
COMPUTATIONAL INFRASTRUCTURE FOR GEODYNAMICS (CIG)

ASPECT
Advanced Solver for Problems in Earth’s ConvecTion

User Manual
Version 2.2.0

(generated June 30, 2020)
Wolfgang Bangerth
Juliane Dannberg
Rene Gassmöller

Timo Heister

with contributions by:
Jacqueline Austermann, Magali Billen, Markus Bürg, Samuel Cox, William Durkin, Grant Euen,
Menno Fraters, Thomas Geenen, Anne Glerum, Ryan Grove, Eric Heien, Louise Kellogg, Scott
King, Martin Kronbichler, Marine Lasbleis, Shangxin Liu, Hannah Mark, Elvira Mulyukova, Bob
Myhill, John Naliboff, Bart Niday, Jonathan Perry-Houts, Elbridge Gerry Puckett, Tahiry Ra-
jaonarison, Ian Rose, D. Sarah Stamps, Cedric Thieulot, Wanying Wang, Iris van Zelst, Siqi
Zhang

geodynamics.org

https://geodynamics.org

Contents
1 Introduction 9

1.1 Referencing ASPECT . 10
1.2 Acknowledgments . 10

2 Geodynamic modeling assumptions and numerical methods in ASPECT 10
2.1 Basic equations . 10

2.1.1 A comment on adiabatic heating . 12
2.1.2 Boundary conditions . 12
2.1.3 Two-dimensional models . 13
2.1.4 Comments on the final set of equations . 14

2.2 Coefficients . 14
2.2.1 Coefficient self-consistency . 16
2.2.2 Coefficient averaging . 18

2.3 Dimensional or non-dimensionalized equations? . 19
2.3.1 Years or seconds? . 20

2.4 Static or dynamic pressure? . 21
2.5 Pressure normalization . 22
2.6 Initial conditions and the adiabatic pressure/temperature . 23
2.7 Compositional fields . 23
2.8 Constitutive laws . 24
2.9 Numerical methods . 25
2.10 Approximate equations . 26

2.10.1 The anelastic liquid approximation (ALA) . 27
2.10.2 The truncated anelastic liquid approximation (TALA) 28
2.10.3 The Boussinesq approximation (BA) . 28
2.10.4 The isothermal/isentropic compression approximation (ICA) 30

2.11 Choosing a formulation in ASPECT . 31
2.11.1 Mass conservation approximation . 31
2.11.2 Temperature equation approximation . 32
2.11.3 Approximation of the buoyancy term . 32
2.11.4 Reference state: The adiabatic profile . 33
2.11.5 Combined formulations . 33

2.12 Advection Stabilization . 34
2.12.1 SUPG Stabilization . 34
2.12.2 Entropy viscosity . 35

2.13 Free surface calculations . 36
2.13.1 Arbitrary Lagrangian-Eulerian implementation . 36
2.13.2 Free surface stabilization . 36

2.14 Calculations with melt transport . 36
2.15 Nullspace removal . 38
2.16 Particles . 39

3 Installation 40
3.1 Docker Container . 41

3.1.1 Installing Docker and downloading the ASPECT image 41
3.1.2 Running ASPECT models . 41
3.1.3 Developing ASPECT within a container . 43

3.2 Virtual Machine . 43
3.2.1 Installing VM software and setting up the virtual machine 43
3.2.2 Running ASPECT models . 43

1

3.3 Local installation . 44
3.3.1 System prerequisites . 44
3.3.2 Using candi to compile dependencies . 45
3.3.3 Obtaining ASPECT and initial configuration . 45
3.3.4 Compiling ASPECT and generating documentation . 46

4 Running ASPECT 46
4.1 Overview . 46
4.2 Selecting between 2d and 3d runs . 51
4.3 Debug or optimized mode . 52
4.4 Visualizing results . 52

4.4.1 Visualization the graphical output using Visit . 53
4.4.2 Visualizing statistical data . 55
4.4.3 Large data issues for parallel computations . 58

4.5 Checkpoint/restart support . 59
4.6 Making ASPECT run faster . 59

4.6.1 Debug vs. optimized mode . 60
4.6.2 Adjusting solver tolerances . 60
4.6.3 Adjusting solver preconditioner tolerances . 60
4.6.4 Using lower order elements for the temperature/compositional discretization 61
4.6.5 Limiting postprocessing . 61
4.6.6 Switching off pressure normalization . 61
4.6.7 Regularizing models with large coefficient variation . 62
4.6.8 Using multithreading . 62

4.7 Input parameter files . 62
4.7.1 The structure of parameter files . 62
4.7.2 Categories of parameters . 63
4.7.3 A note on the syntax of formulas in input files . 64
4.7.4 Compatibility of input files with newer ASPECT versions 65

4.8 A graphical user interface for editing ASPECT parameter files 65
4.8.1 Installing parameter-GUI . 66
4.8.2 Using ASPECT-GUI . 66

5 Cookbooks 67
5.1 How to set up computations . 68
5.2 Simple setups . 69

5.2.1 Convection in a 2d box . 69
5.2.2 Convection in a 3d box . 81
5.2.3 Convection in a box with prescribed, variable velocity boundary conditions 85
5.2.4 Using passive and active compositional fields . 89
5.2.5 Using particles . 95
5.2.6 Using a free surface . 100
5.2.7 Using a free surface in a model with a crust . 101
5.2.8 Averaging material properties . 103
5.2.9 Prescribed internal velocity constraints . 108
5.2.10 Artificial viscosity smoothing . 115
5.2.11 Tracking finite strain . 117
5.2.12 Reading in compositional initial composition files generated with geomIO 120
5.2.13 Using lazy expression syntax for if-else-statements in function expressions 124

5.3 Geophysical setups . 127
5.3.1 Simple convection in a quarter of a 2d annulus . 129
5.3.2 Simple convection in a spherical 3d shell . 135

2

5.3.3 Postprocessing spherical 3D convection . 139
5.3.4 3D convection with an Earth-like initial condition . 140
5.3.5 Using reconstructed surface velocities by GPlates . 143
5.3.6 2D compressible convection with a reference profile and material properties from BurnMan 148
5.3.7 Reproducing rheology of Morency and Doin, 2004 . 153
5.3.8 Crustal deformation . 155
5.3.9 Continental extension . 160
5.3.10 Inner core convection . 164
5.3.11 Melt migration in a 2D mantle convection model . 171
5.3.12 Melt migration in a 2D mid-ocean ridge model . 180

5.4 Benchmarks . 187
5.4.1 Running benchmarks that require code . 187
5.4.2 Onset of convection benchmark . 188
5.4.3 The van Keken thermochemical composition benchmark 190
5.4.4 The Rayleigh-Taylor instability . 197
5.4.5 Polydiapirism . 199
5.4.6 The sinking block benchmark . 199
5.4.7 The SolCx Stokes benchmark . 201
5.4.8 The SolKz Stokes benchmark . 205
5.4.9 The “inclusion” Stokes benchmark . 207
5.4.10 The Burstedde variable viscosity benchmark . 210
5.4.11 The slab detachment benchmark . 213
5.4.12 The hollow sphere benchmark . 214
5.4.13 The 2D annulus benchmark . 216
5.4.14 The “Stokes’ law” benchmark . 217
5.4.15 Viscosity grooves benchmark . 222
5.4.16 Latent heat benchmark . 225
5.4.17 The 2D cylindrical shell benchmarks by Davies et al. 229
5.4.18 The Crameri et al. benchmarks . 234
5.4.19 The solitary wave benchmark . 238
5.4.20 Benchmarks for operator splitting . 242
5.4.21 The Tosi et al. benchmarks . 244
5.4.22 Layered flow with viscosity contrast . 247
5.4.23 Donea & Huerta 2D box geometry benchmark . 248
5.4.24 Advection stabilization benchmarks . 249
5.4.25 Yamauchi & Takei anelastic shear wave velocity-temperature conversion benchmark . . 249
5.4.26 Brittle thrust wedges benchmark . 253

6 Extending and contributing to ASPECT 256
6.1 The idea of plugins and the SimulatorAccess and Introspection classes 259
6.2 How to write a plugin . 263
6.3 How to write a cookbook . 265

6.3.1 Parameter file . 265
6.3.2 Plugins and other additional file . 265
6.3.3 Section in the manual . 266

6.4 Available plugin types . 267
6.4.1 Material models . 267
6.4.2 Heating models . 268
6.4.3 Geometry models . 270
6.4.4 Gravity models . 273
6.4.5 Initial conditions . 274
6.4.6 Prescribed velocity boundary conditions . 275

3

6.4.7 Temperature boundary conditions . 276
6.4.8 Postprocessors: Evaluating the solution after each time step 276
6.4.9 Visualization postprocessors . 279
6.4.10 Mesh refinement criteria . 281
6.4.11 Criteria for terminating a simulation . 282

6.5 Compatibility of plugins with newer ASPECT versions . 283
6.6 Extending ASPECT through the signals mechanism . 283
6.7 Extending the basic solver . 286
6.8 Testing ASPECT . 287

6.8.1 Running tests . 287
6.8.2 Writing tests . 289

6.9 Contributing to ASPECT’s development . 289
6.10 Future plans for ASPECT . 290

7 Finding answers to more questions 290

A Run-time input parameters 291
A.1 Global parameters . 291
A.2 Parameters in section Adiabatic conditions model . 296
A.3 Parameters in section Adiabatic conditions model/Ascii data model 296
A.4 Parameters in section Adiabatic conditions model/Compute profile 297
A.5 Parameters in section Adiabatic conditions model/Compute profile/Surface condition

function . 298
A.6 Parameters in section Adiabatic conditions model/Function 299
A.7 Parameters in section Boundary composition model . 300
A.8 Parameters in section Boundary composition model/Ascii data model 303
A.9 Parameters in section Boundary composition model/Box . 304
A.10 Parameters in section Boundary composition model/Box with lithosphere boundary

indicators . 305
A.11 Parameters in section Boundary composition model/Function 306
A.12 Parameters in section Boundary composition model/Initial composition 307
A.13 Parameters in section Boundary composition model/Spherical constant 307
A.14 Parameters in section Boundary fluid pressure model . 308
A.15 Parameters in section Boundary fluid pressure model/Density 308
A.16 Parameters in section Boundary heat flux model . 308
A.17 Parameters in section Boundary heat flux model/Function 309
A.18 Parameters in section Boundary temperature model . 310
A.19 Parameters in section Boundary temperature model/Ascii data model 313
A.20 Parameters in section Boundary temperature model/Box . 315
A.21 Parameters in section Boundary temperature model/Box with lithosphere boundary

indicators . 315
A.22 Parameters in section Boundary temperature model/Constant 316
A.23 Parameters in section Boundary temperature model/Dynamic core 317
A.24 Parameters in section Boundary temperature model/Dynamic core/Geotherm parameters 319
A.25 Parameters in section Boundary temperature model/Dynamic core/Other energy source 320
A.26 Parameters in section Boundary temperature model/Dynamic core/Radioactive heat

source . 320
A.27 Parameters in section Boundary temperature model/Function 321
A.28 Parameters in section Boundary temperature model/Initial temperature 322
A.29 Parameters in section Boundary temperature model/Spherical constant 323
A.30 Parameters in section Boundary traction model . 323
A.31 Parameters in section Boundary traction model/Ascii data model 323

4

A.32 Parameters in section Boundary traction model/Function 325
A.33 Parameters in section Boundary traction model/Initial lithostatic pressure 326
A.34 Parameters in section Boundary velocity model . 326
A.35 Parameters in section Boundary velocity model/Ascii data model 328
A.36 Parameters in section Boundary velocity model/Function 329
A.37 Parameters in section Boundary velocity model/GPlates model 330
A.38 Parameters in section Checkpointing . 332
A.39 Parameters in section Compositional fields . 332
A.40 Parameters in section Discretization . 334
A.41 Parameters in section Discretization/Stabilization parameters 336
A.42 Parameters in section Formulation . 339
A.43 Parameters in section Geometry model . 341
A.44 Parameters in section Geometry model/Box . 342
A.45 Parameters in section Geometry model/Box with lithosphere boundary indicators . . . 344
A.46 Parameters in section Geometry model/Chunk . 347
A.47 Parameters in section Geometry model/Ellipsoidal chunk 348
A.48 Parameters in section Geometry model/Initial topography model 350
A.49 Parameters in section Geometry model/Initial topography model/Ascii data model . . 350
A.50 Parameters in section Geometry model/Initial topography model/Function 351
A.51 Parameters in section Geometry model/Initial topography model/Prm polygon 352
A.52 Parameters in section Geometry model/Sphere . 352
A.53 Parameters in section Geometry model/Spherical shell . 352
A.54 Parameters in section Gravity model . 354
A.55 Parameters in section Gravity model/Ascii data model . 355
A.56 Parameters in section Gravity model/Function . 356
A.57 Parameters in section Gravity model/Radial constant . 356
A.58 Parameters in section Gravity model/Radial linear . 357
A.59 Parameters in section Gravity model/Vertical . 357
A.60 Parameters in section Heating model . 357
A.61 Parameters in section Heating model/Adiabatic heating 358
A.62 Parameters in section Heating model/Adiabatic heating of melt 358
A.63 Parameters in section Heating model/Compositional heating 359
A.64 Parameters in section Heating model/Constant heating . 359
A.65 Parameters in section Heating model/Function . 359
A.66 Parameters in section Heating model/Latent heat melt . 360
A.67 Parameters in section Heating model/Radioactive decay 360
A.68 Parameters in section Initial composition model . 362
A.69 Parameters in section Initial composition model/Ascii data model 364
A.70 Parameters in section Initial composition model/Function 365
A.71 Parameters in section Initial temperature model . 366
A.72 Parameters in section Initial temperature model/Adiabatic 374
A.73 Parameters in section Initial temperature model/Adiabatic/Function 375
A.74 Parameters in section Initial temperature model/Adiabatic boundary 376
A.75 Parameters in section Initial temperature model/Ascii data model 377
A.76 Parameters in section Initial temperature model/Ascii profile 378
A.77 Parameters in section Initial temperature model/Continental geotherm 378
A.78 Parameters in section Initial temperature model/Function 379
A.79 Parameters in section Initial temperature model/Harmonic perturbation 380
A.80 Parameters in section Initial temperature model/Inclusion shape perturbation 381
A.81 Parameters in section Initial temperature model/Lithosphere Mask 382
A.82 Parameters in section Initial temperature model/Patch on S40RTS 383

5

A.83 Parameters in section Initial temperature model/Patch on S40RTS/Ascii data model . 383
A.84 Parameters in section Initial temperature model/S40RTS perturbation 384
A.85 Parameters in section Initial temperature model/S40RTS perturbation/Ascii data

vs to density model . 386
A.86 Parameters in section Initial temperature model/SAVANI perturbation 387
A.87 Parameters in section Initial temperature model/SAVANI perturbation/Ascii data

vs to density model . 389
A.88 Parameters in section Initial temperature model/Spherical gaussian perturbation . 389
A.89 Parameters in section Initial temperature model/Spherical hexagonal perturbation . 390
A.90 Parameters in section Material model . 391
A.91 Parameters in section Material model/Ascii reference profile 401
A.92 Parameters in section Material model/Ascii reference profile/Ascii data model . . . 402
A.93 Parameters in section Material model/Averaging . 403
A.94 Parameters in section Material model/Compositing . 404
A.95 Parameters in section Material model/Composition reaction model 406
A.96 Parameters in section Material model/Depth dependent model 408
A.97 Parameters in section Material model/Depth dependent model/Viscosity depth function 409
A.98 Parameters in section Material model/Diffusion dislocation 410
A.99 Parameters in section Material model/Drucker Prager . 414
A.100 Parameters in section Material model/Drucker Prager/Viscosity 415
A.101 Parameters in section Material model/Dynamic Friction 416
A.102 Parameters in section Material model/Dynamic Friction/Viscosities 417
A.103 Parameters in section Material model/Grain size model 418
A.104 Parameters in section Material model/Latent heat . 426
A.105 Parameters in section Material model/Latent heat melt 430
A.106 Parameters in section Material model/Melt global . 435
A.107 Parameters in section Material model/Melt simple . 439
A.108 Parameters in section Material model/Modified Tait model 445
A.109 Parameters in section Material model/Modified Tait model/Reference heat capacity

function . 446
A.110 Parameters in section Material model/Multicomponent . 447
A.111 Parameters in section Material model/Multicomponent compressible 448
A.112 Parameters in section Material model/Nondimensional model 450
A.113 Parameters in section Material model/PerpleX lookup model 451
A.114 Parameters in section Material model/Replace lithosphere viscosity 452
A.115 Parameters in section Material model/Simple compressible model 453
A.116 Parameters in section Material model/Simple model . 454
A.117 Parameters in section Material model/Simpler model . 456
A.118 Parameters in section Material model/Steinberger model 457
A.119 Parameters in section Material model/Visco Plastic . 459
A.120 Parameters in section Material model/Viscoelastic . 469
A.121 Parameters in section Melt settings . 471
A.122 Parameters in section Mesh deformation . 473
A.123 Parameters in section Mesh deformation/Boundary function 473
A.124 Parameters in section Mesh deformation/Free surface . 474
A.125 Parameters in section Mesh refinement . 475
A.126 Parameters in section Mesh refinement/Artificial viscosity 481
A.127 Parameters in section Mesh refinement/Boundary . 481
A.128 Parameters in section Mesh refinement/Compaction length 482
A.129 Parameters in section Mesh refinement/Composition . 482
A.130 Parameters in section Mesh refinement/Composition approximate gradient 482

6

A.131 Parameters in section Mesh refinement/Composition gradient 482
A.132 Parameters in section Mesh refinement/Composition threshold 483
A.133 Parameters in section Mesh refinement/Maximum refinement function 483
A.134 Parameters in section Mesh refinement/Minimum refinement function 484
A.135 Parameters in section Mesh refinement/Volume of fluid interface 485
A.136 Parameters in section Nullspace removal . 485
A.137 Parameters in section Postprocess . 486
A.138 Parameters in section Postprocess/Command . 491
A.139 Parameters in section Postprocess/Depth average . 491
A.140 Parameters in section Postprocess/Dynamic core statistics 492
A.141 Parameters in section Postprocess/Dynamic topography 492
A.142 Parameters in section Postprocess/Geoid . 493
A.143 Parameters in section Postprocess/Global statistics . 495
A.144 Parameters in section Postprocess/Gravity calculation 495
A.145 Parameters in section Postprocess/Memory statistics . 498
A.146 Parameters in section Postprocess/Particles . 498
A.147 Parameters in section Postprocess/Particles/Function 504
A.148 Parameters in section Postprocess/Particles/Generator 505
A.149 Parameters in section Postprocess/Particles/Generator/Ascii file 505
A.150 Parameters in section Postprocess/Particles/Generator/Probability density function 505
A.151 Parameters in section Postprocess/Particles/Generator/Reference cell 506
A.152 Parameters in section Postprocess/Particles/Generator/Uniform box 507
A.153 Parameters in section Postprocess/Particles/Generator/Uniform radial 507
A.154 Parameters in section Postprocess/Particles/Interpolator 509
A.155 Parameters in section Postprocess/Particles/Interpolator/Bilinear least squares . 509
A.156 Parameters in section Postprocess/Particles/Melt particle 510
A.157 Parameters in section Postprocess/Point values . 510
A.158 Parameters in section Postprocess/Rotation statistics 510
A.159 Parameters in section Postprocess/Topography . 511
A.160 Parameters in section Postprocess/Visualization . 511
A.161 Parameters in section Postprocess/Visualization/Artificial viscosity composition 519
A.162 Parameters in section Postprocess/Visualization/Compositional fields as vectors . 520
A.163 Parameters in section Postprocess/Visualization/Heat flux map 520
A.164 Parameters in section Postprocess/Visualization/Material properties 520
A.165 Parameters in section Postprocess/Visualization/Melt fraction 521
A.166 Parameters in section Postprocess/Visualization/Melt material properties 524
A.167 Parameters in section Postprocess/Visualization/Temperature anomaly 524
A.168 Parameters in section Postprocess/Visualization/Volume of Fluid 524
A.169 Parameters in section Postprocess/Visualization/Vp anomaly 525
A.170 Parameters in section Postprocess/Visualization/Vs anomaly 525
A.171 Parameters in section Prescribed Stokes solution . 526
A.172 Parameters in section Prescribed Stokes solution/Ascii data model 526
A.173 Parameters in section Prescribed Stokes solution/Compaction pressure function . . 527
A.174 Parameters in section Prescribed Stokes solution/Fluid pressure function 528
A.175 Parameters in section Prescribed Stokes solution/Fluid velocity function 528
A.176 Parameters in section Prescribed Stokes solution/Pressure function 529
A.177 Parameters in section Prescribed Stokes solution/Velocity function 530
A.178 Parameters in section Solver parameters . 531
A.179 Parameters in section Solver parameters/AMG parameters 531
A.180 Parameters in section Solver parameters/Advection solver parameters 532
A.181 Parameters in section Solver parameters/Diffusion solver parameters 532

7

A.182 Parameters in section Solver parameters/Newton solver parameters 533
A.183 Parameters in section Solver parameters/Operator splitting parameters 535
A.184 Parameters in section Solver parameters/Stokes solver parameters 535
A.185 Parameters in section Temperature field . 538
A.186 Parameters in section Termination criteria . 538
A.187 Parameters in section Termination criteria/Steady state temperature 539
A.188 Parameters in section Termination criteria/Steady state velocity 540
A.189 Parameters in section Termination criteria/User request 540
A.190 Parameters in section Volume of Fluid . 540

References 542

Index of run-time parameter entries 548

Index of run-time parameters with section names 556

8

1 Introduction
ASPECT — short for Advanced Solver for Problems in Earth’s ConvecTion — is a code intended to solve
the equations that describe thermally driven convection with a focus on doing so in the context of convection
in the Earth mantle. It is developed by computational scientists all over the world based on the following
principles:

• Usability and extensibility: Simulating mantle convection is a difficult problem characterized not only
by complicated and nonlinear material models but, more generally, by a lack of understanding which
parts of a much more complicated model are really necessary to simulate the defining features of the
problem. To name just a few examples:

– Mantle convection is often solved in a spherical shell geometry, but the Earth is not a sphere –
its true shape on the longest length scales is dominated by polar oblateness, but deviations from
spherical shape relevant to convection patterns may go down to the length scales of mountain
belts, mid-ocean ridges or subduction trenches. Furthermore, processes outside the mantle like
crustal depression during glaciations can change the geometry as well.

– Rocks in the mantle flow on long time scales, but on shorter time scales they behave more like
a visco-elasto-plastic material as they break and as their crystalline structure heals again. The
mathematical models discussed in Section 2 can therefore only be approximations.

– If pressures are low and temperatures high enough, rocks melt, leading to all sorts of new and
interesting behavior.

This uncertainty in what problem one actually wants to solve requires a code that is easy to extend
by users to support the community in determining what the essential features of convection in the
Earth mantle are. Achieving this goal also opens up possibilities outside the original scope, such as the
simulation of convection in exoplanets or the icy satellites of the gas giant planets in our solar system.

• Modern numerical methods: We build ASPECT on numerical methods that are at the forefront of
research in all areas – adaptive mesh refinement, linear and nonlinear solvers, stabilization of transport-
dominated processes. This implies complexity in our algorithms, but also guarantees highly accurate
solutions while remaining efficient in the number of unknowns and with CPU and memory resources.

• Parallelism: Many convection processes of interest are characterized by small features in large domains
– for example, mantle plumes of a few tens of kilometers diameter in a mantle almost 3,000 km deep.
Such problems can not be solved on a single computer but require dozens or hundreds of processors to
work together. ASPECT is designed from the start to support this level of parallelism.

• Building on others’ work: Building a code that satisfies above criteria from scratch would likely require
several 100,000 lines of code. This is outside what any one group can achieve on academic time scales.
Fortunately, most of the functionality we need is already available in the form of widely used, actively
maintained, and well tested and documented libraries, and we leverage these to make ASPECT a
much smaller and easier to understand system. Specifically, ASPECT builds immediately on top of
the deal.II library (see https://www.dealii.org/) for everything that has to do with finite elements,
geometries, meshes, etc.; and, through deal.II on Trilinos (see http://trilinos.org/) for parallel
linear algebra and on p4est (see http://www.p4est.org/) for parallel mesh handling.

• Community: We believe that a large project like ASPECT can only be successful as a community
project. Every contribution is welcome and we want to help you so we can improve ASPECT together.

Combining all of these aspects into one code makes for an interesting challenge. We hope to have achieved
our goal of providing a useful tool to the geodynamics community and beyond!

9

https://www.dealii.org/
http://trilinos.org/
http://www.p4est.org/

Note: ASPECT is a community project. As such, we encourage contributions from the commu-
nity to improve this code over time. Natural candidates for such contributions are implementations
of new plugins as discussed in Section 6.4 since they are typically self-contained and do not require
much knowledge of the details of the remaining code. Obviously, however, we also encourage con-
tributions to the core functionality in any form! If you have something that might be of general
interest, please contact us.

Note: ASPECT will only solve problems relevant to the community if we get feedback from the
community on things that are missing or necessary for what you want to do. Let us know by
personal email to the developers, or open a topic on our forum hosted at https://community.
geodynamics.org/c/aspect!

1.1 Referencing ASPECT
As with all scientific work, funding agencies have a reasonable expectation that if we ask for continued funding
for this work, we need to demonstrate relevance. In addition, many have contributed to the development of
ASPECT and deserve credit for their work. To this end, we ask that you cite the appropriate references if
you publish results that were obtained to some part using ASPECT. For what exactly to cite and suggestions
for acknowledgments, please see https://aspect.geodynamics.org/cite.html.

Also see [5, 6, 7, 8, 59, 43].

1.2 Acknowledgments
The development of ASPECT has been funded through a variety of grants to the authors. Most immediately,
it has been supported through the Computational Infrastructure in Geodynamics (CIG), initially by the CIG-
I grant (National Science Foundation Award No. EAR-0426271, via The California Institute of Technology)
and later by the CIG-II and CIG-III grants (National Science Foundation Awards No. EAR-0949446 and
EAR-1550901, via The University of California – Davis). In addition, the libraries upon which ASPECT
builds heavily have been supported through many other grants that are equally gratefully acknowledged.

Please acknowledge CIG as follows:

ASPECT is hosted by the Computational Infrastructure for Geodynamics (CIG) which is sup-
ported by the National Science Foundation award EAR-1550901.

The ASPECT community as a whole, and a number of the primary developers in particular, owe great
thanks to Louise Kellogg who, when she was the head of CIG, was a strong supporter of the ASPECT project.
Louise loved how collaborative the ASPECT development model was, and how many people contributed.
Louise passed away far too early in 2019, but her support lives on in the spirit of this project.

2 Geodynamic modeling assumptions and numerical methods in
ASPECT

2.1 Basic equations
ASPECT solves a system of equations in a d = 2- or d = 3-dimensional domain Ω that describes the motion
of a highly viscous fluid driven by differences in the gravitational force due to a density that depends on the
temperature. In the following, we largely follow the exposition of this material in Schubert, Turcotte and
Olson [82].

10

https://community.geodynamics.org/c/aspect
https://community.geodynamics.org/c/aspect
https://aspect.geodynamics.org/cite.html

Specifically, we consider the following set of equations for velocity u, pressure p and temperature T , as
well as a set of advected quantities ci that we call compositional fields:

−∇ ·
[
2η
(
ε(u)− 1

3(∇ · u)1
)]

+∇p = ρg in Ω, (1)

∇ · (ρu) = 0 in Ω, (2)

ρCp

(
∂T

∂t
+ u · ∇T

)
−∇ · k∇T = ρH

+ 2η
(
ε(u)− 1

3(∇ · u)1
)

:
(
ε(u)− 1

3(∇ · u)1
)

(3)

+ αT (u · ∇p)

+ ρT∆S
(
∂X

∂t
+ u · ∇X

)
in Ω,

∂ci
∂t

+ u · ∇ci = qi in Ω, i = 1 . . . C
(4)

where ε(u) = 1
2 (∇u +∇uT) is the symmetric gradient of the velocity (often called the strain rate).1

In this set of equations, (1) and (2) represent the compressible Stokes equations in which u = u(x, t) is
the velocity field and p = p(x, t) the pressure field. Both fields depend on space x and time t. Fluid flow is
driven by the gravity force that acts on the fluid and that is proportional to both the density of the fluid
and the strength of the gravitational pull.

Coupled to this Stokes system is equation (3) for the temperature field T = T (x, t) that contains heat
conduction terms as well as advection with the flow velocity u. The right hand side terms of this equation
correspond to

• internal heat production for example due to radioactive decay;

• friction heating;

• adiabatic compression of material;

• phase change.

The last term of the temperature equation corresponds to the latent heat generated or consumed in the
process of phase change of material. The latent heat release is proportional to changes in the fraction of
material X that has already undergone the phase transition (also called phase function) and the change of
entropy ∆S. This process applies both to solid-state phase transitions and to melting/solidification. Here,
∆S is positive for exothermic phase transitions. As the phase of the material, for a given composition,
depends on the temperature and pressure, the latent heat term can be reformulated:

∂X

∂t
+ u · ∇X = DX

Dt
= ∂X

∂T

DT

Dt
+ ∂X

∂p

Dp

Dt
= ∂X

∂T

(
∂T

∂t
+ u · ∇T

)
+ ∂X

∂p
u · ∇p.

The last transformation results from the assumption that the flow field is always in equilibrium and conse-
quently ∂p/∂t = 0 (this is the same assumption that underlies the fact that equation (1) does not have a term

1There is no consensus in the sciences on the notation used for strain and strain rate. The symbols ε, ε̇, ε(u), and ε̇(u), can
all be found. In this manual, and in the code, we will consistently use ε as an operator, i.e., the symbol is not used on its own
but only as applied to a field. In other words, if u is the velocity field, then ε(u) = 1

2 (∇u +∇uT) will denote the strain rate.
On the other hand, if d is the displacement field, then ε(d) = 1

2 (∇d +∇dT) will denote the strain.

11

∂u/∂t). With this reformulation, we can rewrite (3) in the following way in which it is in fact implemented:(
ρCp − ρT∆S ∂X

∂T

)(
∂T

∂t
+ u · ∇T

)
−∇ · k∇T = ρH

+ 2η
(
ε(u)− 1

3(∇ · u)1
)

:
(
ε(u)− 1

3(∇ · u)1
)

(5)

+ αT (u · ∇p)

+ ρT∆S ∂X
∂p

u · ∇p in Ω.

The last of the equations above, equation (4), describes the evolution of additional fields that are trans-
ported along with the velocity field u and may react with each other and react to other features of the
solution, but that do not diffuse. We call these fields ci compositional fields, although they can also be used
for other purposes than just tracking chemical compositions. We will discuss this equation in more detail in
Section 2.7.

2.1.1 A comment on adiabatic heating

Other codes and texts sometimes make a simplification to the adiabatic heating term in the previous equation.
If you assume the vertical component of the gradient of the dynamic pressure to be small compared to the
gradient of the total pressure (in other words, the gradient is dominated by the gradient of the hydrostatic
pressure), then −ρg ≈ ∇p, and we have the following relation (the negative sign is due to g pointing
downwards)

αT (u · ∇p) ≈ −αρTu · g.

While this simplification is possible, it is not necessary if you have access to the total pressure. ASPECT
therefore by default implements the original term without this simplification, but allows to simplify this term
by setting the “Use simplified adiabatic heating” parameter in section A.61.

2.1.2 Boundary conditions

Having discussed (3), let us come to the last one of the original set of equations, (4). It describes the
motion of a set of advected quantities ci(x, t), i = 1 . . . C. We call these compositional fields because we
think of them as spatially and temporally varying concentrations of different elements, minerals, or other
constituents of the composition of the material that convects. As such, these fields participate actively in
determining the values of the various coefficients of these equations. On the other hand, ASPECT also
allows the definition of material models that are independent of these compositional fields, making them
passively advected quantities. Several of the cookbooks in Section 5 consider compositional fields in this
way, i.e., essentially as tracer quantities that only keep track of where material came from.

These equations are augmented by boundary conditions that can either be of Dirichlet, Neumann, or
tangential type on subsets of the boundary Γ = ∂Ω:

u = 0 on Γ0,u, (6)
u = uprescribed on Γprescribed,u, (7)

n · u = 0 on Γ‖,u, (8)
(2ηε(u)− pI)n = t on Γtraction,u, (9)

T = Tprescribed on ΓD,T , (10)
n · k∇T = 0 on ΓN,T . (11)

ci = ci,prescribed on Γin = {x : u · n < 0}. (12)

Here, the boundary conditions for velocity and temperature are subdivided into disjoint parts:

12

• Γ0,u corresponds to parts of the boundary on which the velocity is fixed to be zero.

• Γprescribed,u corresponds to parts of the boundary on which the velocity is prescribed to some value
(which could also be zero). It is possible to restrict prescribing the velocity to only certain components
of the velocity vector.

• Γ‖,u corresponds to parts of the boundary on which the velocity may be nonzero but must be parallel
to the boundary, with the tangential component undetermined.

• Γtraction,u corresponds to parts of the boundary on which the traction is prescribed to some surface force
density (a common application being t = −pn if one just wants to prescribe a pressure component).
It is possible to restrict prescribing the traction to only certain vector components.

• ΓD,T corresponds to places where the temperature is prescribed (for example at the inner and outer
boundaries of the Earth’s mantle).

• ΓN,T corresponds to places where the temperature is unknown but the heat flux across the boundary
is zero (for example on symmetry surfaces if only a part of the shell that constitutes the domain the
Earth’s mantle occupies is simulated).

We require that one of these boundary conditions hold at each point for both velocity and temperature, i.e.,
Γ0,u ∪ Γprescribedu ∪ Γ‖,u ∪ Γtractionu = Γ and ΓD,T ∪ ΓN,T = Γ.

Boundary conditions have to be imposed for the compositional fields only at those parts of the boundary
where flow points inward, see equation (12), but not where it is either tangential to the boundary or points
outward. The difference in treatment between temperature and compositional boundary conditions is due
to the fact that the temperature equation contains a (possibly small) diffusion component, whereas the
compositional equations do not.

There are other equations that ASPECT can optionally solve. For example, it can deal with free surfaces
(see Section 2.13), melt generation and transport (see Section 2.14), and it can advect along particles (see
Section 2.16). These optional models are discussed in more detail in the indicated sections.

2.1.3 Two-dimensional models

ASPECT allows solving both two- and three-dimensional models via a parameter in the input files, see also
Section 4.2. At the same time, the world is unambiguously three-dimensional. This raises the question
what exactly we mean when we say that we want to solve two-dimensional problems.

The notion we adopt here – in agreement with that chosen by many other codes – is to think of two-
dimensional models in the following way: We assume that the domain we want to solve on is a two-dimensional
cross section (parameterized by x and y coordinates) that extends infinitely far in both negative and positive
z direction. Further, we assume that the velocity is zero in z direction and that all variables have no
variation in z direction. As a consequence, we ought to really think of these two-dimensional models as
three-dimensional ones in which the z component of the velocity is zero and so are all z derivatives.

If one adopts this point of view, the Stokes equations (1)–(2) naturally simplify in a way that allows us to
reduce the 3 + 1 equations to only 2 + 1, but it makes clear that the correct description of the compressible
strain rate is still ε(u)− 1

3 (∇·u)1, rather than using a factor of 1
2 for the second term. (A derivation of why

the compressible strain rate tensor has this form can be found in [82, Section 6.5].)
It is interesting to realize that this compressible strain rate indeed requires a 3× 3 tensor: While under

the assumptions above we have

ε(u) =

 ∂ux
∂x

1
2
∂ux
∂y + 1

2
∂uy
∂x 0

1
2
∂ux
∂y + 1

2
∂uy
∂x

∂uy
∂y 0

0 0 0

13

with the expected zeros in the last row and column, the full compressible strain rate tensor reads

ε(u)− 1
3(∇ · u)1 =

2
3
∂ux
∂x −

1
3
∂uy
∂y

1
2
∂ux
∂y + 1

2
∂uy
∂x 0

1
2
∂ux
∂y + 1

2
∂uy
∂x

2
3
∂uy
∂y −

1
3
∂ux
∂x 0

0 0 − 1
3
∂uy
∂y −

1
3
∂ux
∂x

 .

The entry in the (3, 3) position of this tensor may be surprising. It disappears, however, when taking the
(three-dimensional) divergence of the stress, as is done in (1), because the divergence applies the z derivative
to all elements of the last row – and the assumption above was that all z derivatives are zero; consequently
whatever lives in the third row of the strain rate tensor does not matter.

2.1.4 Comments on the final set of equations

ASPECT solves these equations in essentially the form stated. In particular, the form given in (1) implies
that the pressure p we compute is in fact the total pressure, i.e., the sum of hydrostatic pressure and dynamic
pressure (however, see Section 2.4 for more information on this, as well as the extensive discussion of this
issue in [59]). Consequently, it allows the direct use of this pressure when looking up pressure dependent
material parameters.

2.2 Coefficients
The equations above contain a significant number of coefficients that we will discuss in the following. In
the most general form, many of these coefficients depend nonlinearly on the solution variables pressure p,
temperature T and, in the case of the viscosity, on the strain rate ε(u). If compositional fields c = {c1, . . . , cC}
are present (i.e., if C > 0), coefficients may also depend on them. Alternatively, they may be parameterized
as a function of the spatial variable x. ASPECT allows both kinds of parameterizations.

Note that below we will discuss examples of the dependence of coefficients on other quantities; which
dependence is actually implemented in the code is a different matter. As we will discuss in Sections A and
6, some versions of these models are already implemented and can be selected from the input parameter file;
others are easy to add to ASPECT by providing self-contained descriptions of a set of coefficients that the
rest of the code can then use without a need for further modifications.

Concretely, we consider the following coefficients and dependencies:

• The viscosity η = η(p, T, ε(u), c,x): Units Pa s = kg 1
m s .

The viscosity is the proportionality factor that relates total forces (external gravity minus pressure
gradients) and fluid velocities u. The simplest models assume that η is constant, with the constant
often chosen to be on the order of 1021Pa s.
More complex (and more realistic) models assume that the viscosity depends on pressure, temperature
and strain rate. Since this dependence is often difficult to quantify, one modeling approach is to make
η spatially dependent.

• The density ρ = ρ(p, T, c,x): Units kg
m3 .

In general, the density depends on pressure and temperature, both through pressure compression,
thermal expansion, and phase changes the material may undergo as it moves through the pressure-
temperature phase diagram.
The simplest parameterization for the density is to assume a linear dependence on temperature, yielding
the form ρ(T) = ρref[1−α(T −Tref)] where ρref is the reference density at temperature Tref and α is the
linear thermal expansion coefficient. For the earth’s mantle, typical values for this parameterization
would be ρref = 3300 kg

m3 , Tref = 293K, α = 2× 10−5 1
K .

14

• The gravity vector g = g(x): Units m
s2 .

Simple models assume a radially inward gravity vector of constant magnitude (e.g., the surface gravity
of Earth, 9.81 m

s2), or one that can be computed analytically assuming a homogeneous mantle density.
A physically self-consistent model would compute the gravity vector as g = −∇ϕ with a gravity
potential ϕ that satisfies −∆ϕ = 4πGρ with the density ρ from above and G the universal constant of
gravity. This would provide a gravity vector that changes as a function of time. Such a model is not
currently implemented.

• The specific isobaric heat capacity Cp = Cp(p, T, c,x): Units J
kg·K = m2

s2·K .
The specific heat capacity denotes the amount of energy needed to increase the temperature of one
kilogram of material by one Kelvin at constant pressure. Wikipedia lists a value of 790 J

kg·K for granite2

For the earth mantle, a value of 1250 J
kg·K is within the range suggested by the literature.

• The thermal conductivity k = k(p, T, c,x): Units W
m·K = kg·m

s3·K .
The thermal conductivity denotes the amount of thermal energy flowing through a unit area for a
given temperature gradient. It depends on the material and as such will from a physical perspective
depend on pressure and temperature due to phase changes of the material as well as through different
mechanisms for heat transport (see, for example, the partial transparency of perovskite, the most
abundant material in the earth mantle, at pressures above around 120 GPa [4]).
As a rule of thumb for its order of magnitude, Wikipedia quotes values of 1.83–2.90 W

m·K for sandstone
and 1.73–3.98 W

m·K for granite.3 The values in the mantle are almost certainly higher than this though
probably not by much. The exact value is not really all that important: heat transport through
convection is several orders of magnitude more important than through thermal conduction.
The thermal conductivity k is often expressed in terms of the thermal diffusivity κ using the relation
k = ρCpκ.

• The intrinsic specific heat production H = H(x): Units W
kg = m2

s3 .
This term denotes the intrinsic heating of the material, for example due to the decay of radioactive
material. As such, it depends not on pressure or temperature, but may depend on the location due
to different chemical composition of material in the earth mantle. The literature suggests a value of
γ = 7.4× 10−12 W

kg .

• The thermal expansion coefficient α = α(p, T, c,x): Units 1
K .

This term denotes by how much the material under consideration expands due to temperature increases
at constant pressure. This coefficient is defined as α = − 1

ρ

(
∂ρ
∂T

)
p
, where the negative sign is due the

fact that the density decreases as a function of temperature. Alternatively, if one considers the volume
V = V (T) a piece of material of mass M occupies, V = M

ρ , then the thermal expansion coefficient is

defined as the relative increase in volume, α = 1
V
∂V (T)
∂T , because ∂V (T)

∂T = ∂Mρ
∂T = −Mρ2

∂ρ
∂T = −Vρ

∂ρ
∂T .

The literature suggests that values of α = 1× 10−5 1
K at the core-mantle boundary and α = 4× 10−5 1

K
are appropriate for Earth.

• The isothermal compressibility βT = βT (p, T, c,x): Units 1
Pa .

This term quantifies how much the material under consideration contracts due to pressure increases
at constant temperature. This coefficient is defined as βT = 1

ρ

(
∂ρ
∂p

)
T
. Alternatively, if one considers

2See http://en.wikipedia.org/wiki/Specific_heat.
3See http://en.wikipedia.org/wiki/Thermal_conductivity and http://en.wikipedia.org/wiki/List_of_thermal_

conductivities.

15

http://en.wikipedia.org/wiki/Specific_heat
http://en.wikipedia.org/wiki/Thermal_conductivity
http://en.wikipedia.org/wiki/List_of_thermal_conductivities
http://en.wikipedia.org/wiki/List_of_thermal_conductivities

the volume V = V (p, T) a piece of material of mass M occupies, V = M
ρ , then the isothermal com-

pressibility is defined as the relative increase in volume, β = 1
V

(
∂V (p,T)
∂p

)
T
, because ∂V (p,T)

∂p = ∂Mρ
∂p =

−Mρ2
∂ρ
∂p = −Vρ

∂ρ
∂p .

Values of β = 10−12 – 10−11 1
Pa are reasonable for Earth’s mantle, with values decreasing by about a

factor of 5 between the shallow lithosphere and core-mantle boundary.

• The isentropic/adiabatic compressibility βS = βS(p, T, c,x): Units 1
Pa .

This term quantifies how much the material under consideration contracts due to pressure increases
at constant entropy. This coefficient is defined as βS = 1

ρ

(
∂ρ
∂p

)
S
. Alternatively, if one considers the

volume V = V (p, T) a piece of material of massM occupies, V = M
ρ , then the isentropic compressibility

is defined as the relative increase in volume, β = 1
V

(
∂V (p,T)
∂p

)
S
, because ∂V (p,T)

∂p = ∂Mρ
∂p = −Mρ2

∂ρ
∂p =

−Vρ
∂ρ
∂p . The isentropic and isothermal compressibility are related by the expression:

βS = βT −
α2T

ρCp
(13)

The ratio of the compressibilities decreases with increasing temperature and increases with increasing
pressure. In the Earth’s convecting mantle, βS/βT = 0.92–0.98. Different mineral assemblages have
different values of this ratio under the same conditions. For example, the upper-lower boundary may
exhibit a 3–4% drop in βS/βT as a result of a 40% lower Cp of bridgmanite-periclase assemblages
relative to the olivine polymorphs.

• The change in entropy ∆S at a phase transition together with the derivatives of the phase function
X = X(p, T, c,x) with regard to temperature and pressure: Units J

kgK2 (−∆S ∂X∂T) and m3

kgK (∆S ∂X∂p).
When material undergoes a phase transition, the entropy changes due to release or consumption of
latent heat. However, phase transitions occur gradually and for a given chemical composition it depends
on temperature and pressure which phase prevails. Thus, the latent heat release can be calculated from
the change of entropy ∆S and the derivatives of the phase function ∂X

∂T and ∂X
∂p . These values have

to be provided by the material model, separately for the coefficient −∆S ∂X∂T on the left-hand side and
∆S ∂X∂p on the right-hand side of the temperature equation. However, they may be either approximated
with the help of an analytic phase function, employing data from a thermodynamic database or in any
other way that seems appropriate to the user.

2.2.1 Coefficient self-consistency

This section was contributed by Bob Myhill.
The coefficients in the previous section may at first appear independent. However, there are thermo-

dynamic relations between these properties which must be satisfied in any self-consistent material model.
The following section describes the relations required for thermodynamic consistency, and presents some
suggested ways by which consistency can be assured.

In order to derive the relationships between different material properties, we must introduce a thermody-
namic potential known as the specific Gibbs free energy G(p, T) with units J/kg. The word “specific” indicates
that the energy is given per unit mass, rather than volume or number of atoms or molecules. This potential
is equal to the maximum amount of non-expansion work that can be extracted from a thermodynamically
closed system. At equilibrium conditions and fixed temperature and pressure, the Gibbs free energy is mini-
mized. The following equations provide the definitions and relationships between thermodynamic properties

16

https://en.wikipedia.org/wiki/Gibbs_free_energy

in terms of the specific Gibbs free energy:

S = −
(
∂G
∂T

)
p

, (14)

1
ρ

=
(
∂G
∂p

)
T

, (15)

α

ρ
= ∂2G

∂p ∂T
, (16)

βT = −ρ
(
∂2G
∂p2

)
T

, (17)

Cp = −T
(
∂2G
∂T 2

)
p

, (18)

βS = βT −
α2T

ρCp
, (19)

CV
Cp

= βS
βT

, (20)

γ = α

βT ρCV
. (21)

where S is the specific entropy, Cp and CV are the specific isobaric and isochoric heat capacities, βT and βS
are the isothermal and isotropic compressibilities, and γ is the thermodynamic Grüneisen parameter. The
subscript indicates the thermodynamic variable (p or T) that is held constant.

Thermodynamically self-consistent material models must obey the explicit and implicit relations between
the different properties at all pressures and temperatures. Explicit relations are here defined as those between
properties and their derivatives, such as that between density and thermal expansivity. Implicit relations
involve mixed pressure and temperature derivatives, and derive from the symmetry of second derivatives. The
following paragraphs list the relations most relevant for the construction of thermodynamically-consistent
material models in ASPECT.

Consistency in ρ-α and ρ-βT Using the chain rule to combine (15), (16) and (17) yields the more
familiar definitions of α and βT :

α = −1
ρ

(
∂ρ

∂T

)
p

, (22)

βT = 1
ρ

(
∂ρ

∂p

)
T

. (23)

Isobaric heat capacity We start by taking the partial derivative of the isobaric heat capacity (18) with
respect to pressure at constant temperature:(

∂Cp
∂p

)
T

= −T ∂3G
∂T 2 ∂p

(24)

= −T
(
∂ (α/ρ)
∂T

)
p

. (25)

From this expression it becomes clear that if α/ρ has any temperature dependence, the heat capacity Cp
cannot be globally constant. One way to solve this issue is to define heat capacity at constant pressure, and
then integrate (25) with respect to pressure:

Cp(p, T) = Cp(pref, T)− T
∫ p

pref

(
∂ (α/ρ)
∂T

)
p

dp. (26)

17

There is no guarantee that this expression will have a form for which the integral can be found analytically.

Isentropic gradient The material properties also define the slope of the adiabat (the change in tempera-
ture with pressure at constant entropy) at all pressures and temperatures. Using the cyclic relation, we can
define this slope in terms of partial differentials of the entropy with respect to pressure and temperature:(

∂T

∂p

)
S

= −
(
∂T

∂S

)
p

(
∂S

∂p

)
T

(27)

= −
(
T

Cp

)(
−α
ρ

)
(28)

= αT

ρCp
(29)

This expression does not pose a constraint on the material properties, but in order to be self-consistent, the
adiabat must be computed following this relation.

For complex material models, obtaining analytical functions which obey all these relations may be a non-
trivial exercise. Furthermore, it is often not immediately clear when a given formulation is thermodynamically
inconsistent. Indeed, both the thermodynamic and the geodynamic literature contain many equations of
state and material parameterizations which do not obey these relations! This may not invalidate the results
obtained with these models, but it is a point worth keeping in mind as the geodynamics community moves
to more complicated and more realistic parameterizations.

A final note of warning: Some compressible formulations in ASPECT (Section 2.11.1) use the isothermal
compressibility, while others use the isentropic compressibility. Fully self-consistent material models must
either specify what approximation of the compressible equations they are consistent with (see Section 2.10),
or have a switch so that they use the correct compressibility for each of the different approximations. The
conversion between isothermal and isentropic compressibilities is given in (19).

2.2.2 Coefficient averaging

In multiphase rocks, or multirock areas in convection simulations, properties must be averaged because the
length scales at which the rock types vary is far smaller than the resolution of the mesh. As a consequence,
we need to use “effective coefficients”, i.e., coefficients that do not correspond to any particular rock, but
that lead to a macroscopic response that is a good match to the response of the correct, but unresolvable
mixture of rocks. For viscosity and conductivity, there is no single expression that describes how averaging
should be performed; indeed, these properties are dependent on rock texture and mineral alignment, both
of which may change through time as strain accumulates, and chemical diffusion and reactions take place.
Some of the existing multicomponent material models in ASPECT allow the user to choose from a range
of averaging schemes for viscosity.

In the case of density, thermal expansivity, heat capacity and bulk compressibility, there is one correct
way of averaging. Here we must consider conservation of mass and composition in a multicomponent rock
r. If component i has masses Mi and densities ρi, we can consider the summation of volume fractions:

Vr = Mr

ρr
=
∑
i

Mi

ρi
(30)

1
ρr

=
∑
i

xi
ρi

(31)

where xi are mass fractions of the components in the rock.

18

Similarly, we can obtain averaging formulae for the other thermodynamic properties:
α

ρ
=

∑
i

xi
αi
ρi

(32)

βT
ρ

=
∑
i

xi
βTi
ρi

(33)

Cp =
∑
i

xiCpi (34)

2.3 Dimensional or non-dimensionalized equations?
Equations (1)–(3) are stated in the physically correct form. One would usually interpret them in a way
that the various coefficients such as the viscosity, density and thermal conductivity η, ρ, κ are given in their
correct physical units, typically expressed in a system such as the meter, kilogram, second (MKS) system
that is part of the SI system. This is certainly how we envision ASPECT to be used: with geometries,
material models, boundary conditions and initial values to be given in their correct physical units. As a
consequence, when ASPECT prints information about the simulation onto the screen, it typically does so
by using a postfix such as m/s to indicate a velocity or W/mˆ2 to indicate a heat flux.

Note: For mantle convection simulations, it is often convenient to work with time units of
years instead of seconds. The flag “Use years in output instead of seconds” (Section A.1)
in the input file determines how input and output parameters with units of time or velocity are
interpreted. For details, see Section 2.3.1 below.

That said, in reality, ASPECT has no preferred system of units as long as every material constant,
geometry, time, etc., are all expressed in the same system. In other words, it is entirely legitimate to
implement geometry and material models in which the dimension of the domain is one, density and viscosity
are one, and the density variation as a function of temperature is scaled by the Rayleigh number – i.e., to
use the usual non-dimensionalization of the equations (1)–(3). Some of the cookbooks in Section 5 use this
non-dimensional form; for example, the simplest cookbook in Section 5.2.1 as well as the SolCx, SolKz and
inclusion benchmarks in Sections 5.4.7, are such cases. Whenever this is the case, output showing units
m/s or W/mˆ2 clearly no longer have a literal meaning. Rather, the unit postfix must in this case simply be
interpreted to mean that the number that precedes the first is a velocity and a heat flux in the second case.

In other words, whether a computation uses physical or non-dimensional units really depends on the
geometry, material, initial and boundary condition description of the particular case under consideration –
ASPECT will simply use whatever it is given. Whether one or the other is the more appropriate description
is a decision we purposefully leave to the user. There are of course good reasons to use non-dimensional
descriptions of realistic problems, rather than to use the original form in which all coefficients remain in
their physical units. On the other hand, there are also downsides:

• Non-dimensional descriptions, such as when using the Rayleigh number to indicate the relative strength
of convective to diffusive thermal transport, have the advantage that they allow to reduce a system to
its essence. For example, it is clear that we get the same behavior if one increases both the viscosity and
the thermal expansion coefficient by a factor of two because the resulting Rayleigh number; similarly,
if we were to increase the size of the domain by a factor of 2 and thermal diffusion coefficient by a
factor of 8. In both of these cases, the non-dimensional equations are exactly the same. On the other
hand, the equations in their physical unit form are different and one may not see that the result of this
variations in coefficients will be exactly the same as before. Using non-dimensional variables therefore
reduces the space of independent parameters one may have to consider when doing parameter studies.

• From a practical perspective, equations (1)–(3) are often ill-conditioned in their original form: the
two sides of each equation have physical units different from those of the other equations, and their

19

http://en.wikipedia.org/wiki/SI
http://en.wikipedia.org/wiki/Rayleigh_number

numerical values are often vastly different.4 Of course, these values can not be compared: they have
different physical units, and the ratios between these values depends on whether we choose to measure
lengths in meters or kilometers, for example. Nevertheless, when implementing these equations in
software, at one point or another, we have to work with numbers and at this point the physical units
are lost. If one does not take care at this point, it is easy to get software in which all accuracy is
lost due to round-off errors. On the other hand, non-dimensionalization typically avoids this since it
normalizes all quantities so that values that appear in computations are typically on the order of one.

• On the downside, the numbers non-dimensionalized equations produce are not immediately comparable
to ones we know from physical experiments. This is of little concern if all we have to do is convert
every output number of our program back to physical units. On the other hand, it is more difficult
and a source of many errors if this has to be done inside the program, for example, when looking
up the viscosity as a pressure-, temperature- and strain-rate-dependent function: one first has to
convert pressure, temperature and strain rate from non-dimensional to physical units, look up the
corresponding viscosity in a table, and then convert the viscosity back to non-dimensional quantities.
Getting this right at every one of the dozens or hundreds of places inside a program and using the
correct (but distinct) conversion factors for each of these quantities is both a challenge and a possible
source of errors.

• From a mathematical viewpoint, it is typically clear how an equation needs to be non-dimensionalized
if all coefficients are constant. However, how is one to normalize the equations if, as is the case in the
earth mantle, the viscosity varies by several orders of magnitude? In cases like these, one has to choose
a reference viscosity, density, etc. While the resulting non-dimensionalization retains the universality
of parameters in the equations, as discussed above, it is not entirely clear that this would also retain
the numerical stability if the reference values are poorly chosen.

As a consequence of such considerations, most codes in the past have used non-dimensionalized models.
This was aided by the fact that until recently and with notable exceptions, many models had constant
coefficients and the difficulties associated with variable coefficients were not a concern. On the other hand,
our goal with ASPECT is for it to be a code that solves realistic problems using complex models and that
is easy to use. Thus, we allow users to input models in physical or non-dimensional units, at their discretion.
We believe that this makes the description of realistic models simpler. On the other hand, ensuring numerical
stability is not something users should have to be concerned about, and is taken care of in the implementation
of ASPECT’s core (see the corresponding section in [59]).

2.3.1 Years or seconds?

All internal calculations in ASPECT are performed using time units of seconds. Input quantities with units
of time or velocity are assumed to be in seconds or meters per second, and output quantities with units
of time or velocity will also be in seconds or meters per second, unless the input parameter Use years in
output instead of seconds is true (see Section A.1).

This parameter is somewhat deceptively named, as it influences how ASPECT treats inputs as well
as outputs. For example, if Use years in output instead of seconds is true, input values for Start
time, End time, and Maximum time step are assumed to be in years instead of seconds. When the flag is
set, ASPECT converts input time and velocity units to MKS internally, computes solutions, and converts
time and velocity outputs back to years and meters per year during postprocessing.

By default, Use years in output instead of seconds is true, since ASPECT is designed primarily
for models described in physical units rather than in non-dimensionalized form, and years are often more
intuitive time units for mantle convection problems (see Section 2.3). For non- dimensional models the flag

4To illustrate this, consider convection in the Earth as a back-of-the-envelope example. With the length scale of the mantle
L = 3× 106 m, viscosity η = 1024 kg/m/s, density ρ = 3× 103 kg/m3 and a typical velocity of U = 0.1 m/year = 3× 10−9 m/s,
we get that the friction term in (1) has size ηU/L2 ≈ 3× 102 kg/m2/s2. On the other hand, the term ∇· (ρu) in the continuity
equation (2) has size ρU/L ≈ 3× 10−12 kg/s/m3. In other words, their numerical values are 14 orders of magnitude apart.

20

should be set to false since conversions between years and seconds do not make sense for non-dimensional
quantities.

2.4 Static or dynamic pressure?
One could reformulate equation (1) somewhat. To this end, let us say that we would want to represent the
pressure p as the sum of two parts that we will call static and dynamic, p = ps + pd. If we assume that ps
is already given, then we can replace (1) by

−∇ · 2η∇u +∇pd = ρg−∇ps.

One typically chooses ps as the pressure one would get if the whole medium were at rest – i.e., as the
hydrostatic pressure. This pressure can be computed noting that (1) reduces to

∇ps = ρ(ps, Ts,x)g = ρ̄g

in the absence of any motion where Ts is some static temperature field (see also Section 2.6). This, our
rewritten version of (1) would look like this:

−∇ · 2η∇u +∇pd = [ρ(p, T,x)− ρ(ps, Ts,x)] g.

In this formulation, it is clear that the quantity that drives the fluid flow is in fact the buoyancy caused by
the variation of densities, not the density itself.

This reformulation has a number of advantages and disadvantages:

• One can notice that in many realistic cases, the dynamic component pd of the pressure is orders of
magnitude smaller than the static component ps. For example, in the earth, the two are separated
by around 6 orders of magnitude at the bottom of the earth mantle. Consequently, if one wants to
solve the linear system that arises from discretization of the original equations, one has to solve it a
significant degree of accuracy (6–7 digits) to get the dynamic part of the pressure correct to even one
digit. This entails a very significant numerical effort, and one that is not necessary if we can split
the pressure in a way so that the pre-computed static pressure ps (or, rather, the density using the
static pressure and temperature from which ps results) absorbs the dominant part and one only has to
compute the remaining, dynamic pressure to 2 or 3 digits of accuracy, rather than the corresponding
7–8 for the total pressure.

• On the other hand, the pressure pd one computes this way is not immediately comparable to quantities
that we use to look up pressure-dependent quantities such as the density. Rather, one needs to first find
the static pressure as well (see Section 2.6) and add the two together before they can be used to look
up material properties or to compare them with experimental results. Consequently, if the pressure
a program outputs (either for visualization, or in the internal interfaces to parts of the code where
users can implement pressure- and temperature-dependent material properties) is only the dynamic
component, then all of the consumers of this information need to convert it into the total pressure
when comparing with physical experiments. Since any code implementing realistic material models
has a great many of these places, there is a large potential for inadvertent errors and bugs.

• Finally, the definition of a reference density ρ(ps, Ts,x) derived from static pressures and temperatures
is only simple if we have incompressible models and under the assumption that the temperature-
induced density variations are small compared to the overall density. In this case, we can choose
ρ(ps, Ts,x) = ρ0 with a constant reference density ρ0. On the other hand, for more complicated
models, it is not a priori clear which density to choose since we first need to compute static pressures
and temperatures – quantities that satisfy equations that introduce boundary layers, may include phase
changes releasing latent heat, and where the density may have discontinuities at certain depths, see
Section 2.6.

21

Thus, if we compute adiabatic pressures and temperatures p̄s, T̄s under the assumption of a thermal
boundary layer worth 900 Kelvin at the top, and we get a corresponding density profile ρ̄ = ρ(p̄s, T̄s,x),
but after running for a few million years the temperature turns out to be so that the top boundary
layer has a jump of only 800 Kelvin with corresponding adiabatic pressures and temperatures p̂s, T̂s,
then a more appropriate density profile would be ρ̂ = ρ(p̂s, T̂s,x).
The problem is that it may well be that the erroneously computed density profile ρ̂ does not lead to a
separation where |pd| � |ps| because, especially if the material undergoes phase changes, there will be
entire areas of the computational domain in which |ρ− ρ̂s| � |ρ| but |ρ− ρ̄s| 6� |ρ|. Consequently the
benefits of lesser requirements on the iterative linear solver would not be realized.

We do note that most of the codes available today and that we are aware of split the pressure into
static and dynamic parts nevertheless, either internally or require the user to specify the density profile as
the difference between the true and the hydrostatic density. This may, in part, be due to the fact that
historically most codes were written to solve problems in which the medium was considered incompressible,
i.e., where the definition of a static density was simple.

On the other hand, we intend ASPECT to be a code that can solve more general models for which this
definition is not as simple. As a consequence, we have chosen to solve the equations as stated originally – i.e.,
we solve for the full pressure rather than just its dynamic component. With most traditional methods, this
would lead to a catastrophic loss of accuracy in the dynamic pressure since it is many orders of magnitude
smaller than the total pressure at the bottom of the earth mantle. We avoid this problem in ASPECT by
using a cleverly chosen iterative solver that ensures that the full pressure we compute is accurate enough so
that the dynamic pressure can be extracted from it with the same accuracy one would get if one were to
solve for only the dynamic component. The methods that ensure this are described in detail in [59] and in
particular in the appendix of that paper.

Note: By default, ASPECT uses the full pressure in the equations, and only prescribing density
deviations from a reference state on the right-hand side of (1) would lead to negative densities
in the energy equation (3). However, when using one of the approximations described in Section
2.10, the energy balance uses the reference density ρ̄ instead of the full density, which makes it
possible to formulate the Stokes system in terms of the dynamic instead of the full pressure. In
order to do this, one would have to use a material model (see Section 6.4.1) in which the density
is in fact a density variation, and then the pressure solution variable would only be the dynamic
pressure.

2.5 Pressure normalization
The equations described above, (1)–(3), only determine the pressure p up to an additive constant. On the
other hand, since the pressure appears in the definition of many of the coefficients, we need a pressure that
has some sort of absolute definition. A physically useful definition would be to normalize the pressure in such
a way that the average pressure along the “surface” has a prescribed value where the geometry description
(see Section 6.4.3) has to determine which part of the boundary of the domain is the “surface” (we call a
part of the boundary the “surface” if its depth is “close to zero”).

Typically, one will choose this average pressure to be zero, but there is a parameter “Surface pressure”
in the input file (see Section A.1) to set it to a different value. One may want to do that, for example, if one
wants to simulate the earth mantle without the overlying lithosphere. In that case, the “surface” would be
the interface between mantle and lithosphere, and the average pressure at the surface to which the solution
of the equations will be normalized should in this case be the hydrostatic pressure at the bottom of the
lithosphere.

An alternative is to normalize the pressure in such a way that the average pressure throughout the
domain is zero or some constant value. This is not a useful approach for most geodynamics applications but
is common in benchmarks for which analytic solutions are available. Which kind of normalization is chosen
is determined by the “Pressure normalization” flag in the input file, see Section A.1.

22

2.6 Initial conditions and the adiabatic pressure/temperature
Equations (1)–(3) require us to pose initial conditions for the temperature, and this is done by selecting one
of the existing models for initial conditions in the input parameter file, see Section A.71. The equations
themselves do not require that initial conditions are specified for the velocity and pressure variables (since
there are no time derivatives on these variables in the model).

Nevertheless, a nonlinear solver will have difficulty converging to the correct solution if we start with a
completely unphysical pressure for models in which coefficients such as density ρ and viscosity η depend on
the pressure and temperature. To this end, ASPECT uses pressure and temperature fields pad(z), Tad(z)
computed in the adiabatic conditions model (see Section A.2). By default, these fields satisfy adiabatic
conditions:

ρCp
d
dz Tad(z) = ∂ρ

∂T
Tad(z)gz, (35)

d
dz pad(z) = ρgz, (36)

where strictly speaking gz is the magnitude of the vertical component of the gravity vector field, but in
practice we take the magnitude of the entire gravity vector.

These equations can be integrated numerically starting at z = 0, using the depth dependent gravity field
and values of the coefficients ρ = ρ(p, T, z), Cp = Cp(p, T, z). As starting conditions at z = 0 we choose
a pressure pad(0) equal to the average surface pressure (often chosen to be zero, see Section 2.5), and an
adiabatic surface temperature Tad(0) that is also selected in the input parameter file.

However, users can also supply their own adiabatic conditions models or define an arbitrary profile using
the “function” plugin.

Note: The adiabatic surface temperature is often chosen significantly higher than the actual
surface temperature. For example, on earth, the actual surface temperature is on the order of 290
K, whereas a reasonable adiabatic surface temperature is maybe 1600 K. The reason is that the
bulk of the mantle is more or less in thermal equilibrium with a thermal profile that corresponds
to the latter temperature, whereas the very low actual surface temperature and the very high
bottom temperature at the core-mantle boundary simply induce a thermal boundary layer. Since
the temperature and pressure profile we compute using the equations above are simply meant to
be good starting points for nonlinear solvers, it is important to choose this profile in such a way
that it covers most of the mantle well; choosing an adiabatic surface temperature of 290 K would
yield a temperature and pressure profile that is wrong almost throughout the entire mantle.

2.7 Compositional fields
The last of the basic equations, (4), describes the evolution of a set of variables ci(x, t), i = 1 . . . C that we
typically call compositional fields and that we often aggregate into a vector c.

Compositional fields were originally intended to track what their name suggest, namely the chemical
composition of the convecting medium. In this interpretation, the composition is a non-diffusive quantity
that is simply advected along passively, i.e., it would satisfy the equation

∂c

∂t
+ u · ∇c = 0.

However, the compositional fields may also participate in determining the values of the various coefficients
as discussed in Section 2.2, and in this sense the equation above describes a composition that is passively
advected, but an active participant in the equations.

That said, over time compositional fields have shown to be a much more useful tool than originally
intended. For example, they can be used to track where material comes from and goes to (see Section 5.2.4)

23

and, if one allows for a reaction rate q on the right hand side,

∂c

∂t
+ u · ∇c = q,

then one can also model interaction between species – for example to simulate phase changes where one
compositional field, indicating a particular phase, transforms into another phase depending on pressure and
temperature, or where several phases combine to other phases. Another example of using a right hand
side – quite outside what the original term compositional field was supposed to indicate – is to track the
accumulation of finite strain, see Section 5.2.11.

In actual practice, one finds that it is often useful to allow q to be a function that has both a smooth
(say, continuous) in time component, and one that is singular in time (i.e., contains Dirac delta, or “impulse”
functions). Typical time integrators require the evaluation of the right hand side at specific points in time,
but this would preclude the use of delta functions. Consequently, the integrators in ASPECT only require
material models to provide an integrated value

∫ t+∆t
t

q(τ) dτ through the reaction_term output variable.
Implementations often approximate this as 4t · q(t), or similar formulas.

