contact between $8-SiMe_3$ (b) and the C_5H_5 ligand (e), also a strong one between $5-SiMe_3$ (d) and 8-H (g), but no one between e and g.

¹H NMR, benzene-*d*6

238.18	201.80	154.08 145.01 145.02 134.85 134.85	111.41	2386 2386 7 1152
0825.f310.11.fid Irlakov B-138.42				
.3CPD C6D6 {C:\E	3ruker\TopSpin3.2PL6} 1508	\$ 10		
		magna marka da mininte de antes en la marca	*****	and a second

Compound 11

¹H NMR, benzene-*d*6