A second application for only providing integrated right hand sides comes from the fact that modeling
reactions between different compositional fields often involves finding an equilibrium state between different
fields because chemical reactions happen on a much faster time scale than transport. In other words, one
then often assumes that there is a c∗(p, T) so that

q(p, T, ε(u), c∗(p, T)) = 0.

Consequently, the material model methods that deal with source terms for the compositional fields need to
compute an increment ∆c to the previous value of the compositional fields so that the sum of the previous
values and the increment equals c∗. This corresponds to an impulse change in the compositions at every time
step, as opposed to the usual approach of evaluating the right hand side term q as a continuous function in
time, which corresponds to a rate.

On the other hand, there are other uses of compositional fields that do not actually have anything to do
with quantities that can be considered related to compositions. For example, one may define a field that
tracks the grain size of rocks. If the strain rate is high, then the grain size decreases as the rocks break.
If the temperature is high enough, then grains heal and their size increases again. Such “damage” models
would then call for an equation of the form (assuming one uses only a single compositional field)

∂c

∂t
+ u · ∇c = q(T, c),

where in the simplest case one could postulate

q(T, c) = −Ac+Bmax{T − Thealing, 0}c.

One would then use this compositional field in the definition of the viscosity of the material: more damage
means lower viscosity because the rocks are weaker.

In cases like this, there is only a single compositional field and it is not in permanent equilibrium.
Consequently, the increment implementations of material models in ASPECT need to compute is typically
the rate q(T, c) times the time step. In other words, if you compute a reaction rate inside the material model
you need to multiply it by the time step size before returning the value.

Compositional fields have proven to be surprisingly versatile tools to model all sorts of components of
models that go beyond the simple Stokes plus temperature set of equations. Play with them!

2.8 Constitutive laws
Equation (1) describes buoyancy-driven flow in an isotropic fluid where strain rate is related to stress by
a scalar (possibly spatially variable) multiplier, η. For some material models it is useful to generalize

24

this relationship to anisotropic materials, or other exotic constitutive laws. For these cases ASPECT can
optionally include a generalized, fourth-order tensor field as a material model state variable which changes
equation (1) to

−∇ ·
[
2η
(
Cε(u)− 1

3(tr(Cε(u)))1
)]

+∇p = ρg in Ω (37)

and the shear heating term in equation (3) to

. . .

+2η
(
Cε(u)− 1

3(tr(Cε(u)))1
)

:
(
ε(u)− 1

3(∇ · u)1
)

(38)

. . .

where C = Cijkl is defined by the material model. For physical reasons, C needs to be a symmetric rank-
4 tensor: i.e., when multiplied by a symmetric (strain rate) tensor of rank 2 it needs to return another
symmetric tensor of rank 2. In mathematical terms, this means that Cijkl = Cjikl = Cijlk = Cjilk. Energy
considerations also require that C is positive definite: i.e., for any ε 6= 0, the scalar ε : (Cε) must be positive.

This functionality can be optionally invoked by any material model that chooses to define a C field, and
falls back to the default case (C = I) if no such field is defined. It should be noted that η still appears
in equations (37) and (38). C is therefore intended to be thought of as a “director” tensor rather than a
replacement for the viscosity field, although in practice either interpretation is okay.

2.9 Numerical methods
There is no shortage in the literature for methods to solve the equations outlined above. The methods
used by ASPECT use the following, interconnected set of strategies in the implementation of numerical
algorithms:

• Mesh adaptation: Mantle convection problems are characterized by widely disparate length scales (from
plate boundaries on the order of kilometers or even smaller, to the scale of the entire earth). Uniform
meshes can not resolve the smallest length scale without an intractable number of unknowns. Fully
adaptive meshes allow resolving local features of the flow field without the need to refine the mesh
globally. Since the location of plumes that require high resolution change and move with time, meshes
also need to be adapted every few time steps.

• Accurate discretizations: The equations upon which most models for the earth mantle are based have
a number of intricacies that make the choice of discretization non-trivial. In particular, the finite
elements chosen for velocity and pressure need to satisfy the usual compatibility condition for saddle
point problems. This can be worked around using pressure stabilization schemes for low-order dis-
cretizations, but high-order methods can yield better accuracy with fewer unknowns and offer more
reliability. Equally important is the choice of a stabilization method for the highly advection-dominated
temperature equation. ASPECT uses a nonlinear artificial diffusion method for the latter.

• Efficient linear solvers: The major obstacle in solving the system of linear equations that results from
discretization is the saddle-point nature of the Stokes equations. Simple linear solvers and precon-
ditioners can not efficiently solve this system in the presence of strong heterogeneities or when the
size of the system becomes very large. ASPECT uses an efficient solution strategy based on a block
triangular preconditioner utilizing an algebraic multigrid that provides optimal complexity even up to
problems with hundreds of millions of unknowns.

• Parallelization of all of the steps above: Global mantle convection problems frequently require ex-
tremely large numbers of unknowns for adequate resolution in three dimensional simulations. The only

25

realistic way to solve such problems lies in parallelizing computations over hundreds or thousands of
processors. This is made more complicated by the use of dynamically changing meshes, and it needs
to take into account that we want to retain the optimal complexity of linear solvers and all other
operations in the program.

• Modularity of the code: A code that implements all of these methods from scratch will be unwieldy,
unreadable and unusable as a community resource. To avoid this, we build our implementation on
widely used and well tested libraries that can provide researchers interested in extending it with the
support of a large user community. Specifically, we use the deal.II library [9, 10] for meshes, finite
elements and everything discretization related; the Trilinos library [44, 45] for scalable and parallel
linear algebra; and p4est [19] for distributed, adaptive meshes. As a consequence, our code is freed
of the mundane tasks of defining finite element shape functions or dealing with the data structures
of linear algebra, can focus on the high-level description of what is supposed to happen, and remains
relatively compact. The code will also automatically benefit from improvements to the underlying
libraries with their much larger development communities. ASPECT is extensively documented to
enable other researchers to understand, test, use, and extend it.

Rather than detailing the various techniques upon which ASPECT is built, we refer to the papers by
Kronbichler, Heister and Bangerth [59] and Heister, Dannberg, Gassmöller and Bangerth [43] that give a
detailed description and rationale for the various building blocks.

2.10 Approximate equations
There are a number of common variations to equations (1)–(3) that are used in the geosciences. For exam-
ple, one frequently finds references to the anelastic liquid approximation (ALA), truncated anelastic liquid
approximation (TALA), and the Boussinesq approximation (BA). These can all be derived from the basic
equations (1)–(3) via various approximations, and we will discuss them in the following sections. Since they
are typically only provided considering velocity, pressure and temperature, we will in the following omit
the dependence on the compositional fields used in previous sections, though this dependence can easily be
added back into the equations stated below. A detailed discussion of the approximations introduced below
can also be found in [82] and [58].

The three approximations mentioned all start by writing the pressure and temperature as the sum of a
(possibly depth dependent) reference state plus a perturbation, i.e., we will write

p(x, t) = p̄(z) + p′(x, t),
T (x, t) = T̄ (z) + T ′(x, t).

Here, barred quantities are reference states and may depend on the depth z (not necessarily the third
component of x) whereas primed quantities are the spatially and temporally variable deviations of the
temperature and pressure fields from this reference state. In particular, the reference pressure is given by
solving the hydrostatic equation,

∇p̄ = ρ̄g, (39)

where ρ̄ = ρ(p̄, T̄) is a reference density that depends on depth and represents a typical change of material
parameters and solution variables with depth. T̄ (z) is chosen as an adiabatic profile accounting for the
fact that the temperature increases as the pressure increases. With these definitions, equations (1)–(2) can
equivalently be written as follows:

−∇ ·
[
2η
(
ε(u)− 1

3(∇ · u)1
)]

+∇p′ = (ρ− ρ̄)g in Ω, (40)

∇ · (ρu) = 0 in Ω. (41)

26

The temperature equation, when omitting entropic effects, still reads as

ρCp

(
∂T

∂t
+ u · ∇T

)
−∇ · k∇T

= ρH + 2η
(
ε(u)− 1

3(∇ · u)1
)

:
(
ε(u)− 1

3(∇ · u)1
)

+ αT (u · ∇p) in Ω, (42)

where the right-hand side includes radiogenic heat production, shear heating and adiabatic heating (in that
order).

Starting from these equations, the approximations discussed in the next few subsections make use of the
fact that for the flows for which these approximations are valid, the perturbations p′, T ′ are much smaller
than typical values of the reference quantities p̄, T̄ . The terms influenced by these approximations are
∇ · (ρu) = 0 in the continuity equation, and all occurrences of ρ(p, T) in the temperature equation, and we
will discuss them separately below. The equations for these approximations are almost always given in terms
of non-dimensionalized quantities. We will for now stick with the dimensional form because it expresses in
a clearer way the approximations that are made. The non-dimensionalization can then be done on each of
the forms below separately.

2.10.1 The anelastic liquid approximation (ALA)

The anelastic liquid approximation (ALA) is based on two assumptions. First, that the density variations
relative to the adiabatic reference state at any given depth ρ(p, T)− ρ̄(z) are small and in particular can be
accurately described by a Taylor expansion in pressure and temperature [82]:

ρ(p, T) ≈ ρ̄+
(
∂ρ(p̄, T̄)
∂T

)
p

T ′ +
(
∂ρ(p̄, T̄)
∂P

)
T

p′ (43)(
∂ρ(p̄, T̄)
∂T

)
p

= −ᾱρ̄(p̄, T̄) (44)(
∂ρ(p̄, T̄)
∂P

)
T

= β̄T ρ̄(p̄, T̄) (45)

where ᾱ is the thermal expansion coefficient (α = − 1
ρ

(
∂ρ
∂T

)
p
) and β̄T is the isothermal compressibility

(βT = 1
ρ

(
∂ρ
∂p

)
T
), both on the adiabatic reference curve. The subscripts (p or T) indicate the variable that

is held fixed. The second assumption is that the variation of the density from the reference density can be
neglected in the mass balance and temperature equations. This yields the following system of equations for
the velocity and pressure equations:

−∇ ·
[
2η
(
ε(u)− 1

3(∇ · u)1
)]

+∇p′ = ρ̄
(
β̄T p

′ − ᾱT ′
)

g in Ω, (46)

∇ · (ρ̄u) = 0 in Ω. (47)

For the temperature equation, using the definition of the hydrostatic pressure gradient (39), we arrive at
the following:

ρ̄Cp

(
∂T

∂t
+ u · ∇T

)
−∇ · k∇T

= ρ̄H + 2η
(
ε(u)− 1

3(∇ · u)1
)

:
(
ε(u)− 1

3(∇ · u)1
)

+ αρ̄T (u · g) in Ω. (48)

27

Note: Our energy equation is formulated in terms of T , while in the literature, the equation
has sometimes been formulated in terms of T ′, which yields additional terms containing T̄ on the
right-hand side. Both ways of writing the equation are equivalent.

2.10.2 The truncated anelastic liquid approximation (TALA)

The truncated anelastic liquid approximation (TALA) further simplifies the ALA by assuming that the
variation of the density due to pressure variations is small, i.e., that

ρ(p, T) ≈ ρ̄(1− ᾱT ′).

This does not mean that the density is not pressure dependent – it will, for example, continue to be depth
dependent because the hydrostatic pressure grows with depth. It simply means that the deviations from the
reference pressure are assumed to be so small that they do not matter in describing the density. Because the
pressure variation p′ is induced by the flow field (the static component pressure is already taken care of by
the hydrostatic pressure), this assumption in essence means that we assume the flow to be very slow, even
beyond the earlier assumption that we can neglect inertial terms when deriving (1)–(2).

This further assumption then transforms (46)–(47) into the following equations:

−∇ ·
[
2η
(
ε(u)− 1

3(∇ · u)1
)]

+∇p′ = −ᾱρ̄T ′g in Ω, (49)

∇ · (ρ̄u) = 0 in Ω. (50)

The energy equation is the same as in the ALA case.

2.10.3 The Boussinesq approximation (BA)

If we further assume that the reference temperature and the reference density are constant, T̄ (z) = T0,
ρ̄(p̄, T̄) = ρ0, – in other words, density variations are so small that they are negligible everywhere except
for in the right-hand side of the velocity equation (the buoyancy term), which describes the driving force
of the flow, then we can further simplify the mass conservation equations of the TALA to ∇ · u = 0. This
means that the density in all other parts of the equations is not only independent of the pressure variations
p′ as assumed in the TALA, but also does not depend on the much larger hydrostatic pressure p̄ nor on the
reference temperature T̄ . We then obtain the following set of equations that also uses the incompressibility
in the definition of the strain rate:

−∇ · [2ηε(u)] +∇p′ = −ᾱρ̄T ′g in Ω, (51)
∇ · u = 0 in Ω. (52)

In addition, as the reference temperature is constant, one needs to neglect the adiabatic and shear heating
in the energy equation

ρ̄Cp

(
∂T

∂t
+ u · ∇T

)
−∇ · k∇T = ρ̄H in Ω. (53)

On incompressibility. The Boussinesq approximation assumes that the density can be considered con-
stant in all occurrences in the equations with the exception of the buoyancy term on the right hand side of
(1). The primary result of this assumption is that the continuity equation (2) will now read

∇ · u = 0.

This makes the equations much simpler to solve: First, because the divergence operation in this equation
is the transpose of the gradient of the pressure in the momentum equation (1), making the system of these

28

two equations symmetric. And secondly, because the two equations are now linear in pressure and velocity
(assuming that the viscosity η and the density ρ are considered fixed). In addition, one can drop all terms
involving ∇ · u from the left hand side of the momentum equation (1); while dropping these terms does not
affect the solution of the equations, it makes assembly of linear systems faster.

From a physical perspective, the assumption that the density is constant in the continuity equation but
variable in the momentum equation is of course inconsistent. However, it is justified if the variation is small
since the momentum equation can be rewritten to read

−∇ · 2ηε(u) +∇p′ = (ρ− ρ0)g,

where p′ is the dynamic pressure and ρ0 is the constant reference density. This makes it clear that the true
driver of motion is in fact the deviation of the density from its background value, however small this value
is: the resulting velocities are simply proportional to the density variation, not to the absolute magnitude
of the density.

As such, the Boussinesq approximation can be justified. On the other hand, given the real pressures and
temperatures at the bottom of the Earth’s mantle, it is arguable whether the density can be considered to
be almost constant. Most realistic models predict that the density of mantle rocks increases from somewhere
around 3300 at the surface to over 5000 kilogram per cubic meters at the core mantle boundary, due to the
increasing lithostatic pressure. While this appears to be a large variability, if the density changes slowly
with depth, this is not in itself an indication that the Boussinesq approximation will be wrong. To this end,
consider that the continuity equation can be rewritten as 1

ρ∇· (ρu) = 0, which we can multiply out to obtain

∇ · u + 1
ρ

u · ∇ρ = 0.

The question whether the Boussinesq approximation is valid is then whether the second term (the one
omitted in the Boussinesq model) is small compared to the first. To this end, consider that the velocity can
change completely over length scales of maybe 10 km, so that ∇ · u ≈ ‖u‖/10km. On the other hand, given
a smooth dependence of density on pressure, the length scale for variation of the density is the entire earth
mantle, i.e., 1

ρu ·∇ρ ≈ ‖u‖0.5/3000km (given a variation between minimal and maximal density of 0.5 times
the density itself). In other words, for a smooth variation, the contribution of the compressibility to the
continuity equation is very small. This may be different, however, for models in which the density changes
rather abruptly, for example due to phase changes at mantle discontinuities.

On almost linear models. A further simplification can be obtained if one assumes that all coefficients
with the exception of the density do not depend on the solution variables but are, in fact, constant. In such
models, one typically assumes that the density satisfies a relationship of the form ρ = ρ(T) = ρ0(1−α(T−T0))
with a small thermal expansion coefficient α and a reference density ρ0 that is attained at temperature T0.
Since the thermal expansion is considered small, this naturally leads to the following variant of the Boussinesq
model discussed above, with the replacement of ρ̄(z)ᾱ(z) with a constant (ρ0α):

−∇ · [2ηε(u)] +∇p′ = −ρ0αTg in Ω, (54)
∇ · u = 0 in Ω, (55)

ρ0Cp

(
∂T

∂t
+ u · ∇T

)
−∇ · k∇T = ρH in Ω. (56)

Note that the right hand side forcing term in (54) is now only the deviation of the gravitational force from
the force that would act if the material were at temperature T0.

Under the assumption that all other coefficients are constant, one then arrives at equations in which the
only nonlinear term is the advection term, u · ∇T in the temperature equation (56). This facilitates the
use of a particular class of time stepping schemes in which one does not solve the whole set of equations at
once, iterating out nonlinearities as necessary, but instead in each time step solves first the Stokes system
with the previous time step’s temperature, and then uses the so-computed velocity to solve the temperature
equation. These kind of time stepping schemes are often referred to as operator splitting methods.

29

Note: ASPECT does not solve the equations in the way described in this paragraph, however,
a particular operator splitting method was used in earlier ASPECT versions. It first solves
the Stokes equations and then uses a semi-explicit time stepping method for the temperature
equation where diffusion is handled implicitly and advection explicitly. This algorithm is often
called IMPES (it originated in the porous media flow community, where the acronym stands for
Implicit Pressure, Explicit Saturation) and is explained in more detail in [59]. Since then the
algorithm in ASPECT has been rewritten to use an implicit time stepping algorithm also for the
temperature equation because this allows to use larger time steps.

2.10.4 The isothermal/isentropic compression approximation (ICA)

In the compressible case and without the assumption of a reference state, the conservation of mass equation
in equation (2) is ∇ · (ρu) = 0, which is nonlinear and not symmetric to the ∇p term in the force balance
equation (1), making solving and preconditioning the resulting linear and nonlinear systems difficult. To
make this work in ASPECT, we consequently reformulate this equation. Dividing by ρ and applying the
product rule of differentiation gives

1
ρ
∇ · (ρu) = ∇ · u + 1

ρ
∇ρ · u.

We will now make two basic assumptions: First, the variation of the density ρ(p, T,x, c) is dominated by
the dependence on the (total) pressure; in other words, ∇ρ ≈ ∂ρ

∂p∇p. This assumption is primarily justified
by the fact that, in the Earth’s mantle, the density increases by at least 50% between Earth’s crust and the
core-mantle boundary due to larger pressure there. Secondly, we assume that the pressure is dominated by
the static pressure, which implies that ∇p ≈ ∇ps ≈ ρg. This is justified, because the viscosity in the Earth
is large and velocities are small, hence ∇p′ � ∇ps. This finally allows us to write

1
ρ
∇ρ · u ≈ 1

ρ

∂ρ

∂p
∇p · u ≈ 1

ρ

∂ρ

∂p
∇ps · u ≈

1
ρ

∂ρ

∂p
ρg · u

so we get
∇ · u = −1

ρ

∂ρ

∂p
ρg · u (57)

where 1
ρ
∂ρ
∂p is often referred to as the compressibility. Note that we have not yet made any assumptions

about the change in temperature with pressure; we need to do this in order to calculate the compressibility.
There are two simple choices we could make; either to ignore adiabatic heating and use the isothermal
compressibility:

∇ · u = −1
ρ

∂ρ

∂pT
ρg · u = −βT ρg · u (58)

or to assume that heating is everywhere adiabatic and use the isentropic compressibility:

∇ · u = −1
ρ

∂ρ

∂pS
ρg · u = −βSρg · u (59)

Both choices are possible in ASPECT, the user simply needs to specify their preferred compressibility in the
material model. The isentropic compressibility is likely to be the more accurate approximation in models of
mantle convection.

For this approximation, Equation (57) replaces Equation (2). It has the advantage that it retains the
symmetry of the Stokes equations if we can treat the right hand side of (57) as known. We do so by evaluating
ρ and u using the solution from the last time step (or values extrapolated from previous time steps), or using
a nonlinear solver scheme.

Note: This is the default approximation ASPECT uses to model compressible convection, see
Section 2.11.5. The approximation is named “isothermal compression” for historical reasons, but
the compressibility can be either isentropic or isothermal.

30

2.11 Choosing a formulation in ASPECT
After discussing different reasonable approximations for modeling compressible or incompressible mantle
convection, we will now describe the different steps one has to take to use one of these approximations in a
computation. This includes

1. Choosing an approximation for the mass conservation equation;

2. Choosing an approximation for the density in the energy balance, and deciding which heating terms
should be included;

3. Formulating the buoyancy term in the material model to be used on the right-hand side of the mo-
mentum equation;

4. Prescribing a suitable reference state for the temperature, pressure, and density; i.e. the adiabatic
profile, if necessary for the approximations chosen in the first three steps.

All of these choices can be made in the input file by selecting the corresponding parameters (see Sec-
tions A.42 and A.2). A description of how to run ASPECT and the basic structure of the input file can be
found in Section 4.

2.11.1 Mass conservation approximation

First, we have to choose how to approximate the conservation of mass: ∇ · (ρu) = 0 (see Equation (2)). We
provide the following options, which can be selected in the parameter file in the subsection Formulation/Mass
conservation (see also A.42):

• “incompressible”:
∇ · u = 0,

• “isothermal compression”:
∇ · u = −ρβg · u,

where β = 1
ρ
∂ρ
∂p is the compressibility, and is defined in the material model. Despite the name, this

approximation can be used either for isothermal compression (where β = βT) or isentropic compression
(where β = βS). The material model determines which compressibility is used. This is an explicit
compressible mass equation where the velocity u on the right-hand side is an extrapolated velocity
from the last timesteps.

• “hydrostatic compression”:

∇ · u = −
(

1
ρ

(
∂ρ

∂p

)
T

ρg + 1
ρ

(
∂ρ

∂T

)
p

∇T

)
· u = − (βT ρg− α∇T) · u

where βT = 1
ρ

(
∂ρ
∂p

)
T

is the isothermal compressibility, α = − 1
ρ

(
∂ρ
∂T

)
p
is the thermal expansion

coefficient, and both are defined in the material model. The approximation made here is that ∇p = ρg.

• “reference density profile”:
∇ · u = −1

ρ̄

∂ρ̄

∂z

g
‖g‖ · u,

where the reference profiles for the density ρ̄ and the density gradient ∂ρ̄
∂z provided by the adiabatic

conditions model (2.6) are used. Note that the gravity is assumed to point downwards in depth direc-
tion. This is the explicit mass equation where the velocity u on the right-hand side is an extrapolated
velocity from the last timesteps.

31

• “implicit reference density profile”:

∇ · u + 1
ρ̄

∂ρ̄

∂z

g
‖g‖ · u = 0,

which uses the same approximation for the density as “reference density profile”, but implements this
term on the left-hand side instead of the right-hand side of the mass conservation equation. This
effectively uses the current velocity u instead of an explicitly extrapolated velocity from the last
timesteps.

• “ask material model”, which uses “isothermal compression” if the material model reports that it is
compressible and “incompressible” otherwise.

Note: The stress tensor approximation.
If a medium is incompressible, that is if the mass conservation equation reads ∇ ·u = 0, then the
shear stress in the momentum and temperature equation simplifies from

τ = 2η
(
ε(u)− 1

3(∇ · u)1
)

to
τ = 2ηε(u).

2.11.2 Temperature equation approximation

The density occurs multiple times in the temperature equation. Depending on the selected approximation
it is computed in one of two different ways. Which of these options is used can be chosen in the parameter
file in the subsection Formulation/Temperature equation (see also A.42):

• “real density”: Use the full density ρ(p, T) that equals the one also used in the buoyancy term of the
force balance equation; this is also the value that is computed by the material models when asked for
the density,

• “reference density profile”: Use the density as computed for the reference profile (which can be constant,
an adiabatic profile, or an entirely different function, and is determined by the adiabatic conditions
model).

2.11.3 Approximation of the buoyancy term

The buoyancy term (right-hand side of the momentum equation) always uses the density that is provided
by the material model (see Section 6.4.1). Depending on the material model, this density could for example
depend on temperature and pressure (such as in ALA), or on temperature and depth (as in TALA); and
the model can also be set up in a way that it uses density deviations from a reference state instead of a full
density (see Section 2.4).

Note: In the current version of ASPECT, it is the responsibility of the user to select a material
model that is consistent with the formulation they want to use in their model. In the future, we
plan to make it more obvious which approximations are supported by a particular material model.

32

2.11.4 Reference state: The adiabatic profile

The reference temperature profile T̄ , reference density profile ρ̄ and the reference pressure p̄ are computed in
the adiabatic conditions model (provided by the class AdiabaticConditions, see Section 2.6). By default,
these fields satisfy adiabatic conditions (if adiabatic heating is included in the model, see Section A.61):

dT̄ (z)
dz = αT̄ (z)gz

Cp
, (60)

dp̄(z)
dz = ρ̄gz, (61)

ρ̄ = ρ̄(p̄, T̄ , z) (as defined by the material model), (62)

where strictly speaking gz is the magnitude of the vertical component of the gravity vector field, but in
practice we take the magnitude of the entire gravity vector. If there is no adiabatic heating in the model, T̄
is constant by default and set to the adiabatic surface temperature. The density gradient is always computed
by a simple finite difference approximation of the depth derivative of ρ̄.

However, users can also supply their own adiabatic conditions models or define an arbitrary profile
using the “function” plugin, which allows the user to define arbitrary functions for T̄ (z), p̄(z) and ρ̄(z), see
Section A.2.

2.11.5 Combined formulations

Not all combinations of the different approximations discussed above are physically reasonable, and to help
users choose between these options, we provide a number of combined “Formulations” that are equiva-
lent to the approximate equations discussed above (Section 2.10). They can be selected in the subsection
Formulation/Formulation (see also A.42):

• “anelastic liquid approximation”: This formulation sets the mass conservation approximation to “refer-
ence density profile”, the temperature equation approximation to “reference density profile” and checks
that both adiabatic and shear heating are included in the list of heating plugins used in the model,
using the simplified version of the adiabatic heating term (see Section A.61). The default setting for the
adiabatic conditions is an adiabatic temperature profile, and hydrostatic pressure and density profiles.
This option should be chosen together with a material model that defines a density that depends on
temperature and pressure (and potentially depth), which would be equivalent to the anelastic liquid
approximation (Section 2.10.1), or with a material model that defines a density that depends on tem-
perature and depth (and not on the pressure), which would be equivalent to the truncated anelastic
liquid approximation (Section 2.10.2).

• “Boussinesq approximation”: This formulation sets the mass conservation approximation to “incom-
pressible”, the temperature equation approximation to “reference density profile” and checks that
neither adiabatic nor shear heating are included in the list of heating plugins used in the model. The
default setting for the adiabatic conditions is a constant temperature, and hydrostatic pressure and
density profiles. This option should be chosen together with a material model that defines a density
that only depends on temperature and depth (and not on the pressure). This is equivalent to the
Boussinesq approximation (Section 2.10.3).

• “isothermal compression”: This formulation sets the mass conservation approximation to “isothermal
compression”, the temperature equation approximation to “real density” and checks that both adiabatic
and shear heating are included in the list of heating plugins used in the model. The default setting
for the adiabatic conditions is an adiabatic temperature profile, and hydrostatic pressure and density
profiles. The density can depend on any of the solution variables. This is equivalent to the isothermal
compression approximation (Section 2.10.4).

33

• “custom”: By default, this formulation sets the mass conservation approximation to “ask material
model” and the temperature equation approximation to “real density”. The adiabatic conditions model
uses an adiabatic temperature profile if adiabatic heating is included in the model, and a constant
temperature if adiabatic heating is not included. Pressure and density profiles are hydrostatic. The
density can depend on any of the solution variables. However, this option can also be used to arbitrarily
combine the different approximations described in this section. Users should be careful when using
this option, as some combinations may lead to unphysical model behavior.

An example cookbook that shows a comparison between different approximations is discussed in Sec-
tion 5.3.6.

2.12 Advection Stabilization
ASPECT implements several advection schemes for the temperature and compositional field equations.
Specifically, the parameter A.41 allows using one of the following methods:

• Entropy Viscosity Stabilization

• SUPG Stabilization

Both add additional terms to the temperature (or compositional field) equation. We will discuss the case
for the temperature equation here. The compositional fields only differ in having a zero conductivity, fewer
right-hand side terms, and ρCp = 1. The strong form of the temperature equation reads

ρCp
∂T

∂t
+ ρCpu · ∇T −∇ · k∇T = F,

where F is the combination of source and reaction terms, while the weak form – with test function ϕ and
L2 inner product (·, ·) – is

a(T, ϕ) =
(
ρCp

∂T

∂t
, ϕ

)
+ (ρCpu · ∇T, ϕ) + (k∇T,∇ϕ) = (F,ϕ) = f(ϕ). (63)

2.12.1 SUPG Stabilization

For streamline upwind/Petrov-Galerkin (SUPG) (see for example [53, 24]), we add to the weak form a(·, ·)
the cell-wise defined weak form

aSUPG(T, ϕ) =
∑
K∈Th

δK

(
ρCp

∂T

∂t
− k4T + β · ∇T − F, β · ∇ϕ

)
K

,

where K ∈ Th are the cells in the computation, δK ≥ 0 is a stabilization coefficient defined on each cell,
β = ρCpu is the effective advection velocity. The standard literature about SUPG does not contain ρCp,
so it makes sense to include this in the velocity. The first argument in the inner product is the strong form
of the residual of PDE, which is tested with the expression β · ∇ϕ representing the solution in streamline
direction. We have to assume k to be constant per cell, as we can not compute the spatial derivatives easily.

For the implementation, ∂T∂t is replaced by the BDF2 approximation, and its terms from older timesteps
and −F , are moved to the right-hand side of the PDE.

We use the parameter design presented in [53] for δK :

δK = h

2d‖β‖∞,K

(
coth(Pe)− 1

Pe

)
where the Peclet number is given by

Pe = h‖β‖∞,K
2dkmax

,

34

d is the polynomial degree of the temperature or composition element (typically 2), coth(x) = (1 +
exp(−2x))/(1− exp(−2x)), and kmax = ‖k‖∞,K is the maximum conductivity in the cell K.

If Pe < 1, the equation is diffusion-dominated and no stabilization is needed, so we set δK = 0. Care
needs to be taken in the definition if ‖β‖ or k become zero:

1. If k is zero, then Pe =∞ and the right part of the product in the definition of δK is equal to one.

2. If ‖β‖ is zero, Pe < 1, so we set δK = 0.

3. If both are zero, no stabilization is needed (the field remains constant).

2.12.2 Entropy viscosity

The entropy viscosity method ([41, 59]) adds an artificial diffusion νh to the weak form (63), where the
diffusion term (k∇T,∇ϕ) is replaced by

(max(k, νh)∇T,∇ϕ) .

The parameter νh is chosen as a constant per cell as

vh|K = min
(
vmax
h |K , vEh |K

)
,

where vmax
h is the maximum dissipation defined as

vmax
h |K = αmaxh‖u‖∞,K

on each cell K with parameter αmax (known as “beta” in the parameter files, see A.41). By itself, this
is commonly known as a first-order viscosity stabilization scheme, which is effective at stabilization, but
too diffusive to be used by itself. In fact, one can show that this reduces the convergence order of smooth
solutions to be only first order. This is avoided by taking the minimum with the entropy viscosity vEh |K
above. It is defined as

vEh |K = αE
h2‖rE‖∞,K
‖E − Eavg‖∞,Ω

.

The constant αE is given by “cR” in the parameter files, see A.41. In the denominator, the entropy viscosity
above is scaled by the maximum deviation of the temperature entropy E = 1

2 (T −Tm)2 with Tm = 1
2 (Tmin +

Tmax) from the spatial average Eavg = 1
|Ω|
∫
E dx. The residual rE of the entropy equation for E is defined

as
rE = ∂E

∂t
+ (T − Tm)(u · ∇T − k4T − F).

This residual is defined in such a way, that it is zero for the exact solution, large where the numerical
approximation is poor (for example in areas with strong gradients), and small in areas where the numerical
approximation is good.

The above definition assumes the entropy residual exponent (“alpha” in the parameter files, see A.41) is
set to 2 (the default and recommended). For the choice of 1 for “alpha”, the entropy viscosity is defined as

vEh |K = αE
h|Ω| · ‖u‖∞,K · ‖rE‖∞,K
‖u‖∞,Ω · (Tmax − Tmin) .

instead.
An additional parameter is the strain rate scaling factor “gamma” (see A.41), which changes the definition

of the maximum dissipation νmax
h to

vmax
h |K = αmaxh‖|u|+ γhK |ε(u)|‖∞,K ,

where γ ≥ 0 is the aforementioned parameter in front of the strain rate.

35

2.13 Free surface calculations
In reality the boundary conditions of a convecting Earth are not no-slip or free slip (i.e., no normal velocity).
Instead, we expect that a free surface is a more realistic approximation, since air and water should not
prevent the flow of rock upward or downward. This means that we require zero stress on the boundary, or
σ ·n = 0, where σ = 2ηε(u). In general there will be flow across the boundary with this boundary condition.
To conserve mass we must then advect the boundary of the domain in the direction of fluid flow. Thus,
using a free surface necessitates that the mesh be dynamically deformable.

2.13.1 Arbitrary Lagrangian-Eulerian implementation

The question of how to handle the motion of the mesh with a free surface is challenging. Eulerian meshes
are well behaved, but they do not move with the fluid motions, which makes them difficult for use with free
surfaces. Lagrangian meshes do move with the fluid, but they quickly become so distorted that remeshing is
required. ASPECT implements an Arbitrary Lagrangian-Eulerian (ALE) framework for handling motion of
the mesh. The ALE approach tries to retain the benefits of both the Lagrangian and the Eulerian approaches
by allowing the mesh motion um to be largely independent of the fluid. The mass conservation condition
requires that um ·n = u ·n on the free surface, but otherwise the mesh motion is unconstrained, and should
be chosen to keep the mesh as well behaved as possible.

ASPECT uses a Laplacian scheme for calculating the mesh velocity. The mesh velocity is calculated by
solving

−∆um = 0 in Ω, (64)
um = (u · n)n on ∂Ωfree surface, (65)

um · n = 0 on ∂Ωfree slip, (66)
um = 0 on ∂ΩDirichlet. (67)

After this mesh velocity is calculated, the mesh vertices are time-stepped explicitly. This scheme has the
effect of choosing a minimally distorting perturbation to the mesh. Because the mesh velocity is no longer
zero in the ALE approach, we must then correct the Eulerian advection terms in the advection system with
the mesh velocity (see, e.g. [33]). For instance, the temperature equation (56) becomes

ρCp

(
∂T

∂t
+ (u− um) · ∇T

)
−∇ · k∇T = ρH in Ω.

2.13.2 Free surface stabilization

Small disequilibria in the location of a free surface can cause instabilities in the surface position and result
in a “sloshing” instability. This may be countered with a quasi-implicit free surface integration scheme
described in [56]. This scheme enters the governing equations as a small stabilizing surface traction that
prevents the free surface advection from overshooting its true position at the next time step. ASPECT
implements this stabilization, the details of which may be found in [56].

An example of a simple model which uses a free surface may be found in Section 5.2.6.

2.14 Calculations with melt transport
The original formulation of the equations in Section 2.1 describes the movement of solid mantle material.
These computations also allow for taking into account how partially molten material changes the material
properties and the energy balance through the release of latent heat. However, this will not consider melt
extraction or any relative movement between melt and solid and there might be problems where the transport
of melt is of interest. Thus, ASPECT allows for solving additional equations describing the behavior of
silicate melt percolating through and interacting with a viscously deforming host rock. This requires the

36

advection of a compositional field representing the volume fraction of melt present at any given time (the
porosity φ), and also a change of the mechanical part of the system. The latter is implemented using the
approach of [57] and changes the Stokes system to

−∇ ·
[
2η
(
ε(us)−

1
3(∇ · us)1

)]
+∇pf +∇pc = ρg in Ω, (68)

∇ · us −∇ ·KD∇pf −KD∇pf ·
∇ρf
ρf

= −∇ ·KDρfg

+ Γ
(

1
ρf
− 1
ρs

)
(69)

− φ

ρf
us · ∇ρf −

1− φ
ρs

us · ∇ρs

−KDg · ∇ρf in Ω,

∇ · us + pc
ξ

= 0. (70)

We use the indices s to indicate properties of the solid and f for the properties of the fluid. The equations
are solved for the solid velocity us, the fluid pressure pf , and an additional variable, the compaction pressure
pc, which is related to the fluid and solid pressure through the relation pc = (1−φ)(ps−pf). KD is the Darcy
coefficient, which is defined as the quotient of the permeability and the fluid viscosity and Γ is the melting
rate. η and ξ are the shear and compaction viscosities and can depend on the porosity, temperature, pressure,
strain rate and composition. However, there are various laws for these quantities and so they are implemented
in the material model. Common formulations for the dependence on porosity are η = (1 − φ)η0e

−αφφ with
αφ ≈ 25...30 and ξ = η0φ

−n with n ≈ 1.
To avoid the density gradients in Equation (69), which would have to be specified individually for each

material model by the user, we can use the same method as for the mass conservation (described in Sec-
tion 2.10.3) and assume the change in solid density is dominated by the change in static pressure, which can
be written as ∇ps ≈ ∇pstatic ≈ ρsg. This finally allows us to write

1
ρs
∇ρs ≈

1
ρs

∂ρs
∂ps
∇ps ≈

1
ρs

∂ρs
∂ps
∇ps ≈

1
ρs

∂ρs
∂ps

ρsg ≈ βsρsg.

where βs is the compressibility of the solid. In the paper that describes the implementation [27], κ is used
for the compressibility. We change the variable here to be consistent throughout the manual.

For the fluid pressure, choosing a good approximation depends on the model parameters and setup (see
[27]). Hence, we make ∇ρf a model input parameter, which can be adapted based on the forces that are
expected to be dominant in the model. We can then replace the second equation by

∇ · us −∇ ·KD∇pf −KD∇pf ·
∇ρf
ρf

= −∇ · (KDρfg)

+ Γ
(

1
ρf
− 1
ρs

)
− φ

ρf
us · ∇ρf − (us · g)(1− φ)βsρs

−KDg · ∇ρf .

The melt velocity is computed as
uf = us −

KD

φ
(∇pf − ρfg),

but is only used for postprocessing purposes and for computing the time step length.

37

Note: Here, we do not use the visco-elasto-plastic rheology of the [57] formulation. Hence, we do
not consider the elastic deformation terms that would appear on the right hand side of Equation
(68) and Equation (70) and that include the elastic and compaction stress evolution parameters
ξτ and ξp. Moreover, our viscosity parameters η and ξ only cover viscous deformation instead of
combining visco-elasticity and plastic failure. This would require a modification of the rheologic
law using effective shear and compaction viscosities ηeff and ξeff combining a failure criterion and
shear and compaction visco-elasticities.

Moreover, melt transport requires an advection equation for the porosity field φ:

ρs
∂(1− φ)

∂t
+∇ · [ρs(1− φ)us] = −Γ in Ω, i = 1 . . . C (71)

In order to solve this equation in the same way as the other advection equations, we replace the second
term of the equation by:

∇ · [ρs(1− φ)us] = (1− φ) (ρs∇ · us +∇ρs · us)−∇φ · ρsus
Then we use the same method as described above and assume again that the change in density is dominated
by the change in static pressure

1
ρs
∇ρs · us ≈ βsρsg · us

so we get
∂φ

∂t
+ us · ∇φ = Γ

ρs
+ (1− φ)(∇ · us + βsρsg · us).

More details on the implementation can be found in [27]. A benchmark case demonstrating the propa-
gation of solitary waves can be found in Section 5.4.19.

2.15 Nullspace removal
The Stokes equation (1) only involves symmetric gradients of the velocity, and as such the velocity is
determined only up to rigid-body motions (that is to say, translations and rotations). For many simulations
the boundary conditions will fully specify the velocity solution, but for some combinations of geometries and
boundary conditions the solution will still be underdetermined. In the language of linear algebra, the Stokes
system may have a nullspace.

Usually the user will be able to determine beforehand whether their problem has a nullspace. For instance,
a model in a spherical shell geometry with free-slip boundary conditions at the top and bottom will have
a rigid-body rotation in its nullspace (but not translations, as the boundary conditions do not allow flow
through them). That is to say, the solver may be able to come up with a solution to the Stokes operator,
but that solution plus an arbitrary rotation is also an equally valid solution.

Another example is a model in a Cartesian box with periodic boundary conditions in the x-direction,
and free slip boundaries on the top and bottom. This setup has arbitrary translations along the x-axis in
its nullspace, so any solution plus an arbitrary x-translation is also a solution.

A solution with some small power in these nullspace modes should not affect the physics of the simulation.
However, the timestepping of the model is based on evaluating the maximum velocities in the solution, and
having unnecessary motions can severely shorten the time steps that ASPECT takes. Furthermore, rigid
body motions can make postprocessing calculations and visualization more difficult to interpret.

ASPECT allows the user to specify if their model has a nullspace. If so, any power in the nullspace is
calculated and removed from the solution after every timestep. There are two varieties of nullspace removal
implemented: removing net linear/angular momentum, and removing net translations/rotations.

38

Figure 1: Example of nullspace removal. On the left the nullspace (a rigid rotation) is removed, and the
velocity vectors accurately show the mantle flow. On the right there is a significant clockwise rotation to the
velocity solution which is making the more interesting flow features difficult to see.

For removing linear momentum we search for a constant velocity vector c such that∫
Ω
ρ(u− c) = 0

This may be solved by realizing that
∫

Ω ρu = p, the linear momentum, and
∫

Ω ρ = M , the total mass of
the model. Then we find

c = p/M
which is subtracted off of the velocity solution.

Removing the angular momentum is similar, though a bit more complicated. We search for a rotation
vector ω such that ∫

Ω
ρ(x× (u− ω × x)) = 0

Recognizing that
∫

Ω ρx× u = H, the angular momentum, and
∫

Ω ρx× ω × x = I · ω, the moment of
inertia dotted into the sought-after vector, we can solve for ω:

ω = I−1 ·H

A rotation about the rotation vector ω is then subtracted from the velocity solution.
Removing the net translations/rotations are identical to their momentum counterparts, but for those the

density is dropped from the formulae. For most applications the density should not vary so wildly that there
will be an appreciable difference between the two varieties, though removing linear/angular momentum is
more physically motivated.

The user can flag the nullspace for removal by setting the Remove nullspace option, as described in
Section A.136. Figure 1 shows the result of removing angular momentum from a convection model in a 2D
annulus with free-slip velocity boundary conditions.

2.16 Particles
ASPECT can, optionally, also deal with particles (sometimes called “tracers”). Particles can be thought of
as point-like objects that are simply advected along with the flow. In other words, if u(x, t) is the flow field
that results from solving equations (1)–(2), then the kth particle’s position satisfies the equations

∂

∂t
xk(t) = u(xk(t), t). (72)

39

The initial positions of all particles also need to be given and are usually either chosen randomly, based on
a fixed pattern, or are read from a file.

Particles are typically used to track visually where material that starts somewhere ends up after some
time of a simulation. It can also be used to track the history of the volume of the fluid that surrounds
a particle, for example by tracking how much strain has accumulated, or what the minimal or maximal
temperature may have been in the medium along the trajectory of a particle. To this end, particles can
carry properties. These are scalar- or vector-valued quantities that are attached to each particle, that are
initialized at the beginning of a simulation, and that are then updated at each time step. In other words, if
we denote by pk,m(t) the value of the mth property attached to the kth particle, then pk,m(t) will satisfy a
differential equation of the form

∂

∂t
pk,m(t) = gm (pk,m, p(xk(t), t)), T (xk(t), t)), ε(u(xk(t), t)), c(xk(t), t)) .

The exact form of gm of course depends on what exactly a particular property represents. Like with
compositional fields (see Section 2.7), it is possible to describe the right hand side gm in ways that also
allows for impulse (delta) functions in time.

How particles are used in practice is probably best explained using examples. To this end, see in particular
Section 5.2.5. All particle-related input parameters are listed in Section A.146. The implementation of
particles is discussed in great detail in [37].

3 Installation
There are three distinct ways to install ASPECT – compilation from source, installing a virtual machine,
and using a Docker container – each providing distinct advantages and disadvantages. In this section we
describe all three options and start with a summary of their properties to guide users to an informed decision
about the best option for their purpose.

Feature Compile & Install Virtual Machine Docker Container
Speed overhead 0% 30% 0–5%
Disk overhead 0 GB 1 GB 200 MB

Knowledge required Much Very Little Little
Root privileges required No No (installed VM software) Partially

Embedded in native environment Yes No Partially
MacOS support Yes Yes Yes
Windows support No Yes Yes

Local parallelization Yes Yes Yes
Massively parallel computations Yes No No

Modifying ASPECT Possible Possible Possible
Configuring dependencies Possible No No

Table 1: Features of the different installation options of ASPECT.

The available options can be best presented in form of typical use cases:

1. Virtual Machine (ASPECT beginner and tutorial participant): The virtual machine image provides
a fully prepared user environment that contains installations of ASPECT, all required libraries, and
visualization software on top of a full Linux environment. This way beginning users and tutorial par-
ticipants can work in a unified environment, thus minimizing installation time and technical problems.
Due to the overhead of virtualizing a full operating system this installation typically needs more space,
and is approximately 30 % slower than a native installation. Additionally working in a virtual machine
‘feels’ differently from working in your usual desktop environment. The virtual machine can be run on

40

all host operating systems that can run a virtualization software like VirtualBox (e.g. Linux, Apple
MacOS, Microsoft Windows).

2. Docker Container (advanced user with no need to configure/change the underlying libraries, possibly
changing parts of ASPECT): Docker containers are lightweight packages that only encapsulate the
minimal dependencies to run an application like ASPECT on top of the host operating system. They
allow easy installation and usage of ASPECT in a unified environment, while relying on the user’s
operating system to provide visualization software and model input data. When compared to the virtual
machine it is simple to exchange files between the host operating system and the docker container, and it
provides the benefit to work in the desktop environment you are used to. They have very little overhead
in terms of memory and speed compared to virtual machines, and allow for reproducible computations.
The container is set up with a standard ASPECT installation, but this can be modified by advanced
users (source code development within the container is possible).

3. Compile & Install (advanced users and developers with the need to reconfigure underlying libraries
or running massively parallel models): The most advanced option is to compile and install ASPECT
from source. This allows maximal control over the underlying libraries like Trilinos and deal.II,
as well as easy modifications to ASPECT by recompiling a modified source directory. Our installa-
tion instructions cover most Linux and MacOS operating systems, but incompatibilities on individual
systems can always occur and make the installation more cumbersome. If you are planning to run
massively parallel computations on a compute cluster this is likely your only option. Since clusters
usually have a very individual setup, it is always a good idea to ask IT support staff for help when
installing ASPECT, to avoid hard to reproduce setup problems, and performance penalties.

3.1 Docker Container
3.1.1 Installing Docker and downloading the ASPECT image

Docker is a lightweight virtualization software that allows to ship applications with all their dependencies
in a simple way. It is outside of the scope of this manual to explain all possible applications of Docker,
and we refer to the introduction (https://www.docker.com/what-docker) and installation and quickstart
guides (https://www.docker.com/products/docker) on the Docker website for more detailed descriptions
of how to set up and use the docker engine. More importantly Docker provides a marketplace for exchanging
prepared docker images (called Docker Hub). After setting up the docker engine downloading a precompiled
ASPECT image from Docker Hub is as simple as typing in a terminal:

docker pull geodynamics/aspect

Note that the transfer size of the compressed image containing ASPECT and all its dependencies is
about 900 MB. When extracted the image requires about 3.2 GB of disk space.

3.1.2 Running ASPECT models

Although it is possible to use the downloaded ASPECT docker image in a number of different ways, we
recommend the following workflow:

1. Create your ASPECT input file in a folder of your choice (possibly also containing any input data
that is required by your model) and navigate in a terminal into that directory.

2. Run the docker image and mount the current directory as a read-only volume into the docker container5.
This is accomplished by specifying the -v flag followed by the absolute path on the host machine, colon,

5Note that it is possible to mount a directory as writeable into the container. However, this is often associated with file
permission conflicts between the host system and the container. Therefore, we recommend this slightly more cumbersome, but
also more reliable workflow.

41

https://www.docker.com/what-docker
https://www.docker.com/products/docker

absolute path within the docker container, colon, and specifying read-only permissions as in the example
below.
Make sure your parameter file specifies a model output directory other than the input directory, e.g.
/home/dealii/aspect/model_output. When you have started the container run the aspect model
inside the container. Note that there are two ASPECT executables in the work directory of the
container: aspect and aspect-release. For a discussion of the different versions see Section 4.3, in
essence: You should run aspect first to check your model for errors, then run aspect-release for a
faster model run.
To sum up, the steps you will want to execute are:

docker run -it -v "$(pwd):/home/dealii/aspect/model_input:ro" \
geodynamics/aspect:latest bash

Within the container, simply run your model by executing:

./aspect model_input/your_input_file.prm

3. After the model has finished (or during the model run if you want to check intermediate results) copy
the model output out of the container into your current directory. For this you need to find the name
or ID of the docker container by running docker ps -a in a separate terminal first. Look for the most
recently started container to identify your current ASPECT container.
Commands that copy the model output to the current directory could be:

docker ps -a # Find the name of the running / recently closed container in the output
docker cp CONTAINER_NAME:/home/dealii/aspect/model_output .

4. The output data is saved inside your container even after the computation finishes and even when you
stop the container. After you have copied the data out of the container you should therefore delete
the container to avoid duplication of output data. Even after deleting you will always be able to start
a new container from the downloaded image following step 2. Deleting the finished container can be
achieved by the docker container prune command that removes any container that is not longer
running.

Note: If you own other finished containers that you want to keep use docker container
rm CONTAINER_NAME to only remove the container named CONTAINER_NAME.

To remove all finished containers use the following command:

docker container prune

Alternatively only remove a particular container:

docker container rm CONTAINER_NAME

You are all set. Repeat steps 1-4 of this process as necessary when updating your model parameters.

42

3.1.3 Developing ASPECT within a container

The above given workflow does not include advice on how to modify ASPECT inside the container. We
recommend a slightly different workflow for advanced users that want to modify parts of ASPECT. The
ASPECT docker container itself is build on top of a deal.II container that contains all dependencies
for compiling ASPECT. Therefore it is possible to run the deal.II container, mount an ASPECT source
directory from your host system and compile it inside of the container. An example workflow could look as
following (assuming you navigated in a terminal into the modified ASPECT source folder):

docker pull dealii/dealii:v8.5.pre.4-gcc-mpi-fulldepsmanual-debugrelease
docker run -it -v "$(pwd):/home/dealii/aspect:ro" \

dealii/dealii:v8.5.pre.4-gcc-mpi-fulldepsmanual-debugrelease bash

Inside of the container you now find a read-only ASPECT directory that contains your modified source
code. You can compile and run a model inside the container, e.g. in the following way:

mkdir aspect-build
cd aspect-build
cmake -DCMAKE_BUILD_TYPE=Debug -DDEAL_II_DIR=$HOME/deal.II-install $HOME/aspect
./aspect $HOME/aspect/cookbooks/shell_simple_2d.prm

To avoid repeated recompilations of the ASPECT source folder we recommend to reuse the so prepared
container instead of starting new containers based on the deal.II image. This can be achieved by the
following commands outside of the container:

docker ps -a # Find the name of the running / recently closed container in the output
docker restart CONTAINER_NAME
docker attach CONTAINER_NAME

For more information on the differences between using images and containers, and how to attach addi-
tional terminals to a running container, we refer to the docker documentation (e.g. https://docs.docker.
com/engine/getstarted/step_two/).

3.2 Virtual Machine
3.2.1 Installing VM software and setting up the virtual machine

The ASPECT project provides an experimental virtual machine containing a fully configured version of
ASPECT. To use this machine, you will need to install VirtualBox (http://www.virtualbox.org/) on
your machine, and then import a virtual machine image that can be downloaded from http://www.math.
clemson.edu/~heister/dealvm/. Note, however, that the machine image is several gigabytes in size and
downloading will take a while. After downloading and installing the virtual image it is convenient to set up
a shared folder between your host system and the virtual machine to exchange model files and outputs.

3.2.2 Running ASPECT models

The internal setup of the virtual machine is similar to the Docker container discussed above, except that
it contains a full-featured desktop environment. Also note that the user name is ubuntu, not dealii as in
the Docker container. Again there are multiple ways to use the virtual machine, but we recommend the
following workflow:

1. Create your ASPECT input file in the shared folder and start the virtual machine.

2. Navigate in a terminal to your model directory.

3. Run your model using the provided ASPECT executable:

43

https://docs.docker.com/engine/getstarted/step_two/
https://docs.docker.com/engine/getstarted/step_two/
http://www.virtualbox.org/
http://www.math.clemson.edu/~heister/dealvm/
http://www.math.clemson.edu/~heister/dealvm/

~/aspect/aspect your_input_file.prm

4. The model output should automatically appear on your host machine in the shared directory.

5. After you have verified that your model setup is correct, you might want to consider recompiling
ASPECT in release mode to increase the speed of the computation. See Section 4.3 for a discussion
of debug and release mode.

6. Visualize your model output either inside of the virtual machine (ParaView and VisIt are pre-installed),
or outside on your host system.

You are all set. Repeat steps 1-6 of this process as necessary when updating your model parameters.

3.3 Local installation
This is a brief explanation of how to compile and install the required dependencies and ASPECT itself.
This installation procedure guarantees fastest runtimes, and largest flexibility, but usually requires more work
than the options mentioned in the previous sections. While it is possible to install ASPECT’s dependencies
in particular p4est, Trilinos, and deal.II manually, we recommend to use the candi software (see https:
//github.com/dealii/candi). candi was written as an installation program for deal.II, and includes a
number of system specific instructions that will be listed when starting the program. It can be flexibly
configured to allow for non-default compilers or libraries (e.g. Intel’s MKL instead of LAPACK) by changing
entries in the configuration file candi.cfg, or by providing platform specific installation files.

In case you encounter problems during the installation, please consult our wiki (https://github.com/
geodynamics/aspect/wiki) for frequently asked questions and special instructions for MacOS users, before
posting your questions on the forum (https://community.geodynamics.org/c/aspect).

3.3.1 System prerequisites

candi will show system specific instructions on startup, but its prerequisites are relatively widely used and
packaged for most operating systems. You will need compilers for C, C++ and Fortran, the GNU make
system, the CMake build system, and the libraries and header files of BLAS, LAPACK and zlib, which is
used for compressing the output data. To use more than one process for your computations you will need
to install a MPI library, its headers and the necessary executables to run MPI programs. There are some
optional packages for additional features, like the HDF5 libraries for additional output formats, PETSc for
alternative solvers, and Numdiff for checking ASPECT’s test results with reasonable accuracy, but these
are not strictly required, and in some operating systems they are not available as packages but need to be
compiled from scratch. Finally, for obtaining a recent development version of ASPECT you will need the
git version control system.

An exemplary command to obtain all required packages on Ubuntu 14.04 would be:

sudo apt-get install build-essential \
cmake \
gcc \
g++ \
gfortran \
git \
libblas-dev \
liblapack-dev \
libopenmpi-dev \
numdiff \
openmpi-bin \
zlib1g-dev

44

https://github.com/dealii/candi
https://github.com/dealii/candi
https://github.com/geodynamics/aspect/wiki
https://github.com/geodynamics/aspect/wiki
https://community.geodynamics.org/c/aspect

3.3.2 Using candi to compile dependencies

In its default configuration candi downloads and compiles a deal.II configuration that is able to run
ASPECT, but it also contains a number of packages that are not required (and that can be safely disabled
if problems occur during the installation). We require at least the packages p4est, Trilinos (or as an
experimental alternative PETSc), and finally deal.II.

At the time of this writing candi will install p4est 2.0, Trilinos 12.10.1, PETSc 3.6.4, and deal.II
8.5.0. We strive to keep the development version of ASPECT compatible with the latest release of deal.II
and the current deal.II development version at any time, and we usually support several older versions of
p4est, Trilinos, and PETSc.

1. Obtaining candi: Download candi by running

git clone https://github.com/dealii/candi

in a directory of your choice.

2. Installing deal.II and its dependencies: Execute candi by running

cd candi
./candi.sh -p INSTALL_PATH

(here we assume you replace INSTALL_PATH by the path were you want to install all dependencies and
deal.II, typically a directory inside $HOME/bin or a similar place). This step might take a long time,
but can be parallelized by adding -jN, where N is the number of CPU cores available on your computer.
Further configuration options and parameters are listed at https://github.com/dealii/candi. In
case you encounter problems during this step, please read the error message, and consult our wiki
(https://github.com/geodynamics/aspect/wiki) for common installation problems, before asking
on the forum (https://community.geodynamics.org/c/aspect).

3. You may now want to configure your environment to make it aware of the newly installed packages.
This can be achieved by adding the line source INSTALL_PATH/configuration/enable.sh to the file
responsible for setting up your shell environment6 (again we assume you replace INSTALL_PATH by the
patch chosen in the previous step). Then close the terminal and open it again to activate the change.

4. Testing your installation: Test that your installation works by compiling the step-32 example that
you can find in $DEAL_II_DIR/examples/step-32. Prepare and compile by running cmake . &&
make and run with mpirun -n 2 ./step-32.

Congratulations, you are now set up for compiling ASPECT itself.

3.3.3 Obtaining ASPECT and initial configuration

The development version of ASPECT can be downloaded by executing the command

git clone https://github.com/geodynamics/aspect.git

If $DEAL_II_DIR points to your deal.II installation, you can configure ASPECT by running

mkdir build; cd build; cmake ..

in the ASPECT directory created by the git clone command above. If you did not set $DEAL_II_DIR you
have to supply cmake with the location:

6For bash this would be the file ˜/.bashrc.

45

https://github.com/dealii/candi
https://github.com/geodynamics/aspect/wiki
https://community.geodynamics.org/c/aspect

cmake -DDEAL_II_DIR=/u/username/deal-installed/ ..

This will create an “out-of-source“ build, where the build directory is different from the source directory.
While in-source builds (where you run cmake . in your source directory), are supported, we strongly recom-
mend an out-of-source build as described above. Specifically, running the whole test suite (see Section 6.8.1)
is only supported this way.

3.3.4 Compiling ASPECT and generating documentation

After downloading ASPECT and having built the libraries it builds on, you can compile it by typing

make

on the command line (or make -jN if you have multiple processors in your machine, where N is the number of
processors). This builds the ASPECT executable which will reside in the build directory and will be named
aspect. To run ASPECT from the main source directory you would need to reference it as ./build/aspect.
If you intend to modify ASPECT for your own experiments, you may want to also generate documentation
about the source code. This can be done using the command

cd doc; make

which assumes that you have the doxygen documentation generation tool installed. Most Linux distributions
have packages for doxygen. The result will be the file doc/doxygen/index.html that is the starting point
for exploring the documentation.

4 Running ASPECT
4.1 Overview
After compiling ASPECT as described above, you should have an executable file in the build directory. It
can be called in the build directory as follows:

./aspect parameter-file.prm

or, if you want to run the program in parallel, using something like

mpirun -np 4 ./aspect parameter-file.prm

to run with 4 processors. In either case, the argument denotes the (path and) name of a file that contains
input parameters.7 When you download ASPECT, there are a number of sample input files in the cookbooks
directory, corresponding to the examples discussed in Section 5, and input files for some of the benchmarks
discussed in Section 5.4 are located in the benchmarks directory. A full description of all parameters one
can specify in these files is given in Section A.

Running ASPECT with an input file 8 will produce output that will look something like this (numbers
will all be different, of course):

7As a special case, if you call ASPECT with an argument that consists of two dashes, “--”, then the arguments will be read
from the standard input stream of the program. In other words, you could type the input parameters into your shell window
in this case (though that would be cumbersome, ASPECT would seem to hang until you finish typing all of your input into
the window and then terminating the input stream by typing Ctrl-D). A more common case would be to use Unix pipes so
that the default input of ASPECT is the output of another program, as in a command like cat parameter-file.prm.in |
mypreprocessor | ./aspect --, where mypreprocessor would be a program of your choice that somehow transforms the file
parameter-file.prm.in into a valid input file, for example to systematically vary one of the input parameters.
If you want to run ASPECT in parallel, you can do something like cat parameter-file.prm.in | mypreprocessor | mpirun

-np 4 ./aspect --. In cases like this, mpirun only forwards the output of mypreprocessor to the first of the four MPI processes,
which then sends the text to all other processors.

8For example by running ./aspect ../cookbooks/convection-box/convection-box.prm in your build directory.

46

doc/doxygen/index.html

-- This is ASPECT, the Advanced Solver for Problems in Earth’s ConvecTion.
-- . version 2.0.0-pre (include_dealii_version, c20eba0)
-- . using deal.II 9.0.0-pre (master, 952baa0)
-- . using Trilinos 12.10.1
-- . using p4est 2.0.0
-- . running in DEBUG mode
-- . running with 1 MPI process

Number of active cells: 1,536 (on 5 levels)
Number of degrees of freedom: 20,756 (12,738+1,649+6,369)

*** Timestep 0: t=0 years

Rebuilding Stokes preconditioner...
Solving Stokes system... 30+3 iterations.
Solving temperature system... 8 iterations.

Number of active cells: 2,379 (on 6 levels)
Number of degrees of freedom: 33,859 (20,786+2,680+10,393)

*** Timestep 0: t=0 years

Rebuilding Stokes preconditioner...
Solving Stokes system... 30+4 iterations.
Solving temperature system... 8 iterations.

Postprocessing:
Writing graphical output: output/solution/solution-00000
RMS, max velocity: 0.0946 cm/year, 0.183 cm/year
Temperature min/avg/max: 300 K, 3007 K, 6300 K
Inner/outer heat fluxes: 1.076e+05 W, 1.967e+05 W

*** Timestep 1: t=1.99135e+07 years

Solving Stokes system... 30+3 iterations.
Solving temperature system... 8 iterations.

Postprocessing:
Writing graphical output: output/solution/solution-00001
RMS, max velocity: 0.104 cm/year, 0.217 cm/year
Temperature min/avg/max: 300 K, 3008 K, 6300 K
Inner/outer heat fluxes: 1.079e+05 W, 1.988e+05 W

*** Timestep 2: t=3.98271e+07 years

Solving Stokes system... 30+3 iterations.
Solving temperature system... 8 iterations.

Postprocessing:
RMS, max velocity: 0.111 cm/year, 0.231 cm/year
Temperature min/avg/max: 300 K, 3008 K, 6300 K
Inner/outer heat fluxes: 1.083e+05 W, 2.01e+05 W

47

*** Timestep 3: t=5.97406e+07 years

...

The output starts with a header that lists the used ASPECT, deal.II, Trilinos and p4est versions
as well as the mode you compiled ASPECT in (see 4.3), and the number of parallel processes used9. With
this information we strive to make ASPECT models as reproducible as possible.

The following output depends on the model, and in this case was produced by a parameter file that,
among other settings, contained the following values (we will discuss many such input files in Section 5:

set Dimension = 2
set End time = 1.5e9
set Output directory = output

subsection Geometry model
set Model name = spherical shell

end

subsection Mesh refinement
set Initial global refinement = 4
set Initial adaptive refinement = 1

end

subsection Postprocess
set List of postprocessors = visualization, velocity statistics, temperature statistics,

↪→ heat flux statistics, depth average
end

In other words, these run-time parameters specify that we should start with a geometry that represents
a spherical shell (see Sections A.43 and A.53 for details). The coarsest mesh is refined 4 times globally, i.e.,
every cell is refined into four children (or eight, in 3d) 4 times. This yields the initial number of 1,536 cells
on a mesh hierarchy that is 5 levels deep. We then solve the problem there once and, based on the number
of adaptive refinement steps at the initial time set in the parameter file, use the solution so computed to
refine the mesh once adaptively (yielding 2,379 cells on 6 levels) on which we start the computation over at
time t = 0.

Within each time step, the output indicates the number of iterations performed by the linear solvers,
and we generate a number of lines of output by the postprocessors that were selected (see Section A.137).
Here, we have selected to run all postprocessors that are currently implemented in ASPECT which includes
the ones that evaluate properties of the velocity, temperature, and heat flux as well as a postprocessor that
generates graphical output for visualization.

While the screen output is useful to monitor the progress of a simulation, its lack of a structured output
makes it not useful for later plotting things like the evolution of heat flux through the core-mantle boundary.
To this end, ASPECT creates additional files in the output directory selected in the input parameter file
(here, the output/ directory relative to the directory in which ASPECT runs). In a simple case, this will
look as follows:

aspect> ls -l output/
total 932
-rw-rw-r-- 1 bangerth bangerth 11134 Dec 11 10:08 depth_average.gnuplot
-rw-rw-r-- 1 bangerth bangerth 11294 Dec 11 10:08 log.txt
-rw-rw-r-- 1 bangerth bangerth 42 Dec 11 10:07 original.prm

9If you used the git version control system to download ASPECT and/or deal.II, as in this example, you will also get
the current branch, and unique revision identifier for the current version. This is very important if you modify either software
between releases, or you use a development version that is not an official release. Note that this revision can not track changes
you made to the software that are not part of a git commit.

48

-rw-rw-r-- 1 bangerth bangerth 326074 Dec 11 10:07 parameters.prm
-rw-rw-r-- 1 bangerth bangerth 577138 Dec 11 10:07 parameters.tex
drwxr-xr-x 2 bangerth bangerth 4096 Dec 11 10:08 solution
-rw-rw-r-- 1 bangerth bangerth 484 Dec 11 10:08 solution.pvd
-rw-rw-r-- 1 bangerth bangerth 451 Dec 11 10:08 solution.visit
-rw-rw-r-- 1 bangerth bangerth 8267 Dec 11 10:08 statistics

The purpose of these files is as follows:

• Screen output: The file output/log.txt contains a copy of the output that is printed to the terminal
when you run ASPECT.

• A listing of all run-time parameters: The file output/original.prm is a copy of the parameter file
that was used in this computation. It is often useful to save this file together with simulation data to
allow for the easy reproduction of computations later on.
The output/parameters.prm file contains a complete listing of all run-time parameters. In particular,
this includes the ones that have been specified in the input parameter file passed on the command
line, but it also includes those parameters for which defaults have been used. This file can also be
used to explore all available parameters and possible options as it contains the documentation of all
parameters.
Finally, there is output/parameters.tex, that lists the parameters like output/parameters.prm in
LATEX format, and output/parameters.json in JSON format.
While output/parameters.prm contains all parameters (with their default values if they were not
specified), all formatting and comments are lost. As output/original.prm is identical to the prm you
started ASPECT with, it preserves comments and formatting while not outputting the default values
(or documentation).

• Graphical output files: One of the postprocessors chosen in the parameter file used for this com-
putation is the one that generates output files that represent the solution at certain time steps.
The screen output indicates that it has run at time step 0, producing output files that start with
output/solution/solution-00000. Depending on the settings in the parameter file, output will be
generated every so many seconds or years of simulation time, and subsequent output files will then
start with output/solution/solution-00001, all placed in the output/solution subdirectory. This
is because there are often a lot of output files: For many time steps, times the number of processors,
so they are placed in a subdirectory so as not to make it more difficult than necessary to find the other
files.
At the current time, the default is that ASPECT generates this output in VTK format10 as that
is widely used by a number of excellent visualization packages and also supports parallel visualiza-
tion.11 If the program has been run with multiple MPI processes, then the list of output files will be
output/solution/solution-XXXXX.YYYY denoting that this the XXXXXth time we create output files
and that the file was generated by the YYYYth processor.
VTK files can be visualized by many of the large visualization packages. In particular, the Visit and
ParaView programs, both widely used, can read the files so created. However, while VTK has become
a de-facto standard for data visualization in scientific computing, there doesn’t appear to be an agreed
upon way to describe which files jointly make up for the simulation data of a single time step (i.e., all
files with the same XXXXX but different YYYY in the example above). Visit and ParaView both have

10The output is in fact in the VTU version of the VTK file format. This is the XML-based version of this file format in which
contents are compressed. Given that typical file sizes for 3d simulation are substantial, the compression saves a significant
amount of disk space.

11The underlying deal.II package actually supports output in around a dozen different formats, but most of them are not
very useful for large-scale, 3d, parallel simulations. If you need a different format than VTK, you can select this using the
run-time parameters discussed in Section A.160.

49

https://visit.llnl.gov
http://www.paraview.org/

their method of doing things, through .pvtu and .visit files. To make it easy for you to view data,
ASPECT simply creates both kinds of files in each time step in which graphical data is produced,
and these are then also placed into the subdirectories as output/solution/solution-XXXXX.pvtu and
output/solution/solution-XXXXX.visit.
The final two files of this kind, output/solution.pvd and output/solution.visit, are files that
describes to ParaView and Visit, respectively, which output/solution/solution-XXXXX.pvtu and
output/solution/solution-XXXXX.YYYY.vtu jointly form a complete simulation. In the former case,
the file lists the .pvtu files of all timesteps together with the simulation time to which they correspond.
In the latter case, it actually lists all .vtu that belong to one simulation, grouped by the timestep they
correspond to. To visualize an entire simulation, not just a single time step, it is therefore simplest to
just load one of these files, depending on whether you use ParaView or Visit.12 Because loading an
entire simulation is the most common use case, these are the two files you will most often load, and
so they are placed in the output directory, not the subdirectory where the actual .vtu data files are
located.
For more on visualization, see also Section 4.4.

• A statistics file: The output/statistics file contains statistics collected during each time step, both
from within the simulator (e.g., the current time for a time step, the time step length, etc.) as well
as from the postprocessors that run at the end of each time step. The file is essentially a table that
allows for the simple production of time trends. In the example above, and at the time when we are
writing this section, it looks like this:
1: Time step number
2: Time (years)
3: Iterations for Stokes solver
4: Time step size (year)
5: Iterations for temperature solver
6: Visualization file name
7: RMS velocity (m/year)
8: Max. velocity (m/year)
9: Minimal temperature (K)
10: Average temperature (K)
11: Maximal temperature (K)
12: Average nondimensional temperature (K)
13: Core-mantle heat flux (W)
14: Surface heat flux (W)
0 0.000e+00 33 2.9543e+07 8 "" 0.0000 0.0000 0.0000 0.0000 ...
0 0.000e+00 34 1.9914e+07 8 output/solution/solution-00000 0.0946 0.1829 300.00 3007.2519 ...
1 1.991e+07 33 1.9914e+07 8 output/solution/solution-00001 0.1040 0.2172 300.00 3007.8406 ...
2 3.982e+07 33 1.9914e+07 8 "" 0.1114 0.2306 300.00 3008.3939 ...

The actual columns you have in your statistics file may differ from the ones above, but the format of
this file should be obvious. Since the hash mark is a comment marker in many programs (for example,
gnuplot ignores lines in text files that start with a hash mark), it is simple to plot these columns as
time series. Alternatively, the data can be imported into a spreadsheet and plotted there.

Note: As noted in Section 2.3, ASPECT can be thought of as using the meter-kilogram-
second (MKS, or SI) system. Unless otherwise noted, the quantities in the output file are
therefore also in MKS units.

12At the time of writing this, current versions of Visit (starting with version 2.5.1) actually have a bug that prevents them
from successfully reading the output/solution.visit or output/solution/solution-XXXXX.visit files – Visit believes that
each of these files corresponds to an individual time step, rather than that a whole group of files together form one time step.
This bug is not fixed in Visit 2.6.3, but may be fixed in later versions.

50

Figure 2: Example output for depth average statistics. On the left axis are 13 time steps, on the right is the
depth (from the top at 0 to the bottom of the mantle on the far right), and the upwards pointing axis is the
average temperature. This plot is generated by gnuplot, but the depth averages can be written in many other
output formats as well, if preferred (see Section A.139).

A simple way to plot the contents of this file is shown in Section 4.4.2.

• Output files generated by other postprocessors: Similar to the output/statistics file, several of the
existing postprocessors one can select from the parameter file generate their data in their own files
in the output directory. For example, ASPECT’s “depth average” postprocessor will write depth-
average statistics into the file output/depth_average.gnuplot. Input parameters chosen in the input
file control how often this file is updated by the postprocessor, as well as what graphical file format to
use (if anything other than gnuplot is desired).
By default, the data is written in text format that can be easily visualized, see for example Figure 2.
The plot shows how an initially linear temperature profile forms upper and lower boundary layers.

There are other parts of ASPECT that may also create files in the output directory. For example, if
your simulation includes advecting along particles (see Section 2.16), then visualization information for these
particles will also appear in this file. See Section 5.2.5 for an example of how this looks like.

4.2 Selecting between 2d and 3d runs
ASPECT can solve both two- and three-dimensional problems.13 You select which one you want by putting
a line like the following into the parameter file (see Section A):

set Dimension = 2

Internally, dealing with the dimension builds on a feature in deal.II, upon which ASPECT is based,
that is called dimension-independent programming. In essence, what this does is that you write your code
only once in a way so that the space dimension is a variable (or, in fact, a template parameter) and you
can compile the code for either 2d or 3d. The advantage is that codes can be tested and debugged in 2d
where simulations are relatively cheap, and the same code can then be re-compiled and executed in 3d where
simulations would otherwise be prohibitively expensive for finding bugs; it is also a useful feature when
scoping out whether certain parameter settings will have the desired effect by testing them in 2d first, before

13For a description of what exactly we mean when we consider two-dimensional models, see Section 2.1.3.

51

running them in 3d. This feature is discussed in detail in the deal.II tutorial program step-4. Like there, all
the functions and classes in ASPECT are compiled for both 2d and 3d. Which dimension is actually called
internally depends on what you have set in the input file, but in either case, the machine code generated
for 2d and 3d results from the same source code and should, thus, contain the same set of features and
bugs. Running in 2d and 3d should therefore yield comparable results. Be prepared to wait much longer for
computations to finish in the latter case, however.

4.3 Debug or optimized mode
ASPECT utilizes a deal.II feature called debug mode. By default, ASPECT uses debug mode, i.e., it calls
a version of the deal.II library that contain lots of checks for the correctness of function arguments, the
consistency of the internal state of data structure, etc. If you program with deal.II, for example to extend
ASPECT, it has been our experience over the years that, by number, most programming errors are of the
kind where one forgets to initialize a vector, one accesses data that has not been updated, one tries to write
into a vector that has ghost elements, etc. If not caught, the result of these bugs is that parts of the program
use invalid data (data written into ghost elements is not communicated to other processors), that operations
simply make no sense (adding vectors of different length), that memory is corrupted (writing past the end
of an array) or, in rare and fortunate cases, that the program simply crashes.

Debug mode is designed to catch most of these errors: It enables some 7,300 assertions (as of late 2011)
in deal.II where we check for errors like the above and, if the condition is violated, abort the program
with a detailed message that shows the failed check, the location in the source code, and a stacktrace
how the program got there. The downside of debug mode is, of course, that it makes the program much
slower – depending on application by a factor of 4–10. An example of the speedup one can get is shown in
Section 5.2.1.

ASPECT by default uses debug mode because most users will want to play with the source code, and
because it is also a way to verify that the compilation process worked correctly. If you have verified that the
program runs correctly with your input parameters, for example by letting it run for the first 10 time steps,
then you can switch to optimized mode by compiling ASPECT with the command14

make release

and then compile using

make

To switch back to debug mode type:

make debug

Note: It goes without saying that if you make significant modifications to the program, you
should do the first runs in debug mode to verify that your program still works as expected.

4.4 Visualizing results
Among the postprocessors that can be selected in the input parameter file (see Sections 4.1 and A.160) are
some that can produce files in a format that can later be used to generate a graphical visualization of the
solution variables u, p and T at select time steps, or of quantities derived from these variables (for the latter,
see Section 6.4.9).

By default, the files that are generated are in VTU format, i.e., the XML-based, compressed format
defined by the VTK library, see http://public.kitware.com/VTK/. This file format has become a broadly
accepted pseudo-standard that many visualization program support, including two of the visualization pro-
grams used most widely in computational science: Visit (see https://visit.llnl.gov/) and ParaView

14Note that this procedure also changed with the switch to cmake.

52

https://www.dealii.org/developer/doxygen/deal.II/step_4.html
http://public.kitware.com/VTK/
https://visit.llnl.gov/

(see http://www.paraview.org/). The VTU format has a number of advantages beyond being widely
distributed:

• It allows for compression, keeping files relatively small even for sizable computations.

• It is a structured XML format, allowing other programs to read it without too much trouble.

• It has a degree of support for parallel computations where every processor would only write that part
of the data to a file that this processor in fact owns, avoiding the need to communicate all data to a
single processor that then generates a single file. This requires a master file for each time step that
then contains a reference to the individual files that together make up the output of a single time step.
Unfortunately, there doesn’t appear to be a standard for these master records; however, both ParaView
and Visit have defined a format that each of these programs understand and that requires placing a
file with ending .pvtu or .visit into the same directory as the output files from each processor.
Section 4.1 gives an example of what can be found in the output directory.

Note: You can select other formats for output than VTU, see the run-time parameters in Sec-
tion A.160. However, none of the numerous formats currently implemented in deal.II other than
the VTK/VTU formats allows for splitting up data over multiple files in case of parallel computa-
tions, thus making subsequent visualization of the entire volume impossible. Furthermore, given
the amount of data ASPECT can produce, the compression that is part of the VTU format is
an important part of keeping data manageable.

4.4.1 Visualization the graphical output using Visit

In the following, let us discuss the process of visualizing a 2d computation using Visit. The steps necessary
for other visualization programs will obviously differ but are, in principle, similar.

To this end, let us consider a simulation of convection in a box-shaped, 2d region (see the “cookbooks”
section, Section 5, and in particular Section 5.2.1 for the input file for this particular model). We can run
the program with 4 processors using

mpirun -np 4 ./aspect cookbooks/convection-box/convection-box.prm

Letting the program run for a while will result in several output files as discussed in Section 4.1 above.
In order to visualize one time step, follow these steps:15

• Selecting input files: As mentioned above, in parallel computations we usually generate one output file
per processor in each time step for which visualization data is produced (see, however, Section 4.4.3). To
tell Visit which files together make up one time step, ASPECT creates a output/solution/solution-XXXXX.visit
file in the output directory. To open it, start Visit, click on the “Open” button in the “Sources” area
of its main window (see Fig. 3(a)) and select the file you want. Alternatively, you can also select files
using the “File > Open” menu item, or hit the corresponding keyboard short-cut. After adding an
input source, the “Sources” area of the main window should list the selected file name. More easily,
you can also just open output/solution.visit which references all output files for all time steps. If
you open this, Visit will display a slider that allows you to select which time step you want to visualize,
along with forward, backward, and play buttons that allow you to move between time steps.

• Selecting what to plot: ASPECT outputs all sorts of quantities that characterize the solution, such as
temperature, pressure, velocity, and many others on demand (see Section A.160). Once an input file
has been opened, you will want to add graphical representations of some of this data to the still empty
canvas. To this end, click on the “Add” button of the “Plots” area. The resulting menu provides a

15The instructions and screenshots were generated with Visit 2.1. Later versions of Visit differ slightly in the arrangement of
components of the graphical user interface, but the workflow and general idea remains unchanged.

53

http://www.paraview.org/

(a) (b) (c)

Figure 3: Main window of Visit, illustrating the different steps of adding content to a visualization.

(a) (b)

Figure 4: Display window of Visit, showing a single plot and one where different data is overlaid.

54

number of different kinds of plots. The most important for our purpose are: (i) “Pseudocolor” allows
the visualization of a scalar field (e.g., temperature, pressure, density) by using a color field. (ii)
“Vector” displays a vector-valued field (e.g., velocity) using arrows. (iii) “Mesh” displays the mesh.
The “Contour”, “Streamline” and “Volume” options are also frequently useful, in particular in 3d.
Let us choose the “Pseudocolor” item and select the temperature field as the quantity to plot. Your
main window should now look as shown in Fig. 3(b). Then hit the “Draw” button to make Visit
generate data for the selected plots. This will yield a picture such as shown in Fig. 4(a) in the display
window of Visit.

• Overlaying data: Visit can overlay multiple plots in the same view. To this end, add another plot to
the view using again the “Add” button to obtain the menu of possible plots, then the “Draw” button
to actually draw things. For example, if we add velocity vectors and the mesh, the main window looks
as in Fig. 3(c) and the main view as in Fig. 4(b).

• Adjusting how data is displayed: Without going into too much detail, if you double click onto the name
of a plot in the “Plots” window, you get a dialog in which many of the properties of this plot can be
adjusted. Further details can be changed by using “Operators” on a plot.

• Making the output prettier: As can be seen in Fig. 4, Visit by default puts a lot of clutter around
the figure – the name of the user, the name of the input file, color bars, axes labels and ticks, etc.
This may be useful to explore data in the beginning but does not yield good pictures for presentations
or publications. To reduce the amount of information displayed, go to the “Controls > Annotations”
menu item to get a dialog in which all of these displays can be selectively switched on and off.

• Saving figures: To save a visualization into a file that can then be included into presentations and
publications, go to the menu item “File > Save window”. This will create successively numbered files
in the directory from which Visit was started each time a view is saved. Things like the format used
for these files can be chosen using the “File > Set save options” menu item. We have found that one
can often get better looking pictures by selecting the “Screenshot” method in this dialog.

More information on all of these topics can be found in the Visit documentation, see https://visit.
llnl.gov/. We have also recorded video lectures demonstrating this process interactively at http://www.
youtube.com/watch?v=3ChnUxqtt08 for Visit, and at http://www.youtube.com/watch?v=w-65jufR-bc
for ParaView.

4.4.2 Visualizing statistical data

In addition to the graphical output discussed above, ASPECT produces a statistics file that collects in-
formation produced during each time step. For the remainder of this section, let us assume that we have
run ASPECT with the input file discussed in Section 5.2.1, simulating convection in a box. After running
ASPECT, you will find a file called statistics in the output directory that, at the time of writing this,
looked like this: This file has a structure that looks (at the time of writing this section) like this:

1: Time step number
2: Time (seconds)
3: Number of mesh cells
4: Number of Stokes degrees of freedom
5: Number of temperature degrees of freedom
6: Iterations for temperature solver
7: Iterations for Stokes solver
8: Velocity iterations in Stokes preconditioner
9: Schur complement iterations in Stokes preconditioner
10: Time step size (seconds)
11: RMS velocity (m/s)
12: Max. velocity (m/s)

55

https://visit.llnl.gov/
https://visit.llnl.gov/
http://www.youtube.com/watch?v=3ChnUxqtt08
http://www.youtube.com/watch?v=3ChnUxqtt08
http://www.youtube.com/watch?v=w-65jufR-bc

13: Minimal temperature (K)
14: Average temperature (K)
15: Maximal temperature (K)
16: Average nondimensional temperature (K)
17: Outward heat flux through boundary with indicator 0 ("left") (W)
18: Outward heat flux through boundary with indicator 1 ("right") (W)
19: Outward heat flux through boundary with indicator 2 ("bottom") (W)
20: Outward heat flux through boundary with indicator 3 ("top") (W)
21: Visualization file name
0 0.0000e+00 256 2467 1089 0 29 30 29 1.2268e-02 1.79026783e+00 2.54322608e+00
1 1.2268e-02 256 2467 1089 32 29 30 30 3.7388e-03 5.89844152e+00 8.35160076e+00
2 1.6007e-02 256 2467 1089 20 28 29 29 2.0239e-03 1.09071922e+01 1.54298908e+01
3 1.8031e-02 256 2467 1089 15 27 28 28 1.3644e-03 1.61759153e+01 2.28931189e+01
4 1.9395e-02 256 2467 1089 13 26 27 27 1.0284e-03 2.14465789e+01 3.03731397e+01
5 2.0424e-02 256 2467 1089 11 25 26 26 8.2812e-04 2.66110761e+01 3.77180480e+01

In other words, it first lists what the individual columns mean with a hash mark at the beginning of the
line and then has one line for each time step in which the individual columns list what has been explained
above.16

This file is easy to visualize. For example, one can import it as a whitespace separated file into a
spreadsheet such as Microsoft Excel or OpenOffice/LibreOffice Calc and then generate graphs of one column
against another. Or, maybe simpler, there is a multitude of simple graphing programs that do not need the
overhead of a full fledged spreadsheet engine and simply plot graphs. One that is particularly simple to use
and available on every major platform is Gnuplot. It is extensively documented at http://www.gnuplot.
info/.

Gnuplot is a command line program in which you enter commands that plot data or modify the way
data is plotted. When you call it, you will first get a screen that looks like this:

/home/user/aspect/output gnuplot

G N U P L O T
Version 4.6 patchlevel 0 last modified 2012-03-04
Build System: Linux x86_64

Copyright (C) 1986-1993, 1998, 2004, 2007-2012
Thomas Williams, Colin Kelley and many others

gnuplot home: http://www.gnuplot.info
faq, bugs, etc: type "help FAQ"
immediate help: type "help" (plot window: hit ’h’)

Terminal type set to ’qt’
gnuplot>

At the prompt on the last line, you can then enter commands. Given the description of the individual
columns given above, let us first try to plot the heat flux through boundary 2 (the bottom boundary of the
box), i.e., column 19, as a function of time (column 2). This can be achieved using the following command:

plot "statistics" using 2:19

The left panel of Fig. 5 shows what Gnuplot will display in its output window. There are many things one
can configure in these plots (see the Gnuplot manual referenced above). For example, let us assume that

16With input files that ask for initial adaptive refinement, the first time step may appear twice because we solve on a mesh that
is globally refined and we then start the entire computation over again on a once adaptively refined mesh (see the parameters
in Section A.125 for how to do that).

56

http://www.gnuplot.info/
http://www.gnuplot.info/

Figure 5: Visualizing the statistics file obtained from the example in Section 5.2.1 using Gnuplot: Output
using simple commands.

we want to add labels to the x- and y-axes, use not just points but lines and points for the curves, restrict
the time axis to the range [0, 0.2] and the heat flux axis to [−10 : 10], plot not only the flux through the
bottom but also through the top boundary (column 20) and finally add a key to the figure, then the following
commands achieve this:

set xlabel "Time"
set ylabel "Heat flux"
set style data linespoints
plot [0:0.2][-10:10] "statistics" using 2:19 title "Bottom boundary", \

"statistics" using 2:20 title "Top boundary"

If a line gets too long, you can continue it by ending it in a backslash as above. This is rarely used on the
command line but useful when writing the commands above into a script file, see below. We have done it
here to get the entire command into the width of the page.

For those who are lazy, Gnuplot allows to abbreviate things in many different ways. For example, one
can abbreviate most commands. Furthermore, one does not need to repeat the name of an input file if it
is the same as the previous one in a plot command. Thus, instead of the commands above, the following
abbreviated form would have achieved the same effect:

se xl "Time"
se yl "Heat flux"
se sty da lp
pl [:0.2][-10:10] "statistics" us 2:19 t "Bottom boundary", "" us 2:20 t "Top boundary"

This is of course unreadable at first but becomes useful once you become more familiar with the commands
offered by this program.

Once you have gotten the commands that create the plot you want right, you probably want to save it
into a file. Gnuplot can write output in many different formats. For inclusion in publications, either eps or
png are the most common. In the latter case, the commands to achieve this are

set terminal png
set output "heatflux.png"
replot

The last command will simply generate the same plot again but this time into the given file. The result is a
graphics file similar to the one shown in Fig. 8 on page 76.

57

Note: After setting output to a file, all following plot commands will want to write to this file.
Thus, if you want to create more plots after the one just created, you need to reset output back to
the screen. On Linux, this is done using the command set terminal X11. You can then continue
experimenting with plots and when you have the next plot ready, switch back to output to a file.

What makes Gnuplot so useful is that it doesn’t just allow entering all these commands at the prompt.
Rather, one can write them all into a file, say plot-heatflux.gnuplot, and then, on the command line, call

gnuplot plot-heatflux.gnuplot

to generate the heatflux.png file. This comes in handy if one wants to create the same plot for multiple
simulations while playing with parameters of the physical setup. It is also a very useful tool if one wants to
generate the same kind of plot again later with a different data set, for example when a reviewer requested
additional computations to be made for a paper or if one realizes that one has forgotten or misspelled an
axis label in a plot.17

Gnuplot has many many more features we have not even touched upon. For example, it is equally happy
to produce three-dimensional graphics, and it also has statistics modules that can do things like curve fits,
statistical regression, and many more operations on the data you provide in the columns of an input file. We
will not try to cover them here but instead refer to the manual at http://www.gnuplot.info/. You can
also get a good amount of information by typing help at the prompt, or a command like help plot to get
help on the plot command.

4.4.3 Large data issues for parallel computations

Among the challenges in visualizing the results of parallel computations is dealing with the large amount of
data. The first bottleneck this presents is during run-time when ASPECT wants to write the visualization
data of a time step to disk. Using the compressed VTU format, ASPECT generates on the order of 10 bytes
of output for each degree of freedom in 2d and more in 3d; thus, output of a single time step can run into
the range of gigabytes that somehow have to get from compute nodes to disk. This stresses both the cluster
interconnect as well as the data storage array.

There are essentially two strategies supported by ASPECT for this scenario:

• If your cluster has a fast interconnect, for example Infiniband, and if your cluster has a fast, distributed
file system, then ASPECT can produce output files that are already located in the correct output
directory (see the options in Section A.1) on the global file system. ASPECT uses MPI I/O calls to
this end, ensuring that the local machines do not have to access these files using slow NFS-mounted
global file systems.

• If your cluster has a slow interconnect, e.g., if it is simply a collection of machines connected via
Ethernet, then writing data to a central file server may block the rest of the program for a while. On
the other hand, if your machines have fast local storage for temporary file systems, then ASPECT can
write data first into such a file and then move it in the background to its final destination while already
continuing computations. To select this mode, set the appropriate variables discussed in Section A.160.
Note, however, that this scheme only makes sense if every machine on which MPI processes run has
fast local disk space for temporary storage.

17In my own work, I usually save the ASPECT input file, the statistics output file and the Gnuplot script along with the
actual figure I want to include in a paper. This way, it is easy to either re-run an entire simulation, or just tweak the graphic
at a later time. Speaking from experience, you will not believe how often one wants to tweak a figure long after it was first
created. In such situations it is outstandingly helpful if one still has both the actual data as well as the script that generated
the graphic.

58

http://www.gnuplot.info/

Note: An alternative would be if every processor directly writes its own files into the global
output directory (possibly in the background), without the intermediate step of the temporary
file. In our experience, file servers are quickly overwhelmed when encountering a few hundred
machines wanting to open, fill, flush and close their own file via NFS mounted file system calls,
sometimes completely blocking the entire cluster environment for extended periods of time.

4.5 Checkpoint/restart support
If you do long runs, especially when using parallel computations, there are a number of reasons to periodically
save the state of the program:

• If the program crashes for whatever reason, the entire computation may be lost. A typical reason is
that a program has exceeded the requested wallclock time allocated by a batch scheduler on a cluster.

• Most of the time, no realistic initial conditions for strongly convecting flow are available. Consequently,
one typically starts with a somewhat artificial state and simply waits for a long while till the convective
state enters the phase where it shows its long-term behavior. However, getting there may take a good
amount of CPU time and it would be silly to always start from scratch for each different parameter
setting. Rather, one would like to start such parameter studies with a saved state that has already
passed this initial, unphysical, transient stage.

To this end, ASPECT creates a set of files in the output directory (selected in the parameter file) every
N time steps (controlled by the number of steps or wall time as specified in subsection Checkpointing, see
Section A.38) in which the entire state of the program is saved so that a simulation can later be continued
at this point. The previous checkpoint files will then be deleted. To resume operations from the last saved
state, you need to set the Resume computation flag in the input parameter file to true, see Section A.1.

Note: It is not imperative that the parameters selected in the input file are exactly the same
when resuming a program from a saved state than what they were at the time when this state
was saved. For example, one may want to choose a different parameterization of the material law,
or add or remove postprocessors that should be run at the end of each time step. Likewise, the
end time, the times at which some additional mesh refinement steps should happen, etc., can be
different.
Yet, it is clear that some other things can’t be changed: For example, the geometry model that
was used to generate the coarse mesh and describe the boundary must be the same before and
after resuming a computation. Likewise, you can not currently restart a computation with a
different number of processors than initially used to checkpoint the simulation. Not all invalid
combinations are easy to detect, and ASPECT may not always realize immediate what is going on
if you change a setting that can’t be changed. However, you will almost invariably get nonsensical
results after some time.

4.6 Making ASPECT run faster
When developing ASPECT, we are guided by the principle that the default for all settings should be safe.
In particular, this means that you should get errors when something goes wrong, the program should not
let you choose an input file parameter so that it doesn’t make any sense, and we should solve the equations
to best ability without cutting corners. The goal is that when you start working with ASPECT that we
give you the best answer we can. The downside is that this also makes ASPECT run slower than may be
possible. This section describes ways of making ASPECT run faster – assuming that you know what you
are doing and are making conscious decisions.

59

4.6.1 Debug vs. optimized mode

Both deal.II and ASPECT by default have a great deal of internal checking to make sure that the code’s
state is valid. For example, if you write a new postprocessing plugin (see Section 6.1)) in which you need to
access the solution vector, then deal.II’s Vector class will make sure that you are only accessing elements
of the vector that actually exist and are available on the current machine if this is a parallel computation.
We do so because it turns out that by far the most bugs one introduces in programs are of the kind where
one tries to do something that obviously doesn’t make sense (such as accessing vector element 101 when it
only has 100 elements). These kinds of bugs are more frequent than implementing a wrong algorithm, but
they are fortunately easy to find if you have a sufficient number of assertions in your code. The downside is
that assertions cost run time.

As mentioned above, the default is to have all of these assertions in the code to catch those places where
we may otherwise silently access invalid memory locations. However, once you have a plugin running and
verified that your input file runs without problems, you can switch off all of these checks by switching from
debug to optimized mode. This means re-compiling ASPECT and linking against a version of the deal.II
library without all of these internal checks. Because this is the first thing you will likely want to do, we have
already discussed how to do all of this in Section 4.3.

4.6.2 Adjusting solver tolerances

At the heart of every time step lies the solution of linear systems for the Stokes equations, the temperature
field, and possibly for compositional fields. In essence, each of these steps requires us to solve a linear system
of the form Ax = b which we do through iterative solvers, i.e., we try to find a sequence of approximations
x(k) where x(k) → x = A−1b. This iteration is terminated at iteration k if the approximation is “close
enough” to the exact solution. The solvers we use determine this by testing after every iteration whether the
residual, r(k) = A(x− x(k)) = b−Ax(k), satisfies ‖r(k)‖ ≤ ε‖r(0)‖ where ε is called the (relative) tolerance.

Obviously, the smaller we choose ε, the more accurate the approximation x(k) will be. On the other hand,
it will also take more iterations and, consequently, more CPU time to reach the stopping criterion with a
smaller tolerance. The default value of these tolerances are chosen so that the approximation is typically
sufficient. You can make ASPECT run faster if you choose these tolerances larger. The parameters you can
adjust are all listed in Section A.178 and are located in the Solver parameters subsection of the input file.
In particular, the parameters you want to look at are Linear solver tolerance, Temperature solver
tolerance and Composition solver tolerance.

All this said, it is important to understand the consequences of choosing tolerances larger. In particular,
if you choose tolerances too large, then the difference between the exact solution of a linear system x and the
approximation x(k) may become so large that you do not get an accurate output of your model any more.
A rule of thumb in choosing tolerances is to start with a small value and then increase the tolerance until
you come to a point where the output quantities start to change significantly. This is the point where you
will want to stop.

4.6.3 Adjusting solver preconditioner tolerances

To solve the Stokes equations it is necessary to lower the condition number of the Stokes matrix by precon-

ditioning it. In ASPECT a right preconditioner Y −1 =
(
Ã−1 −Ã−1BT S̃−1

0 S̃−1

)
is used to precondition the

system, where Ã−1 is the approximate inverse of the A block and S̃−1 is the approximate inverse of the Schur
complement matrix. Matrix Ã−1 and S̃−1 are calculated through a CG solve, which requires a tolerance to
be set. In comparison with the solver tolerances of the previous section, these parameters are relatively safe
to use, since they only change the preconditioner, but can speed up or slow down solving the Stokes system
considerably.

In practice Ã−1 takes by far the most time to compute, but is also very important in conditioning the

60

system. The accuracy of the computation of Ã−1 is controlled by the parameter Linear solver A block
tolerance which has a default value of 1e−2. Setting this tolerance to a less strict value will result in more
outer iterations, since the preconditioner is not as good, but the amount of time to compute Ã−1 can drop
significantly resulting in a reduced total solve time. The cookbook crustal deformation (Section 5.3.8) for
example can be computed much faster by setting the Linear solver A block tolerance to 5e − 1. The
calculation of S̃−1 is usually much faster and the conditioning of the system is less sensitive to the parameter
Linear solver S block tolerance, but for some problems it might be worth it to investigate.

4.6.4 Using lower order elements for the temperature/compositional discretization

The default settings of ASPECT use quadratic finite elements for the velocity. Given that the temperature
and compositional fields essentially (up to material parameters) satisfy advection equations of the kind
∂tT + u · ∇T = . . ., it seems appropriate to also use quadratic finite element shape functions for the
temperature and compositional fields.

However, this is not mandatory. If you do not care about high accuracy in these fields and are mostly
interested in the velocity or pressure field, you can select lower-order finite elements in the input file. The
polynomial degrees are controlled with the parameters in the discretization section of the input file, see
Section A.40, in particular by Temperature polynomial degree and Composition polynomial degree.

As with the other parameters discussed above and below, it is worthwhile comparing the results you get
with different values of these parameters when making a decision whether you want to save on accuracy in
order to reduce compute time. An example of how this choice affects the accuracy you get is discussed in
Section 5.2.1.

4.6.5 Limiting postprocessing

ASPECT has a lot of postprocessing capabilities, from generating graphical output to computing average
temperatures or temperature fluxes. To see what all is possible, take a look at the List of postprocessors
parameter that can be set in the input file, see Section A.137.

Many of these postprocessors take a non-negligible amount of time. How much they collectively use
can be inferred from the timing report ASPECT prints periodically among its output, see for example the
output shown in Section 5.2.1. So, if your computations take too long, consider limiting which postprocessors
you run to those you really need. Some postprocessors – for example those that generate graphical output,
see Section A.160 – also allow you to run them only once every once in a while, rather than at every time
step.

4.6.6 Switching off pressure normalization

In most practically relevant cases, the Stokes equations (1)–(2) only determine the pressure up to a constant
because only the pressure gradient appears in the equations, not the actual value of it. However, unlike this
“mathematical” pressure, we have a very specific notion of the “physical” pressure: namely a well-defined
quantity that at the surface of Earth equals the air pressure, which compared to the hydrostatic pressure
inside Earth is essentially zero.

As a consequence, the default in ASPECT is to normalize the computed “mathematical” pressure in
such a way that either the mean pressure at the surface is zero (where the geometry model describes where
the “surface” is, see Section 6.4.3), or that the mean pressure in the domain is zero. This normalization is
important if your model describes densities, viscosities and other quantities in dependence of the pressure
– because you almost certainly had the “physical” pressure in mind, not some unspecified “mathematical”
one. On the other hand, if you have a material model in which the pressure does not enter, then you don’t
need to normalize the pressure at all – simply go with whatever the solver provides. In that case, you can
switch off pressure normalization by looking at the Pressure normalization parameter at the top level of
the input file, see Section A.1.

61

4.6.7 Regularizing models with large coefficient variation

Models with large jumps in viscosity and other coefficients present significant challenges to both discretiza-
tions and solvers. In particular, they can lead to very long solver times. Section 5.2.8 presents parameters
that can help regularize models and these typically also include significant improvements in run-time.

4.6.8 Using multithreading

In most cases using as many MPI processes as possible is the optimal parallelization strategy for ASPECT
models, but if you are limited by the amount of MPI communication it can be beneficial to use multiple
threads per MPI process. While not utilized by our linear solvers, this parallelization can speed up the
assembly of the system matrices, e.g. by around 10-15% if you utilize unused logical cores, or nearly linearly
if you use otherwise unused physical cores. This can also reduce the performance cost if you are memory
limited and need to run your model on less than the available number of cores per node on a cluster to
increase the available memory per core. Running with for example two threads per process will offset some
of the performance loss you will see in these situations.

Multithreading is controlled by setting the command line parameter -j or --threads. If the parameter is
not set, ASPECT will create exactly one thread per MPI process, i.e. multithreading is disabled. Appending
the parameter allows ASPECT to spawn several threads per MPI process. Note that the internally used
TBB library will determine the number of threads based on the number of available cores, i.e., if you start
2 MPI processes on a quadcore machine with hyperthreading (8 logical cores), ASPECT will spawn 4 threads
on each MPI process. Also note that there is no guarantee that the final number of threads will exactly
match the number of available logical cores if you start with a number of processes that is not a divisor of
your logical cores (e.g. 3 MPI processes for 8 logical cores).

4.7 Input parameter files
What ASPECT computes is driven by two things:

• The models implemented in ASPECT. This includes the geometries, the material laws, or the initial
conditions currently supported. Which of these models are currently implemented is discussed below;
Section 6 discusses in great detail the process of implementing additional models.

• Which of the implemented models is selected, and what their run-time parameters are. For example,
you could select a model that prescribes constant coefficients throughout the domain from all the mate-
rial models currently implemented; you could then select appropriate values for all of these constants.
Both of these selections happen from a parameter file that is read at run time and whose name is
specified on the command line. (See also Section 4.1.)

In this section, let us give an overview of what can be selected in the parameter file. Specific parameters,
their default values, and allowed values for these parameters are documented in Section A. An index with
page numbers for all run-time parameters can be found on page 548.

4.7.1 The structure of parameter files

Most of the run-time behavior of ASPECT is driven by a parameter file that looks in essence like this:

set Dimension = 2
set Resume computation = false
set End time = 1e10
set CFL number = 1.0
set Output directory = output

subsection Mesh refinement
set Initial adaptive refinement = 1

62

set Initial global refinement = 4
end

subsection Material model
set Model name = simple

subsection Simple model
set Reference density = 3300
set Reference temperature = 293
set Viscosity = 5e24

end
end

...

Some parameters live at the top level, but most parameters are grouped into subsections. An input
parameter file is therefore much like a file system: a few files live in the root directory; others are in a nested
hierarchy of sub-directories. And just as with files, parameters have both a name (the thing to the left of
the equals sign) and a content (what’s to the right).

All parameters you can list in this input file have been declared in ASPECT. What this means is that
you can’t just list anything in the input file, and expect that entries that are unknown are simply ignored.
Rather, if your input file contains a line setting a parameter that is unknown, you will get an error message.
Likewise, all declared parameters have a description of possible values associated with them – for example,
some parameters must be non-negative integers (the number of initial refinement steps), can either be true or
false (whether the computation should be resumed from a saved state), or can only be a single element from
a selection (the name of the material model). If an entry in your input file doesn’t satisfy these constraints,
it will be rejected at the time of reading the file (and not when a part of the program actually accesses
the value and the programmer has taken the time to also implement some error checking at this location).
Finally, because parameters have been declared, you do not need to specify a parameter in the input file: if a
parameter isn’t listed, then the program will simply use the default provided when declaring the parameter.

Note: In cases where a parameter requires a significant amount of text, you can end a line in the
input file with a backslash. This indicates that the following line will simply continue to be part
of the text of the current line, in the same way as the C/C++ preprocessor expands lines that
end in backslashes. The underlying implementation always eats whitespace at the beginning of
each continuing line, but not before the backslash. This means that the parameter file
set Some parameter = abc\

def
is equivalent to
set Some parameter = abcdef

that is, with no space between abc and def despite the leading whitespace at the beginning of
the second line. If you do want space between these two parts, you need to add it before the
backslash in the first of the two lines.

4.7.2 Categories of parameters

The parameters that can be provided in the input file can roughly be categorized into the following groups:

• Global parameters (see Section A.1): These parameters determine the overall behavior of the program.
Primarily they describe things like the output directory, the end time of the simulation, or whether
the computation should be resumed from a previously saved state.

• Parameters for certain aspects of the numerical algorithm: These describe, for example, the specifics of
the spatial discretization. In particular, this is the case for parameters concerning the polynomial degree

63

of the finite element approximation (Section A.40), some details about the stabilization (Section A.41),
and how adaptive mesh refinement is supposed to work (Section A.125).

• Parameters that describe certain global aspects of the equations to be solved: This includes, for
example, a description if certain terms in the model should be omitted or not. See Section A.42 for
the list of parameters in this category.

• Parameters that characterize plugins: Certain behaviors of ASPECT are described by what we call
plugins – self-contained parts of the code that describe one particular aspect of the simulation. An
example would be which of the implemented material models to use, and the specifics of this material
model. The sample parameter file above gives an indication of how this works: within a subsection of
the file that pertains to the material models, one can select one out of several plugins (or, in the case
of the postprocessors, any number, including none, of the available plugins), and one can then specify
the specifics of this model in a sub-subsection dedicated to this particular model.
A number of components of ASPECT are implemented via plugins. Some of these, together with the
sections in which their parameters are declared, are the following:

– The material model: Sections A.90 and following.
– The geometry: Sections A.43 and following.
– The gravity description: Sections A.54 and following.
– Initial conditions for the temperature: Sections A.71 and following.
– Temperature boundary conditions: Sections A.18 and following.
– Postprocessors: Sections A.137 and following for most postprocessors, section A.160 and following

for postprocessors related to visualization.

The details of parameters in each of these categories can be found in the sections linked to above. Some
of them will also be used in the cookbooks in Section 5.

4.7.3 A note on the syntax of formulas in input files

Input files have different ways of describing certain things to ASPECT. For example, you could select a
plugin for the temperature initial values that prescribes a constant temperature, or a plugin that implements
a particular formula for these initial conditions in C++ in the code of the plugin, or a plugin that allows
you to describe this formula in a symbolic way in the input file (see Section A.71). An example of this latter
case is this snippet of code discussed in Section 5.2.2:

subsection Initial temperature model
set Model name = function

subsection Function
set Variable names = x,y,z
set Function constants = p=0.01, L=1, pi=3.1415926536, k=1
set Function expression = (1.0-z) - p*cos(k*pi*x/L)*sin(pi*z)*y^3

end
end

The formulas you can enter here need to use a syntax that is understood by the functions and classes
that interpret what you write. Internally, this is done using the muparser library, see http://muparser.
beltoforion.de/. The syntax is mostly self-explanatory in that it allows to use the usual symbols x, y and
z to reference coordinates (unless a particular plugin uses different variables, such as the depth), the symbol
t for time in many situations, and allows you to use all of the typical mathematical functions such as sine and
cosine. Based on the muparser library, deal.II supports additional functions, including | (the logical OR),
& (the logical AND), int(), ceil(), floor(), cot(), csc(), sec(), pow(), log(), erfc(), rand(), and

64

http://muparser.beltoforion.de/
http://muparser.beltoforion.de/

rand_seed(). For more detailed information, see http://www.dealii.org/developer/doxygen/deal.II/
classFunctionParser.html#details.

A common need for function expression is an if-else-statement, for example “if 1 < x < 4 then out-
put 1, else output 0”. The muparser uses lazy-expression syntax (if-condition ? true-expression :
false-expression) for if-else statements. This lazy-expression only evaluates the expression that meets
the if-condition, rather than evaluating both expressions, which can be useful if one of the expressions is
not defined (e.g., has a divide by zero) when the if-condition is not met. Note it is also possible to use
the syntax if(condition, true-expression, false-expression), but in this case both expressions are
always evaluated. This is inefficient, but in addition may abort the program with a floating point exception
if the expression that will be discarded has invalid floating point operations (such as a division by zero, or
taking the square root of a negative number) that would ordinarily not be visible because, after all, the
expression should be discarded. Therefore, the lazy-expression syntax is recommended.

As a simple example using the lazy-expression syntax, the statement “if 1 < x < 4 then output 1, else
output 0” can be expressed as (1<x && x<4 ? 1 : 0). Multiple, nested if-else expressions can also be used.
To extend the simple example, the statement “if 1 < x < 4 then, if 2<y<3, then output 2, else output 1,
else output 0” can be expressed as ((1<x && x<4) ? ((2<y && y<3) ? 2 : 1) : (0)).

An example for how to translate nested if-else statements into the lazy-expression syntax is given in the
cookbook example found in Section 5.2.13. This cookbook includes a python script that defines the initial
temperature structure using nested if-else statements and shows how this is then rewritten using the lazy-
expression. The cookbook runs a single time-step to show the outcome of using the function option for the
initial temperature. Quite complex initial conditions can be defined in this way, however, using something
like python to debug these expressions before defining them in the parameter file is recommended. For more
examples of functions used in parameter files, go to the cookbooks directory and use grep to search for
“Function expression” in the parameters files. You can also search “Function expression” on the ASPECT
github page. For more examples of the syntax understood, reference the documentation of the muparser
library linked to above.

4.7.4 Compatibility of input files with newer ASPECT versions

We strive to maintain compatibility for options in input files as long as possible. However, occasionally
we have to reorder, rename, or remove options from parameter files to improve ASPECT further. This is
especially true for new major versions. In order to allow running old parameter files with newer ASPECT
versions we provide scripts that can automatically update existing parameter files to the new syntax. Ex-
ecuting doc/update_prm_files.sh with one or more parameter files as arguments will create a backup of
the old parameter file (named old_filename.bak), and replace the existing file with a version that should
work with the current ASPECT version. Using this script would look like this:

bash doc/update_prm_files.sh cookbooks/convection_box.prm

Note: Not all text replacements are unique, and the structure of input files allows for construc-
tions the script can not properly parse. Also we can not guarantee to preserve the structure and
position of comments, as it is not always clear to which part of the input file they refer. Thus, it
is important that you check your updated input file for errors. That being said, all input files in
the main ASPECT repository are updated successfully using this script.

4.8 A graphical user interface for editing ASPECT parameter files
Preparing a parameter file in a text editor can be a tedious task, not only because the number of input
parameters has grown considerably during the development of ASPECT, but also because remembering
the names of commonly used options is a waste of (human) memory. Therefore, we provide a graphical user
interface that builds upon an available program for deal.II. This GUI allows to investigate existing input

65

http://www.dealii.org/developer/doxygen/deal.II/classFunctionParser.html#details
http://www.dealii.org/developer/doxygen/deal.II/classFunctionParser.html#details

parameters, including their default values, modify these values in a spreadsheet like environment and then
save a formatted parameter file that can be used to start an ASPECT model. In the following subsections
we describe installing and using this user interface.

4.8.1 Installing parameter-GUI

The deal.II parameter-GUI program can be downloaded at https://github.com/dealii/parameter_gui,
and is compiled using the cmake program just like ASPECT itself. The program has no dependencies except
for the Qt development libraries that should be available as packages for most Linux distributions and can
also be obtained for all major operating systems at https://www.qt.io/download-open-source/.

Example steps for installing the parameter-gui could look as follows:

1. Download the program from https://github.com/dealii/parameter_gui.

2. Prepare a Makefile by running cmake . in the source folder.

3. Compile the program by running make.

4. Make sure to set the environment variable PARAMETER_GUI_DIR to the directory that contains the
parameter-GUI executable (optional). This will allow ASPECT to automatically enable the GUI
during configuration.

Installing on macOS On a mac machine with recent macOS Sierra 10.12.4, Qt development libraries
of version 4.x.x at the libraries’ official website https://www.qt.io/download-open-source/ may fail to
install. Alternatively, you can install qt4 through Homebrew (also see instruction here https://github.
com/cartr/homebrew-qt4)

brew tap cartr/qt4
brew tap-pin cartr/qt4
brew install qt@4

or install it through Mac Ports (https://www.macports.org/)

sudo port install qt4-mac

Then you can follow the Linux user instructions provided previously to download and install dealii parameter-
GUI. Before running cmake ., you may need to either pass the path of qt4 and specify the value of vari-
able QT_LIBRARIES to the directory that contains the libraries of qt4 or add those information into your
.bash_profile. For example, for installation through Mac Ports, you can set the following into your
.bash_profile

export PATH="$PATH:/opt/local/libexec/qt4"
export QT_LIBRARIES="/opt/local/libexec/qt4"

4.8.2 Using ASPECT-GUI

When configuring ASPECT after executing the above steps, it should automatically pick up the location
of the parameter-GUI, and will create a new script named aspect-gui within the build folder. If this
does not happen, it is possible to hand over the location of the parameter-GUI as a cmake variable during
configuration (e.g. cmake -D PARAMETER_GUI_EXECUTABLE=path_to_your_executable).

The aspect-gui script can be executed from any folder either with no argument or with one argument that
contains the path to an existing parameter file. The script will run ASPECT with the given (or an empty)
parameter file, generate a database of existing input parameters, and open the parameter-GUI program with
this database. The resulting window looks similar to Fig. 6. If an existing parameter file was given, all
parameter fields are pre-filled with the values set in the file instead of the default values. In the program’s

66

https://github.com/dealii/parameter_gui
https://www.qt.io/download-open-source/
https://github.com/dealii/parameter_gui
https://www.qt.io/download-open-source/
https://github.com/cartr/homebrew-qt4
https://github.com/cartr/homebrew-qt4
https://www.macports.org/

Figure 6: The parameter GUI lists all available parameter options, and allows to change and save them
into a new parameter file. Input fields know about the type of the variable and will display useful options to
change them (e.g. drop-down menus, file dialogs, text fields).

main window you can change parameters as necessary, and then save the file as a new parameter file. This
parameter file can then be used to start an ASPECT model as usual. Note that it is possible to prepare
and execute the parameter file with different versions of ASPECT, e.g. if you prepare parameter files on a
local machine, and execute the model on a remote compute cluster. Note however that if the two ASPECT
versions contain different default values or parameter names have changed, this can lead to unexpected model
behavior or even unusable parameter files.

5 Cookbooks
In this section, let us present a number of “cookbooks” – examples of how to use ASPECT in typical or
less typical ways. As discussed in Sections 4 and A, ASPECT is driven by run-time parameter files, and so
setting up a particular situation primarily comes down to creating a parameter file that has the right entries.
Thus, the subsections below will discuss in detail what parameters to set and to what values. Note that
parameter files need not specify all parameters – of which there is a bewildering number – but only those
that are relevant to the particular situation we would like to model. All parameters not listed explicitly in
the input file are simply left at their default value (the default values are also documented in Section A).

Of course, there are situations where what you want to do is not covered by the models already im-
plemented. Specifically, you may want to try a different geometry, a different material or gravity model,
or different boundary conditions. In such cases, you will need to implement these extensions in the actual
source code. Section 6 provides information on how to do that.

The remainder of this section shows a number of applications of ASPECT. They are grouped into three
categories: Simple setups of examples that show thermal convection (Section 5.2), setups that try to model
geophysical situations (Section 5.3) and setups that are used to benchmark ASPECT to ensure correctness
or to test accuracy of our solvers (Section 5.4). Before we get there, however, we will review how one usually
approaches setting up computations in Section 5.1.

67

Note: The input files discussed in the following sections can generally be found in the cookbooks/
directory of your ASPECT installation.

5.1 How to set up computations
ASPECT’s computations are controlled by input parameter files such as those we will discuss in the following
sections.18 Basically, these are just regular text files you can edit with programs like gedit, kwrite or kate
when working on Linux, or something as simple as NotePad on Windows. When setting up these input
files for a model you have in mind, you have to describe everything that characterizes the situation you are
considering. In particular, this includes the following:

• What internal forces act on the medium (the equation)?

• What external forces do we have (the right hand side)

• What is the domain (geometry)?

• What happens at the boundary for each variable involved (boundary conditions)?

• How did it look at the beginning (initial conditions)?

For each of these questions, there are one or more input parameters (sometimes grouped into sections) that
allow you to specify what you want. For example, to choose a geometry, you will typically have a block like
this in your input file:

set Dimension = 2
subsection Geometry model

set Model name = box

subsection Box
set X extent = 1
set Y extent = 1

end
end

This indicates that you want to do a computation in 2d, using a rectangular geometry (a “box”) with edge
length equal to one in both the x- and y-directions. Of course, there are other geometries you can choose
from for the Model name parameter, and consequently other subsections that specify the details of these
geometries.

Similarly, you describe boundary conditions using parameters such as this:

subsection Boundary temperature model
set Fixed temperature boundary indicators = bottom, top

end

subsection Boundary velocity model
set Tangential velocity boundary indicators = left, right, bottom, top

end

18You can also extend ASPECT using plugins – i.e., pieces of code you compile separately and either link into the ASPECT
executable itself, or reference from the input file. This is discussed in Section 6.

68

This snippet describes which of the four boundaries of the two-dimensional box we have selected above
should have a prescribed temperature or an insulating boundary, and at which parts of the boundary we
want zero, tangential or prescribed velocities.19

If you go down the list of questions about the setup above, you have already done the majority of the
work describing your computation. The remaining parameters you will typically want to specify have to
do with the computation itself. For example, what variables do you want to output and how often? What
statistics do you want to compute. The following sections will give ample examples for all of this, but using
the questions above as a guideline is already a good first step.

Note: It is of course possible to set up input files for computations completely from scratch.
However, in practice, it is often simpler to go through the list of cookbooks already provided and
find one that comes close to what you want to do. You would then modify this cookbook until it
does what you want to do. The advantage is that you can start with something you already know
works, and you can inspect how each change you make – changing the details of the geometry,
changing the material model, or changing what is being computed at the end of each time step –
affects what you get.

5.2 Simple setups
5.2.1 Convection in a 2d box

In this first example, let us consider a simple situation: a 2d box of dimensions [0, 1] × [0, 1] that is heated
from below, insulated at the left and right, and cooled from the top. We will also consider the simplest
model, the incompressible Boussinesq approximation with constant coefficients η, ρ0,g, Cp, k, for this testcase.
Furthermore, we assume that the medium expands linearly with temperature. This leads to the following
set of equations:

−∇ · [2ηε(u)] +∇p = ρ0(1− α(T − T0))g in Ω, (73)
∇ · u = 0 in Ω, (74)

ρ0Cp

(
∂T

∂t
+ u · ∇T

)
−∇ · k∇T = 0 in Ω. (75)

It is well known that we can non-dimensionalize this set of equations by introducing the Rayleigh number
Ra = ρ0gα∆Th3

ηκ , where h is the height of the box, κ = k
ρCp

is the thermal diffusivity and ∆T is the temperature
difference between top and bottom of the box. Formally, we can obtain the non-dimensionalized equations
by using the above form and setting coefficients in the following way:

ρ0 = Cp = κ = α = η = h = ∆T = 1, T0 = 0, g = Ra,

where g = −gez is the gravity vector in negative z-direction. We will see all of these values again in the
input file discussed below. One point to note is that for the Boussinesq approximation, as described above,
the density in the temperature equation is chosen as the reference density ρ0 rather than the full density
ρ(1 − α(T − T0)) as we see it in the buoyancy term on the right hand side of the momentum equation. As
ASPECT is able to handle different approximations of the equations (see Section 2.10), we also have to

19Internally, the geometry models ASPECT uses label every part of the boundary with what is called a boundary indicator
– a number that identifies pieces of the boundary. If you know which number each piece has, you can list these numbers on
the right hand sides of the assignments of boundary types above. For example, the left boundary of the box has boundary
indicator zero (see Section A.43), and using this number instead of the left would have been equally valid. However, numbers
are far more difficult to remember than names, and consequently every geometry model provides string aliases such as “left”
for each boundary indicator describing parts of the boundary. These symbolic aliases are specific to the geometry – for the box,
they are “left”, “right”, “bottom”, etc., whereas for a spherical shell they are “inner” and “outer” – but are described in the
documentation of every geometry model, see Section A.43.

69

specify in the input file that we want to use the Boussinesq approximation. The problem is completed by
stating the velocity boundary conditions: tangential flow along all four of the boundaries of the box.

This situation describes a well-known benchmark problem for which a lot is known and against which we
can compare our results. For example, the following is well understood:

• For values of the Rayleigh number less than a critical number Rac ≈ 780, thermal diffusion dominates
convective heat transport and any movement in the fluid is damped exponentially. If the Rayleigh
number is moderately larger than this threshold then a stable convection pattern forms that transports
heat from the bottom to the top boundaries. The simulations we will set up operates in this regime.
Specifically, we will choose Ra = 104.
On the other hand, if the Rayleigh number becomes even larger, a series of period doublings starts
that makes the system become more and more unstable. We will investigate some of this behavior at
the end of this section.

• For certain values of the Rayleigh number, very accurate values for the heat flux through the bottom
and top boundaries are available in the literature. For example, Blankenbach et al. report a non-
dimensional heat flux of 4.884409 ± 0.00001, see [14]. We will compare our results against this value
below.

With this said, let us consider how to represent this situation in practice.

The input file. The verbal description of this problem can be translated into an ASPECT input file in
the following way (see Section A for a description of all of the parameters that appear in the following input
file, and the indices at the end of this manual if you want to find a particular parameter; you can find the
input file to run this cookbook example in cookbooks/convection-box.prm):

A description of convection in a 2d box. See the manual for more information.

At the top, we define the number of space dimensions we would like to
work in:
set Dimension = 2

There are several global variables that have to do with what
time system we want to work in and what the end time is. We
also designate an output directory.
set Use years in output instead of seconds = false
set End time = 0.5
set Output directory = output-convection-box

Then there are variables that describe how the pressure should
be normalized. Here, we choose a zero average pressure
at the surface of the domain (for the current geometry, the
surface is defined as the top boundary).
set Pressure normalization = surface
set Surface pressure = 0

Then come a number of sections that deal with the setup
of the problem to solve. The first one deals with the
geometry of the domain within which we want to solve.
The sections that follow all have the same basic setup
where we select the name of a particular model (here,
the box geometry) and then, in a further subsection,
set the parameters that are specific to this particular

70

cookbooks/convection-box.prm

model.
subsection Geometry model

set Model name = box

subsection Box
set X extent = 1
set Y extent = 1

end
end

The next section deals with the initial conditions for the
temperature (there are no initial conditions for the
velocity variable since the velocity is assumed to always
be in a static equilibrium with the temperature field).
There are a number of models with the ’function’ model
a generic one that allows us to enter the actual initial
conditions in the form of a formula that can contain
constants. We choose a linear temperature profile that
matches the boundary conditions defined below plus
a small perturbation:
subsection Initial temperature model

set Model name = function

subsection Function
set Variable names = x,z
set Function constants = p=0.01, L=1, pi=3.1415926536, k=1
set Function expression = (1.0-z) - p*cos(k*pi*x/L)*sin(pi*z)

end
end

Then follows a section that describes the boundary conditions
for the temperature. The model we choose is called ’box’ and
allows to set a constant temperature on each of the four sides
of the box geometry. In our case, we choose something that is
heated from below and cooled from above, whereas all other
parts of the boundary are insulated (i.e., no heat flux through
these boundaries; this is also often used to specify symmetry
boundaries).
subsection Boundary temperature model

set Fixed temperature boundary indicators = bottom, top
set List of model names = box

subsection Box
set Bottom temperature = 1
set Left temperature = 0
set Right temperature = 0
set Top temperature = 0

end
end

The next parameters then describe on which parts of the
boundary we prescribe a zero or nonzero velocity and
on which parts the flow is allowed to be tangential.

71

Here, all four sides of the box allow tangential
unrestricted flow but with a zero normal component:
subsection Boundary velocity model

set Tangential velocity boundary indicators = left, right, bottom, top
end

The following two sections describe first the
direction (vertical) and magnitude of gravity and the
material model (i.e., density, viscosity, etc). We have
discussed the settings used here in the introduction to
this cookbook in the manual already.
subsection Gravity model

set Model name = vertical

subsection Vertical
set Magnitude = 1e4 # = Ra

end
end

subsection Material model
set Model name = simple

subsection Simple model
set Reference density = 1
set Reference specific heat = 1
set Reference temperature = 0
set Thermal conductivity = 1
set Thermal expansion coefficient = 1
set Viscosity = 1

end
end

We also have to specify that we want to use the Boussinesq
approximation (assuming the density in the temperature
equation to be constant, and incompressibility).
subsection Formulation

set Formulation = Boussinesq approximation
end

The settings above all pertain to the description of the
continuous partial differential equations we want to solve.
The following section deals with the discretization of
this problem, namely the kind of mesh we want to compute
on. We here use a globally refined mesh without
adaptive mesh refinement.
subsection Mesh refinement

set Initial global refinement = 4
set Initial adaptive refinement = 0
set Time steps between mesh refinement = 0

end

The final part is to specify what ASPECT should do with the

72

solution once computed at the end of every time step. The
process of evaluating the solution is called ‘postprocessing’
and we choose to compute velocity and temperature statistics,
statistics about the heat flux through the boundaries of the
domain, and to generate graphical output files for later
visualization. These output files are created every time
a time step crosses time points separated by 0.01. Given
our start time (zero) and final time (0.5) this means that
we will obtain 50 output files.
subsection Postprocess

set List of postprocessors = velocity statistics, temperature statistics, heat flux statistics,
↪→ visualization

subsection Visualization
set Time between graphical output = 0.01

end
end

subsection Solver parameters
set Temperature solver tolerance = 1e-10

end

Running the program. When you run this program for the first time, you are probably still running
ASPECT in debug mode (see Section 4.3) and you will get output like the following:

Number of active cells: 256 (on 5 levels)
Number of degrees of freedom: 3,556 (2,178+289+1,089)

*** Timestep 0: t=0 seconds
Solving temperature system... 0 iterations.
Rebuilding Stokes preconditioner...
Solving Stokes system... 31+0 iterations.

[... ...]

*** Timestep 1085: t=0.5 seconds
Solving temperature system... 0 iterations.
Solving Stokes system... 5 iterations.

Postprocessing:
RMS, max velocity: 43.5 m/s, 70.3 m/s
Temperature min/avg/max: 0 K, 0.5 K, 1 K
Heat fluxes through boundary parts: 0.01977 W, -0.01977 W, -4.787 W, 4.787 W

Termination requested by criterion: end time

+---+------------+------------+
Total wallclock time elapsed since start	66.5s		
Section	no. calls	wall time	% of total
+---------------------------------+-----------+------------+------------+			
Assemble Stokes system	1086	8.63s	13%
Assemble temperature system	1086	32s	48%
Build Stokes preconditioner	1	0.0225s	0%

73

Build temperature preconditioner	1086	1.52s	2.3%
Solve Stokes system	1086	7.7s	12%
Solve temperature system	1086	0.729s	1.1%
Initialization	1	0.0316s	0%
Postprocessing	1086	7.76s	12%
Setup dof systems	1	0.0104s	0%
Setup initial conditions	1	0.00621s	0%
+---------------------------------+-----------+------------+------------+

If you’ve read up on the difference between debug and optimized mode (and you should before you
switch!) then consider disabling debug mode. If you run the program again, every number should look
exactly the same (and it does, in fact, as I am writing this) except for the timing information printed every
hundred time steps and at the end of the program:

+---+------------+------------+
Total wallclock time elapsed since start	25.8s		
Section	no. calls	wall time	% of total
+---------------------------------+-----------+------------+------------+			
Assemble Stokes system	1086	2.51s	9.7%
Assemble temperature system	1086	9.88s	38%
Build Stokes preconditioner	1	0.0271s	0.11%
Build temperature preconditioner	1086	1.58s	6.1%
Solve Stokes system	1086	6.38s	25%
Solve temperature system	1086	0.542s	2.1%
Initialization	1	0.219s	0.85%
Postprocessing	1086	2.79s	11%
Setup dof systems	1	0.23s	0.89%
Setup initial conditions	1	0.107s	0.41%
+---------------------------------+-----------+------------+------------+

In other words, the program ran more than 2 times faster than before. Not all operations became faster
to the same degree: assembly, for example, is an area that traverses a lot of code both in ASPECT and in
deal.II and so encounters a lot of verification code in debug mode. On the other hand, solving linear systems
primarily requires lots of matrix vector operations. Overall, the fact that in this example, assembling linear
systems and preconditioners takes so much time compared to actually solving them is primarily a reflection
of how simple the problem is that we solve in this example. This can also be seen in the fact that the number
of iterations necessary to solve the Stokes and temperature equations is so low. For more complex problems
with non-constant coefficients such as the viscosity, as well as in 3d, we have to spend much more work
solving linear systems whereas the effort to assemble linear systems remains the same.

Visualizing results. Having run the program, we now want to visualize the numerical results we got.
ASPECT can generate graphical output in formats understood by pretty much any visualization program
(see the parameters described in Section A.160) but we will here follow the discussion in Section 4.4 and use
the default VTU output format to visualize using the Visit program.

In the parameter file we have specified that graphical output should be generated every 0.01 time units.
Looking through these output files (which can be found in the folder output-convection-box, as specified
in the input file), we find that the flow and temperature fields quickly converge to a stationary state. Fig. 7
shows the initial and final states of this simulation.

There are many other things we can learn from the output files generated by ASPECT, specifically
from the statistics file that contains information collected at every time step and that has been discussed
in Section 4.4.2. In particular, in our input file, we have selected that we would like to compute velocity,
temperature, and heat flux statistics. These statistics, among others, are listed in the statistics file whose
head looks like this for the current input file:

74

Figure 7: Convection in a box: Initial temperature and velocity field (left) and final state (right).

1: Time step number
2: Time (seconds)
3: Time step size (seconds)
4: Number of mesh cells
5: Number of Stokes degrees of freedom
6: Number of temperature degrees of freedom
7: Iterations for temperature solver
8: Iterations for Stokes solver
9: Velocity iterations in Stokes preconditioner
10: Schur complement iterations in Stokes preconditioner
11: RMS velocity (m/s)
12: Max. velocity (m/s)
13: Minimal temperature (K)
14: Average temperature (K)
15: Maximal temperature (K)
16: Average nondimensional temperature (K)
17: Outward heat flux through boundary with indicator 0 ("left") (W)
18: Outward heat flux through boundary with indicator 1 ("right") (W)
19: Outward heat flux through boundary with indicator 2 ("bottom") (W)
20: Outward heat flux through boundary with indicator 3 ("top") (W)
21: Visualization file name
... lots of numbers arranged in columns ...

Fig. 8 shows the results of visualizing the data that can be found in columns 2 (the time) plotted against
columns 11 and 12 (root mean square and maximal velocities). Plots of this kind can be generated with
Gnuplot by typing (see Section 4.4.2 for a more thorough discussion):

plot "output-convection-box/statistics" using 2:11 with lines

Fig. 8 shows clearly that the simulation enters a steady state after about t ≈ 0.1 and then changes very little.
This can also be observed using the graphical output files from which we have generated Fig. 7. One can look
further into this data to find that the flux through the top and bottom boundaries is not exactly the same
(up to the obvious difference in sign, given that at the bottom boundary heat flows into the domain and at
the top boundary out of it) at the beginning of the simulation until the fluid has attained its equilibrium.
However, after t ≈ 0.2, the fluxes differ by only 5× 10−5, i.e., by less than 0.001% of their magnitude.20 The

20This difference is far smaller than the numerical error in the heat flux on the mesh this data is computed on.

75

Figure 8: Convection in a box: Root mean square and maximal velocity as a function of simulation time
(left). Heat flux through the four boundaries of the box (right).

Figure 9: Convection in a box: Number of linear iterations required to solve the Stokes and temperature
equations in each time step.

flux we get at the last time step, 4.787, is less than 2% away from the value reported in [14] (≈4.88) although
we compute on a 16×16 mesh and the values reported by Blankenbach are extrapolated from meshes of size
up to 72× 72. This shows the accuracy that can be obtained using a higher order finite element. Secondly,
the fluxes through the left and right boundary are not exactly zero but small. Of course, we have prescribed
boundary conditions of the form ∂T

∂n = 0 along these boundaries, but this is subject to discretization errors.
It is easy to verify that the heat flux through these two boundaries disappears as we refine the mesh further.

Furthermore, ASPECT automatically also collects statistics about many of its internal workings. Fig. 9
shows the number of iterations required to solve the Stokes and temperature linear systems in each time
step. It is easy to see that these are more difficult to solve in the beginning when the solution still changes
significant from time step to time step. However, after some time, the solution remains mostly the same and
solvers then only need 9 or 10 iterations for the temperature equation and 4 or 5 iterations for the Stokes
equations because the starting guess for the linear solver – the previous time step’s solution – is already
pretty good. If you look at any of the more complex cookbooks, you will find that one needs many more
iterations to solve these equations.

Play time 1: Different Rayleigh numbers. After showing you results for the input file as it can be
found in cookbooks/convection-box.prm, let us end this section with a few ideas on how to play with it and
what to explore. The first direction one could take this example is certainly to consider different Rayleigh
numbers. As mentioned above, for the value Ra = 104 for which the results above have been produced, one

76

cookbooks/convection-box.prm

Figure 10: Convection in a box: Temperature fields at the end of a simulation for Ra = 102 where thermal
diffusion dominates (left) and Ra = 106 where convective heat transport dominates (right). The mesh on the
right is clearly too coarse to resolve the structure of the solution.

Figure 11: Convection in a box: Velocities (left) and heat flux across the top and bottom boundaries (right)
as a function of time at Ra = 106.

gets a stable convection pattern. On the other hand, for values Ra < Rac ≈ 780, any movement of the fluid
dies down exponentially and we end up with a situation where the fluid doesn’t move and heat is transported
from the bottom to the top only through heat conduction. This can be explained by considering that the
Rayleigh number in a box is defined as Ra = ρ0gα∆Th3

ηk . A small Rayleigh number below Rac means that
the buoyancy forces caused by temperature variations – ρ0α∆T – are not strong enough to overcome friction
forces within the fluid, that is, the viscosity is too high.

On the other hand, if the Rayleigh number is large (i.e., the viscosity is small or the buoyancy large)
then the fluid develops an unsteady convection period. As we consider fluids with larger and larger Ra, this
pattern goes through a sequence of period-doubling events until flow finally becomes chaotic. The structures
of the flow pattern also become smaller and smaller.

We illustrate these situations in Figs. 10 and 11. The first shows the temperature field at the end of a
simulation for Ra = 102 (below Rac) and at Ra = 106. Obviously, for the right picture, the mesh is not fine
enough to accurately resolve the features of the flow field and we would have to refine it more. The second
of the figures shows the velocity and heatflux statistics for the computation with Ra = 106; it is obvious
here that the flow no longer settles into a steady state but has a periodic behavior. This can also be seen by
looking at movies of the solution.

77

To generate these results, remember that we have chosen g = Ra in our input file. In other words,
changing the input file to contain the parameter setting

subsection Gravity model
subsection Vertical

set Magnitude = 1e6 # = Ra
end

end

will achieve the desired effect of computing with Ra = 106.

Play time 2: Thinking about finer meshes. In our computations for Ra = 104 we used a 16×16 mesh
and obtained a value for the heat flux that differed from the generally accepted value from Blankenbach et
al. [14] by less than 2%. However, it may be interesting to think about computing even more accurately.
This is easily done by using a finer mesh, for example. In the parameter file above, we have chosen the mesh
setting as follows:

subsection Mesh refinement
set Initial global refinement = 4
set Initial adaptive refinement = 0
set Time steps between mesh refinement = 0

end

We start out with a box geometry consisting of a single cell that is refined four times. Each time we split
each cell into its 4 children, obtaining the 16× 16 mesh already mentioned. The other settings indicate that
we do not want to refine the mesh adaptively at all in the first time step, and a setting of zero for the last
parameter means that we also never want to adapt the mesh again at a later time. Let us stick with the
never-changing, globally refined mesh for now (we will come back to adaptive mesh refinement again at a
later time) and only vary the initial global refinement. In particular, we could choose the parameter Initial
global refinement to be 5, 6, or even larger. This will get us closer to the exact solution albeit at the
expense of a significantly increased computational time.

A better strategy is to realize that for Ra = 104, the flow enters a steady state after settling in during
the first part of the simulation (see, for example, the graphs in Fig. 8). Since we are not particularly
interested in this initial transient process, there is really no reason to spend CPU time using a fine mesh and
correspondingly small time steps during this part of the simulation (remember that each refinement results
in four times as many cells in 2d and a time step half as long, making reaching a particular time at least 8
times as expensive, assuming that all solvers in ASPECT scale perfectly with the number of cells). Rather,
we can use a parameter in the ASPECT input file that let’s us increase the mesh resolution at later times.
To this end, let us use the following snippet for the input file:

subsection Mesh refinement
set Initial global refinement = 3
set Initial adaptive refinement = 0
set Time steps between mesh refinement = 0
set Additional refinement times = 0.2, 0.3, 0.4
set Refinement fraction = 1.0
set Coarsening fraction = 0.0

end

What this does is the following: We start with an 8 × 8 mesh (3 times globally refined) but then at
times t = 0.2, 0.3 and 0.4 we refine the mesh using the default refinement indicator (which one this is is not
important because of the next statement). Each time, we refine, we refine a fraction 1.0 of the cells, i.e., all
cells and we coarsen a fraction of 0.0 of the cells, i.e. no cells at all. In effect, at these additional refinement
times, we do another global refinement, bringing us to refinement levels 4, 5 and finally 6.

78

Figure 12: Convection in a box: Refinement in stages. Total number of unknowns in each time step, including
all velocity, pressure and temperature unknowns (left) and heat flux across the top boundary (right).

Fig. 12 shows the results. In the left panel, we see how the number of unknowns grows over time (note
the logscale for the y-axis). The right panel displays the heat flux. The jumps in the number of cells is
clearly visible in this picture as well. This may be surprising at first but remember that the mesh is clearly
too coarse in the beginning to really resolve the flow and so we should expect that the solution changes
significantly if the mesh is refined. This effect becomes smaller with every additional refinement and is
barely visible at the last time this happens, indicating that the mesh before this refinement step may already
have been fine enough to resolve the majority of the dynamics.

In any case, we can compare the heat fluxes we obtain at the end of these computations: With a globally
four times refined mesh, we get a value of 4.787 (an error of approximately 2% against the accepted value
from Blankenbach, 4.884409 ± 0.00001). With a globally five times refined mesh we get 4.879, and with a
globally six times refined mesh we get 4.89 (an error of almost 0.1%). With the mesh generated using the
procedure above we also get 4.89 with the digits printed on the screen21 (also corresponding to an error of
almost 0.1%). In other words, our simple procedure of refining the mesh during the simulation run yields the
same accuracy as using the mesh that is globally refined in the beginning of the simulation, while needing a
much lower compute time.

Play time 3: Changing the finite element in use. Another way to increase the accuracy of a finite
element computation is to use a higher polynomial degree for the finite element shape functions. By default,
ASPECT uses quadratic shape functions for the velocity and the temperature and linear ones for the
pressure. However, this can be changed with a single number in the input file.

Before doing so, let us consider some aspects of such a change. First, looking at the pictures of the
solution in Fig. 7, one could surmise that the quadratic elements should be able to resolve the velocity field
reasonably well given that it is rather smooth. On the other hand, the temperature field has a boundary
layer at the top and bottom. One could conjecture that the temperature polynomial degree is therefore the
limiting factor and not the polynomial degree for the flow variables. We will test this conjecture below.
Secondly, given the nature of the equations, increasing the polynomial degree of the flow variables increases
the cost to solve these equations by a factor of 22

9 in 2d (you can get this factor by counting the number of
degrees of freedom uniquely associated with each cell) but leaves the time step size and the cost of solving
the temperature system unchanged. On the other hand, increasing the polynomial degree of the temperature
variable from 2 to 3 requires 9

4 times as many degrees of freedom for the temperature and also requires us to
reduce the size of the time step by a factor of 2

3 . Because solving the temperature system is not a dominant
factor in each time step (see the timing results shown at the end of the screen output above), the reduction

21The statistics file gives this value to more digits: 4.89008498. However, these are clearly more digits than the result is
accurate.

79

in time step is the only important factor. Overall, increasing the polynomial degree of the temperature
variable turns out to be the cheaper of the two options.

Following these considerations, let us add the following section to the parameter file:
subsection Discretization

set Stokes velocity polynomial degree = 2
set Temperature polynomial degree = 3

end

This leaves the velocity and pressure shape functions at quadratic and linear polynomial degree but
increases the polynomial degree of the temperature from quadratic to cubic. Using the original, four times
globally refined mesh, we then get the following output:
Number of active cells: 256 (on 5 levels)
Number of degrees of freedom: 4,868 (2,178+289+2,401)

*** Timestep 0: t=0 seconds
Solving temperature system... 0 iterations.
Rebuilding Stokes preconditioner...
Solving Stokes system... 30+0 iterations.

[... ...]

*** Timestep 1621: t=0.5 seconds
Solving temperature system... 0 iterations.
Solving Stokes system... 1+0 iterations.

Postprocessing:
RMS, max velocity: 42.9 m/s, 69.5 m/s
Temperature min/avg/max: 0 K, 0.5 K, 1 K
Heat fluxes through boundary parts: -0.004602 W, 0.004602 W, -4.849 W, 4.849 W

Termination requested by criterion: end time

+---+------------+------------+
Total wallclock time elapsed since start	53.6s		
Section	no. calls	wall time	% of total
+---------------------------------+-----------+------------+------------+			
Assemble Stokes system	1622	4.04s	7.5%
Assemble temperature system	1622	24.4s	46%
Build Stokes preconditioner	1	0.0121s	0%
Build temperature preconditioner	1622	8.05s	15%
Solve Stokes system	1622	8.92s	17%
Solve temperature system	1622	1.67s	3.1%
Initialization	1	0.0327s	0%
Postprocessing	1622	4.27s	8%
Setup dof systems	1	0.00418s	0%
Setup initial conditions	1	0.00236s	0%
+---------------------------------+-----------+------------+------------+

The heat flux through the top and bottom boundaries is now computed as 4.878. Using the five times
globally refined mesh, it is 4.8837 (an error of 0.015%). This is 6 times more accurate than the once more
globally refined mesh with the original quadratic elements, at a cost significantly smaller. Furthermore, we
can of course combine this with the mesh that is gradually refined as simulation time progresses, and we
then get a heat flux that is equal to 4.884446, also only 0.01% away from the accepted value!

80

As a final remark, to test our hypothesis that it was indeed the temperature polynomial degree that
was the limiting factor, we can increase the Stokes polynomial degree to 3 while leaving the temperature
polynomial degree at 2. A quick computation shows that in that case we get a heat flux of 4.747 – almost the
same value as we got initially with the lower order Stokes element. In other words, at least for this testcase,
it really was the temperature variable that limits the accuracy.

5.2.2 Convection in a 3d box

The world is not two-dimensional. While the previous section introduced a number of the knobs one can
play with with ASPECT, things only really become interesting once one goes to 3d. The setup from the
previous section is easily adjusted to this and in the following, let us walk through some of the changes we
have to consider when going from 2d to 3d. The full input file that contains these modifications and that was
used for the simulations we will show subsequently can be found at cookbooks/convection-box-3d.prm.

The first set of changes has to do with the geometry: it is three-dimensional, and we will have to address
the fact that a box in 3d has 6 sides, not the 4 we had previously. The documentation of the “box” geometry
(see Section A.43) states that these sides are numbered as follows: “in 3d, boundary indicators 0 through
5 indicate left, right, front, back, bottom and top boundaries.” Recalling that we want tangential flow all
around and want to fix the temperature to known values at the bottom and top, the following will make
sense:

set Dimension = 3

subsection Geometry model
set Model name = box

subsection Box
set X extent = 1
set Y extent = 1
set Z extent = 1

end
end

subsection Boundary temperature model
set Fixed temperature boundary indicators = bottom, top
set List of model names = box

subsection Box
set Bottom temperature = 1
set Top temperature = 0

end
end

subsection Boundary velocity model
set Tangential velocity boundary indicators = left, right, front, back, bottom, top

end

The next step is to describe the initial conditions. As before, we will use an unstably layered medium
but the perturbation now needs to be both in x- and y-direction

subsection Initial temperature model
set Model name = function

subsection Function
set Variable names = x,y,z
set Function constants = p=0.01, L=1, pi=3.1415926536, k=1
set Function expression = (1.0-z) - p*cos(k*pi*x/L)*sin(pi*z)*y^3

81

cookbooks/convection-box-3d.prm

end
end

The third issue we need to address is that we can likely not afford a mesh as fine as in 2d. We choose a
mesh that is refined 3 times globally at the beginning, then 3 times adaptively, and is then adapted every
15 time steps. We also allow one additional mesh refinement in the first time step following t = 0.003 once
the initial instability has given way to a more stable pattern:

subsection Mesh refinement
set Initial global refinement = 3
set Initial adaptive refinement = 3
set Time steps between mesh refinement = 15

set Additional refinement times = 0.003
end

Finally, as we have seen in the previous section, a computation with Ra = 104 does not lead to a
simulation that is exactly exciting. Let us choose Ra = 106 instead (the mesh chosen above with up to 7
refinement levels after some time is fine enough to resolve this). We can achieve this in the same way as in
the previous section by choosing α = 10−10 and setting

subsection Gravity model
set Model name = vertical

subsection Vertical
set Magnitude = 1e16 # = Ra / Thermal expansion coefficient

end
end

This has some interesting implications. First, a higher Rayleigh number makes time scales correspondingly
smaller; where we generated graphical output only once every 0.01 time units before, we now need to choose
the corresponding increment smaller by a factor of 100:

subsection Postprocess
set List of postprocessors = velocity statistics, temperature statistics, ...

...heat flux statistics, visualization

subsection Visualization
set Time between graphical output = 0.0001

end
end

Secondly, a simulation like this – in 3d, with a significant number of cells, and for a significant number of time
steps – will likely take a good amount of time. The computations for which we show results below was run
using 64 processors by running it using the command mpirun -n 64 ./aspect convection-box-3d.prm.
If the machine should crash during such a run, a significant amount of compute time would be lost if we had
to run everything from the start. However, we can avoid this by periodically checkpointing the state of the
computation:

subsection Checkpointing
set Steps between checkpoint = 50

end

If the computation does crash (or if a computation runs out of the time limit imposed by a scheduling
system), then it can be restarted from such checkpointing files (see the parameter Resume computation in
Section A.1).

82

Running with this input file requires a bit of patience22 since the number of degrees of freedom is just so
large: it starts with a bit over 330,000. . .

Running with 64 MPI tasks.
Number of active cells: 512 (on 4 levels)
Number of degrees of freedom: 20,381 (14,739+729+4,913)

*** Timestep 0: t=0 seconds
Solving temperature system... 0 iterations.
Rebuilding Stokes preconditioner...
Solving Stokes system... 18 iterations.

Number of active cells: 1,576 (on 5 levels)
Number of degrees of freedom: 63,391 (45,909+2,179+15,303)

*** Timestep 0: t=0 seconds
Solving temperature system... 0 iterations.
Rebuilding Stokes preconditioner...
Solving Stokes system... 19 iterations.

Number of active cells: 3,249 (on 5 levels)
Number of degrees of freedom: 122,066 (88,500+4,066+29,500)

*** Timestep 0: t=0 seconds
Solving temperature system... 0 iterations.
Rebuilding Stokes preconditioner...
Solving Stokes system... 20 iterations.

Number of active cells: 8,968 (on 5 levels)
Number of degrees of freedom: 331,696 (240,624+10,864+80,208)

*** Timestep 0: t=0 seconds
Solving temperature system... 0 iterations.
Rebuilding Stokes preconditioner...
Solving Stokes system... 21 iterations.

[...]

. . . but then increases quickly to around 2 million as the solution develops some structure and, after time
t = 0.003 where we allow for an additional refinement, increases to over 10 million where it then hovers
between 8 and 14 million with a maximum of 15,147,534. Clearly, even on a reasonably quick machine,
this will take some time: running this on a machine bought in 2011, doing the 10,000 time steps to get to
t = 0.0219 takes approximately 484,000 seconds (about five and a half days).

The structure or the solution is easiest to grasp by looking at isosurfaces of the temperature. This is
shown in Fig. 13 and you can find a movie of the motion that ensues from the heating at the bottom at
http://www.youtube.com/watch?v=_bKqU_P4j48. The simulation uses adaptively changing meshes that
are fine in rising plumes and sinking blobs and are coarse where nothing much happens. This is most easily
seen in the movie at http://www.youtube.com/watch?v=CzCKYyR-cmg. Fig. 14 shows some of these meshes,
though still pictures do not do the evolving nature of the mesh much justice. The effect of increasing the
Rayleigh number is apparent when comparing the size of features with, for example, the picture at the right
of Fig. 7. In contrast to that picture, the simulation is also clearly non-stationary.

As before, we could analyze all sorts of data from the statistics file but we will leave this to those interested
in specific data. Rather, Fig. 15 only shows the upward heat flux through the bottom and top boundaries

22For computations of this size, one should test a few time steps in debug mode but then, of course, switch to running the
actual computation in optimized mode – see Section 4.3.

83

http://www.youtube.com/watch?v=_bKqU_P4j48
http://www.youtube.com/watch?v=CzCKYyR-cmg

Figure 13: Convection in a 3d box: Temperature isocontours and some velocity vectors at the first time step
after times t = 0.001, 0.004, 0.006 (top row, left to right) an t = 0.01, 0.013, 0.018 (bottom row).

Figure 14: Convection in a 3d box: Meshes and large-scale velocity field for the third, fourth and sixth of the
snapshots shown in Fig. 13.

84

Figure 15: Convection in a 3d box: Upward heat flux through the bottom and top boundaries as a function
of time.

of the domain as a function of time.23 The figure reinforces a pattern that can also be seen by watching
the movie of the temperature field referenced above, namely that the simulation can be subdivided into
three distinct phases. The first phase corresponds to the initial overturning of the unstable layering of the
temperature field and is associated with a large spike in heat flux as well as large velocities (not shown here).
The second phase, until approximately t = 0.01 corresponds to a relative lull: some plumes rise up, but not
very fast because the medium is now stably layered but not fully mixed. This can be seen in the relatively
low heat fluxes, but also in the fact that there are almost horizontal temperature isosurfaces in the second
of the pictures in Fig. 13. After that, the general structure of the temperature field is that the interior of
the domain is well mixed with a mostly constant average temperature and thin thermal boundary layers at
the top and bottom from which plumes rise and sink. In this regime, the average heat flux is larger but also
more variable depending on the number of plumes currently active. Many other analyses would be possible
by using what is in the statistics file or by enabling additional postprocessors.

5.2.3 Convection in a box with prescribed, variable velocity boundary conditions

A similarly simple setup to the ones considered in the previous subsections is to equip the model we had
with a different set of boundary conditions. There, we used slip boundary conditions, i.e., the fluid can flow
tangentially along the four sides of our box but this tangential velocity is unspecified. On the other hand, in
many situations, one would like to actually prescribe the tangential flow velocity as well. A typical application
would be to use boundary conditions at the top that describe experimentally determined velocities of plates.
This cookbook shows a simple version of something like this. To make it slightly more interesting, we choose
a 2× 1 domain in 2d.

Like for many other things, ASPECT has a set of plugins for prescribed velocity boundary values (see
Sections A.34 and 6.4.6). These plugins allow one to write sophisticated models for the boundary velocity
on parts or all of the boundary, but there is also one simple implementation that just takes a formula for
the components of the velocity.

23Note that the statistics file actually contains the outward heat flux for each of the six boundaries, which corresponds to
the negative of upward flux for the bottom boundary. The figure therefore shows the negative of the values available in the
statistics file.

85

To illustrate this, let us consider the cookbooks/platelike-boundary.prm input file. It essentially
extends the input file considered in the previous example. The part of this file that we are particularly
interested in in the current context is the selection of the kind of velocity boundary conditions on the four
sides of the box geometry, which we do using a section like this:

subsection Boundary velocity model
set Tangential velocity boundary indicators = left, right, bottom
set Prescribed velocity boundary indicators = top: function

subsection Function
set Variable names = x,z,t
set Function constants = pi=3.1415926
set Function expression = if(x>1+sin(0.5*pi*t), 1, -1); 0

end
end

We use tangential flow at boundaries named left, right and bottom. Additionally, we specify a comma
separated list (here with only a single element) of pairs consisting of the name of a boundary and the name
of a prescribed velocity boundary model. Here, we use the function model on the top boundary, which
allows us to provide a function-like notation for the components of the velocity vector at the boundary.

The second part we need is that we actually describe the function that sets the velocity. We do this
in the subsection Function. The first of these parameters gives names to the components of the position
vector (here, we are in 2d and we use x and z as spatial variable names) and the time. We could have left
this entry at its default, x,y,t, but since we often think in terms of “depth” as the vertical direction, let
us use z for the second coordinate. In the second parameter we define symbolic constants that can be used
in the formula for the velocity that is specified in the last parameter. This formula needs to have as many
components as there are space dimensions, separated by semicolons. As stated, this means that we prescribe
the (horizontal) x-velocity and set the vertical velocity to zero. The horizontal component is here either 1
or −1, depending on whether we are to the right or the left of the point 1 + sin(πt/2) that is moving back
and forth with time once every four time units. The if statement understood by the parser we use for these
formulas has the syntax if(condition, value-if-true, value-if-false).

86

cookbooks/platelike-boundary.prm

Note: While you can enter most any expression into the parser for these velocity boundary
conditions, not all make sense. In particular, if you use an incompressible medium like we do
here, then you need to make sure that either the flow you prescribe is indeed tangential, or that
at least the flow into and out of the boundary this function applies to is balanced so that in sum
the amount of material in the domain stays constant.
It is in general not possible for ASPECT to verify that a given input is sensible. However,
you will quickly find out if it isn’t: The linear solver for the Stokes equations will simply not
converge. For example, if your function expression in the input file above read
if(x>1+sin(0.5*pi*t), 1, -1); 1

then at the time of writing this you would get the following error message:
*** Timestep 0: t=0 seconds
Solving temperature system... 0 iterations.
Rebuilding Stokes preconditioner...
Solving Stokes system...

...some timing output ...

––––––––––––––––––––––––––
Exception on processing:
Iterative method reported convergence failure in step 9539 with residual 6.0552
Aborting!
––––––––––––––––––––––––––

The reason is, of course, that there is no incompressible (divergence free) flow field that allows
for a constant vertical outflow component along the top boundary without corresponding inflow
anywhere else.

The remainder of the setup is described in the following, complete input file:
############### Global parameters

set Dimension = 2
set Start time = 0
set End time = 20
set Use years in output instead of seconds = false
set Output directory = output-platelike-boundary

############### Parameters describing the model
Let us here choose again a box domain of size 2x1
where we fix the temperature at the bottom and top,
allow free slip along the bottom, left and right,
and prescribe the velocity along the top using the
‘function’ description.

subsection Geometry model
set Model name = box

subsection Box
set X extent = 2
set Y extent = 1

end
end

87

We then set the temperature to one at the bottom and zero
at the top:
subsection Boundary temperature model

set Fixed temperature boundary indicators = bottom, top
set List of model names = box

subsection Box
set Bottom temperature = 1
set Top temperature = 0

end
end

The velocity along the top boundary models a spreading
center that is moving left and right:
subsection Boundary velocity model

set Tangential velocity boundary indicators = left, right, bottom
set Prescribed velocity boundary indicators = top: function

subsection Function
set Variable names = x,z,t
set Function constants = pi=3.1415926
set Function expression = if(x>1+sin(0.5*pi*t), 1, -1); 0

end
end

We then choose a vertical gravity model and describe the
initial temperature with a vertical gradient. The default
strength for gravity is one. The material model is the
same as before.
subsection Gravity model

set Model name = vertical
end

subsection Initial temperature model
set Model name = function

subsection Function
set Variable names = x,z
set Function expression = (1-z)

end
end

subsection Material model
set Model name = simple

subsection Simple model
set Thermal conductivity = 1e-6
set Thermal expansion coefficient = 1e-4
set Viscosity = 1

end
end

88

Figure 16: Variable velocity boundary conditions: Temperature and velocity fields at the initial time (top left)
and at various other points in time during the simulation.

The final part of this input file describes how many times the
mesh is refined and what to do with the solution once computed
subsection Mesh refinement

set Initial adaptive refinement = 0
set Initial global refinement = 5
set Time steps between mesh refinement = 0

end

subsection Postprocess
set List of postprocessors = visualization, temperature statistics, heat flux statistics

subsection Visualization
set Time between graphical output = 0.1

end
end

This model description yields a setup with a Rayleigh number of 200 (taking into account that the domain
has size 2). It would, thus, be dominated by heat conduction rather than convection if the prescribed velocity
boundary conditions did not provide a stirring action. Visualizing the results of this simulation24 yields
images like the ones shown in Fig. 16.

5.2.4 Using passive and active compositional fields

One frequently wants to track where material goes, either because one simply wants to see where stuff ends
up (e.g., to determine if a particular model yields mixing between the lower and upper mantle) or because the
material model in fact depends not only pressure, temperature and location but also on the mass fractions of
certain chemical or other species. We will refer to the first case as passive and the latter as active to indicate
the role of the additional quantities whose distribution we want to track. We refer to the whole process as
compositional since we consider quantities that have the flavor of something that denotes the composition
of the material at any given point.

24In fact, the pictures are generated using a twice more refined mesh to provide adequate resolution. We keep the default
setting of five global refinements in the parameter file as documented above to keep compute time reasonable when using the
default settings.

89

There are basically two ways to achieve this: one can advect a set of particles (“tracers”) along with the
velocity field, or one can advect along a field. In the first case, where the closest particle came from indicates
the value of the concentration at any given position. In the latter case, the concentration(s) at any given
position is simply given by the value of the field(s) at this location.

ASPECT implements both strategies, at least to a certain degree. In this cookbook, we will follow the
route of advected fields.

The passive case. We will consider the exact same situation as in the previous section but we will ask
where the material that started in the bottom 20% of the domain ends up, as well as the material that started
in the top 20%. For the moment, let us assume that there is no material between the materials at the bottom,
the top, and the middle. The way to describe this situation is to simply add the following block of definitions
to the parameter file (you can find the full parameter file in cookbooks/composition-passive.prm:

This is the new part: We declare that there will
be two compositional fields that will be
advected along. Their initial conditions are given by
a function that is one for the lowermost 0.2 height
units of the domain and zero otherwise in the first case,
and one in the top most 0.2 height units in the latter.
subsection Compositional fields

set Number of fields = 2
end

subsection Initial composition model
set Model name = function

subsection Function
set Variable names = x,y
set Function expression = if(y<0.2, 1, 0) ; if(y>0.8, 1, 0)

end
end

Running this simulation yields results such as the ones shown in Fig. 17 where we show the values of the
functions c1(x, t) and c2(x, t) at various times in the simulation. Because these fields were one only inside
the lowermost and uppermost parts of the domain, zero everywhere else, and because they have simply been
advected along with the flow field, the places where they are larger than one half indicate where material
has been transported to so far.25

Fig. 17 shows one aspect of compositional fields that occasionally makes them difficult to use for very long
time computations. The simulation shown here runs for 20 time units, where every cycle of the spreading
center at the top moving left and right takes 4 time units, for a total of 5 such cycles. While this is certainly
no short-term simulation, it is obviously visible in the figure that the interface between the materials has
diffused over time. Fig. 18 shows a zoom into the center of the domain at the final time of the simulation.
The figure only shows values that are larger than 0.5, and it looks like the transition from red or blue to the
edge of the shown region is no wider than 3 cells. This means that the computation is not overly diffusive
but it is nevertheless true that this method has difficulty following long and thin filaments.26 This is an area
in which ASPECT may see improvements in the future.

25Of course, this interpretation suggests that we could have achieved the same goal by encoding everything into a single
function – that would, for example, have had initial values one, zero and minus one in the three parts of the domain we are
interested in.

26We note that this is no different for particles where the position of particles has to be integrated over time and is subject
to numerical error. In simulations, their location is therefore not the exact one but also subject to a diffusive process resulting
from numerical inaccuracies. Furthermore, in long thin filaments, the number of particles per cell often becomes too small and
new particles have to be inserted; their properties are then interpolated from the surrounding particles, a process that also
incurs a smoothing penalty.

90

cookbooks/composition-passive.prm

Figure 17: Passive compositional fields: The figures show, at different times in the simulation, the velocity
field along with those locations where the first compositional field is larger than 0.5 (in red, indicating the
locations where material from the bottom of the domain has gone) as well as where the second compositional
field is larger than 0.5 (in blue, indicating material from the top of the domain. The results were obtained
with two more global refinement steps compared to the cookbooks/ composition-passive. prm input file.

Figure 18: Passive compositional fields: A later image of the simulation corresponding to the sequence shown
in Fig. 17 (left) and zoom-in on the center, also showing the mesh (right).

Figure 19: Passive compositional fields: Minimum and maximum of the first compositional variable over
time, as well as the mass m1(t) =

∫
Ω c1(x, t) stored in this variable.

91

cookbooks/composition-passive.prm

A different way of looking at the quality of compositional fields as opposed to particles is to ask
whether they conserve mass. In the current context, the mass contained in the ith compositional field is
mi(t) =

∫
Ω ci(x, t). This can easily be achieve in the following way, by adding the composition statistics

postprocessor:

subsection Postprocess
set List of postprocessors = visualization, temperature statistics, composition statistics

end

While the scheme we use to advect the compositional fields is not strictly conservative, it is almost
perfectly so in practice. For example, in the computations shown in this section (using two additional global
mesh refinements over the settings in the parameter file cookbooks/composition-passive.prm), Fig. 19
shows the maximal and minimal values of the first compositional fields over time, along with the mass m1(t)
(these are all tabulated in columns of the statistics file, see Sections 4.1 and 4.4.2). While the maximum
and minimum fluctuate slightly due to the instability of the finite element method in resolving discontinuous
functions, the mass appears stable at a value of 0.403646 (the exact value, namely the area that was initially
filled by each material, is 0.4; the difference is a result of the fact that we can’t exactly represent the step
function on our mesh with the finite element space). In fact, the maximal difference in this value between
time steps 1 and 500 is only 1.1× 10−6. In other words, these numbers show that the compositional field
approach is almost exactly mass conservative.

The active case. The next step, of course, is to make the flow actually depend on the composition. After
all, compositional fields are not only intended to indicate where material come from, but also to indicate the
properties of this material. In general, the way to achieve this is to write material models where the density,
viscosity, and other parameters depend on the composition, taking into account what the compositional fields
actually denote (e.g., if they simply indicate the origin of material, or the concentration of things like olivine,
perovskite, . . .). The construction of material models is discussed in much greater detail in Section 6.4.1;
we do not want to revisit this issue here and instead choose – once again – the simplest material model that
is implemented in ASPECT: the simple model.

The place where we are going to hook in a compositional dependence is the density. In the simple
model, the density is fundamentally described by a material that expands linearly with the temperature; for
small density variations, this corresponds to a density model of the form ρ(T) = ρ0(1 − α(T − T0)). This
is, by virtue of its simplicity, the most often considered density model. But the simple model also has a
hook to make the density depend on the first compositional field c1(x, t), yielding a dependence of the form
ρ(T) = ρ0(1 − α(T − T0)) + γc1. Here, let us choose ρ0 = 1, α = 0.01, T0 = 0, γ = 100. The rest of our
model setup will be as in the passive case above. Because the temperature will be between zero and one, the
temperature induced density variations will be restricted to 0.01, whereas the density variation by origin of
the material is 100. This should make sure that dense material remains at the bottom despite the fact that
it is hotter than the surrounding material.27

This setup of the problem can be described using an input file that is almost completely unchanged from
the passive case. The only difference is the use of the following section (the complete input file can be found
in cookbooks/composition-active.prm:

subsection Material model
set Model name = simple

subsection Simple model
set Thermal conductivity = 1e-6
set Thermal expansion coefficient = 0.01

27The actual values do not matter as much here. They are chosen in such a way that the system – previously driven primarily
by the velocity boundary conditions at the top – now also feels the impact of the density variations. To have an effect, the
buoyancy induced by the density difference between materials must be strong enough to balance or at least approach the forces
exerted by whatever is driving the velocity at the top.

92

cookbooks/composition-passive.prm
cookbooks/composition-active.prm

Figure 20: Active compositional fields: Compositional field 1 at the time t = 0, 10, 20. Compared to the
results shown in Fig. 17 it is clear that the heavy material stays at the bottom of the domain now. The effect
of the density on the velocity field is also clearly visible by noting that at all three times the spreading center
at the top boundary is in exactly the same position; this would result in exactly the same velocity field if the
density and temperature were constant.

Figure 21: Active compositional fields: Temperature fields at t = 0, 2, 4, 8, 12, 20. The black line is the
isocontour line c1(x, t) = 0.5 delineating the position of the dense material at the bottom.

set Viscosity = 1
set Reference density = 1
set Reference temperature = 0
set Density differential for compositional field 1 = 0.1

end
end

To debug the model, we will also want to visualize the density in our graphical output files. This is done
using the following addition to the postprocessing section, using the density visualization plugin:

subsection Postprocess
set List of postprocessors = visualization, temperature statistics, composition statistics

subsection Visualization
set List of output variables = density
set Time between graphical output = 0.1

end
end

Results of this model are visualized in Figs. 20 and 21. What is visible is that over the course of the
simulation, the material that starts at the bottom of the domain remains there. This can only happen
if the circulation is significantly affected by the high density material once the interface starts to become
non-horizontal, and this is indeed visible in the velocity vectors. As a second consequence, if the material at
the bottom does not move away, then there needs to be a different way for the heat provided at the bottom

93

to get through the bottom layer: either there must be a secondary convection system in the bottom layer,
or heat is simply conducted. The pictures in the figure seem to suggest that the latter is the case.

It is easy, using the outline above, to play with the various factors that drive this system, namely:

• The magnitude of the velocity prescribed at the top.

• The magnitude of the velocities induced by thermal buoyancy, as resulting from the magnitude of
gravity and the thermal expansion coefficient.

• The magnitude of the velocities induced by compositional variability, as described by the coefficient γ
and the magnitude of gravity.

Using the coefficients involved in these considerations, it is trivially possible to map out the parameter space
to find which of these effects is dominant. As mentioned in discussing the values in the input file, what is
important is the relative size of these parameters, not the fact that currently the density in the material at
the bottom is 100 times larger than in the rest of the domain, an effect that from a physical perspective
clearly makes no sense at all.

The active case with reactions. This section was contributed by Juliane Dannberg and René Gaßmöller.
In addition, there are setups where one wants the compositional fields to interact with each other. One

example would be material upwelling at a mid-ocean ridge and changing the composition to that of oceanic
crust when it reaches a certain depth. In this cookbook, we will describe how this kind of behavior can be
achieved by using the composition reaction function of the material model.

We will consider the exact same setup as in the previous paragraphs, except for the initial conditions
and properties of the two compositional fields. There is one material that initially fills the bottom half of
the domain and is less dense than the material above. In addition, there is another material that only gets
created when the first material reaches the uppermost 20% of the domain, and that has a higher density.
This should cause the first material to move upwards, get partially converted to the second material, which
then sinks down again. This means we want to change the initial conditions for the compositional fields:

subsection Initial composition model
set Model name = function

subsection Function
set Variable names = x,z
set Function expression = if(z<0.5, 1, 0); 0

end
end

Moreover, instead of the simple material model, we will use the composition reaction material model,
which basically behaves in the same way, but can handle two active compositional field and a reaction
between those two fields. In the input file, the user defines a depth and above this reaction depth the first
compositional fields is converted to the second field. This can be done by changing the following section (the
complete input file can be found in cookbooks/composition-reaction.prm).

subsection Material model
set Model name = composition reaction

subsection Composition reaction model
set Thermal conductivity = 1e-6
set Thermal expansion coefficient = 0.01
set Viscosity = 1
set Density differential for compositional field 1 = -5
set Density differential for compositional field 2 = 5
set Reaction depth = 0.2

end

94

cookbooks/composition-reaction.prm

Figure 22: Reaction between compositional fields: Temperature fields at t = 0, 2, 4, 8, 12, 20. The black line
is the isocontour line c1(x, t) = 0.5 delineating the position of the material starting at the bottom and the
white line is the isocontour line c2(x, t) = 0.5 delineating the position of the material that is created by the
reaction.

end

Results of this model are visualized in Fig 22. What is visible is that over the course of the simulation,
the material that starts at the bottom of the domain ascends, reaches the reaction depth and gets converted
to the second material, which starts to sink down.

5.2.5 Using particles

Using compositional fields to trace where material has come from or is going to has many advantages from a
computational point of view. For example, the numerical methods to advect along fields are well developed
and we can do so at a cost that is equivalent to one temperature solve for each of the compositional fields.
Unless you have many compositional fields, this cost is therefore relatively small compared to the overall
cost of a time step. Another advantage is that the value of a compositional field is well defined at every
point within the domain. On the other hand, compositional fields over time diffuse initially sharp interfaces,
as we have seen in the images of the previous section.

At the same time, the geodynamics community has a history of using particles for this purpose. His-
torically, this may have been because it is conceptually simpler to advect along individual particles rather
than whole fields, since it only requires an ODE integrator rather than the stabilization techniques necessary
to advect fields. They also provide the appearance of no diffusion, though this is arguable. Leaving aside
the debate whether fields or particles are the way to go, ASPECT supports both: using fields and using
particles.

In order to advect particles along with the flow field, one just needs to add the particles postprocessor to
the list of postprocessors and specify a few parameters. We do so in the cookbooks/composition-passive-particles.
prm input file, which is otherwise just a minor variation of the cookbooks/composition-passive.prm case
discussed in the previous Section 5.2.4. In particular, the postprocess section now looks like this:

subsection Postprocess
set List of postprocessors = visualization, particles

subsection Visualization
set Time between graphical output = 0.1

end

subsection Particles

95

cookbooks/composition-passive-particles.prm
cookbooks/composition-passive-particles.prm
cookbooks/composition-passive.prm

Figure 23: Passively advected quantities visualized through both a compositional field and a set of 1,000
particles, at t = 7.2.

set Number of particles = 1000
set Time between data output = 0.1
set Data output format = vtu

end
end

The 1000 particles we are asking here are initially uniformly distributed throughout the domain and are,
at the end of each time step, advected along with the velocity field just computed. (There are a number of
options to decide which method to use for advecting particles, see Section A.146.)

If you run this cookbook, information about all particles will be written into the output directory selected
in the input file (as discussed in Section 4.1). In the current case, in addition to the files already discussed
there, a directory listing at the end of a run will show several particle related files:

aspect> ls -l output/
total 932
-rw-rw-r-- 1 bangerth bangerth 11134 Dec 11 10:08 depth_average.gnuplot
-rw-rw-r-- 1 bangerth bangerth 11294 Dec 11 10:08 log.txt
-rw-rw-r-- 1 bangerth bangerth 326074 Dec 11 10:07 parameters.prm
-rw-rw-r-- 1 bangerth bangerth 577138 Dec 11 10:07 parameters.tex
drwxrwxr-x 2 bangerth bangerth 4096 Dec 11 18:40 particles
-rw-rw-r-- 1 bangerth bangerth 335 Dec 11 18:40 particles.pvd
-rw-rw-r-- 1 bangerth bangerth 168 Dec 11 18:40 particles.visit
drwxr-xr-x 2 bangerth bangerth 4096 Dec 11 10:08 solution
-rw-rw-r-- 1 bangerth bangerth 484 Dec 11 10:08 solution.pvd
-rw-rw-r-- 1 bangerth bangerth 451 Dec 11 10:08 solution.visit
-rw-rw-r-- 1 bangerth bangerth 8267 Dec 11 10:08 statistics

Here, the particles.pvd and particles.visit files contain a list of all visualization files from all processors
and time steps. These files can be loaded in much the same way as the solution.pvd and solution.visit
files that were discussed in Section 4.4. The actual data files – possibly a large number, but not of much
immediate interest to users – are located in the particles subdirectory.

Coming back to the example at hand, we can visualize the particles that were advected along by opening
both the field-based output files and the ones that correspond to particles (for example, output/solution.visit
and output/particles.visit) and using a pseudo-color plot for the particles, selecting the “id” of particles
to color each particle. By going to, for example, the output from the 72nd visualization output, this then
results in a plot like the one shown in Fig. 23.

The particles shown here are not too impressive in still pictures since they are colorized by their particle
number, which does not carry any particular meaning other than the fact that it enumerates the particles.28

28Particles are enumerated in a way so that first the first processor in a parallel computations numbers all of the particles

96

The particle “id” can, however, be useful when viewing an animation of time steps. There, the different
colors of particles allows the eye to follow the motion of a single particle. This is especially true if, after
some time, particles have become well mixed by the flow field and adjacent particles no longer have similar
colors. In any case, viewing such animations makes it rather intuitive to understand a flow field, but it can
of course not be reproduced in a static medium such as this manual.

In any case, we will see in the next section how to attach more interesting information to particles, and
how to visualize these.

Using particle properties. The particles in the above example only fulfill the purpose of visualizing
the convection pattern. A more meaningful use for particles is to attach “properties” to them. A property
consists of one or more numbers (or vectors or tensors) that may either be set at the beginning of the model
run and stay constant, or are updated during the model runtime. These properties can then be used for many
applications, e.g., storing an initial property (like the position, or initial composition), evaluating a property
at a defined particle path (like the pressure-temperature evolution of a certain piece of rock), or by integrating
a quantity along a particle path (like the integrated strain a certain domain has experienced). We illustrate
these properties in the cookbook cookbooks/composition-passive-particles-properties.prm, in which
we add the following lines to the Particles subsection (we also increase the number of particles compared
to the previous section to make the visualizations below more obvious):

subsection Postprocess
subsection Particles

set Number of particles = 50000

set List of particle properties = function, initial composition, initial position, pT path

subsection Function
set Variable names = x,y
set Function expression = if(y<0.2, 1, 0)

end
end

end

These commands make sure that every particle will carry four different properties (function, pT path,
initial position and initial composition), some of which may be scalars and others can have multiple
components. (A full list of particle properties that can currently be selected can be found in Section A.146,
and new particle properties can be added as plugins as described in Section 6.2.) The properties selected
above do the following:

• initial position: This particle property simply stores the initial coordinates of the particle and
then never changes them. This can be useful to compare the final position of a particle with its
initial position and therefore determine how far certain domains traveled during the model runtime.
Alternatively, one may want to simply visualize the norm of this vector property (i.e., the norm of the
initial position, which is of course equal to the distance from the origin at which a particle started):
in mantle simulations in spherical coordinates, the radius is indicative of which part of the mantle a
particle comes from, and can therefore be used to visualize where material gets transported over the
course of a simulation.

• initial composition: This property uses the same method to initialize particle properties as is
used to initialize the corresponding compositional fields. Using this, it stores the compositional field
initialization values at the location where the particle started, and again never changes them. This is

on its first cell, then its second cell, and so on; then the second processor does the same with particles in the order of the cells
it owns; etc. Thus, the “id” shown in the picture is not just a random number, but rather shows the order of cells and how
they belonged to the processors that participated in the computation at the time when particles were created. After some time,
particles may of course have become well mixed. In any case, this ordering is of no real practical use.

97

cookbooks/composition-passive-particles-properties.prm

useful in the same context as shown for the field-based example in Section 5.2.4 where we would like
to figure where materials ends up. In this case, one would set the initial composition to an indicator
function for certain parts of the domain, and then set the initial composition property for the particles
to match this composition. Letting the particles advect and at a later time visualizing this particle
property will then show where particles came from. In cases where compositional variables undergo
changes, e.g., by describing phase changes or chemical reactions, the “initial composition” property can
also be useful to compare the final composition of a particle with its initial composition and therefore
determine which regions underwent reactions such as those described in Section 5.2.4, and where the
material that underwent this reaction got transported to.

• function: This particle property can be used to assign to each particle values that are described
based on a function of space. It provides an alternative way to set initial values if you don’t want to
first set a compositional field’s initial values based on a function, and then copy these values via the
“initial composition” property to particles. In the example above, we use the same function as for
the compositional initial composition of field number one in Section 5.2.4. Therefore, this property
should behave identical to the compositional field (except that the compositional field may have a
reaction term that this particle property does not), although the two are of course advected using very
different methods. This allows to compare the error in particle position to the numerical diffusion of
the compositional field.

• pT path: This property is interesting in that the particle property’s values always exactly mirror the
pressure and temperature at the particle’s current location. This does not seem to be very useful
since the information is already available. However, because each particle has a unique id, one can
select a particular particle and output its properties (including pressure and temperature based on
the pT path property) at all time steps. This allows for the creation of a pressure-temperature curve
of a certain piece of rock. This property is interesting in many lithosphere and crustal scale models,
because it is determining the metamorphic reactions that happen during deformation processes (e.g.,
in a subduction zone).

The results of all of these properties can of course be visualized. Fig. 24 shows some of the pictures one
can create with particles. The top row shows both the composition field C1 (along with the mesh on which it
is defined) and the corresponding “initial C1” particle property, at t = 7.2. Because the compositional field
does not undergo any reactions, it should of course simply be the initial composition advected along with
the flow field, and therefore equal the values of the corresponding particle property. However, field-based
compositions suffer from diffusion. On the other hand, the amount of diffusion can easily be decreased by
mesh refinement.

The bottom of the figure shows the norm of the “initial position” property at the initial time and at time
t = 20. These images therefore show how far from the origin each of the particles shown was at the initial
time.

Using active particles. In the examples above, particle properties passively track distinct model prop-
erties. These particle properties, however, may also be used to actively influence the model as it runs.
For instance, a composition-dependent material model may use particles’ initial composition rather than an
advected compositional field. To make this work – i.e., to get information from particles that are located
at unpredictable locations, to the quadrature points at which material models and other parts of the code
need to evaluate these properties – we need to somehow get the values from particles back to fields that can
then be evaluated at any point where this is necessary. A slightly modified version of the active-composition
cookbook (cookbooks/composition-active.prm) illustrates how to use ‘active particles’ in this manner.

This cookbook, cookbooks/composition-active-particles.prm, modifies two sections of the input
file. First, particles are added under the Postprocess section:

subsection Postprocess
subsection Particles

98

cookbooks/composition-active.prm
cookbooks/composition-active-particles.prm

Figure 24: Passively advected particle properties visualized. Top row: Composition C1 and particle property
“initial C1”. The blue line in both figures is the 0.5-isocontour for the C1 field. Bottom row: Norm of the
“initial position” of particles at t = 0 and t = 20.

set Number of particles = 100000
set Time between data output = 0
set Data output format = vtu
set List of particle properties = velocity, initial composition
set Interpolation scheme = cell average
set Particle generator name = random uniform

end
end

Here, each particle will carry the velocity and initial composition properties. In order to use the particle
initial composition value to modify the flow through the material model, we now modify the Composition
section:

subsection Compositional fields
set Number of fields = 2
set Names of fields = lower, upper
set Compositional field methods = particles, particles
set Mapped particle properties = lower:initial lower, upper:initial upper

end

What this does is the following: It says that there will be two compositional fields, called lower and
upper (because we will use them to indicate material that comes from either the lower or upper part of the
domain). Next, the Compositional field methods states that each of these fields will be computed by
interpolation from the particles (if we had left this parameter at its default value, field, for each field, then
it would have solved an advection PDE in each time step, as we have done in all previous examples).

In this case, we specify that both of the compositional fields are in fact interpolated from particle
properties in each time step. How this is done is described in the fourth line. To understand it, it is
important to realize that particles and fields have matching names: We have named the fields lower and
upper, whereas the properties that result from the initial composition entry in the particles section are

99

called initial lower and initial upper, since they inherit the names of the fields.
The syntax for interpolation from particles to fields then states that the lower field will be set to the

interpolated value of the initial lower particle property at the end of each time step, and similarly for
the upper field. In turn, the initial composition particle property was using the same method that one
would have used for the compositional field initialization if these fields were actually advected along in each
time step.

In this model the given global refinement level (5), associated number of cells (1024) and 100,000 total
particles produces an average particle-per-cell count slightly below 100. While on the high end compared to
most geodynamic studies using active particles, increasing the number of particles per cell further may alter
the solution. As with the numerical resolution, any study using active particles should systematically vary
the number of particles per cell in order to determine this parameter’s influence on the simulation.

Note: ASPECT’s particle implementation is in a preliminary state. While the accuracy and
scalability of the implementation is benchmarked, other limitations remain. This in particular
means that it is not optimized for performance, and more than a few thousand particles per
process can slow down a model significantly. Moreover, models with a highly adaptive mesh
and many particles do encounter a significant slowdown, because ASPECT only considers the
number of degrees of freedom for load balancing across processes and not the number of particles.
Therefore processes that compute the solution for coarse-grid regions have to process many more
particles than other processes. Additionally, the checkpoint/restart functionality for particles is
only implemented in models with a constant number of processes before and after the checkpoint
and when the selected particle properties do not change. These limitations might be removed
over time, but for current models the user should be aware of them.

5.2.6 Using a free surface

This section was contributed by Ian Rose.
Free surfaces are numerically challenging but can be useful for self consistently tracking dynamic topog-

raphy and may be quite important as a boundary condition for tectonic processes like subduction. The
parameter file cookbooks/free-surface.prm provides a simple example of how to set up a model with a
free surface, as well as demonstrates some of the challenges associated with doing so.

ASPECT supports models with a free surface using an Arbitrary Lagrangian-Eulerian framework (see
Section 2.13). Most of this is done internally, so you do not need to worry about the details to run this
cookbook. Here we demonstrate the evolution of surface topography that results when a blob of hot material
rises in the mantle, pushing up the free surface as it does. Usually the amplitude of free surface topography
will be small enough that it is difficult to see with the naked eye in visualizations, but the topography
postprocessor can help by outputting the maximum and minimum topography on the free surface at every
time step.

The bulk of the parameter file for this cookbook is similar to previous ones in this manual. We use initial
temperature conditions that set up a hot blob of rock in the center of the domain.

The main addition is the Mesh deformation subsection. In this subsection you need to give ASPECT
a comma separated list of the boundary indicators where the ‘free surface’ deformation should be applied.
In this case, we are dealing with the ‘top’ boundary of a box in 2D. There is another significant parameter
that needs to be set here: the value for the stabilization parameter “theta”. If this parameter is zero, then
there is no stabilization, and you are likely to see instabilities develop in the free surface. If this parameter
is one then it will do a good job of stabilizing the free surface, but it may overly damp its motions. The
default value is 0.5.

Also worth mentioning is the change to the CFL number. Stability concerns typically mean that when
making a model with a free surface you will want to take smaller time steps. In general just how much
smaller will depend on the problem at hand as well as the desired accuracy.

100

cookbooks/free-surface.prm

Following are the sections in the input file specific to this testcase. The full parameter file may be found
at cookbooks/free-surface.prm.

set CFL number = 0.1

subsection Initial temperature model
set Model name = function
subsection Function

set Variable names = x,y
set Function expression = if(sqrt((x-250.e3)^2 + (y-100.e3)^2) < 25.e3, 200.0, 0.0)

end
end

subsection Mesh deformation
set Mesh deformation boundary indicators = top: free surface

subsection Free surface
set Free surface stabilization theta = 0.5

end
end

subsection Boundary temperature model
set Fixed temperature boundary indicators = left, right, bottom, top

end

subsection Boundary velocity model
set Tangential velocity boundary indicators = left, right, bottom

end

subsection Postprocess
set List of postprocessors = visualization,topography,velocity statistics,
subsection Visualization

set Time between graphical output = 1.e6
end

end

Running this input file will produce results like those in Figure 25. The model starts with a single hot
blob of rock which rises in the domain. As it rises, it pushes up the free surface in the middle, creating
a topographic high there. This is similar to the kind of dynamic topography that you might see above a
mantle plume on Earth. As the blob rises and diffuses, it loses the buoyancy to push up the boundary, and
the surface begins to relax.

After running the cookbook, you may modify it in a number of ways:

• Add a more complicated initial temperature field to see how that affects topography.

• Add a high-viscosity lithosphere to the top using a compositional field to tamp down on topography.

• Explore different values for the stabilization theta and the CFL number to understand the nature of
when and why stabilization is necessary.

• Try a model in a different geometry, such as spherical shells.

5.2.7 Using a free surface in a model with a crust

This section was contributed by William Durkin.

101

cookbooks/free-surface.prm

Figure 25: Evolution of surface topography due to a rising blob. On the left is a snapshot of the model setup.
The right shows the value of the highest topography in the domain over 18 Myr of model time. The topography
peaks at 165 meters after 5.2 Myr. This cookbook may be run with the cookbooks/ free-surface. prm input
file.

This cookbook is a modification of the previous example that explores changes in the way topography
develops when a highly viscous crust is added. In this cookbook, we use a material model in which the
material changes from low viscosity mantle to high viscosity crust at z = zj = jump height, i.e., the
piecewise viscosity function is defined as

η(z) =
{
ηU for z > zj ,
ηL for z ≤ zj .

where ηU and ηL are the viscosities of the upper and lower layers, respectively. This viscosity model can be
implemented by creating a plugin that is a small modification of the simpler material model (from which
it is otherwise simply copied). We call this material model “SimplerWithCrust”. In particular, what is
necessary is an evaluation function that looks like this:

template <int dim>
void
SimplerWithCrust<dim>::
evaluate(const typename Interface<dim>::MaterialModelInputs &in,

typename Interface<dim>::MaterialModelOutputs &out) const
{

for (unsigned int i=0; i<in.position.size(); ++i)
{

const double z = in.position[i][1];

if (z>jump_height)
out.viscosities[i] = eta_U;

else
out.viscosities[i] = eta_L;

out.densities[i] = reference_rho*(1.0-thermal_alpha*(in.temperature[i]-reference_T));
out.thermal_expansion_coefficients[i] = thermal_alpha;
out.specific_heat[i] = reference_specific_heat;
out.thermal_conductivities[i] = k_value;
out.compressibilities[i] = 0.0;

}
}

Additional changes make the new parameters Jump height, Lower viscosity, and Upper viscosity avail-
able to the input parameter file, and corresponding variables available in the class and used in the code snippet

102

cookbooks/free-surface.prm

above. The entire code can be found in cookbooks/free-surface-with-crust/plugin/simpler-with-crust.
cc. Refer to Section 6.1 for more information about writing and running plugins.

The following changes are necessary compared to the input file from the cookbook shown in Section 5.2.6
to include a crust:

• Load the plugin implementing the new material model:

set Additional shared libraries = ./plugin/libsimpler-with-crust.so

• Declare values for the new parameters:

subsection Material model
set Model name = simpler with crust
subsection Simpler with crust model

set Reference density = 3300
set Reference specific heat = 1250
set Reference temperature = 0.0
set Thermal conductivity = 1.0 # low thermal conductivity for a sharp blob
set Thermal expansion coefficient = 4e-5

Parameters added for this cookbook:
The box is 200km high and has its origin set at the bottom left corner.
Setting the jump height to 170km creates a 30km thick crust
set Lower viscosity = 1e20
set Upper viscosity = 1e23
set Jump height = 170e3

end
end

Note that the height of the interface at 170km is interpreted in the coordinate system in which the
box geometry of this cookbook lives. The box has dimensions 500km × 200km, so an interface height
of 170km implies a depth of 30km.

The entire script is located in cookbooks/free-surface-with-crust/free-surface-with-crust.prm.
Running this input file yields a crust that is 30km thick and 1000 times as viscous as the lower layer.

Figure 26 shows that adding a crust to the model causes the maximum topography to both decrease and
occur at a later time. Heat flows through the system primarily by advection until the temperature anomaly
reaches the base of the crustal layer (approximately at the time for which Fig 26 shows the temperature
profile). The crust’s high viscosity reduces the temperature anomaly’s velocity substantially, causing it to
affect the surface topography at a later time. Just as the cookbook shown in Section 5.2.6, the topography
returns to zero after some time.

5.2.8 Averaging material properties

The original motivation for the functionality discussed here, as well as the setup of the input file, were
provided by Cedric Thieulot.

Geophysical models are often characterized by abrupt and large jumps in material properties, in particular
in the viscosity. An example is a subducting, cold slab surrounded by the hot mantle: Here, the strong
temperature-dependence of the viscosity will lead to a sudden jump in the viscosity between mantle and
slab. The length scale over which this jump happens will be a few or a few tens of kilometers. Such
length scales cannot be adequately resolved in three-dimensional computations with typical meshes for
global computations.

Having large viscosity variations in models poses a variety of problems to numerical computations. First,
you will find that they lead to very long compute times because our solvers and preconditioners break down.
This may be acceptable if it would at least lead to accurate solutions, but large viscosity gradients lead also

103

cookbooks/free-surface-with-crust/plugin/simpler-with-crust.cc
cookbooks/free-surface-with-crust/plugin/simpler-with-crust.cc
cookbooks/free-surface-with-crust/free-surface-with-crust.prm

Figure 26: Adding a viscous crust to a model with surface topography. The thermal anomaly spreads hori-
zontally as it collides with the highly viscous crust (left). The addition of a crustal layer both dampens and
delays the appearance of the topographic maximum and minimum (right).

to large pressure gradients, and this in turn leads to over- and undershoots in the numerical approximation
of the gradient. We will demonstrate both of these issues experimentally below.

One of the solution to such problems is the realization that one can mitigate some of the effects by
averaging material properties on each cell somehow (see, for example, [80, 29, 34, 86, 84]). Before going
into detail, it is important to realize that if we choose material properties not per quadrature point when
doing the integrals for forming the finite element matrix, but per cell, then we will lose accuracy in the
solution in those cases where the solution is smooth. More specifically, we will likely lose one or more orders
of convergence. In other words, it would be a bad idea to do this averaging unconditionally. On the other
hand, if the solution has essentially discontinuous gradients and kinks in the velocity field, then at least at
these locations we cannot expect a particularly high convergence order anyway, and the averaging will not
hurt very much either. In cases where features of the solution that are due to strongly varying viscosities or
other parameters, dominate, we may then as well do the averaging per cell.

To support such cases, ASPECT supports an operation where we evaluate the material model at every
quadrature point, given the temperature, pressure, strain rate, and compositions at this point, and then
either (i) use these values, (ii) replace the values by their arithmetic average x̄ = 1

N

∑N
i=1 xi, (iii) replace

the values by their harmonic average x̄ =
(

1
N

∑N
i=1

1
xi

)−1
, (iv) replace the values by their geometric average

x̄ =
(∏N

i=1
1
xi

)−1/N
, or (v) replace the values by the largest value over all quadrature points on this cell.

Option (vi) is to project the values from the quadrature points to a bi- (in 2d) or trilinear (in 3d) Q1 finite
element space on every cell, and then evaluate this finite element representation again at the quadrature
points. Unlike the other five operations, the values we get at the quadrature points are not all the same
here.

We do this operation for all quantities that the material model computes, i.e., in particular, the viscosity,
the density, the compressibility, and the various thermal and thermodynamic properties. In the first 4 cases,
the operation guarantees that the resulting material properties are bounded below and above by the minimum
and maximum of the original data set. In the last case, the situation is a bit more complicated: The nodal
values of the Q1 projection are not necessarily bounded by the minimal or maximal original values at the
quadrature points, and then neither are the output values after re-interpolation to the quadrature points.
Consequently, after projection, we limit the nodal values of the projection to the minimal and maximal
original values, and only then interpolate back to the quadrature points.

We demonstrate the effect of all of this with the “sinker” benchmark. This benchmark is defined by a high-
viscosity, heavy sphere at the center of a two-dimensional box. This is achieved by defining a compositional
field that is one inside and zero outside the sphere, and assigning a compositional dependence to the viscosity
and density. We run only a single time step for this benchmark. This is all modeled in the following input
file that can also be found in cookbooks/sinker-with-averaging/sinker-with-averaging.prm:

104

cookbooks/sinker-with-averaging/sinker-with-averaging.prm

set Dimension = 2
set Start time = 0
set End time = 0
set Output directory = output_sinker-with-averaging

set Pressure normalization = volume

subsection Geometry model
set Model name = box
subsection Box

set X extent = 1.0000
set Y extent = 1.0000

end
end

subsection Boundary velocity model
set Zero velocity boundary indicators = left, right, bottom, top

end

subsection Material model
set Model name = simple

subsection Simple model
set Reference density = 1
set Viscosity = 1
set Thermal expansion coefficient = 0
set Composition viscosity prefactor = 1e6
set Density differential for compositional field 1 = 10

end

set Material averaging = none
end

subsection Gravity model
set Model name = vertical
subsection Vertical

set Magnitude = 1
end

end

############### Parameters describing the temperature field
Note: The temperature plays no role in this model

subsection Boundary temperature model
set List of model names = box

end

subsection Initial temperature model
set Model name = function
subsection Function

set Function expression = 0
end

105

end

############### Parameters describing the compositional field
Note: The compositional field is what drives the flow
in this example

subsection Compositional fields
set Number of fields = 1

end

subsection Initial composition model
set Model name = function
subsection Function

set Variable names = x,y
set Function expression = if((sqrt((x-0.5)^2+(y-0.5)^2)>0.22) , 0 , 1)

end
end

############### Parameters describing the discretization

subsection Mesh refinement
set Initial global refinement = 6
set Initial adaptive refinement = 0

end

############### Parameters describing what to do with the solution

subsection Postprocess
set List of postprocessors = visualization, velocity statistics, composition statistics
subsection Visualization

set Output format = vtu
set Time between graphical output = 0
set List of output variables = density, viscosity

end
end

The type of averaging on each cell is chosen using this part of the input file:

subsection Material model
set Material averaging = harmonic average

end

For the various different averaging options, and for different levels of mesh refinement, Fig. 27 shows pressure
plots that illustrate the problem with oscillations of the discrete pressure. The important part of these plots
is not that the solution looks discontinuous – in fact, the exact solution is discontinuous at the edge of the
circle29 – but the spikes that go far above and below the “cliff” in the pressure along the edge of the circle.
Without averaging, these spikes are obviously orders of magnitude larger than the actual jump height. The
spikes do not disappear under mesh refinement nor averaging, but they become far less pronounced with
averaging. The results shown in the figure do not really allow to draw conclusions as to which averaging
approach is the best; a discussion of this question can also be found in [80, 29, 34, 84]).

29This is also easy to try experimentally – use the input file from above and select 5 global and 10 adaptive refinement steps,
with the refinement criteria set to density, then visualize the solution.

106

A very pleasant side effect of averaging is that not only does the solution become better, but it also
becomes cheaper to compute. Table 2 shows the number of outer GMRES iterations when solving the Stokes
equations (1)–(2).30 The implication of these results is that the averaging gives us a solution that not only
reduces the degree of pressure over- and undershoots, but is also significantly faster to compute: for example,
the total run time for 8 global refinement steps is reduced from 5,250s for no averaging to 358s for harmonic
averaging.

[−45.2, 45.2] [−2.67, 2.67] [−3.58, 3.58] [−3.57, 3.57] [−1.80, 1.80] [−2.77, 2.77]

[−44.5, 44.5] [−5.18, 5.18] [−5.09, 5.09] [−5.18, 5.18] [−5.20, 5.20] [−7.99, 7.99]

Figure 27: Visualization of the pressure field for the “sinker” problem. Left to right: No averaging, arithmetic
averaging, harmonic averaging, geometric averaging, pick largest, project to Q1. Top: 7 global refinement
steps. Bottom: 8 global refinement steps. The minimal and maximal pressure values are indicated below
every picture. This range is symmetric because we enforce that the average of the pressure equals zero. The
color scale is adjusted to show only values between p = −3 and p = 3.

of global no averaging arithmetic harmonic geometric pick project
refinement steps averaging averaging averaging largest to Q1

4 30+64 30+13 30+10 30+12 30+13 30+15
5 30+87 30+14 30+13 30+14 30+14 30+16
6 30+171 30+14 30+15 30+14 30+15 30+17
7 30+143 30+27 30+28 30+26 30+26 30+28
8 30+188 30+27 30+26 30+27 30+28 30+28

Table 2: Number of outer GMRES iterations to solve the Stokes equations for various numbers of global
mesh refinement steps and for different material averaging operations. The GMRES solver first tries to
run 30 iterations with a cheaper preconditioner before switching to a more expensive preconditioner (see
Section A.1).

Such improvements carry over to more complex and realistic models. For example, in a simulation of
flow under the East African Rift by Sarah Stamps, using approximately 17 million unknowns and run on
64 processors, the number of outer and inner iterations is reduced from 169 and 114,482 without averaging
to 77 and 23,180 with harmonic averaging, respectively. This translates into a reduction of run-time from

30The outer iterations are only part of the problem. As discussed in [59], each GMRES iteration requires solving a linear
system with the elliptic operator −∇·2ηε(·). For highly heterogeneous models, such as the one discussed in the current section,
this may require a lot of Conjugate Gradient iterations. For example, for 8 global refinement steps, the 30+188 outer iterations
without averaging shown in Table 2 require a total of 22,096 inner CG iterations for the elliptic block (and a total of 837 for
the approximate Schur complement). Using harmonic averaging, the 30+26 outer iterations require only 1258 iterations on the
elliptic block (and 84 on the Schur complement). In other words, the number of inner iterations per outer iteration (taking into
account the split into “cheap” and “expensive” outer iterations, see [59]) is reduced from 117 to 47 for the elliptic block and
from 3.8 to 1.5 for the Schur complement.

107

145 hours to 17 hours. Assessing the accuracy of the answers is of course more complicated in such cases
because we do not know the exact solution. However, the results without and with averaging do not differ
in any significant way.

A final comment is in order. First, one may think that the results should be better in cases of discontinuous
pressures if the numerical approximation actually allowed for discontinuous pressures. This is in fact possible:
We can use a finite element in which the pressure space contains piecewise constants (see Section A.40). To
do so, one simply needs to add the following piece to the input file:

subsection Discretization
set Use locally conservative discretization = true

end

Disappointingly, however, this makes no real difference: the pressure oscillations are no better (maybe even
worse) than for the standard Stokes element we use, as shown in Fig. 28 and Table 3. Furthermore, as shown
in Table 4, the iteration numbers are also largely unaffected if any kind of averaging is used – though they
are far worse using the locally conservative discretization if no averaging has been selected. On the positive
side, the visualization of the discontinuous pressure finite element solution makes it much easier to see that
the true pressure is in fact discontinuous along the edge of the circle.

Figure 28: Visualization of the pressure field for the “sinker” problem. Like Fig. 27 but using the locally
conservative, enriched Stokes element. Pressure values are shown in Table 3.

of global no averaging arithmetic harmonic geometric pick project
refinement steps averaging averaging averaging largest to Q1

4 66.32 2.66 2.893 1.869 3.412 3.073
5 81.06 3.537 4.131 3.997 3.885 3.991
6 75.98 4.596 4.184 4.618 4.568 5.093
7 84.36 4.677 5.286 4.362 4.635 5.145
8 83.96 5.701 5.664 4.686 5.524 6.42

Table 3: Maximal pressure values for the “sinker” benchmark, using the locally conservative, enriched Stokes
element. The corresponding pressure solutions are shown in Fig. 28.

5.2.9 Prescribed internal velocity constraints

This section was contributed by Jonathan Perry-Houts
In cases where it is desirable to investigate the behavior of one part of the model domain but the

controlling physics of another part is difficult to capture, such as corner flow in subduction zones, it may
be useful to force the desired behavior in some parts of the model domain and solve for the resulting flow
everywhere else. This is possible through the use of ASPECT’s “signal” mechanism, as documented in
Section 6.6.

108

of global no averaging arithmetic harmonic geometric pick project
refinement steps averaging averaging averaging largest to Q1

4 30+376 30+16 30+12 30+14 30+14 30+17
5 30+484 30+16 30+14 30+14 30+14 30+16
6 30+583 30+16 30+17 30+14 30+17 30+17
7 30+1319 30+27 30+28 30+26 30+28 30+28
8 30+1507 30+28 30+27 30+28 30+28 30+29

Table 4: Like Table 2, but using the locally conservative, enriched Stokes element.

Internally, ASPECT adds “constraints” to the finite element system for boundary conditions and hanging
nodes. These are places in the finite element system where certain solution variables are required to match
some prescribed value. Although it is somewhat mathematically inadmissible to prescribe constraints on
nodes inside the model domain, Ω, it is nevertheless possible so long as the prescribed velocity field fits in
to the finite element’s solution space, and satisfies the other constraints (i.e., is divergence free).

Using ASPECT’s signals mechanism, we write a shared library which provides a “slot” that listens for
the signal which is triggered after the regular model constraints are set, but before they are “distributed.”

As an example of this functionality, below is a plugin which allows the user to prescribe internal velocities
with functions in a parameter file:

/*
Copyright (C) 2011 - 2020 by the authors of the ASPECT code.

This file is part of ASPECT.

ASPECT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

ASPECT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with ASPECT; see the file LICENSE. If not see
<http://www.gnu.org/licenses/>.

*/

#include <deal.II/base/parameter_handler.h>
#include <deal.II/base/parsed_function.h>
#include <deal.II/fe/fe_values.h>
#include <aspect/global.h>
#include <aspect/simulator_signals.h>

namespace aspect
{

using namespace dealii;

// Global variables (to be set by parameters)
bool prescribe_internal_velocities;

// Because we do not initially know what dimension we’re in, we need

109

// function parser objects for both 2d and 3d.
Functions::ParsedFunction<2> prescribed_velocity_indicator_function_2d (2);
Functions::ParsedFunction<3> prescribed_velocity_indicator_function_3d (3);
Functions::ParsedFunction<2> prescribed_velocity_function_2d (2);
Functions::ParsedFunction<3> prescribed_velocity_function_3d (3);

/**
* Declare additional parameters.
*/

void declare_parameters(const unsigned int dim,
ParameterHandler &prm)

{
prm.declare_entry ("Prescribe internal velocities", "false",

Patterns::Bool (),
"Whether or not to use any prescribed internal velocities. "
"Locations in which to prescribe velocities are defined "
"in section ‘‘Prescribed velocities/Indicator function’’ "
"and the velocities are defined in section ‘‘Prescribed "
"velocities/Velocity function’’. Indicators are evaluated "
"at the center of each cell, and all DOFs associated with "
"the specified velocity component at the indicated cells "
"are constrained."

);

prm.enter_subsection ("Prescribed velocities");
{

prm.enter_subsection ("Indicator function");
{

if (dim == 2)
Functions::ParsedFunction<2>::declare_parameters (prm, 2);

else
Functions::ParsedFunction<3>::declare_parameters (prm, 3);

}
prm.leave_subsection ();

prm.enter_subsection ("Velocity function");
{

if (dim == 2)
Functions::ParsedFunction<2>::declare_parameters (prm, 2);

else
Functions::ParsedFunction<3>::declare_parameters (prm, 3);

}
prm.leave_subsection ();

}
prm.leave_subsection ();

}

template <int dim>
void parse_parameters(const Parameters<dim> &,

ParameterHandler &prm)
{

prescribe_internal_velocities = prm.get_bool ("Prescribe internal velocities");
prm.enter_subsection ("Prescribed velocities");
{

prm.enter_subsection("Indicator function");
{

110

try
{

if (dim == 2)
prescribed_velocity_indicator_function_2d.parse_parameters (prm);

else
prescribed_velocity_indicator_function_3d.parse_parameters (prm);

}
catch (...)

{
std::cerr << "ERROR: FunctionParser failed to parse\n"

<< "\t’Prescribed velocities.Indicator function’\n"
<< "with expression\n"
<< "\t’" << prm.get("Function expression") << "’";

throw;
}

}
prm.leave_subsection();

prm.enter_subsection("Velocity function");
{

try
{

if (dim == 2)
prescribed_velocity_function_2d.parse_parameters (prm);

else
prescribed_velocity_function_3d.parse_parameters (prm);

}
catch (...)

{
std::cerr << "ERROR: FunctionParser failed to parse\n"

<< "\t’Prescribed velocities.Velocity function’\n"
<< "with expression\n"
<< "\t’" << prm.get("Function expression") << "’";

throw;
}

}
prm.leave_subsection();

}
prm.leave_subsection ();

}

/**
* This function retrieves the unit support points (in the unit cell) for the current element.
* The DGP element used when ’set Use locally conservative discretization = true’ does not
* have support points. If these elements are in use, a fictitious support point at the cell
* center is returned for each shape function that corresponds to the pressure variable,
* whereas the support points for the velocity are correct; the fictitious points don’t matter
* because we only use this function when interpolating the velocity variable, and ignore the
* evaluation at the pressure support points.
*/

template <int dim>
std::vector< Point<dim> >
get_unit_support_points_for_velocity(const SimulatorAccess<dim> &simulator_access)
{

std::vector< Point<dim> > unit_support_points;
if (!simulator_access.get_parameters().use_locally_conservative_discretization)

111

{
return simulator_access.get_fe().get_unit_support_points();

}
else

{
//special case for discontinuous pressure elements, which lack unit support points
std::vector< Point<dim> > unit_support_points;
const unsigned int dofs_per_cell = simulator_access.get_fe().dofs_per_cell;
for (unsigned int dof=0; dof < dofs_per_cell; ++dof)

{
// base will hold element, base_index holds node/shape function within that element
const unsigned int
base = simulator_access.get_fe().system_to_base_index(dof).first.first,
base_index = simulator_access.get_fe().system_to_base_index(dof).second;
// get the unit support points for the relevant element
std::vector< Point<dim> > my_support_points = simulator_access.get_fe().base_element(

↪→ base).get_unit_support_points();
if (my_support_points.size() == 0)

{
//manufacture a support point, arbitrarily at cell center
if (dim==2)

unit_support_points.push_back(Point<dim> (0.5,0.5));
if (dim==3)

unit_support_points.push_back(Point<dim> (0.5,0.5,0.5));
}

else
{

unit_support_points.push_back(my_support_points[base_index]);
}

}
return unit_support_points;

}
}

/**
* A set of helper functions that either return the point passed to it (if
* the current dimension is the same) or return a dummy value (otherwise).
*/

namespace
{

const Point<2> as_2d(const Point<3> &/*p*/)
{

return Point<2>();
}

const Point<2> &as_2d(const Point<2> &p)
{

return p;
}

const Point<3> as_3d(const Point<2> &/*p*/)
{

return Point<3>();
}

const Point<3> &as_3d(const Point<3> &p)

112

{
return p;

}

}

/**
* This function is called by a signal which is triggered after the other constraints
* have been calculated. This enables us to define additional constraints in the mass
* matrix on any arbitrary degree of freedom in the model space.
*/

template <int dim>
void constrain_internal_velocities (const SimulatorAccess<dim> &simulator_access,

ConstraintMatrix ¤t_constraints)
{

if (prescribe_internal_velocities)
{

const std::vector< Point<dim> > points = get_unit_support_points_for_velocity(
↪→ simulator_access);

const Quadrature<dim> quadrature (points);
FEValues<dim> fe_values (simulator_access.get_fe(), quadrature, update_quadrature_points);
typename DoFHandler<dim>::active_cell_iterator cell;

// Loop over all cells
for (cell = simulator_access.get_dof_handler().begin_active();

cell != simulator_access.get_dof_handler().end();
++cell)

if (! cell->is_artificial())
{

fe_values.reinit (cell);
std::vector<types::global_dof_index> local_dof_indices(simulator_access.get_fe().
↪→ dofs_per_cell);
cell->get_dof_indices (local_dof_indices);

for (unsigned int q=0; q<quadrature.size(); q++)
// If it’s okay to constrain this DOF
if (current_constraints.can_store_line(local_dof_indices[q]) &&

!current_constraints.is_constrained(local_dof_indices[q]))
{

// Get the velocity component index
const unsigned int c_idx =

simulator_access.get_fe().system_to_component_index(q).first;

// If we’re on one of the velocity DOFs
if ((c_idx >=

simulator_access.introspection().component_indices.velocities[0])
&&
(c_idx <=
simulator_access.introspection().component_indices.velocities[dim-1]))

{
// Which velocity component is this DOF associated with?
const unsigned int component_direction

= (c_idx
- simulator_access.introspection().component_indices.velocities[0]);

113

// we get time passed as seconds (always) but may want
// to reinterpret it in years
double time = simulator_access.get_time();
if (simulator_access.convert_output_to_years())

time /= year_in_seconds;

prescribed_velocity_indicator_function_2d.set_time (time);
prescribed_velocity_indicator_function_3d.set_time (time);
prescribed_velocity_function_2d.set_time (time);
prescribed_velocity_function_3d.set_time (time);

const Point<dim> p = fe_values.quadrature_point(q);

// Because we defined and parsed our parameter
// file differently for 2d and 3d we need to
// be sure to query the correct object for
// function values. The function parser
// objects expect points of a certain
// dimension, but Point p will be compiled for
// both 2d and 3d, so we need to do some trickery
// to make this compile.
double indicator, u_i;
if (dim == 2)

{
indicator = prescribed_velocity_indicator_function_2d.value

(as_2d(p),
component_direction);

u_i = prescribed_velocity_function_2d.value
(as_2d(p),
component_direction);

}
else

{
indicator = prescribed_velocity_indicator_function_3d.value

(as_3d(p),
component_direction);

u_i = prescribed_velocity_function_3d.value
(as_3d(p),
component_direction);

}

if (indicator > 0.5)
{

// Add a constraint of the form dof[q] = u_i
// to the list of constraints.
current_constraints.add_line (local_dof_indices[q]);
current_constraints.set_inhomogeneity (local_dof_indices[q], u_i);

}
}

}
}

}
}

// Connect declare_parameters and parse_parameters to appropriate signals.
void parameter_connector ()

114

{
SimulatorSignals<2>::declare_additional_parameters.connect (&declare_parameters);
SimulatorSignals<3>::declare_additional_parameters.connect (&declare_parameters);

SimulatorSignals<2>::parse_additional_parameters.connect (&parse_parameters<2>);
SimulatorSignals<3>::parse_additional_parameters.connect (&parse_parameters<3>);

}

// Connect constraints function to correct signal.
template <int dim>
void signal_connector (SimulatorSignals<dim> &signals)
{

signals.post_constraints_creation.connect (&constrain_internal_velocities<dim>);
}

// Tell ASPECT to send signals to the connector functions
ASPECT_REGISTER_SIGNALS_PARAMETER_CONNECTOR(parameter_connector)
ASPECT_REGISTER_SIGNALS_CONNECTOR(signal_connector<2>, signal_connector<3>)

}

The above plugin can be compiled with cmake . && make in the cookbooks/prescribed_velocity
directory. It can be loaded in a parameter file as an “Additional shared library.” By setting parameters
like those shown below, it is possible to produce many interesting flow fields such as the ones visualized in
(Figure 29).

Load the signal library.
set Additional shared libraries = ./libprescribed_velocity.so

Turn prescribed velocities on
set Prescribe internal velocities = true

subsection Prescribed velocities
subsection Indicator function

set Variable names = x,y,t
Return where to prescribe u_x; u_y; u_z
(last one only used if dimension = 3)
1 if velocity should be prescribed, 0 otherwise
set Function expression = if((x-.5)^2+(y-.5)^2<.125,1,0); \

if((x-.5)^2+(y-.5)^2<.125,1,0)
end
subsection Velocity function

set Variable names = x,y,t
Return u_x; u_y; u_z (u_z only used if in 3d)
set Function expression = 1;-1

end
end

5.2.10 Artificial viscosity smoothing

This section was contributed by Ryan Grove
Standard finite element discretizations of advection-diffusion equations introduce unphysical oscillations

around steep gradients. Therefore, stabilization must be added to the discrete formulation to obtain correct
solutions. In ASPECT, we use the Entropy Viscosity scheme developed by Guermond et al. in the paper [52].
In this scheme, an artificial viscosity is calculated on every cell and used to try to combat these oscillations

115

cookbooks/prescribed_velocity

(a) (b)

Figure 29: Examples of flows with prescribed internal velocities, as described in Section 5.2.9.

that cause unwanted overshoot and undershoot. More information about how ASPECT does this is located
at https://dealii.org/developer/doxygen/deal.II/step_31.html.

Instead of just looking at an individual cell’s artificial viscosity, improvements in the minimizing of the
oscillations can be made by smoothing. Smoothing is the act of finding the maximum artificial viscosity
taken over a cell T and the neighboring cells across the faces of T , i.e.,

v̄h(T) = max
K∈N(T)

vh(K)

where N(T) is the set containing T and the neighbors across the faces of T .
This feature can be turned on by setting the Use artificial viscosity smoothing flag inside the Stabilization

subsection inside the Discretization subsection in your parameter file.
To show how this can be used in practice, let us consider the simple convection in a quarter of a 2d

annulus cookbook in Section 5.3.1, a radial compositional field was added to help show the advantages of
using the artificial viscosity smoothing feature.

By applying the following changes shown below to the parameters of the already existing file

cookbooks/shell_simple_2d.prm,

subsection Discretization
set Temperature polynomial degree = 2

subsection Stabilization parameters
set Use artificial viscosity smoothing = true

end
end

subsection Compositional fields
set Number of fields = 1

end

116

https://dealii.org/developer/doxygen/deal.II/step_31.html

(a) (b)

Figure 30: Artificial viscosity smoothing: Example of the output of two similar runs. The run on the left
has the artificial viscosity smoothing turned on and the run on the right does not, as described in Section
5.2.10.

subsection Initial composition model
set Model name = function

subsection Function
set Variable names = x,y
set Function expression = if(sqrt(x*x+y*y)<4000000,1,0)

end
end

it is possible to produce pictures of the simple convection in a quarter of a 2d annulus such as the ones
visualized in Figure 30.

5.2.11 Tracking finite strain

This section was contributed by Juliane Dannberg and Rene Gassmöller

Note: In this section, following [13, 26], we denote the velocity gradient tensor as G, where
G = ∇uT , and u is the velocity. Note that this is different from the definition of the strain rate
ε(u), which only contains the symmetric part of G. We then denote the deformation gradient (or
deformation) tensor by F, where F is the tensor that deforms an initial state x into an deformed
state r = Fx.

In many geophysical settings, material properties, and in particular the rheology, do not only depend
on the current temperature, pressure and strain rate, but also on the history of the system. This can
be incorporated in ASPECT models by tracking history variables through compositional fields. In this
cookbook, we will show how to do this by tracking the strain that idealized little grains of finite size
accumulate over time at every (Lagrangian) point in the model.

117

Here, we use a material model plugin that defines the compositional fields as the components of the
deformation gradient tensor Fij , and modifies the right-hand side of the corresponding advection equations
to accumulate strain over time. This is done by adjusting the out.reaction_terms variable:

for (unsigned int q=0; q < in.position.size(); ++q)
{

// Convert the compositional fields into the tensor quantity they represent.
Tensor<2,dim> strain;
for (unsigned int i = 0; i < Tensor<2,dim>::n_independent_components ; ++i)

strain[Tensor<2,dim>::unrolled_to_component_indices(i)] = in.composition[q][i];

// Compute the strain accumulated in this timestep.
const Tensor<2,dim> strain_increment = this->get_timestep() * (velocity_gradients[q] * strain);

// Output the strain increment component-wise to its respective compositional field’s reaction
↪→ terms.

for (unsigned int i = 0; i < Tensor<2,dim>::n_independent_components ; ++i)
out.reaction_terms[q][i] = strain_increment[Tensor<2,dim>::unrolled_to_component_indices(i)];

}

Let us denote the accumulated deformation at time step n as Fn. We can calculate its time derivative
as the product of two tensors, namely the current velocity gradient Gij = ∂ui

∂xj
and the deformation gradient

Fn−1 accumulated up to the previous time step, in other words ∂F
∂t = GF, and F0 = I, with I being the

identity tensor. While we refer to other studies [61, 26, 13] for a derivation of this relationship, we can give
an intuitive example for the necessity to apply the velocity gradient to the already accumulated deformation,
instead of simply integrating the velocity gradient over time. Consider a simple one-dimensional “grain” of
length 1.0, in which case the deformation tensor only has one component, the compression in x-direction.
If one embeds this grain into a convergent flow field for a compressible medium where the dimensionless
velocity gradient is −0.5 (e.g. a velocity of zero at its left end at x = 0.0, and a velocity of −0.5 at its right
end at x = 1.0), simply integrating the velocity gradient would suggest that the grain reaches a length of zero
after two units of time, and would then “flip” its orientation, which is clearly non-physical. What happens
instead can be seen by solving the equation of motion for the right end of the grain dx

dt = v = −0.5x. Solving
this equation for x leads to x(t) = e−0.5t. This is therefore also the solution for F since Fx transforms the
initial position of x(t = 0) = 1.0 into the deformed position of x(t = 1) = e−0.5, which is the definition of F.

In more general cases a visualization of F is not intuitive, because it contains rotational components
that represent a rigid body rotation without deformation. Following [13] we can polar-decompose the tensor
into a positive-definite and symmetric left stretching tensor L, and an orthogonal rotation tensor Q, as
F = LQ, therefore L2 = LLT = FFT . The left stretching tensor L (or finite strain tensor) then describes
the deformation we are interested in, and its eigenvalues λi and eigenvectors ei describe the length and
orientation of the half-axes of the finite strain ellipsoid. Moreover, we will represent the amount of relative
stretching at every point by the ratio ln(λ1/λ2), called the natural strain [70].

The full plugin implementing the integration of F can be found in cookbooks/finite_strain/finite_
strain.cc and can be compiled with cmake . && make in the cookbooks/finite_strain directory. It
can be loaded in a parameter file as an “Additional shared library”, and selected as material model. As it is
derived from the “simple” material model, all input parameters for the material properties are read in from
the subsection Simple model.

set Additional shared libraries = ./libfinite_strain.so

subsection Material model
set Model name = finite strain

subsection Simple model
set Thermal conductivity = 4.7

118

cookbooks/finite_strain/finite_strain.cc
cookbooks/finite_strain/finite_strain.cc
cookbooks/finite_strain

T [K]

ln(λ1/λ2)

Figure 31: Accumulated finite strain in an example convection model, as described in Section 5.2.11 at a time
of 67.6 Ma. Top panel: Temperature distribution. Bottom panel: Natural strain distribution. Additional
black crosses are the scaled eigenvectors of the stretching tensor L, showing the direction of stretching and
compression.

set Reference density = 3400
set Thermal expansion coefficient = 2e-5
set Viscosity = 5e21
set Thermal viscosity exponent = 7
set Reference temperature = 1600

end
end

The plugin was tested against analytical solutions for the deformation gradient tensor in simple and
pure shear as described in benchmarks/finite_strain/pure_shear.prm and benchmarks/finite_strain/
simple_shear.prm.

We will demonstrate its use at the example of a 2D Cartesian convection model (Figure 31): Heating from
the bottom leads to the ascent of plumes from the boundary layer (top panel), and the amount of stretching
is visible in the distribution of natural strain (color in lower panel). Additionally, the black crosses show the
direction of stretching and compression (the eigenvectors of L). Material moves to the sides at the top of
the plume head, so that it is shortened in vertical direction (short vertical lines) and stretched in horizontal
direction (long horizontal lines). The sides of the plume head show the opposite effect. Shear occurs mostly
at the edges of the plume head, in the plume tail, and in the bottom boundary layer (black areas in the
natural strain distribution).

The example used here shows how history variables can be integrated up over the model evolution.
While we do not use these variables actively in the computation (in our example, there is no influence of
the accumulated strain on the rheology or any other material property), it would be trivial to extend this
material model in a way that material properties depend on the integrated strain: Because the values of
the compositional fields are part of what the material model gets as inputs, they can easily be used for
computing material model outputs such as the viscosity.

119

benchmarks/finite_strain/pure_shear.prm
benchmarks/finite_strain/simple_shear.prm
benchmarks/finite_strain/simple_shear.prm

Note: In this model we present the use of multiple compositional fields for other purposes than
chemical composition. It would have been feasible to run the same model with particles that
track the deformation gradient, as additionally implemented and tested in the simple shear and
pure shear benchmarks mentioned in this section. Both approaches have specific advantages, and
for scientific computations one needs to evaluate the more suitable strategy. Compositional fields
cover the whole domain, but are affected by numerical diffusion, effectively reducing the maximum
accumulated strain. Particles only provide finite strain values at discrete positions, but can, if this
is desired, be used in fewer numbers and only a part of the model domain (and are much faster
in this case). If however there needs to be a large number of particles (possibly because they are
used for other purposes as well), then they can be much more expensive. Both approaches can be
used to actively influence the rheology in the material model.

5.2.12 Reading in compositional initial composition files generated with geomIO

This section was contributed by Juliane Dannberg

Note: This cookbook is based on a developer version of geomIO from July 2016. In the meantime,
the development of geomIO continued, and there is now a publication[12] that describes its features
and how they can be used in more detail.

Many geophysical setups require initial conditions with several different materials and complex geometries.
Hence, sometimes it would be easier to generate the initial geometries of the materials as a drawing instead
of by writing code. The MATLAB-based library geomIO (https://bitbucket.org/geomio/geomio, [12])
provides a convenient tool to convert a drawing generated with the vector graphics editor Inkscape (https:
//inkscape.org/en/) to a data file that can be read into ASPECT. Here, we will demonstrate how this
can be done for a 2D setup for a model with one compositional field, but geomIO also has the capability to
create 3D volumes based on a series of 2D vector drawings using any number of different materials. Similarly,
initial conditions defined in this way can also be used with particles instead of compositional fields.

To obtain the developer version of geomIO, you can clone the bitbucket repository by executing the
command

git clone https://bitbucket.org/geomio/geomio.git

or you can download geomIO here. You will then need to add the geomIO source folders to your MATLAB
path by running the file located in /path/to/geomio/installation/InstallGeomIO.m. An extensive doc-
umentation for how to use geomIO can be found here. Among other things, it explains how to generate
drawings in Inkscape that can be read in by geomIO, which involves assigning new attributes to paths in
Inkscape’s XML editor. In particular, a new property ‘phase’ has to be added to each path, and set to a
value corresponding to the index of the material that should be present in this region in the initial condition
of the geodynamic model.

Note: geomIO currently only supports the latest stable version of Inkscape (0.91), and other
versions might not work with geomIO or cause errors. Moreover, geomIO currently does not
support grouping paths (paths can still be combined using Path→Union, Path→Difference or
similar commands), and only the outermost closed contour of a path will be considered. This
means that, for example, for modeling a spherical annulus, you would have to draw two circles,
and assign the inner one the same phase as the background of your drawing.

We will here use a drawing of a jellyfish located in cookbooks/geomio/jellyfish.svg, where different
phases have already been assigned to each path (Figure 32).

120

https://bitbucket.org/geomio/geomio
https://inkscape.org/en/
https://inkscape.org/en/
https://bitbucket.org/geomio/geomio/downloads
http://geomio-doc.bitbucket.org/
http://geomio-doc.bitbucket.org/tuto2D.html#drawing
http://geomio-doc.bitbucket.org/tuto2D.html#drawing
cookbooks/geomio/jellyfish.svg

Figure 32: Vector drawing of a jellyfish.

Note: The page of your drawing in Inkscape should already have the extents (in px) that you
later want to use in your model (in m).

After geomIO is initialized in MATLAB, we run geomIO as described in the documentation, loading the
default options and then specifying all the option we want to change, such as the path to the input file, or
the resolution:

% set options for geomIO
opt = geomIO_Options();
opt.inputFileName = [’/path/to/aspect/doc/manual/cookbooks/geomio/jellyfish.svg’];
opt.DrawCoordRes = 21; % optionally change resolution with opt.DrawCoordRes = your value;

% run geomIO
[PathCoord] = run_geomIO(opt,’2D’);

You can view all of the options available by typing opt in MATLAB.
In the next step we create the grid that is used for the coordinates in the ascii data initial conditions

file and assign a phase to each grid point:

% define the bounding box for the output mesh
% (this should be the X extent and Y extent in your ASPECT model)
xmin = 0; xmax = opt.svg.width;
ymin = 0; ymax = opt.svg.height;

% set the resolution in the output file:
% [Xp,Yp] = ndgrid(xmin:your_steplength_x:xmax,ymin:your_steplength_y:ymax);
[Xp,Yp] = ndgrid(xmin:15:xmax,ymin:15:ymax);
Phase = zeros(size(Xp));

% assign a phase to each grid point according to your drawing
Phase = assignPhase2Markers(PathCoord, opt, Xp, Yp, Phase);

% plot your output
figure(2)
scatter(Xp(:),Yp(:),10,Phase(:),’filled’);
axis equal
axis([xmin xmax ymin ymax])

You can plot the Phase variable in MATLAB to see if the drawing was read in and all phases are assigned
correctly (Figure 33). Finally, we want to write output in a format that can be read in by ASPECT’s ascii
data compositional initial conditions plugin. We write the data into the file jelly.txt:

121

http://geomio-doc.bitbucket.org/tuto2D.html#assigning-phase-to-markers

Figure 33: Plot of the Phase variable in MATLAB.

% the headers ASPECT needs for the ascii data plugin
header1 = ’x’;
header2 = ’y’;
header3 = ’phase’;

% create an array in the correct format for the ascii data plugin
Vx = Xp(:);
Vy = Yp(:);
VPhase = Phase(:);
[m,n] = size(Phase);

% write the data into the output file
fid=fopen(’jelly.txt’,’w’);
fprintf(fid, ’# POINTS: %d %d \n’,[m n]);
fprintf(fid, [’# Columns: ’ header1 ’ ’ header2 ’ ’ header3 ’\n’]);
fprintf(fid, ’%f %f %f \n’, [Vx Vy VPhase]’);
fclose(fid);

To read in the file we just created (a copy is located in ASPECT’s data directory), we set up a model
with a box geometry with the same extents we specified for the drawing in px and one compositional field.
We choose the ascii data compositional initial conditions and specify that we want to read in our jellyfish.
The relevant parts of the input file are listed below:

subsection Geometry model
set Model name = box

The extents of the box is the same as the width
and height of the drawing in px
(an A4 page = 7350x10500 px).

subsection Box
set X extent = 7350
set Y extent = 10500

end
end

We need one compositional field that will be assigned
the values read in from the ascii data plugin.

122

Figure 34: ASPECT model output of the jellyfish and corresponding mesh in ParaView.

subsection Compositional fields
set Number of fields = 1

end

We use the ascii data plugin to read in the file created with geomIO.
subsection Initial composition model

set Model name = ascii data

subsection Ascii data model
set Data directory = $ASPECT_SOURCE_DIR/data/initial-composition/ascii-data/test/
set Data file name = jelly.txt

end
end

We refine the mesh where compositional gradients are
high, i.e. at the boundary between the different phases
assigned to the compositional field through the initial
condition.
subsection Mesh refinement

set Refinement fraction = 0.99
set Coarsening fraction = 0
set Initial global refinement = 5
set Initial adaptive refinement = 4
set Time steps between mesh refinement = 0
set Strategy = composition

end

If we look at the output in ParaView, we can see our jellyfish, with the mesh refined at the boundaries
between the different phases (Figure 34).

123

For a geophysical setup, the MATLAB code could be extended to write out the phases into several different
columns of the ASCII data file (corresponding to different compositional fields). This initial conditions file
could then be used in ASPECT with a material model such as the multicomponent model, assigning each
phase different material properties.

An animation of a model using the jellyfish as initial condition and assigning it a higher viscosity can be
found here: https://www.youtube.com/watch?v=YzNTubNG83Q.

5.2.13 Using lazy expression syntax for if-else-statements in function expressions

This section was contributed by Magali Billen
This cookbook provides an example to illustrate how to use the lazy-expression syntax for multiple, nested,
if-else-statements in function expressions in the parameter file. It also shows how to set parameters in the
input file so you can quickly check initial conditions (i.e., without waiting for the solver to converge). For
this model we define a simple 2D box, which is 5000× 1000 km, with free-slip velocity boundary conditions.
The material parameters are constant within the box (set using the “simple” material model). The initial
thermal structure has two parts divided at xtr = 2200 km. The temperature in each region is defined using
the equation for a half-space cooling model:

T (x, y) = Ts + (Tm − Ts) erf (y

2
√
κx/v

) (76)

where erf is the error function, Tm is the mantle temperature, Ts is the surface temperature, y is depth, x
is horizontal distance, κ is the thermal diffusivity, and v is the plate velocity. The age of the plate is given
by x/v. Note that the equation for the half-space cooling model is not defined at x = 0 (because there is a
divide by zero inside the error function): at x = 0, T = Tm. For (x ≤ xtr) and (x > 0) the age of the plate
increases from zero at the boundary according to a fixed plate velocity vsub = 7.927×10−10 m/s (2.5 cm/yr).
This is the subducting plate. For x > xtr, there is a fixed plate age of ageop = 9.46 × 1014 s (30 my); this
is the overriding plate. In order to resolve the temperature structure, we also define some initial refinement
of the mesh for the top 150 km of the mesh. Both the mesh refinement and the temperature structure are
defined using lazy-expression syntax in functions within the parameter file.

Functions can be used in the parameter file to define initial conditions (e.g., temperature, composition),
boundary conditions, and even to set regions of refinement. We also often want to use different values of
functions in different regions of the model (e.g., for the two plates as described above) and so we need to
use if-statements to specify these regions. The function constants and expressions are read in using the
muparser. The muparser accepts two different syntax options for if-statements (see also Section 4.7.3).

1. if(condition, true-expression, false-expression)

2. (if-condition ? true-expression : false-expression) lazy-expression syntax

In the first syntax, both the true and false expression are evaluated (even though only one is needed), while
in the second syntax, only the expression that is needed for the prescribed if condition is evaluated. In the
lazy expression the ? represents the “then”, and the : represents the “else” in the if-then-else statement.
Because the function expression is evaluated for every mesh point, for the plate temperature described above,
it is necessary to use the lazy expression syntax to avoid evaluating the full temperature equation at mesh
points where x = 0 because this will create a floating-point exception. The function expression shown in the
snippet from the parameter file below uses nested if-else-statements with this structure:
if ((x>0.0) && (x<=xtr)) then T-sub else (if (x>xtr) then T-ov else Tm)
where T-sub is the function for the temperature of the subducting plate and T-ov is the function for the
temperature of the overriding plate.

Half-space cooling model increasing with age from x>0 to xtr
For x>xtr, half-space cooling model with a fixed age.
Note, we use 1-erfc instead of erf because the muparser in dealii

124

https://www.youtube.com/watch?v=YzNTubNG83Q

Figure 35: Initial temperature condition for the lazy-expression syntax cookbook.

only knows about erfc. Also, we need to use ymax-y since y=0 at the
bottom of the box.
vsub is the velocity of the subducting plate in m/s
(x/vsub is the age of the subducting plate)
ageop is the age of the overriding plate in seconds.
Tm is the mantle temperature, Ts is the surface temperature in kelvin
kappa is the thermal diffusivity (m^2/s)

subsection Initial temperature model
set Model name = function
subsection Function

set Variable names = x,y
set Function constants = ymax=1.0e6, xtrm=2.200e6, vsub=7.927e-10, \

ageop=9.46e14, Tm=1673, Ts=273, kappa=1e-6
set Function expression = (((x>0.0) && (x<=xtrm)) ? \

(Ts + (Tm-Ts)*(1-erfc((ymax-y)/(2*sqrt(kappa*(x/vsub)))))) : \
(x>xtrm) ? \
(Ts + (Tm-Ts)*(1-erfc((ymax-y)/(2*sqrt(kappa*ageop))))) :\
(Tm))

end
end

Set boundary types and values for temperature
Default is zero-flux (keep for sidewalls),
so only need set top and bottom to fixed temperature

subsection Boundary temperature model
set Fixed temperature boundary indicators = bottom, top
set List of model names = box

subsection Box
set Bottom temperature = 1673
set Top temperature = 273

end
end

Notice also that the boundary conditions for the temperature are defined in a separate subsection and depend
on the geometry. The boundary conditions are insulating (zero flux) side-walls and fixed temperature at the
top and bottom. Figure 35 shows the initial temperature on the full domain.

The structure and refinement of the mesh are determined in two subsections of the parameter file. First,
because the model domain is not a square, it is necessary to subdivide the domain into sections that are

125

equidimensional (or as close as possible): this is done using the repetitions parameters in the Geometry
section. In this case because the model domain has an aspect ratio of 5:1, we use 5 repetitions in the x
direction, dividing the domain into 5 equidimensional elements each 1000 by 1000 km.

Want a 2D box 5000 km wide by 1000 km deep (5e6 x 1e6 meters)
The variable repetitions divides the whole domain into 5 boxes (1000 x 1000 km)
as the 0th level mesh refinement: this is needed so elements are squares
and not elongated rectangles.

subsection Geometry model
set Model name = box

subsection Box
set X extent = 5e6
set Y extent = 1e6
set X repetitions = 5
set Y repetitions = 1

end
end

Further refinements will divide each sub-region multiple times keeping the aspect ratio of the sub-region.
In this case, we refine the elements in each subregion 3 more times. We then use the minimum refinement
function strategy and use the if-then-else statement in the function expression to refine 4 more times to
a refinement level of 7, but only where the depth is less than 150 km. Appropriate values of the minimum
refinement level in this function expression could be the sum of initial global refinement level (3) and initial
adaptive refinement level (4) in the ’then’ statement (i.e., 7 here) and the value of initial global refinement
in the ’else’ statement.

Refine the upper 150 km of the mesh so lithosphere structure is resolved.
Function expression asks if the depth is less than the lithosphere depth and
then refinement level = 7, else refinement level = 0.
Note, the minimum refinement level for the lower 850 km of the mesh would be
coarser than the initial one level of global refinement. This would then lead
to coarsening in the future.
To avoid this, you may want to set this ’else’ value to the same as the number
of initial global refinement steps.

subsection Mesh refinement
set Initial global refinement = 3
set Minimum refinement level = 3
set Initial adaptive refinement = 4
set Time steps between mesh refinement = 1
set Strategy = minimum refinement function
subsection Minimum refinement function

set Coordinate system = cartesian
set Variable names = x,y
set Function constants = ymax=1.e6, lith=1.5e5
set Function expression = ((ymax-y<=lith) ? 7 : 0)

end
end

Figure 36 zooms in on the region where the two plates meet and shows the temperature on a wireframe
highlighting the element size refinement. Notice that the mesh refinement algorithm automatically adjusts
the element size between the region that is specific to be a level 7 and the region at level 3 to create a smooth
transition in element size.

Finally, in order to just test whether the initial temperature structure has been properly defined, it is

126

Figure 36: Initial temperature condition for the lazy-expression syntax cookbook within the region where the
two plates meet. The wireframe shows the element size refinement.

helpful to run the model for a single time-step and without actually waiting for the solvers to converge. In
order to do this, the End time can be set to zero. If the model is very large (lots of refinement) or there are
large viscosity jumps that take longer to converge in the Stokes solver, it can also be useful to set the solver
tolerance parameters to large values as noted below. However, remember that in that case the solution will
not be converged – it is only useful for checking that the initial condition is set correctly.

Dimension, end-time (years) and output directory
Only does zeroth time-step to show that initial condition works

set Dimension = 2
set Use years in output instead of seconds = true
set Start time = 0
set End time = 0

If you have a large model or a model with large viscosity variation and you
want to run the 0th timestep more quickly in order to just check in the initial
condition (IC), you can set these solver tolerance values to larger numbers, but
this means the solution will not be converged.

subsection Solver parameters

subsection Stokes solver parameters
set Linear solver tolerance = 1e-6 # can set to 1e-3 for checking IC

end
end

5.3 Geophysical setups
Having gone through the ways in which one can set up problems in rectangular geometries, let us now
move on to situations that are directed more towards the kinds of things we want to use ASPECT for: the
simulation of convection in the rocky mantles of planets or other celestial bodies.

To this end, we need to go through the list of issues that have to be described and that were outlined in
Section 5.1, and address them one by one:

• What internal forces act on the medium (the equation)? This may in fact be the most difficult to answer
part of it all. The real material in Earth’s mantle is certainly no Newtonian fluid where the stress is
a linear function of the strain with a proportionality constant (the viscosity) η that only depends on
the temperature. Rather, the real viscosity almost surely also depends on the pressure and the strain
rate. Because the issue is complicated and the exact material model not entirely clear, for the next few

127

subsections we will therefore ignore the issue and start with just using the “simple” material model
where the viscosity is constant and most other coefficients depend at most on the temperature.

• What external forces do we have (the right hand side) There are of course other issues: for example,
should the model include terms that describe shear heating? Should it be compressible? Adiabatic
heating due to compression? Most of the terms that pertain to these questions appear on the right hand
sides of the equations, though some (such as the compressibility) also affect the differential operators
on the left. Either way, for the moment, let us just go with the simplest models and come back to the
more advanced questions in later examples.
One right hand side that will certainly be there is that due to gravitational acceleration. To first order,
within the mantle gravity points radially inward and has a roughly constant magnitude. In reality, of
course, the strength and direction of gravity depends on the distribution and density of materials in
Earth – and, consequently, on the solution of the model at every time step. We will discuss some of
the associated issues in the examples below.

• What is the domain (geometry)? This question is easier to answer. To first order, the domains we
want to simulate are spherical shells, and to second order ellipsoid shells that can be obtained by con-
sidering the isopotential surface of the gravity field of a homogeneous, rotating fluid. A more accurate
description is of course the geoid for which several parameterizations are available. A complication
arises if we ask whether we want to include the mostly rigid crust in the domain and simply assume
that it is part of the convecting mantle, albeit a rather viscous part due to its low temperature and
the low pressure there, or whether we want to truncate the computation at the asthenosphere.

• What happens at the boundary for each variable involved (boundary conditions)? The mantle has two
boundaries: at the bottom where it contacts the outer core and at the top where it either touches
the air or, depending on the outcome of the discussion of the previous question, where it contacts the
lithospheric crust. At the bottom, a very good approximation of what is happening is certainly to
assume that the velocity field is tangential (i.e., horizontal) and without friction forces due to the very
low viscosity of the liquid metal in the outer core. Similarly, we can assume that the outer core is well
mixed and at a constant temperature. At the top boundary, the situation is slightly more complex
because in reality the boundary is not fixed but also allows vertical movement. If we ignore this, we can
assume free tangential flow at the surface or, if we want, prescribe the tangential velocity as inferred
from plate motion models. ASPECT has a plugin that allows to query this kind of information from
the GPlates program.

• How did it look at the beginning (initial conditions)? This is of course a trick question. Convection
in the mantle of earth-like planets did not start with a concrete initial temperature distribution when
the mantle was already fully formed. Rather, convection already happened when primordial material
was still separating into mantle and core. As a consequence, for models that only simulate convection
using mantle-like geometries and materials, no physically reasonable initial conditions are possible that
date back to the beginning of Earth. On the other hand, recall that we only need initial conditions for
the temperature (and, if necessary, compositional fields). Thus, if we have a temperature profile at a
given time, for example one inferred from seismic data at the current time, then we can use these as
the starting point of a simulation.

This discussion shows that there are in fact many pieces with which one can play and for which the answers
are in fact not always clear. We will address some of them in the cookbooks below. Recall in the descriptions
we use in the input files that ASPECT uses physical units, rather than non-dimensionalizing everything.
The advantage, of course, is that we can immediately compare outputs with actual measurements. The
disadvantage is that we need to work a bit when asked for, say, the Rayleigh number of a simulation.

128

Figure 37: Simple convection in a quarter of an annulus: Snapshots of the temperature field at times t = 0,
t = 1.2× 107 years (time step 2135), and t = 109 years (time step 25,662). The bottom right part of each
figure shows an overlay of the mesh used during that time step.

5.3.1 Simple convection in a quarter of a 2d annulus

Let us start this sequence of cookbooks using a simpler situation: convection in a quarter of a 2d shell.
We choose this setup because 2d domains allow for much faster computations (in turn allowing for more
experimentation) and because using a quarter of a shell avoids a pitfall with boundary conditions we will
discuss in the next section. Because it’s simpler to explain what we want to describe in pictures than in words,
Fig. 37 shows the domain and the temperature field at a few time steps. In addition, you can find a movie of
how the temperature evolves over this time period at http://www.youtube.com/watch?v=d4AS1FmdarU.31

Let us just start by showing the input file (which you can find in cookbooks/shell_simple_2d.prm):

set Dimension = 2
set Use years in output instead of seconds = true
set End time = 1.5e9
set Output directory = output-shell_simple_2d

subsection Material model
set Model name = simple

subsection Simple model
set Thermal expansion coefficient = 4e-5
set Viscosity = 1e22

end
end

subsection Geometry model
set Model name = spherical shell

subsection Spherical shell
set Inner radius = 3481000
set Outer radius = 6336000
set Opening angle = 90

end

31In YouTube, click on the gear symbol at the bottom right of the player window to select the highest resolution to see all
the details of this video.

129

http://www.youtube.com/watch?v=d4AS1FmdarU
cookbooks/shell_simple_2d.prm

end

subsection Boundary velocity model
set Zero velocity boundary indicators = inner
set Tangential velocity boundary indicators = outer, left, right

end

subsection Boundary temperature model
set Fixed temperature boundary indicators = inner, outer
set List of model names = spherical constant

subsection Spherical constant
set Inner temperature = 4273
set Outer temperature = 973

end
end

subsection Heating model
set List of model names = shear heating

end

subsection Initial temperature model
set Model name = spherical hexagonal perturbation

end

subsection Gravity model
set Model name = ascii data

end

subsection Mesh refinement
set Initial global refinement = 5
set Initial adaptive refinement = 4
set Strategy = temperature
set Time steps between mesh refinement = 15

end

subsection Postprocess
set List of postprocessors = visualization, velocity statistics, temperature statistics, ...

... heat flux statistics, depth average

subsection Visualization
set Output format = vtu
set Time between graphical output = 1e6
set Number of grouped files = 0

end

subsection Depth average
set Time between graphical output = 1e6

end

130

end

In the following, let us pick apart this input file:

1. Lines 1–4 are just global parameters. Since we are interested in geophysically realistic simulations, we
will use material parameters that lead to flows so slow that we need to measure time in years, and we
will set the end time to 1.5 billion years – enough to see a significant amount of motion.

2. The next block (lines 7–14) describes the material that is convecting (for historical reasons, the re-
mainder of the parameters that describe the equations is in a different section, see the fourth point
below). We choose the simplest material model ASPECT has to offer where the viscosity is constant
(here, we set it to η = 1022Pa s) and so are all other parameters except for the density which we choose
to be ρ(T) = ρ0(1 − α(T − Tref)) with ρ0 = 3300kg m−3, α = 4× 10−5K−1 and Tref = 293K. The
remaining material parameters remain at their default values and you can find their values described
in the documentation of the simple material model in Sections A.90 and A.116.

3. Lines 17–25 then describe the geometry. In this simple case, we will take a quarter of a 2d shell (recall
that the dimension had previously been set as a global parameter) with inner and outer radii matching
those of a spherical approximation of Earth.

4. The second part of the model description and boundary values follows in lines 28–42. The boundary
conditions require us to look up how the geometry model we chose (the spherical shell model)
assigns boundary indicators to the four sides of the domain. This is described in Section A.43 where
the model announces that boundary indicator zero is the inner boundary of the domain, boundary
indicator one is the outer boundary, and the left and right boundaries for a 2d model with opening
angle of 90 degrees as chosen here get boundary indicators 2 and 3, respectively. In other words, the
settings in the input file correspond to a zero velocity at the inner boundary and tangential flow at all
other boundaries. We know that this is not realistic at the bottom, but for now there are of course many
other parts of the model that are not realistic either and that we will have to address in subsequent
cookbooks. Furthermore, the temperature is fixed at the inner and outer boundaries (with the left
and right boundaries then chosen so that no heat flows across them, emulating symmetry boundary
conditions) and, further down, set to values of 700 and 4000 degrees Celsius – roughly realistic for the
bottom of the crust and the core-mantle boundary.

5. Lines 45–47 describe that we want a model where equation (3) contains the shear heating term 2ηε(u) :
ε(u) (noting that the default is to use an incompressible model for which the term 1

3 (∇ · u)1 in the
shear heating contribution is zero). Considering a reasonable choice of heating terms is not the focus
of this simple cookbook, therefore we will leave a discussion of possible and reasonable heating terms
to another cookbook.

6. The description of what we want to model is complete by specifying that the initial temperature is a
perturbation with hexagonal symmetry from a linear interpolation between inner and outer tempera-
tures (see Section A.68), and what kind of gravity model we want to choose (one reminiscent of the
one inside the Earth mantle, see Section A.54).

7. The remainder of the input file consists of a description of how to choose the initial mesh and how to
adapt it (lines 60–65) and what to do at the end of each time step with the solution that ASPECT
computes for us (lines 68–81). Here, we ask for a variety of statistical quantities and for graphical
output in VTU format every million years.

131

Note: Having described everything to ASPECT, you may want to view the video linked to above
again and compare what you see with what you expect. In fact, this is what one should always do
having just run a model: compare it with expectations to make sure that we have not overlooked
anything when setting up the model or that the code has produced something that doesn’t match
what we thought we should get. Any such mismatch between expectation and observed result
is typically a learning opportunity: it either points to a bug in our input file, or it provides us
with insight about an aspect of reality that we had not foreseen. Either way, accepting results
uncritically is, more often than not, a way to scientifically invalid results.

The model we have chosen has a number of inadequacies that make it not very realistic (some of those
happened more as an accident while playing with the input file and weren’t a purposeful experiment, but
we left them in because they make for good examples to discuss below). Let us discuss these issues in the
following.

Dimension. This is a cheap shot but it is nevertheless true that the world is three-dimensional whereas
the simulation here is 2d. We will address this in the next section.

Incompressibility, adiabaticity and the initial conditions. This one requires a bit more discussion.
In the model selected above, we have chosen a model that is incompressible in the sense that the density does
not depend on the pressure and only very slightly depends on the temperature. In such models, material
that rises up does not cool down due to expansion resulting from the pressure dropping, and material that is
transported down does not adiabatically heat up. Consequently, the adiabatic temperature profile would be
constant with depth, and a well-mixed model with hot inner and cold outer boundary would have a constant
temperature with thin boundary layers at the bottom and top of the mantle. In contrast to this, our initial
temperature field was a perturbation of a linear temperature profile.

There are multiple implications of this. First, the temperature difference between outer and inner bound-
ary of 3300 K we have chosen in the input file is much too large. The temperature difference that drives the
convection, is the difference in addition to the temperature increase a volume of material would experience
if it were to be transported adiabatically from the surface to the core-mantle boundary. This difference is
much smaller than 3300 K in reality, and we can expect convection to be significantly less vigorous than in
the simulation here. Indeed, using the values in the input file shown above, we can compute the Rayleigh
number for the current case to be32

Ra = g α∆TρL3

κη
= 10 m s−2 × 4× 10−5 K−1 × 3300 K× 3300 kg m−3 × (2.86× 106 m)3

10−6 m2 s−1 × 1022 kg m−1 s−1 .

Second, the initial temperature profile we chose is not realistic – in fact, it is a completely unstable one:
there is hot material underlying cold one, and this is not just the result of boundary layers. Consequently,
what happens in the simulation is that we first overturn the entire temperature field with the hot material in
the lower half of the domain swapping places with the colder material in the top, to achieve a stable layering
except for the boundary layers. After this, hot blobs rise from the bottom boundary layer into the cold layer
at the bottom of the mantle, and cold blobs sink from the top, but their motion is impeded about half-way
through the mantle once they reach material that has roughly the same temperature as the plume material.
This impedes convection until we reach a state where these plumes have sufficiently mixed the mantle to
achieve a roughly constant temperature profile.

This effect is visible in the movie linked to above where convection does not penetrate the entire depth
of the mantle for the first 20 seconds (corresponding to roughly the first 800 million years). We can also see
this effect by plotting the root mean square velocity, see the left panel of Fig. 38. There, we can see how the
average velocity picks up once the stable layering of material that resulted from the initial overturning has
been mixed sufficiently to allow plumes to rise or sink through the entire depth of the mantle.

32Note that the density in 2d has units kg m−2

132

Figure 38: Simple convection in a quarter of an annulus. Left: Root mean square values of the velocity
field. The initial spike (off the scale) is due to the overturning of the unstable layering of the temperature.
Convection is suppressed for the first 800 million years due to the stable layering that results from it. The
maximal velocity encountered follows generally the same trend and is in the range of 2–3 cm/year between
100 and 800 million years, and 4–8 cm/year following that. Right: Average temperature at various depths
for t = 0, t = 800, 000 years, t = 5× 108 years, and t = 109 years.

The right panel of Fig. 38 shows a different way of visualizing this, using the average temperature at
various depths of the model (this is what the depth average postprocessor computes). The figure shows
how the initially linear unstable layering almost immediately reverts completely, and then slowly equilibrates
towards a temperature profile that is constant throughout the mantle (which in the incompressible model
chosen here equates to an adiabatic layering) except for the boundary layers at the inner and outer boundaries.
(The end points of these temperature profiles do not exactly match the boundary values specified in the input
file because we average temperatures over shells of finite width.)

A conclusion of this discussion is that if we want to evaluate the statistical properties of the flow field,
e.g., the number of plumes, average velocities or maximal velocities, then we need to restrict our efforts to
times after approximately 800 million years in this simulation to avoid the effects of our inappropriately
chosen initial conditions. Likewise, we may actually want to choose initial conditions more like what we see
in the model for later times, i.e., constant in depth with the exception of thin boundary layers, if we want
to stick to incompressible models.

Material model. The model we use here involves viscosity, density, and thermal property functions that
do not depend on the pressure, and only the density varies (slightly) with the temperature. We know that
this is not the case in nature.

Shear heating. When we set up the input file, we started with a model that includes the shear heating
term 2ηε(u) : ε(u) in eq. (3). In hindsight, this may have been the wrong decision, but it provides an
opportunity to investigate whether we think that the results of our computations can possibly be correct.

We first realized the issue when looking at the heat flux that the heat flux statistics postprocessor
computes. This is shown in the left panel of Fig. 39.33 There are two issues one should notice here. The more
obvious one is that the flux from the mantle to the air is consistently higher than the heat flux from core
to mantle. Since we have no radiogenic heating model selected (see the List of model names parameter

33The heat flux statistics postprocessor computes heat fluxes through parts of the boundary in outward direction, i.e.,
from the mantle to the air and to the core. However, we are typically interested in the flux from the core into the mantle, so
the figure plots the negative of the computed quantity.

133

Figure 39: Simple convection in a quarter of an annulus. Left: Heat flux through the core-mantle and
mantle-air boundaries of the domain for the model with shear heating. Right: Same for a model without
shear heating.

in the Heating model section of the input file; see also Section A.60), in the long run the heat output of
the mantle must equal the input, unless is cools. Our misconception was that after the 800 million year
transition, we believed that we had reached a steady state where the average temperature remains constant
and convection simply moves heat from the core-mantle boundary the surface. One could also be tempted
to believe this from the right panel in Fig. 38 where it looks like the average temperature does at least
not change dramatically. But, it is easy to convince oneself that that is not the case: the temperature
statistics postprocessor we had previously selected also outputs data about the mean temperature in the
model, and it looks like shown in the left panel of Fig. 40. Indeed, the average temperature drops over
the course of the 1.2 billion years shown here. We could now convince ourselves that indeed the loss of
thermal energy in the mantle due to the drop in average temperature is exactly what fuels the persistently
imbalanced energy outflow. In essence, what this would show is that if we kept the temperature at the
boundaries constant, we would have chosen a mantle that was initially too hot on average to be sustained
by the boundary values and that will cool until it will be in energetic balance and on longer time scales, in-
and outflow of thermal energy would balance each other.

However, there is a bigger problem. Fig. 39 shows that at the very beginning, there is a spike in energy
flux through the outer boundary. We can explain this away with the imbalanced initial temperature field
that leads to an overturning and, thus, a lot of hot material rising close to the surface that will then lead to a
high energy flux towards the cold upper boundary. But, worse, there is initially a negative heat flux into the
mantle from the core – in other words, the mantle is losing energy to the core. How is this possible? After
all, the hottest part of the mantle in our initial temperature field is at the core-mantle boundary, no thermal
energy should be flowing from the colder overlying material towards the hotter material at the boundary! A
glimpse of the solution can be found in looking at the average temperature in Fig. 40: At the beginning, the
average temperature rises, and apparently there are parts of the mantle that become hotter than the 4273
K we have given the core, leading to a downward heat flux. This heating can of course only come from the
shear heating term we have accidentally left in the model: at the beginning, the unstable layering leads to
very large velocities, and large velocities lead to large velocity gradients that in turn lead to a lot of shear
heating! Once the initial overturning has subsided, after say 100 million years (see the mean velocity in
Fig. 38), the shear heating becomes largely irrelevant and the cooling of the mantle indeed begins.

Whether this is really the case is of course easily verified: The right panels of Figs. 39 and 40 show heat
fluxes and average temperatures for a model where we have switched off the shear heating by setting

subsection Heating model

134

Figure 40: Simple convection in a quarter of an annulus. Left: Average temperature throughout the model
for the model with shear heating. Right: Same for a model without shear heating.

set List of model names =
end

Indeed, doing so leads to a model where the heat flux from core to mantle is always positive, and where
the average temperature strictly drops!

Summary. As mentioned, we will address some of the issues we have identified as unrealistic in the
following sections. However, despite all of this, some things are at least at the right order of magnitude,
confirming that what ASPECT is computing is reasonable. For example, the maximal velocities encountered
in our model (after the 800 million year boundary) are in the range of 6–7cm per year, with occasional
excursions up to 11cm. Clearly, something is going in the right direction.

5.3.2 Simple convection in a spherical 3d shell

The setup from the previous section can of course be extended to 3d shell geometries as well – though at
significant computational cost. In fact, the number of modifications necessary is relatively small, as we
will discuss below. To show an example up front, a picture of the temperature field one gets from such a
simulation is shown in Fig. 41. The corresponding movie can be found at http://youtu.be/j63MkEc0RRw.

The input file. Compared to the input file discussed in the previous section, the number of changes
is relatively small. However, when taking into account the various discussions about which parts of the
model were or were not realistic, they go throughout the input file, so we reproduce it here in its entirety,
interspersed with comments (the full input file can also be found in cookbooks/shell_simple_3d.prm). Let
us start from the top where everything looks the same except that we set the dimension to 3:

set Dimension = 3
set Use years in output instead of seconds = true
set End time = 1.5e9
set Output directory = output-shell_simple_3d

subsection Material model
set Model name = simple

135

http://youtu.be/j63MkEc0RRw
cookbooks/shell_simple_3d.prm

Figure 41: Convection in a spherical shell: Snapshot of isosurfaces of the temperature field at time t ≈
1.06× 109 years with a quarter of the geometry cut away. The surface shows vectors indicating the flow
velocity and direction.

subsection Simple model
set Thermal expansion coefficient = 4e-5
set Viscosity = 1e22

end
end

The next section concerns the geometry. The geometry model remains unchanged at “spherical shell”
but we omit the opening angle of 90 degrees as we would like to get a complete spherical shell. Such a shell
of course also only has two boundaries (the inner one has indicator zero, the outer one indicator one) and
consequently these are the only ones we need to list in the “Boundary velocity model” section:

subsection Geometry model
set Model name = spherical shell

subsection Spherical shell
set Inner radius = 3481000
set Outer radius = 6336000

end
end

136

subsection Boundary velocity model
set Zero velocity boundary indicators = inner
set Tangential velocity boundary indicators = outer

end

Next, since we convinced ourselves that the temperature range from 973 to 4273 was too large given
that we do not take into account adiabatic effects in this model, we reduce the temperature at the inner
edge of the mantle to 1973. One can think of this as an approximation to the real temperature there minus
the amount of adiabatic heating material would experience as it is transported from the surface to the
core-mantle boundary. This is, in effect, the temperature difference that drives the convection (because a
completely adiabatic temperature profile is stable despite the fact that it is much hotter at the core mantle
boundary than at the surface). What the real value for this temperature difference is, is unclear from current
research, but it is thought to be around 1000 Kelvin, so let us choose these values.

subsection Boundary temperature model
set Fixed temperature boundary indicators = inner, outer
set List of model names = spherical constant

subsection Spherical constant
set Inner temperature = 1973
set Outer temperature = 973

end
end

The second component to this is that we found that without adiabatic effects, an initial temperature
profile that decreases the temperature from the inner to the outer boundary makes no sense. Rather, we
expected a more or less constant temperature with boundary layers at both ends. We could describe such an
initial temperature field, but since any initial temperature is mostly arbitrary anyway, we opt to just assume
a constant temperature in the middle between the inner and outer temperature boundary values and let the
simulation find the exact shape of the boundary layers itself:

subsection Initial temperature model
set Model name = function
subsection Function

set Function expression = 1473
end

end

subsection Gravity model
set Model name = ascii data

end

As before, we need to determine how many mesh refinement steps we want. In 3d, it is simply not
possible to have as much mesh refinement as in 2d, so we choose the following values that lead to meshes
that have, after an initial transitory phase, between 1.5 and 2.2 million cells and 50–75 million unknowns:

subsection Mesh refinement
set Initial global refinement = 2
set Initial adaptive refinement = 3
set Strategy = temperature
set Time steps between mesh refinement = 15

end

Second to last, we specify what we want ASPECT to do with the solutions it computes. Here, we compute
the same statistics as before, and we again generate graphical output every million years. Computations of

137

this size typically run with 1000 MPI processes, and it is not efficient to let every one of them write their
own file to disk every time we generate graphical output; rather, we group all of these into a single file to
keep file systems reasonably happy. Likewise, to accommodate the large amount of data, we output depth
averaged fields in VTU format since it is easier to visualize:

subsection Postprocess
set List of postprocessors = visualization, velocity statistics, \

temperature statistics, heat flux statistics, \
depth average

subsection Visualization
set Output format = vtu
set Time between graphical output = 1e6
set Number of grouped files = 1

end

subsection Depth average
set Time between graphical output = 1.5e6
set Output format = vtu

end
end

Finally, we realize that when we run very large parallel computations, nodes go down or the scheduler
aborts programs because they ran out of time. With computations this big, we cannot afford to just lose
the results, so we checkpoint the computations every 50 time steps and can then resume it at the last saved
state if necessary (see Section 4.5):

subsection Checkpointing
set Steps between checkpoint = 50

end

Evaluation. Just as in the 2d case above, there are still many things that are wrong from a physical
perspective in this setup, notably the no-slip boundary conditions at the bottom and of course the simplistic
material model with its fixed viscosity and its neglect for adiabatic heating and compressibility. But there
are also a number of things that are already order of magnitude correct here.

For example, if we look at the heat flux this model produces, we find that the convection here produces
approximately the correct number. Wikipedia’s article on Earth’s internal heat budget34 states that the
overall heat flux through the Earth surface is about 47× 1012 W (i.e., 47 terawatts) of which an estimated
12–30 TW are primordial heat released from cooling the Earth and 15–41 TW from radiogenic heating.35
Our model does not include radiogenic heating (though ASPECT has a number of Heating models to
switch this on, see Section A.60) but we can compare what the model gives us in terms of heat flux through
the inner and outer boundaries of our shell geometry. This is shown in the left panel of Fig. 42 where we
plot the heat flux through boundaries zero and one, corresponding to the core-mantle boundary and Earth’s
surface. ASPECT always computes heat fluxes in outward direction, so the flux through boundary zero will
be negative, indicating the we have a net flux into the mantle as expected. The figure indicates that after
some initial jitters, heat flux from the core to the mantle stabilizes at around 4.5 TW and that through the
surface at around 10 TW, the difference of 5.5 TW resulting from the overall cooling of the mantle. While
we cannot expect our model to be quantitatively correct, this can be compared with estimated heat fluxes

34Not necessarily the most scientific source, but easily accessible and typically about right in terms of numbers. The numbers
stated here are those listed on Wikipedia at the time this section was written in March 2014.

35As a point of reference, for the mantle an often used number for the release of heat due to radioactive decay is 7.4× 10−12

W/kg. Taking a density of 3300 kg/m3 and a volume of 1012 m3 would yield roughly 2.4× 1013 W of heat produced. This
back of the envelope calculation lies within the uncertain range stated above.

138

http://en.wikipedia.org/wiki/Earth's_internal_heat_budget

Figure 42: Evaluating the 3d spherical shell model. Left: Outward heat fluxes through the inner and outer
boundaries of the shell. Right: Average and maximal velocities in the mantle.

of 5–15 TW for the core-mantle boundary, and an estimated heat loss due to cooling of the mantle of 7–15
TW (values again taken from Wikipedia).

A second measure of whether these results make sense is to compare velocities in the mantle with what is
known from observations. As shown in the right panel of Fig. 42, the maximal velocities settle to values on
the order of 3 cm/year (each of the peaks in the line for the maximal velocity corresponds to a particularly
large plume rising or falling). This is, again, at least not very far from what we know to be correct and we
should expect that with a more elaborate material model we should be able to get even closer to reality.

5.3.3 Postprocessing spherical 3D convection

This section was contributed by Jacqueline Austermann, Ian Rose, and Shangxin Liu
There are several postprocessors that can be used to turn the velocity and pressure solution into quantities

that can be compared to surface observations. In this cookbook (cookbooks/shell_3d_postprocess.prm)
we introduce two postprocessors: dynamic topography and the geoid. We initialize the model with a harmonic
perturbation of degree 4 and order 2 and calculate the instantaneous solution. Analogous to the previous
setup we use a spherical shell geometry model and a simple material model.

The relevant section in the input file that determines the postprocessed output is as follows:

subsection Postprocess
set List of postprocessors = velocity statistics, dynamic topography, visualization, basic

↪→ statistics, geoid

subsection Visualization
set Output format = vtu
set List of output variables = geoid, dynamic topography, density, viscosity, gravity
set Number of grouped files = 1

end
end

This initial condition results in distinct flow cells that cause local up- and downwellings (Figure 43). This
flow deflects the top and bottom boundaries of the mantle away from their reference height, a process known
as dynamic topography. The deflection of the surfaces and density perturbations within the mantle also
cause a perturbation in the gravitational field of the planet relative to the hydrostatic equilibrium ellipsoid.

139

cookbooks/shell_3d_postprocess.prm

Dynamic topography at the surface and core mantle boundary. Dynamic topography is calculated
at the surface and bottom of the domain through a stress balancing approach where we assume that the
radial stress at the surface is balanced by excess (or deficit) topography. We use the consistent boundary flux
(CBF) method to calculate the radial stress at the surface [99]. For the bottom surface we define positive
values as up (out) and negative values are down (in), analogous to the deformation of the upper surface.
Dynamic topography can be outputted in text format (which writes the Euclidean coordinates followed by
the corresponding topography value) or as part of the visualization. The upwelling and downwelling flow
along the equator causes alternating topography high and lows at the top and bottom surface (Figure 43). In
Figure 43 c, d we have subtracted the mean dynamic topography from the output field as a postproceesing
step outside of ASPECT. Since mass is conserved within the Earth, the mean dynamic topography should
always be zero, however, the outputted values might not fulfill this constraint if the resolution of the model
is not high enough to provide an accurate solution. This cookbook only uses a refinement of 2, which is
relatively low resolution.

Geoid anomalies. Geoid anomalies are perturbations of the gravitational equipotential surface that are
due to density variations within the mantle as well as deflections of the surface and core mantle boundary.
The geoid anomalies are calculated using a spherical harmonic expansion of the respective fields. The user
has the option to specify the minimum and maximum degree of this expansion. By default, the minimum
degree is 2, which conserves the mass of the Earth (by removing degree 0) and chooses the Earth’s center of
mass as reference frame (by removing degree 1). In this model, downwellings coincide with lows in the geoid
anomaly. That means the mass deficit caused by the depression at the surface is not fully compensated by
the high density material below the depression that drags the surface down. The geoid postprocessor uses a
spherical harmonic expansion and can therefore only be used with the 3D spherical shell geometry model.

5.3.4 3D convection with an Earth-like initial condition

This section was contributed by Jacqueline Austermann
For any model run with ASPECT we have to choose an initial condition for the temperature field. If we

want to model convection in the Earth’s mantle we want to choose an initial temperature distribution that
captures the Earth’s buoyancy structure. In this cookbook we present how to use temperature perturbations
based on the shear wave velocity model S20RTS [72] to initialize a mantle convection calculation.

The input shear wave model. The current version of ASPECT can read in the shear wave velocity mod-
els S20RTS [72] and S40RTS [71], which are located in data/initial-conditions/S40RTS/. Those models
provide spherical harmonic coefficients up do degree 20 and 40, respectively, for 21 depth layers. The interpo-
lation with depth is done through a cubic spline interpolation. The input files S20RTS.sph and S40RTS.sph
were downloaded from http://www.earth.lsa.umich.edu/~jritsema/Research.html and have the fol-
lowing format (this example is S20RTS):

20 111111111111111111111 24 000111111111111111111111
0.1534E-01
0.1590E-01 -0.1336E-01 0.3469E-02

-0.3480E-02 0.1165E-01 0.8376E-02 0.2158E-01 -0.9923E-02
...

The first number in the first line denotes the maximum degree. This is followed in the next line by
the spherical harmonic coefficients from the surface down to the CMB. The coefficients are arranged in the
following way:

a00
a10 a11 b11
a20 a21 b21 a22 b22

140

data/initial-conditions/S40RTS/
http://www.earth.lsa.umich.edu/~jritsema/Research.html

Figure 43: Panel (a) shows an equatorial cross section of the temperature distribution and resulting flow
from a harmonic perturbation. Panel (b) shows the resulting geoid, and panels (c) and (d) show the resulting
surface and bottom topography. Note that we have subtracted the mean surface and bottom topography in the
respective panels (c and d) as a postprocessing step outside of Aspect.

141

...

ayz is the cosine coefficient of degree y and order z; byz is the sine coefficient of degree y and order z. The
depth layers are specified in the file Spline_knots.txt by a normalized depth value ranging from the CMB
(3480km, normalized to -1) to the Moho (6346km, normalized to 1). This is the original format provided on
the homepage.

Any other perturbation model in this same format can also be used, one only has to specify the different
filename in the parameter file (see next section). For models with different depth layers one has to adjust
the Spline_knots.txt file as well as the number of depth layers, which is hard coded in the current code. A
further note of caution when switching to a different input model concerns the normalization of the spherical
harmonics, which might differ. After reading in the shear wave velocity perturbation one has several options
to scale this into temperature differences, which are then used to initialize the temperature field. It should be
noted that the shear wave velocity perturbations in S20RTS and S40RTS are expressed in terms of percentage
deviation from PREM. Wavespeed perturbations in other models may be referenced to other absolute values
and this should be taken into account when interpreting absolute values of temperature, density and other
physical parameters in ASPECT.

Setting up the ASPECTmodel. For this cookbook we will use the parameter file provided in cookbooks/
S20RTS.prm, which uses a 3d spherical shell geometry similar to section 5.3.2. This plugin is only sensible
for a 3D spherical shell with Earth-like dimensions.

The relevant section in the input file is as follows:

subsection Initial temperature model
set Model name = S40RTS perturbation
subsection S40RTS perturbation

set Data directory = $ASPECT_SOURCE_DIR/data/initial-temperature/S40RTS/
set Initial condition file name = S20RTS.sph
set Spline knots depth file name = Spline_knots.txt
set Remove degree 0 from perturbation = false
set Vs to density scaling = 0.15
set Thermal expansion coefficient in initial temperature scaling = 3e-5
set Reference temperature = 1600

end
end

For this initial condition model we need to first specify the data directory in which the input files are
located as well as the initial condition file (S20RTS.sph or S40RTS.sph) and the file that contains the
normalized depth layers (Spline knots depth file name). We next have the option to remove the degree 0
perturbation from the shear wave model. This might be the case if we want to make sure that the depth
average temperature follows the background (adiabatic or constant) temperature.

The next input parameters describe the scaling from the shear wave velocity perturbation to the final
temperature field. The shear wave velocity perturbation δvs/vs (that is provided by S20RTS) is scaled into
a density perturbation δρ/ρ with a constant that is specified in the initial condition section of the input
parameter file as ‘Vs to density scaling’. Here we choose a constant scaling of 0.15. This perturbation is
further translated into a temperature difference ∆T by multiplying it by the negative inverse of thermal
expansion, which is also specified in this section of the parameter file as ‘Thermal expansion coefficient
in initial temperature scaling’. This temperature difference is then added to the background temperature,
which is the adiabatic temperature for a compressible model or the reference temperature (as specified
in this section of the parameter file) for an incompressible model. Features in the upper mantle such as
cratons might be chemically buoyant and therefore isostatically compensated, in which case their shear wave
perturbation would not contribute buoyancy variations. We therefore included an additional option to zero
out temperature perturbations within a certain depth, however, in this example we don’t make use of this
functionality. The chemical variation within the mantle might require a more sophisticated ‘Vs to density’

142

cookbooks/S20RTS.prm
cookbooks/S20RTS.prm

scaling that varies for example with depth or as a function of the perturbation itself, which is not captured
in this model. The described procedure provides an absolute temperature for every point, which will only
be adjusted at the boundaries if indicated in the Boundary temperature model. In this example we chose a
surface and core mantle boundary temperature that differ from the reference mantle temperature in order
to approximate thermal boundary layers.

Visualizing 3D models. In this cookbook we calculate the instantaneous solution to examine the flow
field. Figures 44 and 45 show some of the output for a resolution of 2 global refinement steps (44c and 45a, c,
e) as used in the cookbook, as well as 4 global refinement steps (other panels in these figures). Computations
with 4 global refinements are expensive, and consequently this is not the default for this cookbook. For
example, as of 2017, it takes 64 cores approximately 2 hours of walltime to finish this cookbook with 4 global
refinements. Figure 44a and b shows the density variation that has been obtained from scaling S20RTS in
the way described above. One can see the two large low shear wave velocity provinces underneath Africa
and the Pacific that lead to upwelling if they are assumed to be buoyant (as is done in this case). One
can also see the subducting slabs underneath South America and the Philippine region that lead to local
downwelling. Figure 44c and d shows the heat flux density at the surface for 2 refinement steps (c, colorbar
ranges from 13 to 19 mW/m2) and for 4 refinement steps (d, colorbar ranges from 35 to 95 mW/m2). A first
order correlation with upper mantle features such as high heat flow at mid ocean ridges and low heat flow at
cratons is correctly initialized by the tomography model. The mantle flow and buoyancy variations produce
dynamic topography on the top and bottom surface, which is shown for 2 refinement steps (45a and c,
respectively) and 4 refinement steps (45b and d, respectively). One can see that subduction zones are visible
as depressed surface topography due to the downward flow, while regions such as Iceland, Hawaii, or mid
ocean ridges are elevated due to (deep and) shallow upward flow. The core mantle boundary topography
shows that the upwelling large low shear wave velocity provinces deflect the core mantle boundary up.
Figure 45e and f shows geoid perturbations for 2 and 4 global refinement steps, respectively. The geoid
anomalies show a strong correlation with the surface dynamic topography. This is in part expected given
that the geoid anomalies are driven by the deflection of the upper and lower surface as well as internal density
variations. The relative importance of these different contributors is dictated by the Earth’s viscosity profile.
Due to the isoviscous assumption in this cookbook, we don’t properly recover patterns of the observed geoid.
Lastly, Figure 45g and h shows geoid perturbations for 2 and 4 global refinement steps, respectively.

As discussed in the previous cookbook, dynamic topography does not necessarily average to zero if the
resolution is not high enough. While one can simply subtract the mean as a postprocessing step this should
be done with caution since a non-zero mean indicates that the refinement is not sufficiently high to resolve
the convective flow. In Figure 45a-d we refrained from subtracting the mean but indicated it at the bottom
left of each panel. The mean dynamic topography approaches zero for increasing refinement. Furthermore,
the mean bottom dynamic topography is closer to zero than the mean top dynamic topography. This is
likely due to the larger magnitude of dynamic topography at the surface and the difference in resolution
between the top and bottom domain (for a given refinement, the resolution at the core mantle boundary is
higher than the resolution at the surface). The average geoid height and gravity anomaly is zero since the
minimum degree in the geoid anomaly expansion is set to 2.

This model uses a highly simplified material model that is incompressible and isoviscous and does therefore
not represent real mantle flow. More realistic material properties, density scaling as well as boundary
conditions will affect the magnitudes and patterns shown here. A comparison between surface dynamic
topography, the geoid, and gravity anomalies from ASPECT and a spectral based code shows good agreement
(see benchmarks/spectral-comparison/ for figure and details).

5.3.5 Using reconstructed surface velocities by GPlates

This section was contributed by René Gaßmöller
In a number of model setups one may want to include a surface velocity boundary condition that prescribes

the velocity according to a specific geologic reconstruction. The purpose of this kind of models is often to test
a proposed geologic model and compare characteristic convection results to present-day observables in order

143

Figure 44: Panels (a) and (b) show the density distribution as prescribed from the shear wave velocity model
S20RTS and the resulting flow for a global refinement of 4. This model assumes a constant scaling between
shear wave and density perturbations. Panel (c) shows the great circle (dashed blue line) along which the top
slices are evaluated. Panels (c) and (d) show the resulting heat flux density for a global refinement of 2 (c,
cookbook) and 4 (d). The colorbar ranges from 13 to 19 mW/m2 for panel (c) and from 35 to 95 mW/m2

for panel (d).

144

Figure 45: The first row of this figure shows the surface dynamic topography resulting from the flow shown
in Figure 44 for a global refinement of 2 (a, cookbook) and 4 (b). The colorbar ranges from -2400m to 400m
for panel (a) and from -2000m to 1600m for panel (b). The second row shows the dynamic topography at
the core mantle boundary for the same model and a refinement of 2 (c, cookbook) and 4 (d). Averages of
the dynamic topography fields are indicated at the bottom left of each panel. The third row shows the geoid
anomalies from this model at the surface for refinement of 2 (e, cookbook) and 4 (f). The fourth row shows
the gravity anomalies from this model at the surface for refinement of 2 (g, cookbook) and 4 (h)

145

to gain information about the initially assumed geologic input. In this cookbook we present ASPECT’s
interface to the widely used plate reconstruction software GPlates, and the steps to go from a geologic plate
reconstruction to a geodynamic model incorporating these velocities as boundary condition.

Acquiring a plate reconstruction. The plate reconstruction that is used in this cookbook is included in
the data/boundary-velocity/gplates/ directory of your ASPECT installation. For a new model setup
however, a user eventually needs to create her own data files, and so we will briefly discuss the process
of acquiring a usable plate reconstruction and transferring it into a format usable by ASPECT. Both
the necessary software and data are provided by the GPlates project. GPlates is an open-source software
for interactive visualization of plate tectonics. It is developed by the EarthByte Project in the School of
Geosciences at the University of Sydney, the Division of Geological and Planetary Sciences (GPS) at CalTech
and the Center for Geodynamics at the Norwegian Geological Survey (NGU). For extensive documentation
and support we refer to the GPlates website (http://www.gplates.org). Apart from the software one needs
the actual plate reconstruction that consists of closed polygons covering the complete model domain. For
our case we will use the data provided by [42] that is available from the GPlates website under “Download
→ Download GPlates-compatible data → Global reconstructions with continuously closing plates from 140
Ma to the present”. The data is provided under a Creative Commons Attribution 3.0 Unported License
(http://creativecommons.org/licenses/by/3.0/).

Converting GPlates data to ASPECT input. After loading the data files into GPlates (*.gpml for
plate polygons, *.rot for plate rotations over time) the user needs to convert the GPlates data to velocity
information usable in ASPECT. The purpose of this step is to convert from the description GPlates uses
internally (namely a representation of plates as polygons that rotate with a particular velocity around a
pole) to one that can be used by ASPECT (which needs velocity vectors defined at individual points at the
surface).

With loaded plate polygon and rotation information the conversion from GPlates data to ASPECT-
readable velocity files is rather straightforward. First the user needs to generate (or import) so-called
“velocity domain points”, which are discrete sets of points at which GPlates will evaluate velocity information.
This is done using the “Features → Generate Velocity Domain Points → Latitude Longitude” menu option.
Because ASPECT is using an adaptive mesh it is not possible for GPlates to generate velocity information at
the precise surface node positions like for CitcomS or Terra (the other currently available interfaces). Instead
GPlates will output the information on a general Latitude/Longitude grid with nodes on all crossing points.
ASPECT then internally interpolates this information to the current node locations during the model run.
This requires the user to choose a sensible resolution of the GPlates output, which can be adjusted in the
“Generate Latitude/Longitude Velocity Domain Points” dialog of GPlates. In general a resolution that
resolves the important features is necessary, while a resolution that is higher than the maximal mesh size for
the ASPECT model is unnecessary and only increases the computational cost and memory consumption of
the model.

Important note: The Mesh creation routine in GPlates has significantly changed from version 1.3 to
1.4. In GPlates 1.4 and later the user has to make sure that the number of longitude intervals is set as
twice the number of latitude intervals, the “Place node points at centre of latitude/longitude cells” box is
unchecked and the “Latitude/Longitude extents” are set to “Use Global Extents”. ASPECT does check
for most possible combinations that can not be read and will cancel the calculation in these cases, however
some mistakes can not be checked against from the information provided in the GPlates file.

After creating the Velocity Domain Points the user should see the created points and their velocities
indicated as points and arrows in GPlates. To export the calculated velocities one would use the “Recon-
struction → Export” menu. In this dialog the user may specify the time instant or range at which the
velocities shall be exported. The only necessary option is to include the “Velocities” data type in the “Add
Export” sub-dialog. The velocities need to be exported in the native GPlates *.gpml format, which is based
on XML and can be read by ASPECT. In case of a time-range the user needs to add a pattern specifier to
the name to create a series of files. The %u flag is especially suited for the interaction with ASPECT, since

146

http://www.gplates.org
http://creativecommons.org/licenses/by/3.0/

it can easily be replaced by a calculated file index (see also 5.3.5).

Setting up the ASPECTmodel. For this cookbook we will use the parameter file provided in cookbooks/
gplates/gplates_2d.prm which uses the 2d shell geometry previously discussed in Section 5.3.1. AS-
PECT’s GPlates plugin allows for the use of two- and three-dimensional models incorporating the GPlates
velocities. Since the output by GPlates is three-dimensional in any case, ASPECT internally handles the 2D
model by rotating the model plane to the orientation specified by the user and projecting the plate velocities
into this plane. The user specifies the orientation of the model plane by prescribing two points that define a
plane together with the coordinate origin (i.e. in the current formulation only great-circle slices are allowed).
The coordinates need to be in spherical coordinates θ and φ with θ being the colatitude (0 at north pole) and
φ being the longitude (0 at Greenwich meridian, positive eastwards) both given in radians. The approach
of identifying two points on the surface of the Earth along with its center allows to run computations on
arbitrary two-dimensional slices through the Earth with realistic boundary conditions.

The relevant section of the input file is then as follows:

subsection Boundary temperature model
set Fixed temperature boundary indicators = inner, outer

end

subsection Boundary velocity model
set Prescribed velocity boundary indicators = top:gplates
set Tangential velocity boundary indicators = bottom
subsection GPlates model

set Data directory = $ASPECT_SOURCE_DIR/data/boundary-velocity/gplates/
set Velocity file name = current_day.gpml
set Data file time step = 1e6
set Point one = 1.5708,4.87
set Point two = 1.5708,5.24
set Lithosphere thickness = 660000

end
end

In the “Boundary velocity model” subsection the user prescribes the boundary that is supposed to use the
GPlates plugin. Although currently nothing forbids the user to use GPlates plugin for other boundaries than
the surface, its current usage and the provided sample data only make sense for the surface of a spherical
shell (boundary number 1 in the above provided parameter file). In case you are familiar with this kind of
modeling and the plugin you could however also use it to prescribe mantle movements below a lithosphere
model. All plugin specific options may be set in section A.34. Possible options include the data directory
and file name of the velocity file/files, the time step (in model units, mostly seconds or years depending on
the “Use years in output instead of seconds” flag) and the points that define the 2D plane.

Comparing and visualizing 2D and 3D models. The implementation of plate velocities in both two-
and three-dimensional model setups allows for an easy comparison and test for common sources of error in
the interpretation of model results. The left top figure in Fig. 46 shows a modification of the above presented
parameter file by setting “Dimension = 3” and “Initial global refinement = 3”. The top right plot of
Fig. 46 shows an example of three independent two-dimensional computations of the same reduced resolution.
The models were prescribed to be orthogonal slices by setting:

set Point one = 3.1416,0.0
set Point two = 1.5708,0.0

and

set Point one = 3.1416,1.5708
set Point two = 1.5708,1.5708

147

cookbooks/gplates/gplates_2d.prm
cookbooks/gplates/gplates_2d.prm

The results of these models are plotted simultaneously in a single three-dimensional figure in their respec-
tive model planes. The necessary information to rotate the 2D models to their respective planes (rotation
axis and angle) is provided by the GPlates plugin in the beginning of the model output. The bottom plot
of Fig. 46 finally shows the results of the original cookbooks/gplates/gplates_2d.prm also in the three
mentioned planes.

Now that we have model output for otherwise identical 2D and 3D models with equal resolution and
additional 2D output for a higher resolution an interesting question to ask would be: What additional infor-
mation can be created by either using three-dimensional geometry or higher resolution in mantle convection
models with prescribed boundary velocities. As one can see in the comparison between the top right and
bottom plot in Fig. 46 additional resolution clearly improves the geometry of small scale features like the
shape of up- and downwellings as well as the maximal temperature deviation from the background man-
tle. However, the limitation to two dimensions leads to inconsistencies, that are especially apparent at the
cutting lines of the individual 2D models. Note for example that the Nacza slab of the South American
subduction zone is only present in the equatorial model plane and is not captured in the polar model plane
west of the South American coastline. The (coarse) three-dimensional model on the other hand shows the
same location of up- and downwellings but additionally provides a consistent solution that is different from
the two dimensional setups. Note that the Nazca slab is subducting eastward, while all 2D models (even in
high resolution) predict a westward subduction.

Finally we would like to emphasize that these models (especially the used material model) are way too
simplified to draw any scientific conclusion out of it. Rather it is thought as a proof-of-concept what is
possible with the dimension independent approach of ASPECT and its plugins.

Time-dependent boundary conditions. The example presented above uses a constant velocity bound-
ary field that equals the present day plate movements. For a number of purposes one may want to use
a prescribed velocity boundary condition that changes over time, for example to investigate the effect of
trench migration on subduction. Therefore ASPECT’s GPlates plugin is able to read in multiple ve-
locity files and linearly interpolate between pairs of files to the current model time. To achieve this,
one needs to use the %d wildcard in the velocity file name, which represents the current velocity file in-
dex (e.g. time_dependent.%d.gpml). This index is calculated by dividing the current model time by
the user-defined time step between velocity files (see parameter file above). As the model time pro-
gresses the plugin will update the interpolation accordingly and if necessary read in new velocity files.
In case it can not read the next velocity file, it assumes the last velocity file to be the constant bound-
ary condition until the end of the model run. One can test this behavior with the provided data files
data/boundary-velocity/gplates/time_dependent.%d.gpml with the index d ranging from 0 to 3 and
representing the plate movements of the last 3 million years corresponding to the same plate reconstruc-
tion as used above. Additionally, the parameter Velocity file start time allows for a period of no-slip
boundary conditions before starting the use of the GPlates plugin. This is a comfort implementation, which
could also be achieved by using the checkpointing possibility described in section 4.5.

5.3.6 2D compressible convection with a reference profile and material properties from Burn-
Man

This section was contributed by Juliane Dannberg and René Gassmöller
In this cookbook we will set up a compressible mantle convection model that uses the (truncated) anelastic

liquid approximation (see Sections 2.10.1 and 2.10.2), together with a reference profile read in from an
ASCII data file. The data we use here is generated with the open source mineral physics toolkit BurnMan
(http://www.burnman.org) using the python example program simple_adiabat.py. This file is available
as a part of BurnMan, and provides a tutorial for how to generate ASCII data files that can be used
together with ASPECT. The computation is based on the Birch-Murnaghan equation of state, and uses a
harzburgitic composition. However, in principle, other compositions or equations of state can be used, as
long as the reference profile contains data for the reference temperature, pressure, density, gravity, thermal
expansivity, specific heat capacity and compressibility. Using BurnMan to generate the reference profile has

148

cookbooks/gplates/gplates_2d.prm
http://www.burnman.org

Figure 46: Using GPlates for velocity boundary conditions: The top left figure shows the results of a three-
dimensional model using the present day plate velocities provided by GPlates as surface boundary condition.
The top right figure shows three independent computations on two-dimensional slices through Earth. The
boundary conditions for each of these slices (white arrows) are tangential to the slices and are projections of
the three-dimensional velocity vectors into the two-dimensional plane occupied by the slice. While the two top
models are created with the same mesh resolution the bottom figure shows three independent two-dimensional
models using a higher resolution. The view is centered on South America with Antarctica being near the
bottom of the figure (coastlines provided by NGU and the GPlates project).

149

 0

 500

 1000

 1500

 2000

 2500

 1600 2000 2400

D
ep

th
 in

 k
m

Temperature in K

Reference temperature

 3500 4000 4500 5000

Density in kg/m3

Reference density

 10 10.25 10.5

Gravity in m/s2

Gravity profile

0.00002 0.00004

Thermal expansivity in 1/K

Thermal expansivity

 1220 1240 1260

Specific heat in J/kg/K

Specific heat

 3e-12 6e-12 9e-12

Compressibility in 1/Pa

Compressibility

Figure 47: Reference profile generated using BurnMan.

the advantage that all the material property data are consistent, for example, the gravity profile is computed
using the reference density. The reference profile is shown in Figure 47, and the corresponding data file is
located at data/adiabatic-conditions/ascii-data/isentrope_properties.txt.

Setting up the ASPECT model. In order to use this profile, we have to import and use the data in
the adiabatic conditions model, in the gravity model and in the material model, which is done using the
corresponding ASCII data plugins. The input file is provided in cookbooks/burnman.prm, and it uses the
2d shell geometry previously discussed in Section 5.3.1 and surface velocities imported from GPlates as
explained in Section 5.3.5.

To use the BurnMan data in the material model, we have to specify that we want to use the ascii
reference profile model. This material model makes use of the functionality provided by the AsciiData
classes in ASPECT, which allow plugins such as material models, boundary or initial conditions models to
read in ASCII data files (see for example Section 5.2.12). Hence, we have to provide the directory and file
name of the data to be used in the separate subsection Ascii data model, and the same functionality and
syntax will also be used for the adiabatic conditions and gravity model.

The viscosity in this model is computed as the product of a profile ηr(z), where z corresponds to the
depth direction of the chosen geometry model, and a term that describes the dependence on temperature:

η(z, T) = ηr(z)η0 exp
(
−AT − Tadi

Tadi

)
,

where A and η0 are constants determined in the input file via the parameters Viscosity and Thermal
viscosity exponent, and ηr(z) is a stepwise constant function that determines the viscosity profile. This
function can be specified by providing a list of Viscosity prefactors and a list of depths that describe in
which depth range each prefactor should be applied, in other words, at which depth the viscosity changes.
By default, it is set to viscosity jumps at 150 km depth, between upper mantle and transition zone, and
between transition zone and lower mantle). The prefactors used here lead to a low-viscosity asthenosphere,
and high viscosities in the lower mantle. To make sure that these viscosity jumps do not lead to numerical
problems in our computation (see Section 5.2.8), we also use harmonic averaging of the material properties.

subsection Material model
set Model name = ascii reference profile

subsection Ascii data model
set Data file name = isentrope_properties.txt

150

data/adiabatic-conditions/ascii-data/isentrope_properties.txt
cookbooks/burnman.prm

set Data directory = $ASPECT_SOURCE_DIR/data/adiabatic-conditions/ascii-data/
end

subsection Ascii reference profile
set Thermal viscosity exponent = 10.0
set Viscosity prefactors = 1.0, 0.1, 1.0, 10.0

end

set Material averaging = harmonic average
end

As the reference profile has a depth dependent density and also contains data for the compressibility, this
material model supports compressible convection models.

For the adiabatic conditions and the gravity model, we also specify that we want to use the respective
ascii data plugin, and provide the data directory in the same way as for the material model. The gravity
model automatically uses the same file as the adiabatic conditions model.

subsection Adiabatic conditions model
set Model name = ascii data

subsection Ascii data model
set Data directory = $ASPECT_SOURCE_DIR/data/adiabatic-conditions/ascii-data/
set Data file name = isentrope_properties.txt

end
end

subsection Gravity model
set Model name = ascii data

end

To make use of the reference state we just imported from BurnMan, we choose a formulation of the
equations that employs a reference state and compressible convection, in this case the anelastic liquid ap-
proximation (see Section 2.10.1).

subsection Formulation
set Formulation = anelastic liquid approximation

end

This means that the reference profiles are used for all material properties in the model, except for the density
in the buoyancy term (on the right-hand side of the force balance equation (1), which in the limit of the
anelastic liquid approximation becomes Equation (46)). In addition, the density derivative in the mass
conservation equation (see Section 2.11.1) is taken from the adiabatic conditions, where it is computed as
the depth derivative of the provided reference density profile (see also Section 2.11.5).

Visualizing the model output. If we look at the output of our model (for example in ParaView), we
can see how cold, highly viscous slabs are subducted and hot plumes rise from the core-mantle boundary.
The final time step of the model is shown in Figure 48, and the full model evolution can be found at
https://youtu.be/nRBOpw5kp-4. Visualizing material properties such as density, thermal expansivity or
specific heat shows how they change with depth, and reveals abrupt jumps at the phase transitions, where
properties change from one mineral phase to the next. We can also visualize the gravity and the adiabatic
profile, to ensure that the data we provided in the data/adiabatic-conditions/ascii-data/isentrope_
properties.txt file is used in our model.

151

https://youtu.be/nRBOpw5kp-4
data/adiabatic-conditions/ascii-data/isentrope_properties.txt
data/adiabatic-conditions/ascii-data/isentrope_properties.txt

Figure 48: Compressible convection in a 2d spherical shell, using a reference profile exported form BurnMan,
which is based on the Birch-Murnaghan equation of state. The figure shows the state at the end of the model
evolution over 260Ma.

Comparing different model approximations. For the model described above, we have used the anelas-
tic liquid approximation. However, one might want to use different approximations that employ a reference
state, such as the truncated anelastic liquid approximation (TALA, see Section 2.10.2), which is also sup-
ported by the ascii reference profile material model. In this case, the only change compared to ALA
is in the density used in the buoyancy term, the only place where the temperature-dependent density instead
of the reference density is used. For the TALA, this density only depends on the temperature (and not on
the dynamic pressure, as in the ALA). Hence, we have to make this change in the appropriate place in the
material model (while keeping the formulation of the equations set to anelastic liquid approximation):

subsection Material model
subsection Ascii reference profile

set Use TALA = true
end

end

We now want to compare these commonly used approximations to the “isothermal compression approx-
imation” (see Section 2.10.4) that is unique to ASPECT. It does not require a reference state and uses the
full density everywhere in the equations except for the right-hand side mass conservation, where the com-
pressibility is used to compute the density derivative with regard to pressure. Nevertheless, this formulation
can make use of the reference profile computed by BurnMan and compute the dependence of material prop-
erties on temperature and pressure in addition to that by taking into account deviations from the reference
profile in both temperature and pressure. As this requires a modification of the equations outside of the
material model, we have to specify this change in the Formulation (and remove the lines for the use of
TALA discussed above).

subsection Formulation
set Formulation = isentropic compression

end

As the “isothermal compression approximation” is also ASPECT’s default for compressible models, the
same model setup can also be achieved by just removing the lines that specify which Formulation should
be used.

The Figures 49 and 50 show a comparison between the different models. They demonstrate that up-
wellings and downwellings may occur in slightly different places and at slightly different times when using a

152

Anelastic liquid approximation
Truncated anelastic
liquid approximation

Isothermal compression
approximation

Figure 49: Comparison between the anelastic liquid approximation, the truncated anelastic liquid approxima-
tion and the isothermal compression approximation, showing the temperature distribution for the different
models at the end of the model evolution at 260Ma.

different approximation, but averaged model properties describing the state of the model – such as the root
mean square velocity – are similar between the models.

5.3.7 Reproducing rheology of Morency and Doin, 2004

This section was contributed by Jonathan Perry-Houts
Modeling interactions between the upper mantle and the lithosphere can be difficult because of the

dynamic range of temperatures and pressures involved. Many simple material models will assign very high
viscosities at low temperature thermal boundary layers. The pseudo-brittle rheology described in [63] was
developed to limit the strength of lithosphere at low temperature. The effective viscosity can be described
as the harmonic mean of two non-Newtonian rheologies:

veff =
(

1
vveff

+ 1
vpeff

)−1

where

vveff = B

(
ε̇

ε̇ref

)−1+1/nv
exp

(
Ea + Vaρmgz

nvRT

)
,

vpeff = (τ0 + γρmgz)
(
ε̇−1+1/np

ε̇
1/np
ref

)
,

where B is a scaling constant; ε̇ is defined as the quadratic sum of the second invariant of the strain rate
tensor and a minimum strain rate, ε̇0; ε̇ref is a reference strain rate; nv, and np are stress exponents; Ea
is the activation energy; Va is the activation volume; ρm is the mantle density; R is the gas constant; T is
temperature; τ0 is the cohesive strength of rocks at the surface; γ is a coefficient of yield stress increase with
depth; and z is depth.

By limiting the strength of the lithosphere at low temperature, this rheology allows one to more re-
alistically model processes like lithospheric delamination and foundering in the presence of weak crustal
layers. A similar model setup to the one described in [63] can be reproduced with the files in the direc-
tory cookbooks/morency_doin_2004. In particular, the following sections of the input file are important to
reproduce the setup:

153

cookbooks/morency_doin_2004

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08

R
oo

t m
e

an
 s

qu
ar

e
ve

lo
ci

ty
 in

 m
/y

r

Times in years

Comparison between the different approximations

Anelastic liquid approximation
Truncated anelastic liquid approximation

Isothermal compression approximation

Figure 50: Comparison between the anelastic liquid approximation, the truncated anelastic liquid approxima-
tion and the isothermal compression approximation, showing the evolution of the root mean square velocity.

Note: [63] defines the second invariant of the strain rate in a nonstandard way. The formulation
in the paper is given as εII =

√
1
2 (ε211 + ε212), where ε is the strain rate tensor. For consistency,

that is also the formulation implemented in ASPECT. Because of this irregularity it is inadvisable
to use this material model for purposes beyond reproducing published results.

Note: The viscosity profile in Figure 1 of [63] appears to be wrong. The published parameters
do not reproduce those viscosities; it is unclear why. The values used here get very close. See
Figure 51 for an approximate reproduction of the original figure.

subsection Geometry model
set Model name = box

subsection Box
set X extent = 3000e3
set Y extent = 750e3
set X repetitions = 4

end
end

subsection Compositional fields
set Number of fields = 2
set Names of fields = upper_crust, lower_crust

end

subsection Initial composition model
set Model name = function

subsection Function
set Variable names = x,y
set Function expression = if(y>=725e3,1,0);if((y<725e3&y>700e3),1,0)

154

end
end

subsection Initial temperature model
set Model name = function

subsection Function
set Variable names = x,y
set Function constants = h=750e3, w=3000e3, mantleT=1350 # deg C
set Function expression = \

if(y < 100e3, \
(100e3-y)/100e3*(1600-mantleT)+mantleT+293, \
if(y>650e3, \

(h-y)/(100e3)*mantleT+293, \
mantleT+293))

end
end

subsection Material model
set Model name = Morency and Doin

subsection Morency and Doin
set Densities = 3300,2920,2920
set Activation energies = 500,320,320
set Coefficient of yield stress increase with depth = 0.25
set Thermal expansivities = 3.5e-5
set Stress exponents for viscous rheology = 3
set Stress exponents for plastic rheology = 30
set Thermal diffusivity = 0.8e-6
set Heat capacity = 1.25e3
set Activation volume = 6.4e-6
set Reference strain rate = 6.4e-16
set Preexponential constant for viscous rheology law = 7e11 ## Value used in paper is 1.24e14
set Cohesive strength of rocks at the surface = 117
set Reference temperature = 293
set Minimum strain rate = 5e-19 ## Value used in paper is 1.4e-20

end
end

5.3.8 Crustal deformation

This section was contributed by Cedric Thieulot, and makes use of the Drucker-Prager material model written
by Anne Glerum and the free surface plugin by Ian Rose.

This is a simple example of an upper-crust undergoing compression or extension. It is characterized by
a single layer of visco-plastic material subjected to basal kinematical boundary conditions. In compression,
this setup is somewhat analogous to [95], and in extension to [2].

Brittle failure is approximated by adapting the viscosity to limit the stress that is generated during
deformation. This “cap” on the stress level is parameterized in this experiment by the pressure-dependent
Drucker Prager yield criterion and we therefore make use of the Drucker-Prager material model (see Section
A.90) in the cookbooks/crustal_model_2D.prm.

The layer is assumed to have dimensions of 80km × 16km and to have a density ρ = 2800 kg/m3. The
plasticity parameters are specified as follows:

subsection Material model
set Model name = drucker prager

155

-700

-600

-500

-400

-300

-200

-100

 0

 0 1000 2000

D
e
p
th

 (
km

)

Temperature (K)

Temperature

-700

-600

-500

-400

-300

-200

-100

 0

 1e+18 1e+20 1e+22 1e+24 1e+26 1e+28

Viscosity (Pa s)

Viscosity

Figure 51: Approximate reproduction of figure 1 from [63] using the ‘morency doin’ material model with
almost all default parameters. Note the low-viscosity Moho, enabled by the low activation energy of the
crustal component.

subsection Drucker Prager
set Reference density = 2800
subsection Viscosity

set Minimum viscosity = 1e19
set Maximum viscosity = 1e25
set Reference strain rate = 1e-20
set Angle internal friction = 30
set Cohesion = 20e6

end
end

end

The yield strength σy is a function of pressure, cohesion and angle of friction (see Drucker-Prager material
model in Section A.90), and the effective viscosity is then computed as follows:

µeff =
(

1
σy
2ε̇ + µmin

+ 1
µmax

)−1

where ε̇ is the square root of the second invariant of the deviatoric strain rate. The viscosity cutoffs insure
that the viscosity remains within computationally acceptable values.

During the first iteration of the first timestep, the strain rate is zero, so we avoid dividing by zero by
setting the strain rate to Reference strain rate.

The top boundary is a free surface while the left, right and bottom boundaries are subjected to the
following boundary conditions:

subsection Boundary velocity model
subsection Function

set Variable names = x,y
set Function constants = cm=0.01, year=1

156

set Function expression = if (x<40e3 , 1*cm/year, -1*cm/year) ; 0
end

end

Note that compressive boundary conditions are simply achieved by reversing the sign of the imposed
velocity.

The free surface will be advected up and down according to the solution of the Stokes solve. We have
a choice whether to advect the free surface in the direction of the surface normal or in the direction of the
local vertical (i.e., in the direction of gravity). For small deformations, these directions are almost the same,
but in this example the deformations are quite large. We have found that when the deformation is large,
advecting the surface vertically results in a better behaved mesh, so we set the following in the free surface
subsection:

subsection Free surface
set Surface velocity projection = vertical

end

We also make use of the strain rate-based mesh refinement plugin:

subsection Mesh refinement
set Initial adaptive refinement = 1
set Initial global refinement = 3
set Refinement fraction = 0.95
set Strategy = strain rate
set Coarsening fraction = 0.05
set Time steps between mesh refinement = 1
set Run postprocessors on initial refinement = true

end

Setting set Initial adaptive refinement = 4 yields a series of meshes as shown in Fig. (52), all
produced during the first timestep. As expected, we see that the location of the highest mesh refinement
corresponds to the location of a set of conjugated shear bands.

If we now set this parameter to 1 and allow the simulation to evolve for 500kyr, a central graben or
plateau (depending on the nature of the boundary conditions) develops and deepens/thickens over time,
nicely showcasing the unique capabilities of the code to handle free surface large deformation, localised
strain rates through visco-plasticity and adaptive mesh refinement as shown in Fig. (53).

Deformation localizes at the basal velocity discontinuity and plastic shear bands form at an angle of
approximately 53◦ to the bottom in extension and 35◦ in compression, both of which correspond to the
reported Arthur angle [55, 17].

Extension to 3D. We can easily modify the previous input file to produce crustal_model_3D.prm which
implements a similar setup, with the additional constraint that the position of the velocity discontinuity
varies with the y-coordinate, as shown in Fig. (54). The domain is now 128× 96× 16km and the boundary
conditions are implemented as follows:

subsection Boundary velocity model
subsection Function

set Variable names = x,y,z
set Function constants = cm=0.01, year=1
set Function expression = if (x<56e3 && y<=48e3 | x<72e3 && y>48e3,-1*cm/year,1*cm/year);0;0

end
end

The presence of an offset between the two velocity discontinuity zones leads to a transform fault which
connects them.

157

Figure 52: Mesh evolution during the first timestep (refinement is based on strain rate).

158

Figure 53: Finite element mesh, velocity, viscosity and strain rate fields in the case of extensional boundary
conditions (top) and compressive boundary conditions (bottom) at t=500kyr.

159

Figure 54: Basal velocity boundary conditions and corresponding strain rate field for the 3D model.

The Finite Element mesh, the velocity, viscosity and strain rate fields are shown in Fig. (55) at the end
of the first time steps. The reader is encouraged to run this setup in time to look at how the two grabens
interact as a function of their initial offset [2, 3, 1].

5.3.9 Continental extension

This section was contributed by John Naliboff
In the crustal deformation examples above, the viscosity depends solely on the Drucker Prager yield

criterion defined by the cohesion and internal friction angle. While this approximation works reasonably well
for the uppermost crust, deeper portions of the lithosphere may undergo either brittle or viscous deformation,
with the latter depending on a combination of composition, temperature, pressure and strain-rate. In effect,
a combination of the Drucker-Prager and Diffusion dislocation material models is required. The visco-plastic
material model is designed to take into account both brittle (plastic) and non-linear viscous deformation,
thus providing a template for modeling complex lithospheric processes. Such a material model can be used
in ASPECT using the following set of input parameters:

subsection Material model
set Model name = visco plastic
subsection Visco Plastic

This cookbook provides one such example where the continental lithosphere undergoes extension. No-
tably, the model design follows that of numerous previously published continental extension studies [50, 15,
65, and references therein].

Continental Extension The 2D Cartesian model spans 400 (x) by 100 (y) km and has a finite element
grid with uniform 2 km spacing. Unlike the crustal deformation cookbook (see Section 5.3.8, the mesh is
not refined with time.

subsection Geometry model
set Model name = box
subsection Box

160

Figure 55: Finite element mesh, velocity, viscosity and strain rate fields at the end of the first time step after
one level of strain rate-based adaptive mesh refinement.

161

set X repetitions = 200
set Y repetitions = 50
set X extent = 400e3
set Y extent = 100e3

end
end

subsection Mesh refinement
set Initial adaptive refinement = 0
set Initial global refinement = 0
set Time steps between mesh refinement = 0

end

Similar to the crustal deformation examples above, this model contains a free surface. Deformation
is driven by constant horizontal (x-component) velocities (0.25 cm/yr) on the side boundaries (y-velocity
component unconstrained), while the bottom boundary has vertical inflow to balance the lateral outflow. The
top, and bottom boundaries have fixed temperatures, while the sides are insulating. The bottom boundary
is also assigned a fixed composition, while the top and sides are unconstrained.

subsection Boundary composition model
set Fixed composition boundary indicators = bottom

end

subsection Free surface
set Free surface boundary indicators = top

end

subsection Boundary velocity model
set Prescribed velocity boundary

indicators = left x: function, right x:function, bottom y:function
subsection Function

set Variable names = x,y
set Function constants = cm=0.01, year=1
set Function expression = if (x<200e3 , -0.25*cm/year, 0.25*cm/year) ; 0.125*cm/year;

end
end

subsection Boundary temperature model
set Fixed temperature boundary indicators = bottom, top
set List of model names = box
subsection Box

set Bottom temperature = 1573
set Top temperature = 273

end
end

Sections of the lithosphere with distinct properties are represented by compositional fields for the upper
crust (20 km thick), lower crust (10 km thick) and mantle lithosphere (70 km thick). A mechanically weak
seed within the mantle lithosphere helps localize deformation. Material (viscous flow law parameters, cohe-
sion, internal friction angle) and thermodynamic properties for each compositional field are based largely on
previous numerical studies. Dislocation creep viscous flow parameters are taken from published deformation
experiments for wet quartzite [75], wet anorthite [76] and dry olivine [48].

subsection Compositional fields
set Number of fields = 4
set Names of fields = upper, lower, mantle, seed

end

162

subsection Initial composition model
set Model name = function
subsection Function

set Variable names = x,y
set Function expression = if(y>=80.e3, 1, 0); \

if(y<80.e3 && y>=70.e3, 1, 0); \
if(y<70.e3 && y>-100.e3,1, 0); \
if(y<68.e3 && y>60.e3 && x>=198.e3 && x<=202.e3 , 1, 0);

end
end

The initial thermal structure, radiogenic heating model and associated thermal properties are consistent
with the prescribed thermal boundary conditions and produce a geotherm characteristic of the continental
lithosphere. The equations defining the initial geotherm [20] follow the form

T (z) = TT + qT
k
z − Az2

2k (77)

where T is temperature, z is depth, TT is the temperature at the layer surface (top), qT is surface heat flux,
k is thermal conductivity, and A is radiogenic heat production.

For a layer thickness ∆z, the basal temperature (TB) and heat flux (qB) are

TB = TT + qT
k

∆z − A∆z2

2k , (78)

qB = qT −A∆z. (79)

In this example, specifying the top (273 K) and bottom temperature (1573 K), thermal conductivity of
each layer and radiogenic heat production in each layer provides enough constraints to successively solve for
the temperature and heat flux at the top of the lower crust and mantle.

As noted above, the mechanically weak seed placed within the mantle localizes the majority of deformation
onto two conjugate shear bands that propagate from the surface of the seed to the free surface. After 5 million
years of extension background ‘stretching’ is clearly visible in the strain-rate field, but deformation is still
largely focused within the set of conjugate shear bands originating at the weak seed (Fig. 56). As expected,
crustal thickness and surface topography patterns reveal a relatively symmetric horst and graben structure,
which arises from displacements along the shear bands (Fig. 57). While deformation along the two major
shear bands dominates at this early stage of extension, additional shear bands often develop within the
horst-graben system leading to small inter-graben topographic variations. This pattern is illustrated in a
model with double the numerical resolution (initial 1 km grid spacing) after 10 million years of extension
(Fig. 58).

With further extension for millions of years, significant crustal thinning and surface topography devel-
opment should occur in response to displacement along the conjugate shear bands. However, given that the
model only extends to 100 km depth, the simulation will not produce a realistic representation of continental
breakup due to the lack of an upwelling asthenosphere layer. Indeed, numerical studies that examine conti-
nental breakup, rather than just the initial stages of continental extension, include an asthenospheric layer
or modified basal boundary conditions (e.g. Winkler boundary condition [15, for example]) as temperature
variations associated with lithospheric thinning exert a first-order influence on the deformation patterns.
As noted below, numerous additional parameters may also affect the temporal evolution of deformation
patterns.

163

Figure 56: Strain rate (in units of s−1) after 5× 106 years of extension. The black line marks the 550 ◦C
isotherm.

Figure 57: Compositional field after 5× 106 years of extension. The black line marks the 550 ◦C isotherm.

Note: It is important to consider that the non-linearity of visco-plastic rheologies and mesh-
dependence of brittle shear bands make lithospheric deformation models highly sensitive to a
large number of parameters. In order to ensure the conclusions drawn from a series of numerical
experiments are robust, one should complete a sensitivity test for a large range of parameters
including grid resolution, model geometry, boundary conditions, initial composition and tempera-
ture conditions, material properties, composition discretization, CFL number and solver settings.
If you are new to modeling lithospheric processes, a reasonable starting point is to try and repro-
duce results from a relevant previous study and then perform a sensitivity test for the parameters
listed above. While highly time consuming, completing this procedure will prove invaluable when
you design and assess the results of your own numerical study.

5.3.10 Inner core convection

This section was contributed by Juliane Dannberg, and the model setup was inspired by discussions with John
Rudge. Additional materials and comments by Mathilde Kervazo and Marine Lasbleis.

This is an example of convection in the inner core of the Earth. The model is based on a spherical geome-
try, with a single material. Three main particularities are constitutive of this inner core dynamics modeling:
it consists of a sphere where the gravity decreases linearly (to mimic self-gravitation) from the boundary to

164

Figure 58: Strain rate (in units of s−1) after 10× 106 years of extension. The black line marks the 550 ◦C
isotherm. The numerical resolution (1km) is double that of the previous model.

zero at the center of the inner core; the boundary conditions combine normal stress and normal velocity, and
take into account the rate of phase change (melting/freezing) at the inner-outer core boundary; the mate-
rial has a temperature dependent density that makes the density profile unstably stratified as temperature
increases towards the center of the core. Note that we do not actually compute self-gravitation, but instead
define a linear gravity profile. Since the density variations are very small, this is a good approximation.

The setup is analogous to the models described in [28], and all material properties are chosen in a way
so that the equations are non-dimensional.

The required heating model and changes to the material model are implemented in a shared library
(cookbooks/inner_core_convection/inner_core_convection.cc). To compile the file, do

cmake -DAspect_DIR=/path/to/aspect/build/ .
make

In the non-dimensional form of the equations derived by [28], we solve for the potential temperature
T = T̃ − Tis (T̃ is the temperature field, Tis the isentropic – also called adiabatic – temperature). This
allows to solve the temperature field with simple boundary conditions (T = 0), even if the temperature of
the inner core boundary evolves with time, defined as the intersection between the isentrope and the liquidus
of the material in the outer core. The equations for inner core convection in the approximation of no growth
(equation 59 for the potential temperature) are

∇ · σ = −RaTg, (80)
∇ · u = 0, (81)(

∂T

∂t
+ u · ∇T

)
−∇2T = H, (82)

where Ra is the Rayleigh number and H is the ’source term’, constructed when removing the adiabatic
temperature from the temperature field to obtain the potential temperature T . H describes the time-
evolution of the adiabatic temperature over time, due to secular cooling of the outer core. In spherical
geometry, H = 6.

Mechanical boundary. The mechanical boundary conditions for the inner core are tangential stress-
free and continuity of the normal stress at the inner-outer core boundary. For the non-dimensional equations,
that means that we define a “phase change number” P (see [28]) so that the normal stress at the boundary
is −Pur with the radial velocity ur. This number characterizes the resistance to phase change at the
boundary, with P → ∞ corresponding to infinitely slow melting/freezing (or a free slip boundary), and

165

cookbooks/inner_core_convection/inner_core_convection.cc

P → 0 corresponding to instantaneous melting/freezing (or a zero normal stress, corresponding to an open
boundary).

In the weak form, this results in boundary conditions of the form of a surface integral:∫
S

P(u · n)(v · n)dS,

with the normal vector n.
This phase change term is added to the matrix in the cookbooks/inner_core_convection/inner_

core_assembly.cc plugin by using a signal (as described in Section 6.6). The signal connects the function
set_assemblers_phase_boundary, which is only called once at the beginning of the model run. It creates the
new assembler PhaseBoundaryAssembler for the boundary faces of the Stokes system and adds it to the list of
assemblers executed in every time step. The assembler contains the function phase_change_boundary_conditions
that loops over all faces at the model boundary, queries the value of P from the material model, and adds
the surface integral given above to the matrix:
/*

Copyright (C) 2011 - 2019 by the authors of the ASPECT code.

This file is part of ASPECT.

ASPECT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

ASPECT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with ASPECT; see the file LICENSE. If not see
<http://www.gnu.org/licenses/>.

*/

#include <aspect/simulator_access.h>
#include <aspect/global.h>
#include <aspect/simulator.h>
#include <aspect/simulator/assemblers/interface.h>

#include <deal.II/base/quadrature_lib.h>
#include <deal.II/fe/fe_values.h>

#include "inner_core_convection.cc"

namespace aspect
{

/**
* A new assembler class that implements boundary conditions for the
* normal stress and the normal velocity that take into account the
* rate of phase change (melting/freezing) at the inner-outer core
* boundary. The model is based on Deguen, Alboussiere, and Cardin
* (2013), Thermal convection in Earth’s inner core with phase change
* at its boundary. GJI, 194, 1310-133.
*
* The mechanical boundary conditions for the inner core are
* tangential stress-free and continuity of the normal stress at the
* inner-outer core boundary. For the non-dimensional equations, that
* means that we can define a ’phase change number’ \mathcal{P} so
* that the normal stress at the boundary is $-\mathcal{P} u_r$ with
* the radial velocity u_r. This number characterizes the resistance

166

cookbooks/inner_core_convection/inner_core_assembly.cc
cookbooks/inner_core_convection/inner_core_assembly.cc

* to phase change at the boundary, with $\mathcal{P}\rightarrow\infty$
* corresponding to infinitely slow melting/freezing (free slip
* boundary), and $\mathcal{P}\rightarrow0$ corresponding to
* instantaneous melting/freezing (zero normal stress, open boundary).
*
* In the weak form, this results in boundary conditions of the form
* of a surface integral:
* $$\int_S \mathcal{P} (\mathbf u \cdot \mathbf n) (\mathbf v \cdot \mathbf n) dS,$$,
* with the normal vector $\mathbf n$.
*
* The function value of \mathcal{P} is taken from the inner core
* material model.
*/

template <int dim>
class PhaseBoundaryAssembler :

public aspect::Assemblers::Interface<dim>,
public SimulatorAccess<dim>

{

public:

virtual
void
execute (internal::Assembly::Scratch::ScratchBase<dim> &scratch_base,

internal::Assembly::CopyData::CopyDataBase<dim> &data_base) const
{
internal::Assembly::Scratch::StokesSystem<dim> &scratch = dynamic_cast<internal::Assembly::Scratch::

↪→ StokesSystem<dim>& > (scratch_base);
internal::Assembly::CopyData::StokesSystem<dim> &data = dynamic_cast<internal::Assembly::CopyData::

↪→ StokesSystem<dim>& > (data_base);

const Introspection<dim> &introspection = this->introspection();
const FiniteElement<dim> &fe = this->get_fe();
const unsigned int stokes_dofs_per_cell = data.local_dof_indices.size();
const unsigned int n_q_points = scratch.face_finite_element_values.n_quadrature_points;

//assemble force terms for the matrix for all boundary faces
if (scratch.cell->face(scratch.face_number)->at_boundary())
{
scratch.face_finite_element_values.reinit (scratch.cell, scratch.face_number);

for (unsigned int q=0; q<n_q_points; ++q)
{

const double P = Plugins::get_plugin_as_type<const MaterialModel::InnerCore<dim>>
(this->get_material_model()).resistance_to_phase_change
.value(scratch.material_model_inputs.position[q]);

for (unsigned int i = 0, i_stokes = 0; i_stokes < stokes_dofs_per_cell; /*increment at end of
↪→ loop*/)

{
if (introspection.is_stokes_component(fe.system_to_component_index(i).first))
{
scratch.phi_u[i_stokes] = scratch.face_finite_element_values[introspection

.extractors.velocities].
↪→ value(i, q);

++i_stokes;
}

++i;
}

const Tensor<1,dim> normal_vector = scratch.face_finite_element_values.normal_vector(q);
const double JxW = scratch.face_finite_element_values.JxW(q);

// boundary term: P*u*n*v*n*JxW(q)
for (unsigned int i=0; i<stokes_dofs_per_cell; ++i)

167

for (unsigned int j=0; j<stokes_dofs_per_cell; ++j)
data.local_matrix(i,j) += P *

scratch.phi_u[i] *
normal_vector *
scratch.phi_u[j] *
normal_vector *
JxW;

}
}

}
};

template <int dim>
void set_assemblers_phase_boundary(const SimulatorAccess<dim> &simulator_access,

Assemblers::Manager<dim> &assemblers)
{
AssertThrow (Plugins::plugin_type_matches<const MaterialModel::InnerCore<dim>>

(simulator_access.get_material_model()),
ExcMessage ("The phase boundary assembler can only be used with the "

"material model ’inner core material’!"));

assemblers.stokes_system_on_boundary_face.push_back (std_cxx14::make_unique<PhaseBoundaryAssembler<dim>>()
↪→);

}
}

template <int dim>
void signal_connector (aspect::SimulatorSignals<dim> &signals)
{
signals.set_assemblers.connect (&aspect::set_assemblers_phase_boundary<dim>);

}

ASPECT_REGISTER_SIGNALS_CONNECTOR(signal_connector<2>,
signal_connector<3>)

Instructions for how to compile and run models with a shared library are given in Section 5.4.1.

Governing parameters. Analyzing Equations (80)–(82), two parameters determine the dynamics of
convection in the inner core: the Rayleigh number Ra and the phase change number P. Three main areas
can be distinguished: the stable area, the plume convection area and the translation mode of convection area
(Figure 59). For low Rayleigh numbers (below the critical value Rac), there is no convection and thermal
diffusion dominates the heat transport. However, if the inner core is convectively unstable (Ra>Rac), the
convection regime depends mostly on P. For low P (<29), the convective translation mode dominates,
where material freezes at one side of the inner core and melts at the other side, so that the velocity field
is uniform, pointing from the freezing to the melting side. Otherwise, at high P (>29), convection takes
the usual form of thermal convection with shear free boundary and no phase change, that is the one-cell
axisymmetric mode at the onset, and chaotic plume convection for larger Rayleigh number. In this case,
melting and solidification at the ICB have only a small dynamic effect. At intermediate values of P, the first
unstable mode is a linear combination of the high-P convection mode and of the small-P translation mode.

Changing the values of Ra and P in the input file allows switching between the different regimes. The
Rayleigh number can be changed by adjusting the magnitude of the gravity:

The gravity has its maximum value at the boundary of inner and
outer core, and decreases approximately linearly to zero towards
the center of the core.
The Rayleigh number used in the model is given by the magnitude
of the gravity at the inner core/outer core boundary.
subsection Gravity model

set Model name = radial linear

168

Translation

Plume
convection

Stable

Figure 59: Stability diagram for convection in a sphere with phase change at its outer boundary. The
stability curves for the first unstable mode (l=1) and the translation are obtained from [28]. Each dot (no
convection) and triangle (blue: translation, yellow: plume convection) is one model run done with ASPECT.
The highest the Ra and P are, the more refinement is required (see text).

subsection Radial linear
set Magnitude at bottom = 0.0
set Magnitude at bottom = 0.0
set Magnitude at surface = 2 # <-- Ra

end
end

The phase change number is implemented as part of the material model, and as a function that can depend
on the spatial coordinates and/or on time:

subsection Material model
set Model name = inner core material

The ’inner core material’ model also contains a function that
represents the resistance to melting/freezing at the inner core
boundary.
For P-->inifinity, the boundary is a free slip boundary, and for
P-->0, the boundary is an open boundary (with zero normal stress).

subsection Inner core
subsection Phase change resistance function

set Variable names = x,y,z
set Function expression = 1e-2 # <-- P

end
end

169

end

Figure 60 shows examples of the three regimes with Ra = 3000,P = 1000 (plume convection), Ra =
105,P = 0.01 (translation), Ra = 10,P = 30 (no convection).

Figure 60: Convection regimes in the inner core for different values of Ra and P. From left to right: no
convection, translation, plume convection; the 2D slices at the top are with the default temperature scale
for all panels, while in the second row an adaptive scale is used. The bottom row features slightly different
model parameters (that are still in the same regime as the models in the respective panels above) and also
shows the velocity as arrows.

Mesh refinement. The temperature is set to 0 at the outer boundary and a large temperature gradient
can develop at the boundary layer, especially for the translation regime. The adaptive mesh refinement
allows it to resolve this layer at the inner core boundary. Another solution is to apply a specific initial
refinement, based on the boundary layer thickness scaling law δ ∝ Ra−0.236, and to refine specifically the
uppermost part of the inner core.

In order to have a mesh that is much finer at the outer boundary than in the center of the domain, this
expression for the mesh refinement subsection can be used in the input file:

subsection Mesh refinement

170

10 100 1000 10000 100000
0

0.2

0.4

0.6

0.8

1

1.2

Ra/P

V
/V

0

1.00E-003 1.00E-001 1.00E+001 1.00E+003
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P

V
/V

0

Figure 61: Translation rate (approximated by the average of the velocity component in the direction of
translation), normalized to the low P limit estimate given in [28], as a function of Ra

P for P = 10−2 (left)
and as a function of P for Ra = 105 (right). The dashed gray line gives the translation velocity predicted in
the limit of low P. Disagreement for larger values of P indicates that higher order terms (not included in
the low P approximation) become important. Additionally, differences between the analytical and numerical
model might be the result of limited resolution (only 12 elements in radial direction).

set Initial global
refinement = 4 #this may be more expensive, and should be run on a cluster.

set Initial adaptive refinement = 1
set Strategy = minimum refinement function
set Time steps between mesh refinement = 0

subsection Minimum refinement function
set Variable names = depth, phi, theta
set Function expression = if(depth>0.1,if(depth>0.2,2,5),6)

end
end

Scaling laws. In addition, [28] give scaling laws for the velocities in each regime derived from linear
stability analysis of perfect translation, and show how numerical results compare to them. In the regimes
of low P, translation will start at a critical ratio of Rayleigh number and phase change number Ra

P = 175
2

with steady-state translation velocities being zero below this threshold and tending to v0 = 175
2

√
6
5
Ra
P going

towards higher values of RaP . In the same way, translation velocities will decrease from v0 with increasing P,
with translation transitioning to plume convection at P ∼ 29. Both trends are shown in Figure 61 and can
be compared to Figure 8 and 9 in [28].

5.3.11 Melt migration in a 2D mantle convection model

This section was contributed by Juliane Dannberg and is based on a section in [27] by Juliane Dannberg and
Timo Heister.

The following cookbook will explain how to use ASPECT’s implementation of coupled magma/mantle
dynamics (see Section 2.14) to set up a model of mantle convection that also includes melting and freezing
of mantle rock, and the transport of melt according to the two-phase flow equations. The model setup is
described in detail in [27], which can be found here, and in the following we will go over a slightly simplified

171

https://doi.org/10.1093/gji/ggw329

version in lower resolution. We will start by looking at a global mantle convection without melt migration,
and will then discuss how the input file has to be modified in order to add melt transport. A movie that
compares the evolution of the temperature field and the amount of melt present in both models in higher
resolution can be found online.

The model setup is a 2D box with dimensions of 2900× 8700 km, and it is heated from the bottom and
cooled from the top. A full description can be found in Section 4.7 “Influence of melt migration on a global-
scale convection model” in [27]. In the first model we will look at, melting and freezing is only included
passively: We use the melt fraction visualization postprocessor to compute how much melt is present for
a given temperature and pressure at every given point in time and space in our model, but the presence of
melt does not influence material properties like density or viscosity, and melt does not move relative to the
solid. This also means that because melt is not extracted, the bulk composition of the material always stays
the same, and melt only freezes again once advection or conduction causes the temperature of the solid rock
to be below the solidus. The following input file (which can be found in cookbooks/global_no_melt.prm)
contains a detailed description of the different options required to set up such a model:

Model setup for mantle convection in a 2D box without melting.
This file is used as a starting point for a cookbook that
explains how to add melting and melt transport to a mantle
convection simulation.

set Dimension = 2
set Adiabatic surface temperature = 1600
set Maximum time step = 1e6
set Output directory = no_melt
set Use years in output instead of seconds = true

The end time of the simulation. Because we want to see how upwellings
and downwellings evolve over time, and if differences develop between
the model with and without melt migration, we set the end time to 140 Ma.
set End time = 1.4e8

We choose a stricter than default linear Stokes solver tolerance,
to be consistent with the global_melt cookbook.
subsection Solver parameters

subsection Stokes solver parameters
set Linear solver tolerance = 1e-8
set Number of cheap Stokes solver steps = 100

end
end

We prescribe free-slip boundary conditions on all
sides.
subsection Boundary velocity model

set Tangential velocity boundary indicators = left, right, top, bottom
end

We also choose relatively large values for the stabilization parameters:
The model resolution is very coarse (in order for this model to run in a
short time), so we want to make sure that no temperature over- and
undershoots will develop. In a model with melting this would be
particularly problematic, as large amounts of melt could be generated
by temperature spikes, and we want to be consistent between the model
with and without melt transport.
subsection Discretization

subsection Stabilization parameters

172

http://youtu.be/Kwyp4Jvx6MU
cookbooks/global_no_melt.prm

set beta = 0.5
set cR = 1

end
end

##################### Initial conditions ########################

We choose an adiabatic temperature profile as initial condition,
with conductive temperature profiles in the top and bottom boundary
layers, which were computed using a half space cooling model.
The cold top boundary layer corresponds to an age of 300 Ma,
and the hot top boundary layer corresponds to an age of 500 Ma.
A small temperature perturbation is added at the bottom of the
domain. To make the model asymmetric, we place it in a distance of
x = 2900 km from the left boundary.
Temperatures from both initial temperature models we specify are
added (by default).
subsection Initial temperature model

set List of model names = adiabatic, function
subsection Adiabatic

set Age bottom boundary layer = 5e8
set Age top boundary layer = 3e8

subsection Function
set Function expression = 0;0

end
end

subsection Function
set Function constants = r=350000, amplitude=50
set Function expression = if((x-2900000)*(x-2900000)+y*y<r,amplitude,0)

end
end

##################### Boundary conditions ########################

As boundary conditions for the temperature, we just use the
initial conditions again. This temperature is applied as a prescribed
temperature at the top and bottom boundary, as specified above.
subsection Boundary temperature model

set Fixed temperature boundary indicators = top, bottom
set List of model names = initial temperature

subsection Initial temperature
set Minimal temperature = 293
set Maximal temperature = 3700

end
end

##################### Model geometry ########################

The model geometry is a box with an aspect ratio of 3,
extending to the base of the mantle in vertical direction.
subsection Geometry model

set Model name = box

173

subsection Box
set X extent = 8700000
set Y extent = 2900000
set X repetitions = 3

end

end

################ Gravity and material properties ##################

The model has a constant gravity.
subsection Gravity model

set Model name = vertical

subsection Vertical
set Magnitude = 9.81

end
end

We use the melt global material model, which is one of the
material models that works with melt transport, as it also
specifies the material properties needed for melt migration,
such as the permeability, the melt density and the melt
viscosity.
It also works without melt transport, and in this case these
properties are not used, so we do not have to specify them
here.
subsection Material model

set Model name = melt global
subsection Melt global

set Thermal conductivity = 4.7
set Reference solid density = 3400
set Thermal expansion coefficient = 2e-5
set Reference shear viscosity = 5e21
set Thermal viscosity exponent = 7
set Reference temperature = 1600
set Solid compressibility = 4.2e-12

end
end

##################### Mesh refinement #########################

For the model without melt migration, we do not have to use
mesh adaptivity, because time- and length scales of material
motion does do not vary a lot across the model, and a global
resolution of 4 is sufficient to capture the behaviour of
upwellings and downwellings.
subsection Mesh refinement

set Initial adaptive refinement = 0
set Initial global refinement = 4
set Time steps between mesh refinement = 0

end

As the model is compressible and has an adiabatic temperature profile, we include
adiabatic heating in the list of heating models.

174

subsection Heating model
set List of model names = adiabatic heating

end

##################### Postprocessing ########################

In addition to the visualization output, we select a number
of postprocessors that allow us to compute some statistics
about the output (to see how much the model without and the
model with melt migration differ), and in particular we use
the "depth average" postprocessor that will allow us to plot
depth-averaged model quantities over time.
subsection Postprocess

set List of postprocessors = visualization, composition statistics, velocity statistics,
↪→ temperature statistics, melt statistics, depth average

For the model without melt migration, we only compute the
equilibrium melt fraction in dependence of temperature and
pressure. This is done as a postprocessing step, by adding
"melt fraction" to the list of visualization postprocessors.

subsection Visualization
set List of output variables = material properties, nonadiabatic temperature

subsection Material properties
set List of material properties = density, viscosity, melt fraction

end

set Number of grouped files = 0
set Output format = vtu
set Time between graphical output = 6e5
set Interpolate output = true

end

subsection Depth average
set Number of zones = 12
set Time between graphical output = 6e5

end

end

We write a checkpoint approximately every half an hour,
so that we are able to restart the computation from that
point.
subsection Checkpointing

set Time between checkpoint = 1700
end

When we look at visualization output of this model, we can see that over time, first upwellings, and then
downwellings start to form. Both are more or less stable over time, and only change their positions slowly.
As melt does not move relative to the solid, broad stable zones of melting with melt fraction of 10% or more
form in areas where material is upwelling.

In the second model, melt is an active component of the model. Temperature, pressure and composition
control how much of the rock melts, and as soon as that happens, melt can migrate relative to the solid
rock. As material only melts partially, that means that the composition of the rock changes when it melts
and melt is extracted, and we track this change in composition using a compositional field with the name

175

peridotite. Positive values mark depletion (the composition of the residual host rock as more and more
melt is extracted), and negative values mark enrichment (the composition of generated melt, or regions where
melt freezes again). Both the fraction of melt (tracked by the compositional field with the name porosity)
and the changes in composition influence the material properties such as density and viscosity. Moreover,
there are additional material properties that describe how easily melt can move through the host rock, such
as the permeability, or properties of the melt itself, such as the fluid viscosity. The following input
file (a complete version of which can be found in cookbooks/global_melt.prm) details the changes we have
to make from the first model to set up a model with melt migration:

Cookbook for a global-scale 2D box mantle convection model
with melt migration.
In this file we will go through all of the steps that are
required for adding melting and melt transport to a mantle
convection simulation.

For models with melt migration, there is a nonlinear coupling between
the Stokes system, the temperature, and the advection equation for the
porosity (several material properties, such as the viscosities and the
permeability depend nonlinearly on the porosity; and changes in temperature
determine how much material is melting or freezing).
Because of that, we use a nonlinear solver scheme (’iterated Advection and Stokes’)
that iterates between all of these equations, and we have to set its
solver tolerance and the maximum number of iterations separately from
the linear solver parameters.
set Nonlinear solver scheme = iterated Advection and Stokes
set Max nonlinear iterations = 20
set Nonlinear solver tolerance = 1e-5

In addition, melting and freezing normally happens on a much faster
time scale than the flow of melt, so we want to decouple the advection
of melt (and temperature) and the melting process itself. To do that,
we use the operator splitting scheme, and define that for every
advection time step, we want to do at least 10 reaction time steps.
If these time steps would be larger than 10,000 years, we will do
more reaction time steps (so that reaction time step size never exceeds
10,000 years). Here, we also specify the Stokes linear solver tolerance
and maximum number of cheap Stokes solver steps to improve the nonlinear
convergence behavior.
set Use operator splitting = true
subsection Solver parameters

subsection Operator splitting parameters
set Reaction time step = 1e4
set Reaction time steps per advection step = 10

end
subsection Stokes solver parameters

set Linear solver tolerance = 1e-8
set Number of cheap Stokes solver steps = 100

end
end

subsection Melt settings
In addition, we now also specify in the model settings that we want to
run a model with melt transport.
set Include melt transport = true

end

176

cookbooks/global_melt.prm

##################### Settings for melt transport ########################

In models with melt transport, we always need a compositional field with
the name ’porosity’. Only the field with that name will be advected with
the melt velocity, all other compositional fields will continue to work
as before. Material model will typically query for the field with the
name porosity to compute all melt material properties.
In addition, the ’melt global’ model also requires a field with the name
’peridotite’. This field is used to track how much material has been
molten at each point of the model, so it tracks the information how the
composition of the rock changes due to partial melting events (sometimes
also called depletion). This is important, because usually less melt is
generated for a given temperature and pressure if the rock has undergone
melting before. Typically, material properties like the density are also
different for more or less depleted material.
subsection Compositional fields

set Number of fields = 2
set Names of fields = porosity, peridotite

end

##################### Initial conditions ########################

Now that our model uses compositional fields, we also need initial
conditions for the composition.
We use the function plugin to set both fields to zero at the beginning
of the model run.
subsection Initial composition model

set Model name = function
subsection Function

set Function expression = 0; 0
set Variable names = x,y

end
end

##################### Boundary conditions ########################

We again choose the initial composition as boundary condition
for all compositional fields.
subsection Boundary composition model

set List of model names = initial composition
end

Models with melt transport also need an additional boundary condition:
the gradient of the fluid pressure at the model boundaries. This boundary
condition indirectly also prescribes boundary conditions for the melt velocity,
as the melt velocity is related to the fluid pressure gradient via Darcy’s law.
If we choose the fluid pressure gradient = solid density * gravity, melt will
flow in and out of the model (even if the solid can not flow out) according to
the dynamic fluid pressure in the model. Conversely, if we choose the
fluid pressure gradient = fluid density * gravity, melt will flow in or out
with the same velocity as the solid (so for a closer boundary, no melt will
flow in or out). This is what we choose as our boundary condition here.
subsection Boundary fluid pressure model

set Plugin name = density
subsection Density

set Density formulation = fluid density

177

end
end

##################### Material properties ########################

In addition to the material properties for the solid rock,
we also have to specify properties for the melt.
subsection Material model

set Model name = melt global
subsection Melt global

First we describe the parameters for the solid, in the same way
we did in the model without melt transport
set Thermal conductivity = 4.7
set Reference solid density = 3400
set Thermal expansion coefficient = 2e-5
set Reference shear viscosity = 5e21
set Thermal viscosity exponent = 7
set Reference temperature = 1600
set Solid compressibility = 4.2e-12

The melt usually has a different (lower) density than the solid.
set Reference melt density = 3000

The permeability describes how well the pores of a porous material
are connected (and hence how fast melt can flow through the rock).
It is computed as the product of the reference value given here
and the porosity cubed. This means that the lower the porosity is
the more difficult it is for the melt to flow.
set Reference permeability = 1e-8

The bulk viscosity describes the resistance of the rock to dilation
and compaction. Melt can only flow into a region that had no melt
before if the matrix of the solid rock expands, so this parameter
also limits how fast melt can flow upwards.
The bulk viscosity is computed as the reference value given here times
a term that scales with one over the porosity. This means that for zero
porosity, the rock can not dilate/compact any more, which is the same
behaviour that we have for solid mantle convection.
set Reference bulk viscosity = 1e19

In dependence of how much melt is present, we also weaken the shear
viscosity: The more melt is present, the weaker the rock gets.
This scaling is exponential, following the relation
viscosity ~ exp(-alpha * DeltaT),
where alpha is the parameter given here, and DeltaT is the deviation from the
reference temperature.
set Exponential melt weakening factor = 10

In the same way the shear viscosity is reduced with increasing temperature,
we also prescribe the temperature-dependence of the bulk viscosity.
set Thermal bulk viscosity exponent = 7

Analogous the the compressibility of the solid rock, we also define a
comressibility for the melt (which is generally higher than for the solid).

178

As we do not want our compressibility to depend on depth, we set the
pressure derivative to zero.
set Melt compressibility = 1.25e-11
set Melt bulk modulus derivative = 0.0

Finally, we prescribe the viscosity of the melt, which is used in Darcy’s
law. The lower this viscosity, the faster melt can flow.
set Reference melt viscosity = 1

change the density contrast of depleted material (in kg/m^3)
set Depletion density change = -200.0

How much melt has been generated and subsequently extracted from a particular
volume of rock (how ’depleted’ that volume of rock is) usually changes the
solidus. The more the material has been molten already, the less melt will be
generated afterwards for the same pressure and temperature conditions. We
model this using a simplified, linear relationship, saying that to melt 100%
of the rock the temperature has to be 200 K higher than to melt it initially.
set Depletion solidus change = 200

We also have to determine how fast melting and freezing should happen.
Here, we choose a time scale of 10,000 years, which is a relatively long time
(or in other words, slow melting rate), but because this is a global model
and the time steps are big, it should be sufficient.
set Melting time scale for operator splitting = 1e4

end
end

##################### Mesh refinement #########################

For the model with melt migration, we use adaptive refinement.
We make use of two different refinement criteria: we set a minimum of 4 global
refinements everywhere in the model (which is the same resolution as for the
model without melt), and we refine in regions where melt is present, to be
precise, everywhere where the porosity is bigger than 1e-5.
We adapt the mesh every 5 time steps.
subsection Mesh refinement

set Coarsening fraction = 0.05
set Refinement fraction = 0.8

set Initial adaptive refinement = 2
set Initial global refinement = 4
set Strategy = composition threshold, minimum refinement function
set Time steps between mesh refinement = 4

minimum of 4 global refinements
subsection Minimum refinement function

set Coordinate system = depth
set Function expression = 4
set Variable names = depth,phi

end

refine where the porosity is bigger than 1e-5
subsection Composition threshold

set Compositional field thresholds = 1e-5,1.0
end

179

end

##################### Postprocessing ########################

In addition to the visualization output, we select a number
of postprocessors that allow us to compute some statistics
about the output (to see how much the model without and the
model with melt migration differ), and in particular we use
the "depth average" postprocessor that will allow us to plot
depth-averaged model quantities over time.
subsection Postprocess

set List of postprocessors = visualization, composition statistics, velocity statistics,
↪→ temperature statistics, depth average

For the model with melt migration, also add a visualization
postprocessor that computes the material properties relevant
to migration (permeability, viscosity of the melt, etc.).

subsection Visualization
set List of output variables = material properties, nonadiabatic temperature, strain rate,

↪→ melt material properties

subsection Material properties
set List of material properties = density, viscosity, thermal expansivity

end

subsection Melt material properties
set List of

properties = fluid density, permeability, fluid viscosity, compaction viscosity, p_c
end

end

In the first few tens of millions of years, this models evolves similarly to the model without melt migration.
Upwellings rise in the same locations, and regions where material starts to melt are similar. However, once
melt is formed, the model evolutions start to deviate. In the model with melt migration, melt moves upwards
from the region where it is generated much faster than the flow of solid material, so that it reaches cold
regions – where it freezes again – in a shorter amount of time. Because of that, the overall amount of melt
is smaller in this model at any given point in time. In addition, enriched material, present in places where
melt has crystallized, has a higher density than average or depleted mantle material. This means that in
regions above stable upwellings, instabilities of dense, enriched material start to form, which leads to small-
scale downwellings. Hence, both areas where material is partially molten and the location of the upwellings
themselves have a much shorter wavelength and change much faster over time in comparison to the model
without melt migration.

Figure 62 shows the time evolution of both models. A more complete comparison of the two models can
be found in Section 4.7 “Influence of melt migration on a global-scale convection model” in [27].

5.3.12 Melt migration in a 2D mid-ocean ridge model

This section was contributed by Juliane Dannberg.
The following cookbook will explain how to set up a model of a mid-ocean ridge that uses ASPECT’s

implementation of coupled magma/mantle dynamics (see Section 2.14) and melting and freezing of mantle
rock. In particular, it will outline

1. how to use operator splitting to accurately compute melting and freezing of melt,

180

Figure 62: Evolution of the model without (left) and with (right) melt migration.

181

2. how to use traction boundary conditions to set up the flow field of a mid-ocean ridge,

3. useful strategies for how to refine the mesh in models with melt migration.

How to set up a model with melt migration in general is explained in the previous cookbook 5.3.11.
As the flow at mid-ocean ridges can be assumed to be roughly symmetric with respect to the ridge axis in

the center, we only model one half of the ridge in a 2d Cartesian box with dimensions of 105× 70 km. Solid
material is flowing in from the bottom with a prescribed temperature and melting due to decompression
as is rises. The model is cooled from the top so that melt freezes again as it approaches this boundary.
In addition, a fixed plate velocity away from the ridge axis is prescribed at the top boundary, inducing
corner flow. Material can flow out freely at the right model boundary. The model shows both how melt is
focused towards the ridge axis, and how melting and freezing induces chemical heterogeneity in the mantle,
generating the crust and lithosphere. A movie of the full model evolution can be found online.

The input file. One important problem in models with melting and freezing (and other reactions) is that
these reactions can be much faster than the time step of the model. For mid-ocean ridges, melt is generally
assumed to be in equilibrium with the solid, which means that the reaction is basically instantaneous. To
model these type of processes, ASPECT uses operator splitting (see also Section 5.4.20): Reactions are
solved on a different time scale than advection. For this model, this means that at the beginning of each
time step, all melting reactions, including their latent heat effects, are solved using several shorter sub-time
steps. In the input file, we have to choose both the size of these sub-time steps and the rate (or characteristic
time scale) of melting, and they have to be consistent in the sense that the operator splitting time step can
not be larger than the reaction time scale. The melting model we use here is the anhydrous mantle melting
model of [54] for a peridotitic rock composition, as implemented in the “melt simple” material model.

##################### Melting and freezing ########################

Because the model includes reactions that might be on a faster time scale
than the time step of the model (melting and the freezing of melt), we use
the operator splitting scheme.
set Use operator splitting = true

subsection Solver parameters
subsection Operator splitting parameters

We choose the size of the reaction time step as 200 years, small enough
so that it can accurately model melting and freezing.
set Reaction time step = 2e2

Additionally, we always want to do at least 10 operator splitting time
steps in each model time step, to accurately compute the reactions.
set Reaction time steps per advection step = 10

end
end

We use the melt simple material model that includes melting and freezing of
melt for an average mantle composition that is characteristic for a mid-ocean
ridge setting, and mainly use its default parameters.
In particular, we have to define how fast melting and freezing should be.
We assume that both reactions happen on a time scale of 200 years (or a rate
of 5e-3/year), which should be substantially shorter than the time step size,
so that the melt fraction will always be close to equilibrium.
As the model includes melting and freezing, we do not have to extract any melt.

subsection Material model
set Model name = melt simple

182

https://www.youtube.com/watch?v=f4Bc4lzdNP0

subsection Melt simple
set Reference permeability = 1e-7
set Melt extraction depth = 0.0
set Freezing rate = 0.005
set Melting time scale for operator splitting = 2e2

end
end

To make sure we reproduce the characteristic triangular melting region of a mid-ocean ridge, we have
to set up the boundary conditions in a way so that they will lead to corner flow. At the top boundary, we
can simply prescribe the half-spreading rate, and at the left boundary we can use a free-slip boundary, as
material should not cross this centerline. However, we do not know the inflow and outflow velocities at the
bottom and right side of the model. Instead, what we can do here is prescribing the lithostatic pressure as
a boundary condition for the stress. We accomplish this by using the “initial lithostatic pressure” model.
This plugin will automatically compute a 1d lithostatic pressure profile at a given point at the time of the
model start and apply it as a boundary traction.

##################### Velocity ########################

To model the divergent velocitiy field of a mid-ocean ridge, we prescribe
the plate velocity (pointing away from the ridge) at the top boundary.
We use a closed boundary with free slip conditions as the left boundary, which
marks the ridge axis and also acts as a center line for our model, so that
material can not cross this boundary.
We prescribe the velocity at the top boundary using a function:
At the ridge axis, the velocity is zero, at a distance of 10 km from the ridge
axis or more, the rigid plate uniformly moves away from the ridge with a constant
speed, and close to the ridge we interpolate between these two conditions.
subsection Boundary velocity model

set Prescribed velocity boundary indicators = top:function
set Tangential velocity boundary indicators = left
subsection Function

We choose a half-spreading rate of u0=3cm/yr.
set Function constants = u0=0.03, x0=10000
set Variable names = x,z
set Function expression = if(x<x0,(1-(x/x0-1)*(x/x0-1))*u0,u0); 0

end
end

We prescribe the lithostatic pressure as a boundary traction on
the bottom and right side of the model, so that material can flow in and out
according to the flow induced by the moving plate.
subsection Boundary traction model

set Prescribed traction boundary
indicators = right:initial lithostatic pressure, bottom:initial lithostatic pressure

subsection Initial lithostatic pressure
We calculate the pressure profile at the right model boundary.
set Representative point = 105000, 70000

end
end

Finally, we have to make sure that the resolution is high enough to model melt migration. This is
particularly important in regions where the porosity is low, but still high enough that the two-phase flow
equations are solved (instead of the Stokes system, which is solved if there is no melt present in a cell). At
the boundary between these regions, material properties like the compaction viscosity may jump, and there

183

may be strong gradients or jumps in some solution variables such as the melt velocity and the compaction
pressure. In addition, the characteristic length scale for melt transport, the compaction length δ, depends
on the porosity:

δ =

√
(ξ + 4η/3)k

ηf
. (83)

While the melt viscosity ηf is usually assumed to be constant, and the shear and compaction viscosities η
and ξ increase with decreasing porosity φ, the permeability k ∝ φ2 or k ∝ φ3 dominates this relation, so
that the compaction length becomes smaller for lower porosities. As the length scale of melt migration is
usually smaller than for mantle convection, we want to make sure that regions where melt is present have
a high resolution, and that this high resolution extends to all cells where the two-phase flow equations are
solved.

##################### Mesh refinement #########################

We use adaptive mesh refinement to increase the resolution in regions where
melt is present, and otherwise use a uniform grid.
subsection Mesh refinement

set Coarsening fraction = 0.5
set Refinement fraction = 0.5

A refinement level of 5 (4 global + 1 adaptive refinements) corresponds to
a cell size of approximately 1 km.
set Initial adaptive refinement = 1
set Initial global refinement = 4
set Strategy = minimum refinement function, composition threshold
set Time steps between mesh refinement = 5

subsection Minimum refinement function
set Coordinate system = cartesian
set Function expression = 4
set Variable names = x,y

end

We use a very small refinement threshold for the porosity to make sure that
all cells where the two-phase flow equations are solved (melt cells) have
the higher resolution.
subsection Composition threshold

set Compositional field thresholds = 1e-6, 1.0
end

end

ASPECT also supports an alternative method to make sure that regions with melt are sufficiently well
resolved, relying directly on the compaction length, and we will discuss this method as a possible modification
to this cookbook at the end of this section.

The complete input file is located at cookbooks/mid_ocean_ridge.prm.

Model evolution. When we look at the visualization output of this model (see also Figure 63), we can see
how the hot material flowing in from the bottom starts to melt as it reaches lower and lower pressures and
crosses the solidus. Simultaneously, melting makes the residual solid rock more depleted (as indicated by
the positive values of the compositional field called ‘peridotite’). Once material approaches the surface, it is
cooled from the cold boundary layer above, and melt starts to crystallize again, generating ‘enriched’ basaltic
crust where is freezes (as indicated by the negative values of the compositional field called ‘peridotite’). As
the temperature gradients are much sharper close to the surface, this transition from melt to solid rock is
much sharper than in the melting region. Once material crystallizes, it is transported away from the ridge

184

cookbooks/mid_ocean_ridge.prm

Figure 63: Mid-ocean ridge model after 8 million years. The top panel shows the depletion and porosity fields
(with the characteristic triangular melting region), the bottom panel shows the temperature distribution and
the melt velocity, indicated by the arrows.

axis due to the flow field induced by the prescribed plate velocity at the top boundary. This way, over time,
the classical triangular melting region develops at the ridge axis, and the material transported away from the
ridge shows two distinct layers: The top ≈ 7 km are enriched material, and form the basaltic crust (negative
peridotite field), and the ≈ 50 km below are depleted material, and form the lithosphere (positive peridotite
field). A vertical profile at a distance of 80 km from the ridge axis showing this composition can be found
in Figure 64.

Mesh refinement. Another option for making sure that melt migration is resolved properly in the model
is using a refinement criterion that directly relates to the compaction length. This can be done in the mesh
refinement section of the input file:

subsection Mesh refinement
set Coarsening fraction = 0.5
set Refinement fraction = 0.5

Note that we allow for more adaptive refinements than before, as only cells
with a small compaction length will be marked for refinement (as opposed to
all melt cells), and we want to properly resolve the compaction length.
set Initial adaptive refinement = 3
set Initial global refinement = 4
set Strategy = minimum refinement function, compaction length
set Time steps between mesh refinement = 5

subsection Minimum refinement function
set Coordinate system = cartesian
set Function expression = 4
set Variable names = x,y

end

185

depletionenrichment

basaltic crust

harzburgite
lithosphere

D
e
p

th
 i
n
 k

m

0

10

20

30

40

50

60

70

Figure 64: Vertical profile through the model domain at a distance of 80 km from the ridge axis at the end
of the model run, showing the distribution of depletion and enrichment as indicated by the peridotite field.

Figure 65: Mesh after a time of 3.6 million years for a model using the composition threshold refinement
strategy (left) and the compaction length refinement strategy (right) Background colors indicate the melt
velocity. Its sharp gradients at the interface between regions with and without melt can only be resolved
using the compaction length refinement strategy.

We want the cells to be 8 times smaller than the compaction length.
subsection Compaction length

set Mesh cells per compaction length = 8.0
end

end

This will lead to a higher resolution particularly in regions with low (but not zero) porosity, and can be
useful to resolve the strong gradients in the melt velocity and compaction pressure that are to be expected
in these places (see Figure 65). Of course it is also possible to combine both methods for refining the mesh.

Extending the model. There are a number of parameters that influence the amount of melting, how fast
the melt moves, and ultimately the distribution of crustal and lithospheric material. Some ideas for adapting
the model setup:

• Changing the spreading rate: This can be done by choosing a different magnitude of the prescribed
velocity at the top boundary, and influences the size and shape of the triangular melting region. Faster

186

spreading allows hot material to move further away from the ridge axis, and hence facilitates a melting
region that extends further in horizontal direction.

• Changing the temperature profile: This can be done by choosing a different bottom boundary temper-
ature and influences the amount of melting, and hence the thickness of the crust. Higher temperatures
lead to more melt being generated.

• Changing the speed of melt migration: The velocity of the melt with respect to the solid velocity
is determined by the permeability and the melt viscosity (and the pressure gradients in the melt).
Increasing the permeability (by setting a different “Reference permeability” in the melt simple model)
can lead to higher melt velocities, melt reaching the depth of freezing faster, and hence lower overall
porosity values at steady state.

• Making the viscosity law more realistic: In this simple model, the viscosity only depends on the
amount of melt that is present and is otherwise constant. This could be the reason why melt can
not flow up all the way up at the ridge axis, but freezes before it reaches the surface. Introducing a
temperature-dependent rheology could improve this behavior (and in reality, plastic effects might also
play a role).

5.4 Benchmarks
Benchmarks are used to verify that a solver solves the problem correctly, i.e., to verify correctness of a code.36
Over the past decades, the geodynamics community has come up with a large number of benchmarks.
Depending on the goals of their original inventors, they describe stationary problems in which only the
solution of the flow problem is of interest (but the flow may be compressible or incompressible, with constant
or variable viscosity, etc), or they may actually model time-dependent processes. Some of them have solutions
that are analytically known and can be compared with, while for others, there are only sets of numbers that
are approximately known. We have implemented a number of them in ASPECT to convince ourselves (and
our users) that ASPECT indeed works as intended and advertised. Some of these benchmarks are discussed
below. Numerical results for several of these benchmarks are also presented in a number of papers (such as
[59, 43, 89, 35]) in much more detail than shown here.

Before going on with showing these benchmarks, let us mention that the data shown below (and in the
papers mentioned above) reflect the state of ASPECT at a particular time. On the other hand, ASPECT
has become more accurate and faster over time, for example by implementing better stabilization schemes
for the advection equations and improving assembly and solver times. We occasionally update sections of the
manual, but when reading through the sections on individual benchmarks below, it is worthwhile keeping in
mind that ASPECT may yield different (and often better) results than the one shown.

5.4.1 Running benchmarks that require code

Some of the benchmarks require plugins like custom material models, boundary conditions, or postprocessors.
To not pollute ASPECT with all these purpose-built plugins, they are kept separate from the more generic
plugins in the normal source tree. Instead, the benchmarks have all the necessary code in .cc files in the
benchmark directories. Those are then compiled into a shared library that will be used by ASPECT if it is
referenced in a .prm file. Let’s take the SolCx benchmark as an example (see Section 5.4.7). The directory
contains:

• solcx.cc – the code file containing a material model “SolCxMaterial” and a postprocessor “SolCx-
Postprocessor”,

• solcx.prm – the parameter file referencing these plugins,
36Verification is the first half of the verification and validation (V&V) procedure: verification intends to ensure that the

mathematical model is solved correctly, while validation intends to ensure that the mathematical model is correct. Obviously,
much of the aim of computational geodynamics is to validate the models that we have.

187

• CMakeLists.txt – a cmake configuration that allows you to compile solcx.cc.

To run this benchmark you need to follow the general outline of steps discussed in Section 6.2. For the
current case, this amounts to the following:

1. Move into the directory of that particular benchmark:

$ cd benchmarks/solcx

2. Set up the project:

$ cmake .

By default, cmake will look for the ASPECT binary and other information in a number of directories
relative to the current one. If it is unable to pick up where ASPECT was built and installed, you
can specify this directory explicitly this using -D Aspect_DIR=<...> as an additional flag to cmake,
where <...> is the path to the build directory.

3. Build the library:

$ make

This will generate the file libsolcx.so.

Finally, you can run ASPECT with solcx.prm:

$../../aspect solcx.prm

where again you may have to use the appropriate path to get to the ASPECT executable. You will need to
run ASPECT from the current directory because solcx.prm refers to the plugin as ./libsolcx.so, i.e., in
the current directory.

5.4.2 Onset of convection benchmark

This section was contributed by Max Rudolph, based on a course assignment for “Geodynamic Modeling” at
Portland State University.

Here we use ASPECT to numerically reproduce the results of a linear stability analysis for the onset of
convection in a fluid layer heated from below. This exercise was assigned to students at Portland State Univer-
sity as a first step towards setting up a nominally Earth-like mantle convection model. Hence, representative
length scales and transport properties for Earth are used. This cookbook consists of a jupyter notebook
(benchmarks/onset-of-convection/onset-of-convection.ipynb) that is used to run ASPECT and an-
alyze the results of several calculations. To use this code, you must compile ASPECT and give the path to
the executable in the notebook as aspect_bin.

The linear stability analysis for the onset of convection appears in Turcotte and Schubert [90] (section
6.19). The linear stability analysis assumes the Boussinesq approximation and makes predictions for the
growth rate (vertical velocity) of instabilities and the critical Rayleigh number Rac above which convection
will occur. Rac depends only on the dimensionless wavelength of the perturbation, which is assumed to be
equal to the width of the domain. The domain has height b and width λ and the perturbation is described
by

T ′(x, y) = T ′0 cos
(

2πx
λ

)
sin
(πy
b

)
,

where T ′0 is the amplitude of the perturbation. Note that because we place the bottom boundary of the
domain at y = 0 and the top at y = b, the perturbation vanishes at the top and bottom boundaries. This

188

Figure 66: Left: Comparison of numerically-determined and theoretical values for Rac. Red circles indicate
numerical simulations unstable to convection, black circles indicate simulations that are stable. The green
dashed curve indicates the theoretical prediction. Right: Relative error in determination of Rac. The dashed
red line indicates the error tolerance used in bisection procedure.

departs slightly from the setup in [90], where the top and bottom boundaries of the domain are at y = ±b/2.
The analytic expression for the critical Rayleigh number, Rac is given in Turcotte and Schubert [90] equation
(6.319):

Rac =

(
π2 + 4π2b2

λ2

)3

4π2b2

λ2

.

The linear stability analysis also makes a prediction for the dimensionless growth rate of the instability α′
(Turcotte and Schubert [90], equation (6.315)). The maximum vertical velocity is given by

vy,max = 2π
λ
φ′0e

α′t,

where

φ′0 = −2π
λ

ρ0gαT
′
0

µ

(
4π2

λ2 + π2

b2

)−2

,

and

α′ = κ

b2

[
ρ0gαb

3∆T
µκ

(
4π2b2

λ2(4π2b2

λ2 + π2
)2
)
−
(
π2 + 4π2b2

λ2

)]
.

We use bisection to determine Rac for specific choices of the domain geometry, keeping the depth b
constant and varying the domain width λ. If the vertical velocity increases from the first to the second
timestep, the system is unstable to convection. Otherwise, it is stable and convection will not occur. Each
calculation is terminated after the second timestep. Fig. 66 shows the numerically-determined threshold
for the onset of convection, which can be compared directly with the theoretical prediction (green curve)
and Fig. 6.39 of [90]. The relative error between the numerically-determined value of Rac and the analytic
solution are shown in the right panel of Fig. 66.

189

Figure 67: Van Keken benchmark (using a smoothed out interface, see the main text): Compositional field
at times t = 0, 300, 900, 1800.

5.4.3 The van Keken thermochemical composition benchmark

This section is a co-production of Cedric Thieulot, Juliane Dannberg, Timo Heister and Wolfgang Bangerth
with an extension to this benchmark provided by the Virginia Tech Department of Geosciences class “Geody-
namics and ASPECT” co-taught by Scott King and D. Sarah Stamps.

One of the most widely used benchmarks for mantle convection codes is the isoviscous Rayleigh-Taylor
case (“case 1a”) published by van Keken et al. in [93]. The benchmark considers a 2d situation where a
lighter fluid underlies a heavier one with a non-horizontal interface between the two of them. This unstable
layering causes the lighter fluid to start rising at the point where the interface is highest. Fig. 67 shows a
time series of images to illustrate this.

Although van Keken’s paper title suggests that the paper is really about thermochemical convection,
the part we look here can equally be considered as thermal or chemical convection: all that is necessary
is that we describe the fluid’s density somehow. We can do that by using an inhomogeneous initial tem-
perature field, or an inhomogeneous initial composition field. We will use the input file in cookbooks/
van-keken-discontinuous.prm as input, the central piece of which is as follows (go to the actual input file
to see the remainder of the input parameters):

subsection Material model
set Model name = simple
subsection Simple model

set Viscosity = 1e2
set Thermal expansion coefficient = 0
set Density differential for compositional field 1 = -10

end
end

subsection Initial composition model
set Model name = function
subsection Function

set Variable names = x,z
set Function constants = pi=3.14159
set Function expression = if((z>0.2+0.02*cos(pi*x/0.9142)) , 0 , 1)

end
end

The first part of this selects the simple material model and sets the thermal expansion to zero (resulting
in a density that does not depend on the temperature, making the temperature a passively advected field)
and instead makes the density depend on the first compositional field. The second section prescribes that the
first compositional field’s initial conditions are 0 above a line describes by a cosine and 1 below it. Because
the dependence of the density on the compositional field is negative, this means that a lighter fluid underlies

190

cookbooks/van-keken-discontinuous.prm
cookbooks/van-keken-discontinuous.prm

Figure 68: Van Keken benchmark with discontinuous (left) and smoothed, continuous (right) initial conditions

for the compositional field: Evolution of the root mean square velocity
(

1
|Ω|
∫

Ω |u(x, t)|2 dx
)1/2

as a function
of time for different numbers of global mesh refinements. 5 global refinements correspond to a 32× 32 mesh,
9 refinements to a 512× 512 mesh.

a heavier one.
The dynamics of the resulting flow have already been shown in Fig. 67. The measure commonly considered

in papers comparing different methods is the root mean square of the velocity, which we can get using the
following block in the input file (the actual input file also enables other postprocessors):

subsection Postprocess
set List of postprocessors = velocity statistics

end

Using this, we can plot the evolution of the fluid’s average velocity over time, as shown in the left panel
of Fig. 68. Looking at this graph, we find that both the timing and the height of the first peak is already
well converged on a simple 32 × 32 mesh (5 global refinements) and is very consistent (to better than 1%
accuracy) with the results in the van Keken paper.

That said, it is startling that the second peak does not appear to converge despite the fact that the
various codes compared in [93] show good agreement in this comparison. Tracking down the cause for this
proved to be a lesson in benchmark design; in hindsight, it may also explain why van Keken et al. stated
presciently in their abstract that “. . . good agreement is found for the initial rise of the unstable lower layer;
however, the timing and location of the later smaller-scale instabilities may differ between methods.” To
understand what is happening here, note that the first peak in these plots corresponds to the plume that
rises along the left edge of the domain and whose evolution is primarily determined by the large-scale shape
of the initial interface (i.e., the cosine used to describe the initial conditions in the input file). This is a first
order deterministic effect, and is obviously resolved already on the coarsest mesh shown used. The second
peak corresponds to the plume that rises along the right edge, and its origin along the interface is much
harder to trace – its position and the timing when it starts to rise is certainly not obvious from the initial
location of the interface. Now recall that we are using a finite element field using continuous shape functions
for the composition that determines the density differences that drive the flow. But this interface is neither
aligned with the mesh, nor can a discontinuous function be represented by continuous shape functions to
begin with. In other words, we may input the initial conditions as a discontinuous functions of zero and
one in the parameter file, but the initial conditions used in the program are in fact different: they are the
interpolated values of this discontinuous function on a finite element mesh. This is shown in Fig. 69. It is
obvious that these initial conditions agree on the large scale (the determinant of the first plume), but not in

191

Figure 69: Van Keken benchmark with discontinuous initial conditions for the compositional field: Initial
compositional field interpolated onto a 32× 32 (left) and 64× 64 finite element mesh (right).

the steps that may (and do, in fact) determine when and where the second plume will rise. The evolution of
the resulting compositional field is shown in Fig. 70 and it is obvious that the second, smaller plume starts
to rise from a completely different location – no wonder the second peak in the root mean square velocity
plot is in a different location and with different height!

The conclusion one can draw from this is that if the outcome of a computational experiment depends so
critically on very small details like the steps of an initial condition, then it’s probably not a particularly good
measure to look at in a benchmark. That said, the benchmark is what it is, and so we should try to come up
with ways to look at the benchmark in a way that allows us to reproduce what van Keken et al. had agreed
upon. To this end, note that the codes compared in that paper use all sorts of different methods, and one
can certainly agree on the fact that these methods are not identical on small length scales. One approach
to make the setup more mesh-independent is to replace the original discontinuous initial condition with a
smoothed out version; of course, we can still not represent it exactly on any given mesh, but we can at least
get closer to it than for discontinuous variables. Consequently, let us use the following initial conditions
instead (see also the file cookbooks/van-keken-smooth.prm):

subsection Initial composition model
set Model name = function
subsection Function

set Variable names = x,z
set Function constants = pi=3.14159
set Function expression = 0.5*(1+tanh((0.2+0.02*cos(pi*x/0.9142)-z)/0.02))

end
end

This replaces the discontinuous initial conditions with a smoothed out version with a half width of around
0.01. Using this, the root mean square plot now looks as shown in the right panel of Fig. 68. Here, the
second peak also converges quickly, as hoped for.

The exact location and height of the two peaks is in good agreement with those given in the paper
by van Keken et al., but not exactly where desired (the error is within a couple of per cent for the first
peak, and probably better for the second, for both the timing and height of the peaks). This has to do
with the fact that they depend on the exact size of the smoothing parameter (the division by 0.02 in the
formula for the smoothed initial condition). However, for more exact results, one can choose this half width
parameter proportional to the mesh size and thereby get more accurate results. The point of the section was
to demonstrate the reason for the lack of convergence.

192

cookbooks/van-keken-smooth.prm

Figure 70: Van Keken benchmark with discontinuous initial conditions for the compositional field: Evolution
of the compositional field over time on a 32× 32 (first and third column; left to right and top to bottom) and
64× 64 finite element mesh (second and fourth column).

193

In this section we extend the van Keken cookbook following up the work previously completed by Cedric
Thieulot, Juliane Dannberg, Timo Heister and Wolfgang Bangerth. This section contributed by Grant Euen,
Tahiry Rajaonarison, and Shangxin Liu as part of the Geodynamics and ASPECT class at Virginia Tech.

As already mentioned above, using a half width parameter proportional to the mesh size allows for
more accurate results. We test the effect of the half width size of the smoothed discontinuity by changing
the smoothing parameter to values proportional to the mesh size. In the formula for the smoothed initial
conditions, this parameter is the division by 0.02. We use 7 global refinements because the root mean
square velocity converges at greater resolution while keeping average runtime around 5 to 25 minutes. These
runtimes were produced by the BlueRidge cluster of the Advanced Research Computing (ARC) program at
Virginia Tech. BlueRidge is a 408-node Cray CS-300 cluster; each node outfitted with two octa-core Intel
Sandy Bridge CPUs and 64 GB of memory. Average runtimes for global refinements 5 through 10 using one
node can be seen in Table 5. For 7 global refinements (128×128 mesh size), the size of the mesh is 0.0078
corresponding to a half width parameter of 0.0039. The smooth model allows for much better convergence
of the secondary plumes, although they are still more scattered than the primary plumes.

Global Number of Processors
Refinements 4 8 12 16

5 28.1 seconds 19.8 seconds 19.6 seconds 17.1 seconds
6 3.07 minutes 1.95 minutes 1.49 minutes 1.21 minutes
7 23.33 minutes 13.92 minutes 9.87 minutes 7.33 minutes
8 3.08 hours 1.83 hours 1.30 hours 56.33 minutes
9 1.03 days 15.39 hours 10.44 hours 7.53 hours
10 More than 6 days More than 6 days 3.39 days 2.56 days

Table 5: Average runtimes for the van Keken Benchmark with smoothed initial conditions. These times are
for the entire computation, a final time step number of 2000. All of these tests were run using ASPECT
version 1.3 in release mode, and used different numbers of processors on one node on the BlueRidge cluster
of ARC at Virginia Tech.

This convergence is due to changing the smoothing parameter, which controls how much of the problem
is smoothed over. As the parameter is increased the smoothed boundary grows; as the smoothed boundary
shrinks it becomes sharper until the original discontinuous behavior is revealed. As the boundary grows, the
two distinct layers eventually become one large, transitioning layer. These effects can be seen in Fig. 71.
The overall effect is that the secondary rise is at different times based on these conditions. In general, as the
smoothing parameter is decreased the smoothed boundary shrinks, and the plumes rise more quickly. As it
is increased the boundary grows, and the plumes rise more slowly. This trend can be used to force a more
accurate convergence from the secondary plumes.

The evolution in time of the resulting compositional fields (Fig. 72) shows that the first peak converges as
the smoothed interface decreases. There is a good agreement for the first peak for all smoothing parameters.
As the width of the discontinuity increases, the second peak rises more slowly and later in the run.

Now let us further add a two-layer viscosity model to the domain. This is done to recreate the two
nonisoviscous Rayleigh-Taylor instability cases (“cases 1b and 1c”) published in van Keken et al. in [93].
Let’s assume the viscosity value of the upper, heavier layer is ηt and the viscosity value of the lower,
lighter layer is ηb. Based on the initial constant viscosity value 1×102 Pa s, we set the viscosity proportion
ηt
ηb

= 0.1, 0.01, meaning the viscosity of the upper, heavier layer is still 1×102 Pa s, but the viscosity of the
lower, lighter layer is now either 10 or 1 Pa s, respectively. The viscosity profiles of the discontinuous and
smooth models are shown in Fig. 73.

For both cases, discontinuous and smooth, and both viscosity proportions, 0.1 and 0.01, the results are
shown at the end time step number, t = 2000, in Fig. 74. This was generated using the original input
parameter file, running the cases with 8 global refinements, and also adding the two-layer viscosity model.

Compared to the results of the models using constant viscosity throughout the domain, the plumes rise
faster when adding the two-layer viscosity. Also, the larger the viscosity difference is the earlier the plumes

194

Figure 71: Van Keken Benchmark using smoothed out interface at 7 global refinements: compositional field
at time t = 0 using smoothing parameter size: a) 0.0039, b) 0.0078, c) 0.0156, d) 0.0234, e) 0.0312, f)
0.0390, g) 0.0468, h) 0.0546, i) 0.0624.

Figure 72: Van Keken benchmark with smoothed initial conditions for the compositional field using 7 global
refinements for different smoothing parameters. Number of the time step is shown on the x-axis, while root
mean square velocity is shown on the y-axis.

195

Figure 73: Van Keken benchmark using different-viscosity layers. The left image is the discontinuous case,
while right is the smooth. Both are shown at t = 0.

Figure 74: Van Keken benchmark two-layer viscosity model at final time step number, t = 2000. These
images show layers of different compositions and viscosities. Discontinuous cases are the left images, smooth
cases are the right. The upper images are ηt

ηb
= 0.1, and the lower are ηt

ηb
= 0.01.

196

Figure 75: Van Keken benchmark: Evolution of the root mean square velocity as a function of time for
different viscosity contrast proportions (0.1/0.01) for both discontinuous and smooth models.

Figure 76: Setup of the Rayleigh-Taylor instability benchmark (taken from [85])

appear, and the faster their ascent. To further reveal the effect of the two-layer viscosity model, we also plot
the evolution of the fluids’ root mean square velocity over time, as shown in Fig. 75.

We can observe that when the two-layer viscosity model is added, there is only one apparent peak for
each case. The first peaks of the 0.01 viscosity contrast tests appear earlier and are larger in magnitude than
those of 0.1 viscosity contrast tests. There are no secondary plumes and the whole system tends to reach
stability after around 500 time steps.

5.4.4 The Rayleigh-Taylor instability

This section was contributed by Cedric Thieulot.
This benchmark is carried out in [29, 38, 85] and is based on the analytical solution by Ramberg[68],

which consists of a gravitationally unstable two-layer system. Free slip are imposed on the sides while no-slip
boundary conditions are imposed on the top and the bottom of the box. Fluid 1 (ρ1, η1) of thickness h1
overlays fluid 2 (ρ2, η2) of thickness h2 (with h1 +h2 = Ly). An initial sinusoidal disturbance of the interface
between these layers is introduced and is characterised by an amplitude ∆ and a wavelength λ = Lx/2 as
shown in Figure 76.

197

Figure 77: Left: grid with initial global refinement 4 and adaptive refinement 6; Right: density field with
detail of the mesh.

Under this condition, the velocity of the diapiric growth vy is given by the relation

vy
∆ = −Kρ1 − ρ2

2η2
h2g with K = −d12

c11j22 − d12i21
(84)

where K is the dimensionless growth factor and

c11 = η12φ2
1

η2(cosh 2φ1 − 1− 2φ2
1) −

2φ2
2

cosh 2φ2 − 1− 2φ2
2

(85)

d12 = η1(sinh 2φ1 − 2φ1)
η2(cosh 2φ1 − 1− 2φ2

1) + sinh 2φ2 − 2φ2

cosh 2φ2 − 1− 2φ2
2

(86)

i21 = η1φ2(sinh 2φ1 + 2φ1)
η2(cosh 2φ1 − 1− 2φ2

1) + φ2(sinh 2φ2 + 2φ2)
cosh 2φ2 − 1− 2φ2

2
(87)

j22 = η12φ2
1φ2

η2(cosh 2φ1 − 1− 2φ2
1) −

2φ3
2

cosh 2φ2 − 1− 2φ2
2

(88)

φ1 = 2πh1

λ
(89)

φ2 = 2πh2

λ
(90)

We set Lx = Ly = 512km, h1 = h2 = 256km, |g| = 10m/s2, ∆ = 3km, ρ1 = 3300kg/m3, ρ2 = 3000kg/m3,
η1 = 1021Pa s. η2 is varied between 1020 and 1023 and 3 values of λ (64, 128, and 256km) are used. Adaptive
mesh refinement based on density is used to capture the interface between the two fluids, as shown in
Figure 77. This translates as follows in the input file:

subsection Mesh refinement
set Initial global refinement = 4
set Initial adaptive refinement = 6
set Strategy = density
set Refinement fraction = 0.6

end

The maximum vertical velocity is plotted against φ1 in Figure 78 and is found to match analytical results.

198

 1x10-13

 1x10-12

 1x10-11

 1x10-10

 1x10-9

 6 8 10 12 14 16 18 20 22 24 26

m
a
x
(v

y
)

φ1

analytical
ASPECT

Figure 78: Maximum velocity for three values of the φ1 parameter.

5.4.5 Polydiapirism

This section was contributed by Cedric Thieulot.
Diapirs are a type of geologic intrusion in which a more mobile and ductily deformable material (e.g.,

salt) is emplaced into (brittle) overlying rocks. As salt domes are capable of trapping petroleum and natural
gas these structures have been extensively studied [51].

We consider in this experiment the three-layer viscous Rayleigh-Taylor instability proposed by Weinberg
and Schmeling [94] and we focus in what follows on the case II of that publication. The domain is a 2D
Cartesian box of size 2.24m×1m. Gravity is Earth-like (9.81m/s2). Boundary conditions are free-slip on the
sides and top and no-slip at the bottom. All three layers are initially horizontal. The top layer (fluid 1) has
a thickness of 0.75m, a viscosity η1 = 100Pa s and a density ρ1 = 100kg/m3. The middle layer (fluid 2) has a
thickness 0.125m with ρ2 = 90kg/m3 and µ2 = 1Pa s. The bottom layer (fluid 3) has a thickness 0.125m with
ρ3 = 89kg/m3 and µ3 = 1Pa s. The two interfaces between the layers are perturbed by a random noise of
amplitude ±0.001m. Since fluid 3 is lighter than fluid 2 and fluid 2 is lighter than fluid 1, both interfaces are
unstable. We observe that interface 2-3 deforms first, produces domes which are subsequently incorporated
in the domes being generated at the interface 1-2, as shown in Figure 79. The root mean square velocity
(Figure 80) shows two slopes in the early stages (t < 50s) corresponding to the two different growth rates of
the interfaces, as explained by linear stability analysis [94, 69].

5.4.6 The sinking block benchmark

This benchmark is based on the benchmark presented in [39] and extended in [85]. It consists of a two-
dimensional 512km × 512km domain filled with a fluid (the "mantle") of density ρ1 = 3200kg/m3 and
viscosity η1 = 1021Pa s. A square block of size 128km × 128km is placed in the domain and is centered at
location (xc, yc) = (256km, 384km) so as to insure that its sides align with cell boundaries at all resolutions
(GMR level ≥ 3). It is filled with a fluid of density ρ2 = ρ1 + δρ and viscosity η2. The gravity vector points
downwards with |g| = 10m/s2. Boundary conditions are free slip on all sides. Only one time step is carried
out and we measure the absolute velocity |vz| in the middle of the block.

In a geodynamical context, the block could be interpreted as a detached slab or a plume head. As such
its viscosity and density can vary (a cold slab has a higher effective viscosity than the surrounding mantle
while it is the other way around for a plume head). The block densities can then vary from a few units to

199

Figure 79: Polydiapirism benchmark: Density field at t = 0, 25, 50, 75s.

0.00001

0.00010

0.00100

0.01000

0.10000

 0 20 40 60 80 100 120 140

v
rm

s

time

Figure 80: Polydiapirism benchmark: Root mean square velocity as a function of time

200

Figure 81: Density field with velocity arrows for η2 = 1027Pa s and δρ = 32kg/m3

several hundreds of kg/m3 and the viscosities by several orders of magnitude to represent a wide array of
scenarios. The velocity field obtained for η2 = 1027Pa s and δρ = 32kg/m3 is shown in Figure 81.

As shown in [85] one can independently vary η1, ρ2, η2, and measure |vz| for each combination: the
quantity |vz|η1/δρ is then found to be a simple function of the ratio η? = η1/η2: at high enough mesh
resolution all data points collapse onto a single line. The shell script run_benchmark in the folder runs the
experiment for values η2 ∈ [1017, 1026]Pa s and δρ = 8, 32, 128kg/m3. Results are shown in Figure 82 and
we indeed recover the expected trend with all data points forming a single smooth line.

5.4.7 The SolCx Stokes benchmark

The SolCx benchmark is intended to test the accuracy of the solution to a problem that has a large jump in
the viscosity along a line through the domain. Such situations are common in geophysics: for example, the
viscosity in a cold, subducting slab is much larger than in the surrounding, relatively hot mantle material.

The SolCx benchmark computes the Stokes flow field of a fluid driven by spatial density variations,
subject to a spatially variable viscosity. Specifically, the domain is Ω = [0, 1]2, gravity is g = (0,−1)T and
the density is given by ρ(x) = sin(πx1) cos(πx2); this can be considered a density perturbation to a constant
background density. The viscosity is

η(x) =
{

1 for x1 ≤ 0.5,
106 for x1 > 0.5.

This strongly discontinuous viscosity field yields an almost stagnant flow in the right half of the domain and
consequently a singularity in the pressure along the interface. Boundary conditions are free slip on all of ∂Ω.
The temperature plays no role in this benchmark. The prescribed density field and the resulting velocity
field are shown in Fig. 83.

The SolCx benchmark was previously used in [34, Section 4.1.1] (references to earlier uses of the bench-
mark are available there) and its analytic solution is given in [98]. ASPECT contains an implementation of
this analytic solution taken from the Underworld package (see [64] and http://www.underworldproject.
org/, and correcting for the mismatch in sign between the implementation and the description in [34]).

201

http://www.underworldproject.org/
http://www.underworldproject.org/

 1x1017

 1x1018

0.0001 0.001 0.01 0.1 1 10 100 1000 10000

|v
z|

 η
1
/δ
ρ

η1/η2

16x16
32x32
64x64

128x128

Figure 82: Scaled velocity measurements as a function of the viscosity contrast between surrounding medium
and block for all experiments.

Figure 83: SolCx Stokes benchmark. Left: The density perturbation field and overlaid to it some velocity
vectors. The viscosity is very large in the right hand, leading to a stagnant flow in this region. Right: The
pressure on a relatively coarse mesh, showing the internal layer along the line where the viscosity jumps.

202

To run this benchmark, the following input file will do (see the files in benchmarks/solcx/ to rerun the
benchmark):

set Additional shared libraries = ./libsolcx.so

############### Global parameters

set Dimension = 2

set Start time = 0
set End time = 0

set Output directory = output

set Pressure normalization = volume

############### Parameters describing the model

subsection Geometry model
set Model name = box

subsection Box
set X extent = 1
set Y extent = 1

end
end

subsection Boundary velocity model
set Tangential velocity boundary indicators = left, right, bottom, top

end

subsection Material model
set Model name = SolCxMaterial

subsection SolCx
set Viscosity jump = 1e6

end
end

subsection Gravity model
set Model name = vertical

end

############### Parameters describing the temperature field

subsection Boundary temperature model
set List of model names = box

end

subsection Initial temperature model

203

benchmarks/solcx/

set Model name = perturbed box
end

############### Parameters describing the discretization

subsection Discretization
set Stokes velocity polynomial degree = 2
set Use locally conservative discretization = false

end

subsection Mesh refinement
set Initial adaptive refinement = 0
set Initial global refinement = 4

end

############### Parameters describing what to do with the solution

subsection Postprocess
set List of postprocessors = SolCxPostprocessor, visualization

end

Since this is the first cookbook in the benchmarking section, let us go through the different parts of this
file in more detail:

• The material model and the postprocessor

• The first part consists of parameter setting for overall parameters. Specifically, we set the dimension
in which this benchmark runs to two and choose an output directory. Since we are not interested in
a time dependent solution, we set the end time equal to the start time, which results in only a single
time step being computed.
The last parameter of this section, Pressure normalization, is set in such a way that the pressure
is chosen so that its domain average is zero, rather than the pressure along the surface, see Section 2.5.

• The next part of the input file describes the setup of the benchmark. Specifically, we have to say
how the geometry should look like (a box of size 1 × 1) and what the velocity boundary conditions
shall be (tangential flow all around – the box geometry defines four boundary indicators for the left,
right, bottom and top boundaries, see also Section A.43). This is followed by subsections choosing
the material model (where we choose a particular model implemented in ASPECT that describes the
spatially variable density and viscosity fields, along with the size of the viscosity jump) and finally the
chosen gravity model (a gravity field that is the constant vector (0,−1)T , see Section A.54).

• The part that follows this describes the boundary and initial values for the temperature. While we are
not interested in the evolution of the temperature field in this benchmark, we nevertheless need to set
something. The values given here are the minimal set of inputs.

• The second-to-last part sets discretization parameters. Specifically, it determines what kind of Stokes
element to choose (see Section A.40 and the extensive discussion in [59]). We do not adaptively refine
the mesh but only do four global refinement steps at the very beginning. This is obviously a parameter
worth playing with.

• The final section on postprocessors determines what to do with the solution once computed. Here, we
do two things: we ask ASPECT to compute the error in the solution using the setup described in

204

the Duretz et al. paper [34], and we request that output files for later visualization are generated and
placed in the output directory. The functions that compute the error automatically query which kind
of material model had been chosen, i.e., they can know whether we are solving the SolCx benchmark
or one of the other benchmarks discussed in the following subsections.

Upon running ASPECT with this input file, you will get output of the following kind (obviously with
different timings, and details of the output may also change as development of the code continues):

aspect/cookbooks> ../aspect solcx.prm
Number of active cells: 256 (on 5 levels)
Number of degrees of freedom: 3,556 (2,178+289+1,089)

*** Timestep 0: t=0 years
Solving temperature system... 0 iterations.
Rebuilding Stokes preconditioner...
Solving Stokes system... 30+3 iterations.

Postprocessing:
Errors u_L1, p_L1, u_L2, p_L2: 1.125997e-06, 2.994143e-03, 1.670009e-06, 9.778441e-03
Writing graphical output: output/solution/solution-00000

+---+------------+------------+
Total wallclock time elapsed since start	1.51s		
Section	no. calls	wall time	% of total
+---------------------------------+-----------+------------+------------+			
Assemble Stokes system	1	0.114s	7.6%
Assemble temperature system	1	0.284s	19%
Build Stokes preconditioner	1	0.0935s	6.2%
Build temperature preconditioner	1	0.0043s	0.29%
Solve Stokes system	1	0.0717s	4.8%
Solve temperature system	1	0.000753s	0.05%
Postprocessing	1	0.627s	42%
Setup dof systems	1	0.19s	13%
+---------------------------------+-----------+------------+------------+

One can then visualize the solution in a number of different ways (see Section 4.4), yielding pictures like
those shown in Fig. 83. One can also analyze the error as shown in various different ways, for example as a
function of the mesh refinement level, the element chosen, etc.; we have done so extensively in [59].

5.4.8 The SolKz Stokes benchmark

The SolKz benchmark is another variation on the same theme as the SolCx benchmark above: it solves a
Stokes problem with a spatially variable viscosity, but this time the viscosity is not a discontinuous function.
Instead, it grows exponentially with the vertical coordinate so that its overall variation is again 106. The
forcing is again chosen by imposing a spatially variable density variation. For details, refer again to [34].

The following input file, only a small variation of the one in the previous section, solves the benchmark
(see benchmarks/solkz/):

A description of the SolKZ benchmark for which a known solution
is available. See the manual for more information.

set Additional shared libraries = ./libsolkz.so

205

benchmarks/solkz/

############### Global parameters

set Dimension = 2

set Start time = 0
set End time = 0

set Output directory = output

set Pressure normalization = volume

############### Parameters describing the model

subsection Geometry model
set Model name = box

subsection Box
set X extent = 1
set Y extent = 1

end
end

subsection Boundary velocity model
set Tangential velocity boundary indicators = left, right, bottom, top

end

subsection Material model
set Model name = SolKzMaterial

end

subsection Gravity model
set Model name = vertical

end

############### Parameters describing the temperature field

subsection Boundary temperature model
set List of model names = box

end

subsection Initial temperature model
set Model name = perturbed box

end

############### Parameters describing the discretization

subsection Discretization
set Stokes velocity polynomial degree = 2

206

Figure 84: SolKz Stokes benchmark. Left: The density perturbation field overlaid with velocity vectors. The
viscosity grows exponentially in the vertical direction, leading to small velocities at the top despite the large
density variations. Right: The pressure.

set Use locally conservative discretization = false
end

subsection Mesh refinement
set Initial adaptive refinement = 0
set Initial global refinement = 4

end

############### Parameters describing what to do with the solution

subsection Postprocess
set List of postprocessors = SolKzPostprocessor, visualization

end

The output when running ASPECT on this parameter file looks similar to the one shown for the SolCx
case. The solution when computed with one more level of global refinement is visualized in Fig. 84. The
velocity solution computed with three more levels of global refinement and plotted over the viscosity field is
shown in Fig. 85.

5.4.9 The “inclusion” Stokes benchmark

The “inclusion” benchmark again solves a problem with a discontinuous viscosity, but this time the viscosity
is chosen in such a way that the discontinuity is along a circle. This ensures that, unlike in the SolCx
benchmark discussed above, the discontinuity in the viscosity never aligns to cell boundaries, leading to
much larger difficulties in obtaining an accurate representation of the pressure. Specifically, the almost
discontinuous pressure along this interface leads to oscillations in the numerical solution. This can be seen
in the visualizations shown in Fig. 86. As before, for details we refer to [34]. The analytic solution against
which we compare is given in [81]. An extensive discussion of convergence properties is given in [59].

The benchmark can be run using the parameter files in benchmarks/inclusion/. The material model,
boundary condition, and postprocessor are defined in benchmarks/inclusion/inclusion.cc. Consequently,

207

benchmarks/inclusion/
benchmarks/inclusion/inclusion.cc

Figure 85: SolKz Stokes benchmark. Another view of the velocity vectors, this time plotted over the viscosity
field.

Figure 86: Inclusion Stokes benchmark. Left: The viscosity field when interpolated onto the mesh (internally,
the “exact” viscosity field – large inside a circle, small outside – is used), and overlaid to it some velocity
vectors. Right: The pressure with its oscillations along the interface. The oscillations become more localized
as the mesh is refined.

208

this code needs to be compiled into a shared lib before you can run the tests. Link to a
general section
on how you
can compile
libs for the
benchmarks.
Revisit this
once we have
the machin-
ery in place to
choose nonzero
boundary con-
ditions in a
more elegant
way.
The following
prm file isn’t
annotated yet.
How to anno-
tate if we have
a .lib?

############### Global parameters

set Additional shared libraries = ./libinclusion.so

set Dimension = 2

set Start time = 0
set End time = 0

set Output directory = output

set Pressure normalization = volume

############### Parameters describing the model

subsection Geometry model
set Model name = box

subsection Box
set X extent = 2
set Y extent = 2

end
end

subsection Boundary velocity model
set Prescribed velocity boundary indicators = left : InclusionBoundary, \

right : InclusionBoundary, \
bottom: InclusionBoundary, \
top : InclusionBoundary

end

subsection Material model
set Model name = InclusionMaterial

subsection Inclusion
set Viscosity jump = 1e3

end
end

subsection Gravity model
set Model name = vertical

end

############### Parameters describing the temperature field

subsection Boundary temperature model
set List of model names = box

end

209

subsection Initial temperature model
set Model name = perturbed box

end

############### Parameters describing the discretization

subsection Discretization
set Stokes velocity polynomial degree = 2
set Use locally conservative discretization = false

end

subsection Mesh refinement
set Initial adaptive refinement = 0
set Initial global refinement = 6

end

############### Parameters describing what to do with the solution

subsection Postprocess
set List of postprocessors = InclusionPostprocessor, visualization

end

5.4.10 The Burstedde variable viscosity benchmark

This section was contributed by Iris van Zelst.
This benchmark is intended to test solvers for variable viscosity Stokes problems. It begins with postu-

lating a smooth exact polynomial solution to the Stokes equation for a unit cube, first proposed by [30] and
also described by [18]:

u =

 x+ x2 + xy + x3y
y + xy + y2 + x2y2

−2z − 3xz − 3yz − 5x2yz

 (91)

p = xyz + x3y3z − 5
32 . (92)

It is then trivial to verify that the velocity field is divergence-free. The constant − 5
32 has been added

to the expression of p to ensure that the volume pressure normalization of ASPECT can be used in this
benchmark (in other words, to ensure that the exact pressure has mean value zero and, consequently, can
easily be compared with the numerically computed pressure). Following [18], the viscosity µ is given by the
smoothly varying function

µ = exp {1− β [x(1− x) + y(1− y) + z(1− z)]} . (93)

The maximum of this function is µ = e, for example at (x, y, z) = (0, 0, 0), and the minimum of this function
is µ = exp

(
1− 3β

4

)
at (x, y, z) = (0.5, 0.5, 0.5). The viscosity ratio µ∗ is then given by

µ∗ =
exp

(
1− 3β

4

)
exp(1) = exp

(−3β
4

)
. (94)

210

Hence, by varying β between 1 and 20, a difference of up to 7 orders of magnitude viscosity is obtained. β
will be one of the parameters that can be selected in the input file that accompanies this benchmark.

The corresponding body force of the Stokes equation can then be computed by inserting this solution
into the momentum equation,

∇p−∇ · (2µε(u)) = ρg. (95)
Using equations (91), (92) and (93) in the momentum equation (95), the following expression for the body
force ρg can be found:

ρg =

 yz + 3x2y3z
xz + 3x3y2z
xy + x3y3

− µ
 2 + 6xy

2 + 2x2 + 2y2

−10yz

+ (1− 2x)βµ

 2 + 4x+ 2y + 6x2y
x+ y + 2xy2 + x3

−3z − 10xyz

+ (1− 2y)βµ

 x+ y + 2xy2 + x3

2 + 2x+ 4y + 4x2y
−3z − 5x2z

+ (1− 2z)βµ

 −3z − 10xyz
−3z − 5x2z

−4− 6x− 6y − 10x2y

 (96)

Assuming ρ = 1, the above expression translates into an expression for the gravity vector g. This expression
for the gravity (even though it is completely unphysical), has consequently been incorporated into the
BursteddeGravity gravity model that is described in the benchmarks/burstedde/burstedde.cc file that
accompanies this benchmark.

We will use the input file benchmarks/burstedde/burstedde.prm as input, which is very similar to the
input file benchmarks/inclusion/adaptive.prm discussed above in Section 5.4.9. The major changes for
the 3D polynomial Stokes benchmark are listed below:

subsection Solver parameters
subsection Stokes solver parameters

set Linear solver tolerance = 1e-12
end

end

Boundary conditions
subsection Boundary velocity model

set Prescribed velocity boundary indicators = left : BursteddeBoundary, \
right : BursteddeBoundary, \
front : BursteddeBoundary, \
back : BursteddeBoundary, \
bottom: BursteddeBoundary, \
top : BursteddeBoundary

end

subsection Material model
set Model name = BursteddeMaterial

end

subsection Gravity model
set Model name = BursteddeGravity

end

subsection Burstedde benchmark
Viscosity parameter is beta
set Viscosity parameter = 20

end

211

(a) (b)

(c) (d)

Figure 87: Burstedde benchmark: Results for the 3D polynomial Stokes benchmark, obtained with a reso-
lution of 16× 16 elements, with β = 10.

subsection Postprocess
set List of postprocessors = visualization, velocity statistics, BursteddePostprocessor

end

The boundary conditions that are used are simply the velocities from equation (91) prescribed on each
boundary. The viscosity parameter in the input file is β. Furthermore, in order to compute the velocity
and pressure L1 and L2 norm, the postprocessor BursteddePostprocessor is used. Please note that the
linear solver tolerance is set to a very small value (deviating from the default value), in order to ensure that
the solver can solve the system accurately enough to make sure that the iteration error is smaller than the
discretization error.

Expected analytical solutions at two locations are summarised in Table 6 and can be deduced from
equations (91) and (92). Figure 87 shows that the analytical solution is indeed retrieved by the model.

Table 6: Analytical solutions
Quantity r = (0, 0, 0) r = (1, 1, 1)
p −0.15625 1.84375
u (0, 0, 0) (4, 4,−13)
|u| 0 14.177

The convergence of the numerical error of this benchmark has been analysed by playing with the mesh
refinement level in the input file, and results can be found in Figure 88. The velocity shows cubic error
convergence, while the pressure shows quadratic convergence in the L1 and L2 norms, as one would hope for
using Q2 elements for the velocity and Q1 elements for the pressure.

212

 1e-08
 1e-07
 1e-06
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1

 10

a) Velocity error (L1 norm)

x-3

 1e-08
 1e-07
 1e-06
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1
 10

 10

ncell x

c) Velocity error (L2 norm)

x-3

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 10

b) Pressure error (L1 norm)

x-2

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 10

ncell x

d) Pressure error (L2 norm)

β = 0
β = 1

β = 10
β = 20

x-2

Figure 88: Burstedde benchmark: Error convergence for the 3D polynomial Stokes benchmark.

5.4.11 The slab detachment benchmark

This section was contributed by Cedric Thieulot and Anne Glerum.
Slab detachment (slab break-off) may occur in the final stages of subduction as a consequence of the

combination of a buoyant crust and strong slab pull. It is often invoked to explain geophysical and geological
observations such as tomographic images of slab remnants and exhumed ultra-high-pressure rocks [96, 91, 36].

This benchmark is based on the setup by S. Schmalholtz [77], which was subsequently run with ASPECT
by A. Glerum [40]. The computational domain is a 1000km × 660km box. No-slip boundary conditions are
imposed on the sides of the system, while free-slip boundary conditions are imposed at the top and bottom.

Two materials are present in the domain: the lithosphere and the mantle as shown in Figure 89. The
gravity acceleration is Earth-like with g = 9.81ms2. The overriding plate is 80km thick and is placed at the
top of the domain. The already subducted lithosphere extends vertically into the mantle for 250km. This
slab has a density ρs = 3300kg/m3 and is characterized by a power-law flow law so that its effective viscosity
depends on the square root of the second invariant of the strainrate ε̇:

ηeff = η0 ε̇
1/n−1

with n = 4 and η0 = 4.75×1011Pa s. The mantle occupies the rest of the domain and has a constant viscosity
ηm = 1021Pa s and a density ρm = 3150kg/m3. Viscosity is capped between 1021Pa s and 1025Pa s. Figure 90
shows the various fields and their evolution through time. As shown in [77, 40] the hanging slab necks, helped
by the localizing effect of the nonlinear rheology. Model results were shown to compare favorably to the
results of [77] in [40, 46] and the effect of viscosity and material averaging was explored in [40].

213

Figure 89: Slab detachment benchmark: Initial geometry

5.4.12 The hollow sphere benchmark

This benchmark is based on Thieulot [87] in which an analytical solution to the isoviscous incompressible
Stokes equations is derived in a spherical shell geometry. The velocity and pressure fields are as follows:

vr(r, θ) = g(r) cos θ, (97)
vθ(r, θ) = f(r) sin θ, (98)
vφ(r, θ) = f(r) sin θ, (99)
p(r, θ) = h(r) cos θ, (100)

where

f(r) = α

r2 + βr, (101)

g(r) = − 2
r2

(
α ln r + β

3 r
3 + γ

)
, (102)

h(r) = 2µ0

r
g(r), (103)

with

α = −γ R3
2 −R3

1
R3

2 lnR1 −R3
1 lnR2

, (104)

β = −3γ lnR2 − lnR1

R3
1 lnR2 −R3

2 lnR1
. (105)

These two parameters are chosen so that vr(R1) = vr(R2) = 0, i.e. the velocity is tangential to both inner
and outer surfaces. The gravity vector is radial and of unit length, while the density is given by:

ρ(r, θ) =
(
α

r4 (8 ln r − 6) + 8β
3r + 8 γ

r4

)
cos θ. (106)

We set R1 = 0.5, R2 = 1 and γ = −1. The pressure is zero on both surfaces so that the surface pressure
normalization is used. The boundary conditions that are used are simply the analytical velocity prescribed
on both boundaries. The velocity and pressure fields are shown in Fig. 91.

214

Figure 90: Slab detachment benchmark: a,b) velocity and strain rate fields at t = 0. c,d,e) and f,g,h) time
evolution of the viscosity and slab composition fields at t = 0, 6, 12Myr.

215

Figure 91: Velocity and pressure fields for the hollow sphere benchmark.

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

 0.01 0.1 1

L 2
 e

rro
r

h

eu
ep
h3

h2

Figure 92: Velocity and pressure errors in the L2-norm as a function of the mesh size.

Fig. 92 shows the velocity and pressure errors in the L2-norm as a function of the mesh size h (taken in
this case as the radial extent of the elements). As expected we recover a third-order convergence rate for the
velocity and a second-order convergence rate for the pressure.

5.4.13 The 2D annulus benchmark

This benchmark is based on Thieulot & Puckett [Subm.] in which an analytical solution to the isoviscous
incompressible Stokes equations is derived in an annulus geometry. The velocity and pressure fields are as
follows:

vr(r, θ) = g(r)k sin(kθ), (107)
vθ(r, θ) = f(r) cos(kθ), (108)
p(r, θ) = kh(r) sin(kθ), (109)
ρ(r, θ) = ℵ(r)k sin(kθ), (110)

216

with

f(r) = Ar +B/r, (111)

g(r) = A

2 r + B

r
ln r + C

r
, (112)

h(r) = 2g(r)− f(r)
r

, (113)

ℵ(r) = g′′ − g′

r
− g

r2 (k2 − 1) + f

r2 + f ′

r
, (114)

A = −C 2(lnR1 − lnR2)
R2

2 lnR1 −R2
1 lnR2

, (115)

B = −C R2
2 −R2

1
R2

2 lnR1 −R2
1 lnR2

. (116)

The parameters A and B are chosen so that vr(R1) = vr(R2) = 0, i.e. the velocity is tangential to both
inner and outer surfaces. The gravity vector is radial and of unit length.

The parameter k controls the number of convection cells present in the domain, as shown in Fig. 93.
In the present case, we set R1 = 1, R2 = 2 and C = −1. Fig. 94 shows the velocity and pressure errors

in the L2-norm as a function of the mesh size h (taken in this case as the radial extent of the elements). As
expected we recover a third-order convergence rate for the velocity and a second-order convergence rate for
the pressure.

5.4.14 The “Stokes’ law” benchmark

This section was contributed by Juliane Dannberg.
Stokes’ law was derived by George Gabriel Stokes in 1851 and describes the frictional force a sphere with

a density different than the surrounding fluid experiences in a laminar flowing viscous medium. A setup for
testing this law is a sphere with the radius r falling in a highly viscous fluid with lower density. Due to its
higher density the sphere is accelerated by the gravitational force. While the frictional force increases with
the velocity of the falling particle, the buoyancy force remains constant. Thus, after some time the forces
will be balanced and the settling velocity of the sphere vs will remain constant:

6π η r vs︸ ︷︷ ︸
frictional force

= 4/3π r3 ∆ρ g,︸ ︷︷ ︸
buoyancy force

(117)

where η is the dynamic viscosity of the fluid, ∆ρ is the density difference between sphere and fluid and g the
gravitational acceleration. The resulting settling velocity is then given by

vs = 2
9

∆ρ r2 g

η
. (118)

Because we do not take into account inertia in our numerical computation, the falling particle will reach the
constant settling velocity right after the first timestep.

For the setup of this benchmark, we chose the following parameters:

r = 200 km
∆ρ = 100 kg/m3

η = 1022 Pa s
g = 9.81 m/s2.

With these values, the exact value of sinking velocity is vs = 8.72× 10−10 m/s.

217

Figure 93: Pressure, density and velocity fields for k = 0, 1, 2, 3 for the 2D annulus benchmark.

218

1.000000E-07

1.000000E-06

1.000000E-05

1.000000E-04

1.000000E-03

1.000000E-02

1.000000E-01

1.000000E+00

 0.001 0.01 0.1 1

L 2
 e

rro
r

h

eu, k=1
eu, k=4
eu, k=8
ep, k=1
ep, k=4
ep, k=8

h3

h2

Figure 94: Velocity and pressure errors in the L2-norm as a function of the mesh size for the 2D annulus
benchmark.

To run this benchmark, we need to set up an input file that describes the situation. In principle, what we
need to do is to describe a spherical object with a density that is larger than the surrounding material. There
are multiple ways of doing this. For example, we could simply set the initial temperature of the material
in the sphere to a lower value, yielding a higher density with any of the common material models. Or, we
could use ASPECT’s facilities to advect along what are called “compositional fields” and make the density
dependent on these fields.

We will go with the second approach and tell ASPECT to advect a single compositional field. The initial
conditions for this field will be zero outside the sphere and one inside. We then need to also tell the material
model to increase the density by ∆ρ = 100kgm−3 times the concentration of the compositional field. This
can be done, like everything else, from the input file.

All of this setup is then described by the following input file. (You can find the input file to run this
cookbook example in cookbooks/stokes.prm. For your first runs you will probably want to reduce the
number of mesh refinement steps to make things run more quickly.)

############### Global parameters
We use a 3d setup. Since we are only interested
in a steady state solution, we set the end time
equal to the start time to force a single time
step before the program terminates.

set Dimension = 3

set Start time = 0
set End time = 0
set Use years in output instead of seconds = false

set Output directory = output-stokes

############### Parameters describing the model
The setup is a 3d box with edge length 2890000 in which
all 6 sides have free slip boundary conditions. Because
the temperature plays no role in this model we need not

219

cookbooks/stokes.prm

bother to describe temperature boundary conditions or
the material parameters that pertain to the temperature.

subsection Geometry model
set Model name = box

subsection Box
set X extent = 2890000
set Y extent = 2890000
set Z extent = 2890000

end
end

subsection Boundary velocity model
set Tangential velocity boundary indicators = left, right, front, back, bottom, top

end

subsection Material model
set Model name = simple

subsection Simple model
set Reference density = 3300
set Viscosity = 1e22

end
end

subsection Gravity model
set Model name = vertical

subsection Vertical
set Magnitude = 9.81

end
end

############### Parameters describing the temperature field
As above, there is no need to set anything for the
temperature boundary conditions.

subsection Boundary temperature model
set List of model names = box

end

subsection Initial temperature model
set Model name = function

subsection Function
set Function expression = 0

end
end

############### Parameters describing the compositional field

220

This, however, is the more important part: We need to describe
the compositional field and its influence on the density
function. The following blocks say that we want to
advect a single compositional field and that we give it an
initial value that is zero outside a sphere of radius
r=200000m and centered at the point (p,p,p) with
p=1445000 (which is half the diameter of the box) and one inside.
The last block re-opens the material model and sets the
density differential per unit change in compositional field to
100.

subsection Compositional fields
set Number of fields = 1

end

subsection Initial composition model
set Model name = function

subsection Function
set Variable names = x,y,z
set Function constants = r=200000,p=1445000
set Function expression = if(sqrt((x-p)*(x-p)+(y-p)*(y-p)+(z-p)*(z-p)) > r, 0, 1)

end
end

subsection Material model
subsection Simple model

set Density differential for compositional field 1 = 100
end

end

############### Parameters describing the discretization
The following parameters describe how often we want to refine
the mesh globally and adaptively, what fraction of cells should
be refined in each adaptive refinement step, and what refinement
indicator to use when refining the mesh adaptively.

subsection Mesh refinement
set Initial adaptive refinement = 4
set Initial global refinement = 4
set Refinement fraction = 0.2
set Strategy = velocity

end

############### Parameters describing what to do with the solution
The final section allows us to choose which postprocessors to
run at the end of each time step. We select to generate graphical
output that will consist of the primary variables (velocity, pressure,
temperature and the compositional fields) as well as the density and
viscosity. We also select to compute some statistics about the
velocity field.

221

subsection Postprocess
set List of postprocessors = visualization, velocity statistics

subsection Visualization
set List of output variables = density, viscosity

end
end

Using this input file, let us try to evaluate the results of the current computations for the settling velocity
of the sphere. You can visualize the output in different ways, one of it being ParaView and shown in Fig. 95
(an alternative is to use Visit as described in Section 4.4; 3d images of this simulation using Visit are shown
in Fig. 96). Here, ParaView has the advantage that you can calculate the average velocity of the sphere
using the following filters:

1. Threshold (Scalars: C_1, Lower Threshold 0.5, Upper Threshold 1),

2. Integrate Variables,

3. Cell Data to Point Data,

4. Calculator (use the formula sqrt(velocity_x^2+ velocity_y^2+velocity_z^2)/Volume).

If you then look at the Calculator object in the Spreadsheet View, you can see the average sinking velocity
of the sphere in the column “Result” and compare it to the theoretical value vs = 8.72× 10−10 m/s. In this
case, the numerical result is 8.865× 10−10 m/s when you add a few more refinement steps to actually resolve
the 3d flow field adequately. The “velocity statistics” postprocessor we have selected above also provides us
with a maximal velocity that is on the same order of magnitude. The difference between the analytical and
the numerical values can be explained by different at least the following three points: (i) In our case the
sphere is viscous and not rigid as assumed in Stokes’ initial model, leading to a velocity field that varies inside
the sphere rather than being constant. (ii) Stokes’ law is derived using an infinite domain but we have a finite
box instead. (iii) The mesh may not yet fine enough to provide a fully converges solution. Nevertheless, the
fact that we get a result that is accurate to less than 2% is a good indication that ASPECT implements
the equations correctly.

5.4.15 Viscosity grooves benchmark

This benchmark was designed by Dave May and this section was contributed by Cedric Thieulot.
The domain is a two-dimensional Cartesian box of size L×L. The velocity and pressure fields are given

by

u(x, y) = x3y + x2 + xy + x, (119)

v(x, y) = −3
2x

2y2 − 2xy − 1
2y

2 − y, (120)

p(x, y) = x2y2 + xy + 5 + p0, (121)

where p0 is a constant to be determined based on the type of pressure normalization. The viscosity is chosen
to be

η(x, y) = − sin(p) + 1 + ε = − sin(x2y2 + xy + 5) + 1 + ε, (122)

where ε controls the viscosity contrast. It is easy to verify that the flow is incompressible as the velocity field
satisfies ∇ · u = 0. The right hand side term of the Stokes equation is obtained by inserting the expressions
for velocity, pressure and viscosity in the momentum conservation equation, see [88] for details. The velocity,
pressure and right hand side magnitude are shown in Figure 97 for L = 3 and ε = 0.1.

222

Figure 95: Stokes benchmark. Both figures show only a 2D slice of the three-dimensional model. Left: The
compositional field and overlaid to it some velocity vectors. The composition is 1 inside a sphere with the
radius of 200 km and 0 outside of this sphere. As the velocity vectors show, the sphere sinks in the viscous
medium. Right: The density distribution of the model. The compositional density contrast of 100 kg/m3

leads to a higher density inside of the sphere.

Figure 96: Stokes benchmark. Three-dimensional views of the compositional field (left), the adaptively refined
mesh (center) and the resulting velocity field (right).

223

Figure 97: Viscosity grooves benchmark: From left to right, velocity field, pressure field, and norm of the
right hand side of the momentum equation, for a 3× 3 domain with ε = 0.1.

Figure 98: Viscosity grooves benchmark: Viscosity field for three domain sizes: 1× 1, 2× 2 and 3× 3.

The p0 constant can be determined by requiring that the pressure is normalized over the volume of the
domain: ∫

Ω
pdV =

∫ L

0

∫ L

0
p(x, y) dxdy =

∫ L

0

∫ L

0
(x2y2 + xy + 5) dx dy +

∫ L

0

∫ L

0
p0 dx dy = 0. (123)

It then follows that:
p0 = − 1

L2

∫ L

0

∫ L

0
(x2y2 + xy + 5)dxdy = −L

4

9 −
L2

4 − 5. (124)

As seen in Figure 98, the value of ε controls the viscosity field amplitude: when the sin term of the
viscosity takes value 1, the viscosity is then equal to ε; when the sin is equal to −1, the viscosity is then
2 + ε. In other words, the ratio between maximal and minimal viscosity in the domain is of the order 2

ε .
Another interesting aspect of this benchmark is the fact that increasing the domain size adds complexity

to it as it increases the number of low viscosity zones and the spacing between them decreases.
The velocity and pressure errors (in the L2 norm) are measured for L = 1, 2, 3, global refinement levels

3 to 9 (resolutions 8× 8 to 512× 512) and ε = 10−1, 10−2, 10−3. Figure 99 shows the velocity and pressure
error convergence as a function of the mesh size for ε = 0.1 (results are identical for the other two ε values).

224

 1x10-10

 1x10-8

 1x10-6

 0.0001

 0.01

 1

 100

 0.01 0.1

|e
| 2

h

h3

h2

v, 1x1
p, 1x1
v, 2x2
p, 2x2
v, 3x3
p, 3x3

Figure 99: Viscosity grooves benchmark: Velocity and pressure error convergence as a function of the mesh
size h for 3 domain sizes.

The expected convergence rates (cubic convergence for velocity and quadratic for pressure) are recovered for
the 1 × 1 domain at all resolutions. These rates are recovered for the 2 × 2 domain for resolutions above
level 6. We find that the multitude of low viscosity bands in the upper right corner of the 3× 3 domain will
require a refinement level larger than 9 to recover the optimal convergence rates.

5.4.16 Latent heat benchmark

This section was contributed by Juliane Dannberg.
The setup of this benchmark is taken from Schubert, Turcotte and Olson [82] (part 1, p. 194) and is

illustrated in Fig. 100. It tests whether the latent heat production when material crosses a phase transition
is calculated correctly according to the laws of thermodynamics. The material model defines two phases in
the model domain with the phase transition approximately in the center. The material flows in from the top
due to a prescribed downward velocity, and crosses the phase transition before it leaves the model domain
at the bottom. As initial condition, the model uses a uniform temperature field, however, upon the phase
change, latent heat is released. This leads to a characteristic temperature profile across the phase transition
with a higher temperature in the bottom half of the domain. To compute it, we have to solve equation (3) or
its reformulation (5). For steady-state one-dimensional downward flow with vertical velocity vy, it simplifies
to the following:

ρCpvy
∂T

∂y
= ρT∆Svy

∂X

∂y
+ ρCpκ

∂2T

∂y2 .

Here, ρCpκ = k with k the thermal conductivity and κ the thermal diffusivity. The first term on the right-
hand side of the equation describes the latent heat produced at the phase transition: It is proportional to
the temperature T, the entropy change ∆S across the phase transition divided by the specific heat capacity
and the derivative of the phase function X. If the velocity is smaller than a critical value, and under the
assumption of a discontinuous phase transition (i.e. with a step function as phase function), this latent

225

Figure 100: Latent heat benchmark. Both figures show the 2D box model domain. Left: Setup of the
benchmark together with a sketch of the expected temperature profile across the phase transition. The dashed
line marks the phase transition. Material flows in with a prescribed temperature and velocity at the top,
crosses the phase transition in the center and flows out at the bottom. The predicted bottom temperature
is T2 = 1109.08 K. Right: Temperature distribution of the model together with the associated temperature
profile across the phase transition. The modelled bottom temperature is T2 = 1107.39 K.

heating term will be zero everywhere except for the one point ytr where the phase transition takes place.
This means, we have a region above the phase transition with only phase 1, and below a certain depth a
jump to a region with only phase 2. Inside of these one-phase regions, we can solve the equation above (using
the boundary conditions T = T1 for y →∞ and T = T2 for y → −∞) and get

T (y) =
{
T1 + (T2 − T1)e

vy(y−ytr)
κ , y > ytr

T2, y < ytr

While it is not entirely obvious while this equation for T (y) should be correct (in particular why it should be
asymmetric), it is not difficult to verify that it indeed satisfies the equation stated above for both y < ytr and
y > ytr. Furthermore, it indeed satisfies the jump condition we get by evaluating the equation at y = ytr.
Indeed, the jump condition can be reinterpreted as a balance of heat conduction: We know the amount of
heat that is produced at the phase boundary, and as we consider only steady-state, the same amount of heat
is conducted upwards from the transition:

ρvyT∆S︸ ︷︷ ︸
latent heat release

= κ

ρ0Cp

∂T

∂y
|y=ytr− = vy

ρ0Cp
(T2 − T1)︸ ︷︷ ︸

heat conduction

In contrast to [82], we also consider the density change ∆ρ across the phase transition: While the heat
conduction takes place above the transition and the density can be assumed as ρ = ρ0 = const., the latent
heat is released directly at the phase transition. Thus, we assume an average density ρ = ρ0 + 0.5∆ρ for the
left side of the equation. Rearranging this equation gives

226

T2 = T1

1− (1 + ∆ρ
2ρ0

)∆S
Cp

In addition, we have tested the approach exactly as it is described in [82] by setting the entropy change
to a specific value and in spite of that using a constant density. However, this is physically inconsistent, as
the entropy change is proportional to the density change across the phase transition. With this method, we
could reproduce the analytic results from [82].

The exact values of the parameters used for this benchmark can be found in Fig. 100. They result
in a predicted value of T2 = 1109.08 K for the temperature in the bottom half of the model, and we will
demonstrate below that we can match this value in our numerical computations. However, it is not as simple
as suggested above. In actual numerical computations, we can not exactly reproduce the behavior of Dirac
delta functions as would result from taking the derivative ∂X

∂y of a discontinuous function X(y). Rather,
we have to model X(y) as a function that has a smooth transition from one value to another, over a depth
region of a certain width. In the material model plugin we will use below, this depth is an input parameter
and we will play with it in the numerical results shown after the input file.

To run this benchmark, we need to set up an input file that describes the situation. In principle, what we
need to do is to describe the position and entropy change of the phase transition in addition to the previously
outlined boundary and initial conditions. For this purpose, we use the “latent heat” material model that
allows us to set the density change ∆ρ and Clapeyron slope γ (which together determine the entropy change
via ∆S = γ∆ρ

ρ2) as well as the depth of the phase transition as input parameters.
All of this setup is then described by the input file cookbooks/latent-heat.prm that models flow in

a box of 106 meters of height and width, and a fixed downward velocity. The following section shows the
central part of this file:

subsection Material model
set Model name = latent heat
subsection Latent heat

The change of density across the phase transition. Together with the
Clapeyron slope, this is what determines the entropy change.
set Phase transition density jumps = 115.6
set Corresponding phase for density jump = 0

If the temperature is equal to the phase transition temperature, the
phase transition will occur at the phase transition depth. However,
if the temperature deviates from this value, the Clapeyron slope
determines how much the pressure (and depth) of the phase boundary
changes. Here, the phase transition will be in the middle of the box
for T=T1.
set Phase transition depths = 500000
set Phase transition temperatures = 1000
set Phase transition Clapeyron slopes = 1e7

We set the width of the phase transition to 5 km. You may want to
change this parameter to see how latent heating depends on the width
of the phase transition.
set Phase transition widths = 5000

set Reference density = 3400
set Reference specific heat = 1000
set Reference temperature = 1000
set Thermal conductivity = 2.38

227

cookbooks/latent-heat.prm

Figure 101: Results of the latent heat benchmark. Both figures show the modelled temperature T2 at the
bottom of the model domain. Left: T2 in dependence of resolution using a constant phase transition width
of 20 km. With an increasing number of global refinements of the mesh, the bottom temperature converges
against a value of T2 = 1105.27 K. Right: T2 in dependence of phase transition width. The model resolution
is chosen proportional to the phase transition width, starting with 5 global refinements for a width of 20 km.
With decreasing phase transition width, T2 approaches the theoretical value of 1109.08 K

We set the thermal expansion amd the compressibility to zero, so that
all temperature (and density) changes are caused by advection, diffusion
and latent heating.
set Thermal expansion coefficient = 0.0
set Compressibility = 0.0

Viscosity is constant.
set Thermal viscosity exponent = 0.0
set Viscosity = 8.44e21
set Viscosity prefactors = 1.0, 1.0
set Composition viscosity prefactor = 1.0

end
end

The complete input file referenced above also sets the number of mesh refinement steps. For your first
runs you will probably want to reduce the number of mesh refinement steps to make things run more quickly.
Later on, you might also want to change the phase transition width to look how this influences the result.

Using this input file, let us try to evaluate the results of the current computations. We note that it
takes some time for the model to reach a steady state and only then does the bottom temperature reach the
theoretical value. Therefore, we use the last output step to compare predicted and computed values. You
can visualize the output in different ways, one of it being ParaView and shown in Fig. 100 on the right side
(an alternative is to use Visit as described in Section 4.4). In ParaView, you can plot the temperature profile
using the filter “Plot Over Line” (Point1: 500000,0,0; Point2: 500000,1000000,0, then go to the “Display”
tab and select “T” as only variable in the “Line series” section) or “Calculator” (as seen in Fig. 100). In
Fig. 101 (left) we can see that with increasing resolution, the value for the bottom temperature converges to
a value of T2 = 1105.27 K.

However, this is not what the analytic solution predicted. The reason for this difference is the width of
the phase transition with which we smooth out the Dirac delta function that results from differentiating the
X(y) we would have liked to use in an ideal world. (In reality, however, for the Earth’s mantle we also expect
phase transitions that are distributed over a certain depth range and so the smoothed out approach may not
be a bad approximation.) Of course, the results shown above result from an the analytical approach that is

228

only correct if the phase transition is discontinuous and constrained to one specific depth y = ytr. Instead,
we chose a hyperbolic tangent as our phase function. Moreover, Fig. 101 (right) illustrates what happens to
the temperature at the bottom when we vary the width of the phase transition: The smaller the width, the
closer the temperature gets to the predicted value of T2 = 1109.08 K, demonstrating that we converge to the
correct solution.

5.4.17 The 2D cylindrical shell benchmarks by Davies et al.

This section was contributed by William Durkin and Wolfgang Bangerth.
All of the benchmarks presented so far take place in a Cartesian domain. Davies et al. describe a bench-

mark (in a paper that is currently still being written) for a 2D spherical Earth that is nondimensionalized
such that

rmin = 1.22 T |rmin = 1
rmax = 2.22 T |rmax = 0

The benchmark is run for a series of approximations (Boussinesq, Extended Boussinesq, Truncated
Anelastic Liquid, and Anelastic Liquid), and temperature, velocity, and heat flux calculations are com-
pared with the results of other mantle modeling programs. ASPECT will output all of these values directly
except for the Nusselt number, which we must calculate ourselves from the heat fluxes that ASPECT can
compute. The Nusselt number of the top and bottom surfaces, NuT and NuB , respectively, are defined by
the authors of the benchmarks as

NuT = ln(f)
2πrmax(1− f)

2π∫
0

∂T

∂r
dθ (125)

and

NuB = f ln(f)
2πrmin(1− f)

2π∫
0

∂T

∂r
dθ

where f is the ratio rmin
rmax

.
We can put this in terms of heat flux

qr = −k∂T
∂r

through the inner and outer surfaces, where qr is heat flux in the radial direction. Let Q be the total heat
that flows through a surface,

Q =
2π∫
0

qr dθ,

then (125) becomes

NuT = −QT ln(f)
2πrmax(1− f)k

and similarly
NuB = −QBf ln(f)

2πrmin(1− f)k .

QT and QB are heat fluxes that ASPECT can readily compute through the heat flux statistics post-
processor (see Section A.137). For further details on the nondimensionalization and equations used for each
approximation, refer to Davies et al.

The series of benchmarks is then defined by a number of cases relating to the exact equations chosen to
model the fluid. We will discuss these in the following.

229

Case 1.1: BA_Ra104_Iso_ZS. This case is run with the following settings:

• Boussinesq Approximation

• Boundary Condition: Zero-Slip

• Rayleigh Number = 104

• Initial Conditions: D = 0, O = 4

• η(T) = 1

where D and O refer to the degree and order of a spherical harmonic that describes the initial temperature.
While the initial conditions matter, what is important here though is that the system evolve to four convective
cells since we are only interested in the long term, steady state behavior.

The model is relatively straightforward to set up, basing the input file on that discussed in Section 5.3.1.
The full input file can be found at benchmarks/davies_et_al/case-1.1.prm, with the interesting parts
excerpted as follows:

############### Parameters describing the model

subsection Geometry model
set Model name = spherical shell
subsection Spherical shell

set Inner radius = 1.22
set Opening angle = 360
set Outer radius = 2.22

end
end

[...]

subsection Material model
set Model name = simple
subsection Simple model

set Reference density = 1
set Reference specific heat = 1.
set Reference temperature = 0
set Thermal conductivity = 1
set Thermal expansion coefficient = 1e-6
set Viscosity = 1

end
end

############### Parameters describing the temperature field
Angular mode is set to 4 in order to match the number of
convective cells reported by Davies et al.

subsection Initial temperature model
set Model name = spherical hexagonal perturbation
subsection Spherical hexagonal perturbation

set Angular mode = 4
set Rotation offset = 0

end
end

230

benchmarks/davies_et_al/case-1.1.prm

############### Prescribe the Rayleigh number as g*alpha
Here, Ra = 10^4 and alpha was chosen as 10^-6 above.
subsection Gravity model

set Model name = radial constant
subsection Radial constant

set Magnitude = 1e10
end

end

[...]

We use the same trick here as in Section 5.2.1 to produce a model in which the density ρ(T) in the tem-
perature equation (3) is almost constant (namely, by choosing a very small thermal expansion coefficient) as
required by the benchmark, and instead prescribe the desired Rayleigh number by choosing a correspondingly
large gravity.

Results for this and the other cases are shown below.

Case 2.1: BA_Ra104_Iso_FS. Case 2.1 uses the following setup, differing only in the boundary
conditions:

• Boussinesq Approximation

• Boundary Condition: Free-Slip

• Rayleigh Number = 104

• Initial Conditions: D = 0, O = 4

• η(T) = 1

As a consequence of the free slip boundary conditions, any solid body rotation of the entire system
satisfies the Stokes equations with their boundary conditions. In other words, the solution of the problem
is not unique: given a solution, adding a solid body rotation yields another solution. We select arbitrarily
the one that has no net rotation (see Section A.136). The section in the input file that is relevant is then as
follows (the full input file resides at benchmarks/davies_et_al/case-2.1.prm):

subsection Nullspace removal
set Remove nullspace = net rotation

end

subsection Boundary temperature model
set Fixed temperature boundary indicators = 0,1

end

subsection Boundary velocity model
set Tangential velocity boundary indicators = 0,1

end

Again, results are shown below.

Case 2.2: BA_Ra105_Iso_FS. Case 2.2 is described as follows:

• Boussinesq Approximation

• Boundary Condition: Free-Slip

231

benchmarks/davies_et_al/case-2.1.prm

• Rayleigh Number = 105

• Initial Conditions: Final conditions of case 2.1 (BA_Ra104_Iso_FS)

• η(T) = 1

In other words, we have an increased Rayleigh number and begin with the final steady state of case 2.1. To
start the model where case 2.1 left off, the input file of case 2.1, benchmarks/davies_et_al/case-2.1.prm,
instructs ASPECT to checkpoint itself every few time steps (see Section 4.5). If case 2.2 uses the same
output directory, we can then resume the computations from this checkpoint with an input file that prescribes
a different Rayleigh number and a later input time:

############### Global parameters
Case 2.2 begins with the final steady state solution of Case 2.1
"Resume computation" must be set to true, and "Output directory" must
point to the folder that contains the results of Case 2.1.

set CFL number = 10

set End time = 3
set Output directory = output

set Resume computation = true

We increase the Rayleigh number to 105 by increasing the magnitude of gravity in the input file. The
full script for case 2.2 is located in benchmarks/davies_et_al/case-2.2.prm

Case 2.3: BA_Ra103_vv_FS. Case 2.3 is a variation on the previous one:

• Boussinesq Approximation

• Boundary Condition: Free-Slip

• Rayleigh Number = 103

• Initial Conditions: Final conditions of case 2.1 (BA_Ra104_Iso_FS)

• η(T) = 1000−T

The Rayleigh number is smaller here (and is selected using the gravity parameter in the input file, as before),
but the more important change is that the viscosity is now a function of temperature. At the time of writing,
there is no material model that would implement such a viscosity, so we create a plugin that does so for
us (see Sections 6 and 6.2 in general, and Section 6.4.1 for material models in particular). The code for it
is located in benchmarks/davies_et_al/case-2.3-plugin/VoT.cc (where “VoT” is short for “viscosity as
a function of temperature”) and is essentially a copy of the simpler material model. The primary change
compared to the simpler material model is the line about the viscosity in the following function:

template <int dim>
void
VoT<dim>::
evaluate(const typename Interface<dim>::MaterialModelInputs &in,

typename Interface<dim>::MaterialModelOutputs &out) const
{

for (unsigned int i=0; i<in.position.size(); ++i)
{

out.viscosities[i] = eta*std::pow(1000,(-in.temperature[i]));
out.densities[i] = reference_rho * (1.0 - thermal_alpha * (in.temperature[i] - reference_T));
out.thermal_expansion_coefficients[i] = thermal_alpha;

232

benchmarks/davies_et_al/case-2.1.prm
benchmarks/davies_et_al/case-2.2.prm
benchmarks/davies_et_al/case-2.3-plugin/VoT.cc

out.specific_heat[i] = reference_specific_heat;
out.thermal_conductivities[i] = k_value;
out.compressibilities[i] = 0.0;

}
}

Using the method described in Sections 5.4.1 and 6.2, and the files in the benchmarks/davies_et_al/case-2.3-plugin,
we can compile our new material model into a shared library that we can then reference from the input file.
The complete input file for case 2.3 is located in benchmarks/davies_et_al/case-2.3.prm and contains
among others the following parts:
set Additional shared libraries = ./case-2.3-plugin/libVoT.so

subsection Material model
set Model name = VoT

subsection VoT model
set Reference density = 1
set Reference specific heat = 1.
set Reference temperature = 0
set Thermal conductivity = 1
set Thermal expansion coefficient = 1e-5
set Viscosity = 1

end
end

Results. In the following, let us discuss some of the results of the benchmark setups discussed above. First,
the final steady state temperature fields are shown in Fig. 102. It is immediately obvious how the different
Rayleigh numbers affect the width of the plumes. If one imagines a setup with constant gravity, constant
inner and outer temperatures and constant thermal expansion coefficient (this is not how we describe it in
the input files, but we could have done so and it is closer to how we intuit about fluids than adjusting the
gravity), then the Rayleigh number is inversely proportional to the viscosity – and it is immediately clear
that larger Rayleigh numbers (corresponding to lower viscosities) then lead to thinner plumes. This is nicely
reflected in the visualizations.

(a) Case 1.1 (b) Case 2.1 (c) Case 2.2 (d) Case 2.3

Figure 102: Davies et al. benchmarks: Final steady state temperature fields for the 2D cylindrical benchmark
cases.

Secondly, Fig. 103 shows the root mean square velocity as a function of time for the various cases. It is
obvious that they all converge to steady state solutions. However, there is an initial transient stage and, in
cases 2.2 and 2.3, a sudden jolt to the system at the time where we switch from the model used to compute
up to time t = 2 to the different models used after that.

233

benchmarks/davies_et_al/case-2.3.prm

(a) Case 1.1 (b) Case 2.1

(c) Case 2.2 (d) Case 2.3

Figure 103: Davies et al. benchmarks: Vrms for 2D Cylindrical Cases. Large jumps occur when transitioning
from case 2.1 to cases 2.2 and 2.3 due to the instantaneous change of parameter settings.

These runs also produce quantitative data that will be published along with the concise descriptions of
the benchmarks and a comparison with other codes. In particular, some of the criteria listed above to judge
the accuracy of results are listed in Table 7.37

5.4.18 The Crameri et al. benchmarks

This section was contributed by Ian Rose.
37The input files available in the benchmarks/davies_et_al directory use 5 global refinements in order to provide cases that

can be run without excessive trouble on a normal computer. However, this is not enough to achieve reasonable accuracy and
both the data shown below and the data submitted to the benchmarking effort uses 7 global refinement steps, corresponding
to a mesh with 1536 cells in tangential and 128 cells in radial direction. Computing on such meshes is not cheap, as it leads to
a problem size of more than 2.5 million unknowns. It is best done using a parallel computation.

Case 〈T 〉 NuT NuB Vrms
1.1 0.403 2.464 2.468 19.053
2.1 0.382 4.7000 4.706 46.244
2.2 0.382 9.548 9.584 193.371
2.3 0.582 5.102 5.121 79.632

Table 7: Davies et al. benchmarks: Numerical results for some of the output quantities required by the
benchmarks and the various cases considered.

234

Figure 104: Setup for the topography relaxation benchmark. The box is 2800 km wide and 700 km high, with
a 100 km lid on top. The lid has a viscosity of 1023 Pa s, while the mantle has a viscosity of 1021 Pa s. The
sides are free slip, the bottom is no slip, and the top is a free surface. Both the lid and the mantle have
a density of 3300 kg/m3, and gravity is 10m/s2. There is a 7 km sinusoidal initial topography on the free
surface.

This section follows the two free surface benchmarks described by Crameri et al. [25].

Case 1: Relaxation of topography. The first benchmark involves a high viscosity lid sitting on top
of a lower viscosity mantle. There is an initial sinusoidal topography which is then allowed to relax. This
benchmark has a semi-analytical solution (which is exact for infinitesimally small topography). Details for
the benchmark setup are in Figure 104.

The complete parameter file for this benchmark can be found in benchmarks/crameri_et_al/case_1/
crameri_benchmark_1.prm, the most relevant parts of which are excerpted here:

set CFL number = 0.01

set Additional shared libraries = ./libcrameri_benchmark_1.so

subsection Geometry model
set Model name = rebound box
subsection Rebound Box

set Order = 1
set Amplitude = 7.e3

end
subsection Box

set X extent = 28.e5
set Y extent = 7.e5
set X repetitions = 300
set Y repetitions = 75

end
end

In particular, this benchmark uses a custom geometry model to set the initial geometry. This geometry
model, called “ReboundBox”, is based on the Box geometry model. It generates a domain in using the same
parameters as Box, but then displaces all the nodes vertically with a sinusoidal perturbation, where the
magnitude and order of that perturbation are specified in the ReboundBox subsection.

The characteristic timescales of topography relaxation are significantly smaller than those of mantle
convection. Taking timesteps larger than this relaxation timescale tends to cause sloshing instabilities,
which are described further in Section 2.13. Some sort of stabilization is required to take large timesteps.
In this benchmark, however, we are interested in the relaxation timescale, so we are free to take very small

235

benchmarks/crameri_et_al/case_1/crameri_benchmark_1.prm
benchmarks/crameri_et_al/case_1/crameri_benchmark_1.prm

0 20 40 60 80 100 120

Time (ka)

0

1

2

3

4

5

6

7

M
ax

im
um

to
po

gr
ap

hy
(k

m
)

SULEC
Underworld
MILAMIN VEP
Aspect
Analytic solution

Figure 105: Results for the topography relaxation benchmark, showing maximum topography versus time.
Over about 100 ka the topography completely disappears. The results of four free surface codes, as well as
the semi-analytic solution, are nearly identical.

timesteps (in this case, 0.01 times the CFL number). As can be seen in Figure 105, the results of all the
codes which are included in this comparison are basically indistinguishable.

Case 2: Dynamic topography. Case two is more complicated. Unlike the case one, it occurs over
mantle convection timescales. In this benchmark there is the same high viscosity lid over a lower viscosity
mantle. However, now there is a blob of buoyant material rising in the center of the domain, causing dynamic
topography at the surface. The details for the setup are in the caption of Figure 106.

Case two requires higher resolution and longer time integrations than case one. The benchmark is over
20 million years and builds dynamic topography of ∼ 800 meters.

Again, we excerpt the most relevant parts of the parameter file for this benchmark, with the full thing
available in benchmarks/crameri_et_al/case_2/crameri_benchmark_2.prm. Here we use the “Multicom-
ponent” material model, which allows us to easily set up a number of compositional fields with different
material properties. The first compositional field corresponds to background mantle, the second corresponds
to the rising blob, and the third corresponds to the viscous lid.

Furthermore, the results of this benchmark are sensitive to the mesh refinement and timestepping pa-
rameters. Here we have nine refinement levels, and refine according to density and the compositional fields.

set CFL number = 0.1

subsection Material model
set Model name = multicomponent
subsection Multicomponent

set Densities = 3300, 3200, 3300
set Viscosities = 1.e21, 1.e20, 1.e23
set Viscosity averaging scheme = harmonic

end
end

subsection Mesh refinement

236

benchmarks/crameri_et_al/case_2/crameri_benchmark_2.prm

Figure 106: Setup for the dynamic topography benchmark. Again, the domain is 2800 km wide and 700 km
high. A 100 km thick lid with viscosity 1023 overlies a mantle with viscosity 1021. Both the lid and the mantle
have a density of 3300 kg/m3. A blob with diameter 100 km lies 300 km from the bottom of the domain. The
blob has a density of 3200kg/m3 and a viscosity of 1020 Pa s.

0 5 10 15 20

Time (Ma)

0

100

200

300

400

500

600

700

800

900

M
ax

im
um

to
po

gr
ap

hy
(m

)

SULEC
Underworld
MILAMIN VEP
Aspect

Figure 107: Evolution of topography for the dynamic topography benchmark. The maximum topography is
shown as a function of time, for ASPECT as well as for several other codes participating in the benchmark.
This benchmark shows considerably more scatter between the codes.

237

0.0 0.1 0.2 0.3 0.4 0.5 0.6
CFL number

100

Lo
g

to
po

gr
ap

hy
 e

rro
r a

t 3
 M

a

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0
Maximum refinement number

10-1

100

101

102

Lo
g

to
po

gr
ap

hy
 e

rro
r a

t 3
 M

a

Figure 108: Convergence for case two. Left: Logarithm of the error with decreasing CFL number. As the
CFL number decreases, the error gets smaller. However, once it reaches a value of ∼ 0.1, there stops being
much improvement in accuracy. Right: Logarithm of the error with increasing maximum mesh resolution.
As the resolution increases, so does the accuracy.

set Additional refinement times =
set Initial adaptive refinement = 4
set Initial global refinement = 5
set Refinement fraction = 0.3
set Coarsening fraction = 0.0
set Strategy = density,composition
set Refinement criteria merge operation = plus
set Time steps between mesh refinement = 5

end

Unlike the first benchmark, for case two there is no (semi) analytical solution to compare against. Fur-
thermore, the time integration for this benchmark is much longer, allowing for errors to accumulate. As such,
there is considerably more scatter between the participating codes. ASPECT does, however, fall within the
range of the other results, and the curve is somewhat less wiggly. The results for maximum topography
versus time are shown in 107

The precise values for topography at a given time are quite dependent on the resolution and timestepping
parameters. Following [25] we investigate the convergence of the maximum topography at 3 Ma as a function
of CFL number and mesh resolution. The results are shown in figure 108.

We find that at 3 Ma ASPECT converges to a maximum topography of ∼396 meters. This is slightly
different from what MILAMIN_VEP reported as its convergent value in [25], but still well within the range
of variation of the codes. Additionally, we note that ASPECT is able to achieve good results with relatively
less mesh resolution due to the ability to adaptively refine in the regions of interest (namely, the blob and
the high viscosity lid).

Accuracy improves roughly linearly with decreasing CFL number, though stops improving at CFL ∼ 0.1.
Accuracy also improves with increasing mesh resolution, though its convergence order does not seem to
be excellent. It is possible that other mesh refinement parameters than we tried in this benchmark could
improve the convergence. The primary challenge in accuracy is limiting numerical diffusion of the rising
blob. If the blob becomes too diffuse, its ability to lift topography is diminished. It would be instructive to
compare the results of this benchmark using particles with the results using compositional fields.

5.4.19 The solitary wave benchmark

This section was contributed by Juliane Dannberg and is based on a section in [27] by Juliane Dannberg and
Timo Heister.

238

One of the most widely used benchmarks for codes that model the migration of melt through a compacting
and dilating matrix is the propagation of solitary waves (e.g. [83, 57, 78]). The benchmark is intended to
test the accuracy of the solution of the two-phase flow equations as described in Section 2.14 and makes use
of the fact that there is an analytical solution for the shape of solitary waves that travel through a partially
molten rock with a constant background porosity without changing their shape and with a constant wave
speed. Here, we follow the setup of the benchmark as it is described in [11], which considers one-dimensional
solitary waves.

The model features a perturbation of higher porosity with the amplitude Aφ0 in a uniform low-porosity
(φ = φ0) background. Due to its lower density, melt migrates upwards, dilating the solid matrix at its front
and compacting it at its end.

Assuming constant shear and compaction viscosities and using a permeability law of the form

kφ = k0φ
3, implying a Darcy coefficient KD(φ) = k0

ηf
φ3,

and the non-dimensionalization

x = δx′ with the compaction length δ =
√
KD(φ0)(ξ + 4

3η),

φ = φ0φ
′ with the background porosity φ0,

(us,uf) = u0(us,uf)′ with the separation flux φ0u0 = KD(φ0)∆ρg,

the analytical solution for the shape of the solitary wave can be written in implicit form as:

x(φ) = ±(A+ 0.5)
[
−2
√
A− φ+ 1√

A− 1
ln
√
A− 1−

√
A− φ√

A− 1 +
√
A− φ

]
and the phase speed c, scaled back to physical units, is c = u0(2A + 1). This is only valid in the limit of
small porosity φ0 � 1. Figure 109 illustrates the model setup.

The parameter file and material model for this setup can be found in benchmarks/solitary_wave/
solitary_wave.prm and benchmarks/solitary_wave/solitary_wave.cc. The most relevant sections are
shown in the following paragraph.

Listing of Parameters

Set up the solitary wave benchmark
(Barcilon & Richter, 1986; Simpson & Spiegelman, 2011;
Keller et al., 2013; Schmeling, 200

set Additional shared libraries = ./libsolitary_wave.so

A non-linear solver has to be used for models with melt migration
set Nonlinear solver scheme = iterated Advection and Stokes
set Max nonlinear iterations = 10
set Nonlinear solver tolerance = 1e-5

The end time is chosen in such a way that the solitary wave travels
approximately 5 times its wavelength during the model time.
set End time = 6e6

To model melt migration, there has to be a compositional field with
the name ’porosity’.
subsection Compositional fields

set Number of fields = 1

239

benchmarks/solitary_wave/solitary_wave.prm
benchmarks/solitary_wave/solitary_wave.prm
benchmarks/solitary_wave/solitary_wave.cc

melt velocity

solid velocity

low-porosity
background

high-porosity
perturbation

Figure 109: Setup of the solitary wave benchmark. The domain is 400 m high and includes a low porosity
(φ = 0.001) background with an initial perturbation (φ = 0.1). The solid density is 3300 kg/m3 and the
melt density is 2500 kg/m3. We apply the negative phase speed of the solitary wave us = −c ez as velocity
boundary condition, so that the wave will stay at its original position while the background is moving.

set Names of fields = porosity
end

Enable modelling of melt migration in addition to the advection of
solid material.
subsection Melt settings

set Include melt transport = true
end

######### Parameters for the porosity field ########################

We use the initial conditions and material model from the
solitary wave plugin and choose a wave with an amplitude of
0.01 and a background porosity of 0.001.
subsection Initial composition model

set Model name = Solitary wave initial condition
subsection Solitary wave initial condition

set Offset = 200
set Read solution from file = true
set Amplitude = 0.01
set Background porosity = 0.001

end
end

subsection Material model
set Model name = Solitary Wave

end

240

As material is flowing in, we prescribe the porosity at the
upper and lower boundary.
subsection Boundary composition model

set List of model names = initial composition
set Fixed composition boundary indicators = 2,3

end

As we know that our solution does not have any steep gradients
we can use a low stabilization to avoid too much diffusion.
subsection Discretization

subsection Stabilization parameters
set beta = 0.001

end
end

######### Model geometry ##

Our domain is a pseudo-1D-profile 400 m in height, but only a few elements wide
subsection Geometry model

set Model name = box
subsection Box

set X extent = 10
set Y extent = 400
set Y repetitions = 40

end
end

######### Velocity boundary conditions ################################

We apply the phase speed of the wave here, so that it always stays in the
same place in our model. The phase speed is c = 5.25e-11 m/s, but we have
to convert it to m/years using the same conversion that is used internally
in ASPECT: year_in_seconds = 60*60*24*365.2425.
subsection Boundary velocity model

set Tangential velocity boundary indicators = 0,1
set Prescribed velocity boundary indicators = 2:function, 3:function
subsection Function

set Function expression = 0;-1.65673998e-4
end

end

Postprocessor for the error calculation
subsection Postprocess

set List of postprocessors = solitary wave statistics
end

subsection Solver parameters
subsection Stokes solver parameters

set Linear solver tolerance = 1e-10
end

end

The benchmark uses a custom model to generate the initial condition for the porosity field as specified
by the analytical solution, and its own material model, which includes the additional material properties
needed by models with melt migration, such as the permeability, melt density and compaction viscosity. The
solitary wave postprocessor compares the porosity and pressure in the model to the analytical solution, and

241

computes the errors for the shape of the porosity, shape of the compaction pressure and the phase speed.
We apply the negative phase speed of the solitary wave as a boundary condition for the solid velocity. This
changes the reference frame, so that the solitary wave stays in the center of the domain, while the solid
moves downwards. The temperature evolution does not play a role in this benchmark, so all temperature
and heating-related parameters are disabled or set to zero.

And extensive discussion of the results and convergence behavior can be found in [27].

5.4.20 Benchmarks for operator splitting

This section was contributed by Juliane Dannberg.
Models of mantle convection and lithosphere dynamics often also contain reactions between materials

with different chemical compositions, or processes that can be described as reactions. The most common
example is mantle melting: When mantle temperatures exceed the solidus, rocks start to melt. As this
is only partial melting, and rocks are a mixture of different minerals, which all contain different chemical
components, melting is not only a phase transition, but also leads to reactions between solid and molten
rock. Some components are more compatible with the mineral structure, and preferentially stay in the solid
rock, other components will mainly move into the mantle melt. This means that the composition of both
solid and melt change over time depending on the melt fraction.

Usually, it is assumed that these reactions are much faster than convection in the mantle. In other words,
these reactions are so fast that melt is assumed to be always in equilibrium with the surrounding solid rock.
In some cases, the formation of new oceanic crust, which is also caused by partial melting, is approximated
by a conversion from an average, peridotitic mantle composition to mid-ocean ridge basalt, forming the crust,
and harzburgitic lithosphere, once material reaches a given depth. This process can also be considered as a
reaction between different compositional fields.

This can cause accuracy problems in geodynamic simulations: The way the equations are formulated
(see Equations 1–4), ideally we would need to know reaction rates (the qi) between the different components
instead of the equilibrium value (which would then have to be compared with some sort of “old solution” of
the compositional fields). Sometimes we also may not know the equilibrium, and would only be able to find
it iteratively, starting from the current composition. In addition, the reaction rate for a given compositional
field usually depends on the value of the field itself, but can also depend on other compositional fields or the
temperature and pressure, and the dependence can be nonlinear.

Hence, ASPECT has the option to decouple the advection from reactions between compositional fields,
using operator splitting.

Instead of solving the coupled equation

∂c(t)
∂t

+ u · ∇c(t) = q(c(t)), (126)

and directly obtaining the composition value c(tn+1) for the time step n + 1 from the value c(tn) from the
previous time step n, we do a first-order operator split, first solving the advection problem

∂c(t)
∂t

+ u · ∇c(t) = 0, obtaining ∆cA(tn+1) from c(tn), (127)

using the advection time step ∆tA = tn+1 − tn. Then we solve the reactions as a series of coupled ordinary
differential equations

∂∆cR(t)
∂t

= q(c(tn)) + ∆cA(tn+1) + ∆cR(t), obtaining ∆cR(tn+1) from c(tn) + ∆cA(tn+1). (128)

This can be done in several iterations, choosing a different, smaller time step size ∆tR ≤ ∆tA for the time
discretization. The updated value of the compositional field after the overall (advection + reaction) time
step is then obtained as

c(tn+1) = c(tn) + ∆cA(tn+1) + ∆cR(tn+1). (129)

242

This is very useful if the time scales of reactions are different from the time scales of convection. The same
scheme can also be used for the temperature: If we want to model latent heat of melting, the temperature
evolution is controlled by the melting rate, and hence the temperature changes on the same time scale as
the reactions.

We here illustrate the way this operator splitting works using the simple example of exponential decay
in a stationary advection field. We will start with a model that has a constant initial temperature and
composition and no advection. The reactions for exponential decay

c(t) = c0e
λt with λ = − log(2)/t1/2, (130)

where c0 is the initial composition and t1/2 is the half life, are implemented in a shared library (benchmarks/
operator_splitting/exponential_decay/exponential_decay.cc). As we split the time-stepping of ad-
vection and reactions, there are now two different time steps in the model: We control the advection time
step using the ‘Maximum time step’ parameter (as the velocity is essentially 0, we can not use the CFL
number), and we set the reaction time step using the ‘Reaction time step’ parameter.

set Additional shared libraries = ./libexponential_decay.so

set Dimension = 2
set Start time = 0
set End time = 100

We use a new solver scheme otpion that enables the operator split.
set Nonlinear solver scheme = single Advection, single Stokes
set Use operator splitting = true

subsection Solver parameters
subsection Operator splitting parameters

set Reaction time step = 0.0005
end

end
set Maximum time step = 10

To illustrate convergence, we will vary both parameters in different model runs.
In our example, we choose c0 = 1, and specify this as initial condition using the function plugin for

both composition and temperature. We also set t1/2 = 10, which is implemented as a parameter in the
exponential decay material model and the exponential decay heating model.

Both initial temperature and composition are set to 1,
and will decay starting from this value.
subsection Initial temperature model

set Model name = function

subsection Function
set Variable names = x,z
set Function expression = 1.0

end
end

subsection Initial composition model
set Model name = function

subsection Function
set Variable names = x,z
set Function expression = 1.0

end

243

benchmarks/operator_splitting/exponential_decay/exponential_decay.cc
benchmarks/operator_splitting/exponential_decay/exponential_decay.cc

end

We choose material and heating models that let temperature
and composition decay over time, and that is implemented in
a plugin.
subsection Heating model

set List of model names = exponential decay heating

subsection Exponential decay heating
set Half life = 10

end
end

subsection Material model
set Model name = exponential decay

subsection Exponential decay
set Half life = 10

end
end

The complete parameter file for this setup can be found in benchmarks/operator_splitting/exponential_
decay/exponential_decay.base.prm.

Figure 110 shows the convergence behavior of these models: As there is no advection, the advection
time step does not influence the error (blue data points). As we use a first-order operator split, the error is
expected to converge linearly with the reaction time step ∆tR, which is indeed the case (red data points).
Errors are the same for both composition and temperature, as both fields have identical initial conditions
and reactions, and we use the same methods to solve for these variables.

For the second benchmark case, we want to see the effect of advection on convergence. In order to do
this, we choose an initial temperature and composition that depends on x (in this case a sine), a decay rate
that linearly depends on z, and we apply a constant velocity in x-direction on all boundaries. Our new
analytical solution for the evolution of composition is now

c(t) = sin(2π(x− tv0)) c0eλzt. (131)

v0 is the constant velocity, which we set to 0.01 m/s. The parameter file for this setup can be found
in benchmarks/operator_splitting/advection_reaction/advection_reaction.base.prm. Figure 111
shows the convergence behavior in this second set of models: If we choose the same resolution as in the
previous example (left panel), for large advection time steps ∆tA > 0.1 the error is dominated by advection,
and converges with decreasing advection time step size (blue data points). However, for smaller advection
time steps, the error stagnates. The data series where the reaction time step varies also shows a stagnating
error. The reason for that is probably that our analytical solution is not in the finite element space we chose,
and so neither decreasing the advection or the reaction time step will improve the error. If we increase the
resolution by a factor of 4 (right panel), we see that that errors converge both with decreasing advection and
reaction time steps.

The results shown here can be reproduced using the bash scripts run.sh in the corresponding benchmark
folders.

5.4.21 The Tosi et al. benchmarks

This section was contributed by Anne Glerum.
This section discusses the viscoplastic thermal convection benchmarks described by Tosi et al. [89].

The five benchmarks extend those of Blankenbach et al. [14] with temperature-, pressure- and strain rate-

244

benchmarks/operator_splitting/exponential_decay/exponential_decay.base.prm
benchmarks/operator_splitting/exponential_decay/exponential_decay.base.prm
benchmarks/operator_splitting/advection_reaction/advection_reaction.base.prm

10−310−2

Reaction time step ∆tR

10−7

10−6

10−5

R
el

at
iv

e
er

ro
r

in
C

an
d
T

Advection time step = 10 = const.

Temperature

Reaction time step = 5 · 10−4 = const.

Temperature

O(∆t)

100101

Advection time step ∆tA

Figure 110: Error for both compositional field and temperature compared to the analytical solution, varying
the time steps of advection (blue data points and and top/blue x axis) and reactions (red data points and and
bottom/red x axis), while keeping the other one constant, respectively.

10−310−210−1100

Reaction time step ∆tR

10−4

10−3

R
el

at
iv

e
er

ro
r

in
C

an
d
T

Advection time step = 0.25 = const.

Temperature

Reaction time step = 2 · 10−3 = const.

Temperature

O(∆t)

10−310−210−1100

Advection time step ∆tA

10−310−210−1

Reaction time step ∆tR

10−5

10−4

R
el

at
iv

e
er

ro
r

in
C

a
n

d
T

Advection time step ∆tA = 10∆tR

Temperature

Reaction time step = 2 · 10−3 = const.

Temperature

O(∆t)

10−310−210−1

Advection time step ∆tA

Figure 111: Error for both compositional field and temperature compared to the analytical solution, varying
the time steps of advection (blue data points and and top/blue x axis) and reactions (red data points and and
bottom/red x axis), while keeping the other one constant, respectively.

245

dependent rheology. As the ASPECT results are published in the original paper, we limit ourselves to a
brief description of the setup and results of the first 2 benchmark cases.

All five benchmarks solve for Boussinesq convection in a box of 1× 1 dimensions with free slip boundary
conditions. The initial temperature distribution considers a linear depth profile with a slight perturbation to
start convection. Top and bottom boundaries are set to a fixed temperature value. The parameters shared
between the benchmark cases can be found in benchmarks/tosi_et_al_2015_gcubed/Tosi_base.prm. The
other input files describe the variations on this base model, which pertain to the rheological description. The
specific rheologies used are implemented in benchmarks/tosi_et_al_2015_gcubed/tosi.cc and describe a
linear and a plastic component of the viscosity:

ηlinear(T, z) = exp(− ln(ηT)T + ln(ηZ)z) (132)

ηplastic(ε̇) = η∗ + σy√
ε̇ : ε̇

(133)

where η∗ is the constant effective viscosity at high stresses and σy the yield stress.

Case 1: Temperature-dependent convection. The first benchmark considers a viscosity that only
depends on temperature (Eq. (132), with γZ = 0). When run to steady-state, this produces one convection
cell with a high viscosity, stagnant lid insulating the fluid below (see Fig. 1 of [89]). In [89], results of
different codes are compared by looking at the average temperature, the Nusselt number at the top and
bottom of the domain, the RMS velocity at the top boundary and in the whole domain, and the maximum
velocity at the surface. These quantities can be queried by using several of the ASPECT postprocessors,
but the additional postprocessor in benchmarks/tosi_et_al_2015_gcubed/tosi.cc is needed to compute
the average rate of work done against gravity, the average rate of viscous dissipation, and the error between
them. Differences between these diagnostic quantities of the 11 codes that participated in the benchmark
effort are smaller than 5% for their preferred mesh resolution.

Case 2: Viscoplastic convection. Case 2 includes a strain rate-dependent component in the viscosity,
which is harmonically averaged with the linear component (see also the code snippet below):

η(T, ε, z) = 2
(

1
ηlinear

+ 1
ηplastic

)−1
(134)

subsection Material model
subsection Tosi benchmark

set Pressure viscosity parameter = 1
set Yield stress = 1
set Nonlinear viscosity constant = 1e-3
set Initial viscosity = 0.115

end
end

This rheology leads to mobile-lid convection, with the descending cold lid cooling the cell’s interior (Fig.
2 of [89]).

By changing the input parameters shown in the code snippet, we obtain the other benchmark cases.
Case 3 includes a depth-dependent component for the viscosity, but no strain rate-dependence, i.e. it uses
Eq. (132). Case 4 considers a full temperature-, depth- and strain rate-dependent viscosity, while in case 5
the yield stress is varied to investigate the transitions from mobile-lid to periodic to stagnant-lid convection
regimes. The input files referenced above implement these specific cases. As mentioned before, the ASPECT
results are presented in [89] together with the results of several other finite element, finite volume, and spectral
codes. Figure 112 shows one example of the resolved temperature and viscosity fields for case 1.

246

benchmarks/tosi_et_al_2015_gcubed/Tosi_base.prm
benchmarks/tosi_et_al_2015_gcubed/tosi.cc
benchmarks/tosi_et_al_2015_gcubed/tosi.cc

Figure 112: Temperature and viscosity field in steady-state for case 1 of [89].

 1

 10

 100

 1000

 10000

-1 -0.5 0 0.5 1

v
is

co
si

ty

y

ε=0.0

β=0.001
β=0.01
β=0.1
β=1

β=10
β=100

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

-1 -0.5 0 0.5 1

v
is

co
si

ty

y

ε=0.2

β=0.001
β=0.01
β=0.1
β=1

β=10
β=100

Figure 113: Layered flow benchmark: Viscosity profiles for various β values and two ε values, using y0 = 1/3.

5.4.22 Layered flow with viscosity contrast

This section was contributed by Cedric Thieulot.
The idea behind this benchmark is to construct an analytical solution to the incompressible Stokes

equation in the case where the viscosity field showcases a viscosity contrast at location y = y0 whose
amplitude and width can be controlled. The viscosity is defined as

η(y) = 1
1
π tan−1(y−y0

β) + 1/2 + ε

where β and ε are chosen by the user. Viscosity profiles for different values of β and ε are shown in Fig. 113.
The set up of this benchmark allows testing how discretizations deal with abrupt changes in the viscosity (if
β is small) as well as large changes in the viscosity (if ε is small).

The flow is assumed to take place in an infinitely long domain (in the horizontal direction) and bounded
by y = −1 and y + 1. At the bottom we impose vx(y = −1) = 0, while we impose vx(y = +1) = 1 at the
top. The density is set to 1 while the gravity is set to zero. Under these assumptions, the flow velocity and
pressure fields are given by:

vx(x, y) = 1
2π

(
−βC1 log[β2 + (z − z0)2] + 2(z − z0)C1 tan−1 z − z0

β
+ π(1 + 2ε)zC1 + C2

)
,

vy(x, y) = 0,
p(x, y) = 0, (135)

247

Figure 114: Velocity and viscosity fields for β = 0.01 and ε = 0.05 at uniform level 8 resolution, using
y0 = 1/3.

where C1 and C2 are integration constants:

C1 = 2π
[
β log[β2 + (1 + z0)2]− 2(1 + z0) tan−1 1 + z0

β

−β log[β2 + (1− z0)2] + 2(1− z0) tan−1 1− z0

β
+ 2π(1 + 2ε)

]−1
,

C2 =
[
β log[β2 + (1 + z0)2]− 2(1 + z0) tan−1 1 + z0

β
+ π(1 + 2ε)

]
C1.

The viscosity and velocity fields are shown in Fig. 114 for β = 0.01 and ε = 0.05.

5.4.23 Donea & Huerta 2D box geometry benchmark

This section was contributed by Cedric Thieulot.
This benchmark is taken from Donea and Huerta’s book [32]. The domain is a unit square and the

viscosity and density are set to 1. The components of the gravity vector g are prescribed as

gx = (12− 24y)x4 + (−24 + 48y)x3 + (−48y + 72y2 − 48y3 + 12)x2

+(−2 + 24y − 72y2 + 48y3)x+ 1− 4y + 12y2 − 8y3

gy = (8− 48y + 48y2)x3 + (−12 + 72y − 72y2)x2

+(4− 24y + 48y2 − 48y3 + 24y4)x− 12y2 + 24y3 − 12y4. (136)

The exact solution can then be chosen as follows, if one prescribes Dirichlet boundary values for the velocity
using the same formula:

u(x, y) = x2(1− x)2(2y − 6y2 + 4y3)
v(x, y) = −y2(1− y)2(2x− 6x2 + 4x3)
p(x, y) = x(1− x)− 1/6. (137)

248

(a) (b) (c)

Figure 115: Donea & Huerta benchmark: Results for the 2D polynomial Stokes benchmark, obtained with
a resolution of 32× 32 elements. (a) Gravity field, (b) pressure field, (c) velocity field.

Note that the pressure satisfies
∫

Ω p dx = 0. The gravity, pressure and velocity fields are shown in Fig. 115.
The convergence of the numerical error of this benchmark has been analyzed by changing the mesh

refinement level in the input file, and results show that the velocity shows cubic error convergence, while the
pressure shows quadratic convergence in the L2 norm, as expected when using the Q2 ×Q1 element.

5.4.24 Advection stabilization benchmarks

The underlying PDEs of the temperature and compositional field are typically advection-dominated and as
such, require a stabilization scheme, see 2.12 for an introduction for the methods implemented in ASPECT.

We have several benchmarks to test the robustness, quality of solutions (size of overshoots, smearing of
sharp interfaces). Here, we give a short summary of the benchmarks implemented:

• Dropping box (benchmarks/drop_*.prm): This is a simple 2d box with a prescribed, constant, vertical
velocity. An initial condition creates a square box with a high temperature, which is advected vertically.
See Figure 116.

• Rotating Shapes: benchmarks/rotate_shape_*.prm: A collection of shapes in a 2d box rotated by
360 degrees by a prescribed velocity. See Figure 117.

Both benchmarks have the identical setup in the temperature and a compositional field. The only
difference is that the temperature equation contains a (small) physical diffusion term.

5.4.25 Yamauchi & Takei anelastic shear wave velocity-temperature conversion benchmark

This section was contributed by Fred Richards.
This benchmark tests the implementation of the anelastic shear wave velocity-to-temperature conversion

derived by Yamauchi & Takei [97] based on forced-oscillation experiments conducted at seismic frequencies
on polycrystalline borneol. This anelasticity parameterization has been calibrated against a range of ob-
servational constraints on upper mantle temperature, attenuation and viscosity structure, using the surface
wave tomography model of Priestley et al. [67] to constrain shear wave velocity (VS) and the plate model of
[62] to estimate lithospheric temperature structure. The resulting VS-to-temperature conversion accurately
accounts for the strongly non-linear temperature dependence of VS at near-solidus conditions and is therefore

249

Figure 116: Dropping box benchmark at final time. Left: entropy viscosity. Right: SUPG.

Figure 117: Rotating shapes benchmark at final time: Left: reference. Middle: Entropy viscosity. Right:
SUPG.

especially useful for initializing models with accurate temperature structure in the upper ∼ 400 km of the
mantle. This benchmark is located in the folder benchmarks/yamauchi_takei_2016_anelasticity.

The parameterization of Yamauchi & Takei [97] defines VS as

VS = 1√
ρJ1

(
1 +

√
1 + (J2/J1)2

2

)− 1
2

' 1√
ρJ1

(138)

where ρ is the density and J1 and J2 represent real and imaginary components of the complex compliance,
J∗, which is a quantity describing the sinusoidal strain resulting from the application of a unit sinusoidal
stress. J1 represents the strain amplitude in phase with the driving stress, whilst the J2 component is π

2 out
of phase, resulting in dissipation. Density is calculated using the expression

ρ(P, T) = ρ0

{
1− [α(T − T0)] + P

K

}
(139)

250

benchmarks/yamauchi_takei_2016_anelasticity

Figure 118: VS as a function of temperature in the oceanic lithosphere. Dotted lines: digitized results from
Fig. 20 of Yamauchi & Takei [97]; solid lines: ASPECT results; red = 50 km; blue = 75 km. Temperatures
are taken from the plate model of McKenzie et al. [62] and VS from the surface wave tomography model of
Priestley et al. [67].

251

where ρ0 = 3291 kg m−3 and α = 3.59 × 10−5 K−1 are the density and thermal expansivity corresponding
to T0 = 873 K, P = pressure and K = 115.2 GPa is the bulk modulus. J1 and J2 are expressed as

J1(τ ′S) =JU
[
1 + AB [τ ′S]αB

αB
+
√

2π
2 AP σP

{
1− erf

(
ln[τ ′P /τ ′S]√

2σP

)}]
(140)

J2(τ ′S) =JU
π

2

[
AB [τ ′S]αB +AP exp

(
− ln2[τ ′P /τ ′S]

2σ2
P

)]
+ JUτ

′
S (141)

where AB = 0.664 and αB = 0.38 represent the amplitude and slope of background stress relaxation and JU
is the unrelaxed compliance. Parameters AP and σP represent the amplitude and width of a high frequency
relaxation peak superimposed on this background trend such that

AP (T ′) =

0.01 for T ′ < 0.91
0.01 + 0.4(T ′ − 0.91) for 0.91 ≤ T ′ < 0.96
0.03 for 0.96 ≤ T ′ < 1
0.03 + β(φm) for T ′ ≥ 1

(142)

and

σP (T ′) =

4 for T ′ < 0.92
4 + 37.5(T ′ − 0.92) for 0.92 ≤ T ′ < 1
7 for T ′ ≥ 1

(143)

where T ′ is the homologous temperature (TTs) with T the temperature and Ts the solidus temperature, both
in Kelvin. φm is the melt fraction and β(φm) describes the direct poroelastic effect of melt (assumed to be
negligible under upper mantle conditions). For this case, JU is the inverse of the unrelaxed shear modulus,
µU (P, T), such that

JU (P, T)−1 = µU (P, T) = µ0
U + ∂µU

∂T
(T − T0) + ∂µU

∂P
(P − P0) (144)

where µ0
U is the unrelaxed shear modulus at surface pressure-temperature conditions, the differential terms

are assumed to be constant and the pressure, P , in GPa is linearly related to the depth, z, in km by z
30 .

The normalised shear wave period, τ ′S , in Equations (140) and (141) is equal to τS
2πτM , where τS = 100 s

is the shear wave period and τM = η
µU

is the normalised Maxwell relaxation timescale. τ ′P represents the
normalised shear-wave period associated with the centre of the high frequency relaxation peak, assumed to
be 6× 10−5. The shear viscosity, η, is

η = ηr

(
d

dr

)m
exp

[
Ea
R

(
1
T
− 1
Tr

)]
exp

[
Va
R

(
P

T
− Pr
Tr

)]
Aη (145)

where d is the grain size, m the grain size exponent (assumed to be 3), R the gas constant, Ea the activation
energy and Va the activation volume. Subscripts [X]r refer to reference values, assumed to be dr = d = 1 mm,
Pr = 1.5 GPa and Tr = 1473 K for the upper mantle. Aη represents the extra reduction of viscosity due to
an increase in Ea near the solidus, expressed as

Aη(T ′) =

1 for T ′ < T ′η

exp
[
− (T ′−T ′η)

(T ′−T ′T ′η) ln(γ)
]

for T ′η ≤ T ′ < 1
γ−1 exp(λφ) for T ′ ≥ 1

(146)

where T ′η is the homologous temperature above which activation energy becomes Ea+∆Ea, and γ = 5 is the
factor of additional reduction. λφ describes the direct effect of melt on viscosity, assumed to be negligible

252

Figure 119: Examples of deformation patterns of “sand box” experiments in which alternating layers of
differently-colored sand undergo deformation. Pictures courtesy of the lab of Dennis Harry at Colorado State
University.

here. The solidus temperature, Ts, is fixed to a value of 1599 K at 50 km equivalent to a dry peridotite
solidus [47] and linearly increases below this depth according to

Ts(z) = 1599 + ∂Ts
∂z

(z − 50000) (147)

where ∂Ts
∂z is the solidus gradient.

In this benchmark, a 2D input ASCII file containing VS specified at 50 and 75 km depth is read in
and converted to temperature using an initial temperature model that implements the VS(P, T) formulation
detailed above. The default parameters governing the relationship between VS and temperature are set to the
values calibrated by Yamauchi & Takei [97], where µ0

U = 72.45 GPa, ∂µU∂T = −0.01094 GPa K−1, ∂µU∂P = 1.987,
ηr = 6.22× 1021 Pa s, Ea = 452.5 kJ mol−1, Va = 7.913× 10−6 m3 mol−1 and ∂Ts

∂z = 1.018 K km−1. As VS is
a complex function of temperature, a Brent minimization algorithm is used to find optimal values. Fig. 118
shows that the ASPECT implementation of this parameterization can accurately recreate the results shown
by Yamauchi & Takei [97] in their Fig. 20.

The parameter file and initial temperature model for this benchmark can be found at benchmarks/
yamauchi_takei_2016_anelasticity/yamauchi_takei_2016_anelasticity.prm and benchmarks/yamauchi_
takei_2016_anelasticity/anelasticity_temperature.cc. Code to recreate Fig. 118 is provided in
benchmarks/yamauchi_takei_2016_anelasticity/plot_output.

5.4.26 Brittle thrust wedges benchmark

This section was contributed by Sibiao Liu, Stephanie Sparks, John Naliboff, Cedric Thieulot, and Wolfgang
Bangerth.

Thrusting of brittle crust by applying compressive forces can lead to large deformations. The process
is complicated to model because the rheology of cold, brittle crust is substantially more complicated than
that of the hot, ductile rocks in the mantle. At the same time, the processes that act in such situations are
surprisingly easy to replicate and visualize using simple “sand box” experiments in which one fills a volume
with layers of differently-colored sand and compresses or stretches the volume. Examples of the patterns one
can then observe in these do-it-yourself models are shown in Fig. 119.

Buiter et al. [16] organized new comparison experiments between these kinds of analogue and numerical
models to investigate this kind of brittle thrust wedge behavior. The benchmark here aims to verify that the
wedge models using ASPECT follows other numerical results and the analytical wedge theory shown in this
paper. In particular, input files (benchmarks/buiter_et_al_2016_jsg) are provided for reproducing the

253

benchmarks/yamauchi_takei_2016_anelasticity/yamauchi_takei_2016_anelasticity.prm
benchmarks/yamauchi_takei_2016_anelasticity/yamauchi_takei_2016_anelasticity.prm
benchmarks/yamauchi_takei_2016_anelasticity/anelasticity_temperature.cc
benchmarks/yamauchi_takei_2016_anelasticity/anelasticity_temperature.cc
benchmarks/yamauchi_takei_2016_anelasticity/plot_output
benchmarks/buiter_et_al_2016_jsg

numerical simulations of stable wedge experiment 1 and unstable wedge experiment 2 with the same model
setups.

A number of model sets of prescribed material behavior are required to simulate the brittle thrust
formation. For example, although the material in the numerical model has a visco-plastic rheology, it
performs plastic yielding at the beginning of shortening due to the non-viscous sand. We prescribe plastic
strain-weakening behavior, with the internal angle of friction diminishing between total finite strain invariant
values of 0.5 and 1.0, to mimic the softening from peak to dynamic stable strength which correlates with
sand dilation.

In sandbox-type models, an important role is played by the boundaries and the frictional sliding of sand
against these boundaries. For the top boundary condition, zero traction (“open”) and a sticky air layer is used
to approximate a free surface. Additional testing revealed that using a true free surface leads to significant
mesh distortion and associated numerical instabilities. We also apply a rigid block that approximates a mobile
wall with a constant velocity of 2.5 cm/hour on the right-hand side boundary to drive the deformation in
the sand layers. The following listing shows key portions of the parameter file that describes this kind of
setup:

Spatial domain of different compositional fields:
Quartz sand (qsand) has two layers with 1 cm thickness each.
Corundum sand (csand) is in the middle of the 2-layer quatz sand and is
1 cm thick.
The boundary 2-mm-thin layers (bound) sit on both the bottom of the domain and
between the sand and rigid indenter block. The right boundary has a constant
inflow velocity, which pushes a rigid block that approximates a mobile wall.
Movement of the rigid block drives deformation in the sand layers.
The boundary between the rigid block and boundary layers produces a sharp
velocity discontinuity that localizes brittle deformation.
The sticky air layer is set on top of the sand layer and approximates a
free surface.

......

Velocity boundary conditions
subsection Boundary velocity model

set Zero velocity boundary indicators = bottom #no slip
set Tangential velocity boundary indicators = left #free slip

right - material inflow with a velocity of 2.5 cm/hour at the height of
the pushing block. The velocity linearly decreases from the base of the
rigid block to 0 cm/hour at the base of the model.

set Prescribed velocity boundary indicators = right:function
subsection Function

set Variable names = x,y
set Function constants = cm=0.01, h=3600, th=0.002
set Function expression = if(y>th, -2.5*cm/h, -(y/th)*2.5*cm/h); 0

end
end

The top boundary is open (zero traction), which allows the sticky air to
flow freely through it as topography develops along the wedge. Additional
testing revealed that using a true free surface leads to significant mesh
distortion and associated numerical instabilities.
subsection Boundary traction model

set Prescribed traction boundary indicators = top: zero traction
end

254

Accurate solver convergence is always challenging to achieve in numerical thrust wedge models with a
high spatial resolution (ca. 1 mm node spacing) and a large viscosity contrast. Here, we suggest that
several parameters should be considered carefully. First, the nonlinear and linear solver tolerances should be
sufficiently strict to avoid numerical instabilities. Second, we use the discontinuous Galerkin method (set
Use discontinuous composition discretization = true) to ensure that the discontinuous composition
bound preserving limiter produces sharp interfaces between compositional layers. Lastly, we use the harmonic
averaging scheme for material and viscosity is required to achieve reasonable convergence behavior. The
relevant parameters are shown here:

Note that the Linear/Nonlinear solver tolerance should be sufficiently strict
to avoid numerical instabilities.
set Nonlinear solver scheme = single Advection, iterated Stokes
set Nonlinear solver tolerance = 1e-7
set Max nonlinear iterations = 100

subsection Solver parameters
subsection Stokes solver parameters

set Linear solver tolerance = 1e-8
set Number of cheap Stokes solver steps = 0

A higher restart length makes the solver more robust for large viscosity
contrasts.

set GMRES solver restart length = 200
end

end

The discontinuous composition bound preserving limiter produces sharp
interfaces between compositional layers.
subsection Discretization

set Use discontinuous composition discretization = true
subsection Stabilization parameters

set Use limiter for discontinuous composition solution = true
set Global composition maximum = 1, 1, 1, 1, 1, 100
set Global composition minimum = 0, 0, 0, 0, 0, 0

end
end

Material properties
Using harmonic material averaging is required to achieve reasonable
convergence behavior, particulally when the viscosity contrast is large.
subsection Material model

set Material averaging = harmonic average
set Model name = visco plastic

subsection Visco Plastic

The viscosity contrast is 10^7 here and any value higher than this causes
divergence of the solver.

set Minimum viscosity = 1e5
set Maximum viscosity = 1e12

set Viscosity averaging scheme = harmonic

Experiment 1 tests whether model wedges in the stable domain of critical taper theory remain stable
when translated horizontally. A quartz sand wedge with a horizontal base and a surface slope of 20 degrees
is pushed 4 cm horizontally by inward movement of a mobile wall at the right boundary with a velocity of

255

Figure 120: Numerical model of a stable sand wedge. a) Initial model setup. b) Material field after 4 cm of
translation. c) Strain rate field and d) pressure field.

2.5 cm/hour (Figure 120). The basal angle is zero (horizontal), a thin layer separates the sand and boundary
to ensure minimum coupling between the wedge and bounding box during translation, and a sticky air layer
is used above the wedge. Further, the purely plastic material should not undergo any deformation during
translation.

Experiment 2 tests how an unstable subcritical wedge deforms to reach the critical taper solution. In this
experiment, horizontal layers of sand undergo 10 cm shortening by inward movement of a mobile wall with
a velocity of 2.5 cm/hour (Figure 121). Model results show thrust wedge generation near the mobile wall
through a combination of mainly in-sequence forward and backward thrusting. The strain field highlights
several incipient shear zones that do not always accumulate enough offset to become visible in the material
field. The pressure field of the model remains more or less lithostatic, with lower pressure values in (incipient)
shear zones.

6 Extending and contributing to ASPECT
After you have familiarized yourself with ASPECT using the examples of Section 5 you will invariably want
to set up your own models. During this process you might experience that not all of your ideas are already
possible with existing functionality, and you will need to make changes to the source code.

ASPECT is designed to be an extensible code. In particular, it uses a plugin architecture and a set of
signals through which it is relatively easy to replace or extend certain components of the program. Examples
of things that are simple to extend are the material description, the model geometry, the gravity field, the
initial conditions, the boundary conditions, the functions that postprocess the solution, and the behavior of
the adaptive mesh refinement. This list may also have grown since this section was written. Changing the
core functionality, i.e., the basic equations (1)–(3), and how they are solved is arguably more involved. We
will discuss this in Section 6.7.

256

Figure 121: Numerical model of an unstable subcritical wedge. a) Initial model setup. b) Material field of
sands after 10 cm shortening. c) Strain field and d) pressure field.

There are several ways to add new functionality in plugins, and we want to highlight advantages and
disadvantages of each of them:

1. Modify existing files: The simplest way to start modifying ASPECT is to modify one of the existing
source files and then recompile the program as described in Section 3.3.4. This process does not
require any additional setup, and is therefore ideal for learning how to make simple modifications.
However, it comes with several severe disadvantages. If you modify files the history of your local copy
of ASPECT diverges from the official development version. You will therefore run into conflicts if you
want to update your version later, for example, because there are new features or bug fixes available
in the development version. Also these modifications make your results less reproducible. If you used
your results in a publication, you could no longer say which version of ASPECT was used to produce
these results, because you modified it yourself. Therefore, we discourage this form of modification for
productive use (it can still be helpful for teaching).

2. Create a feature branch: If you are familiar with the version control system git that we use to organize
the development of ASPECT (an excellent tutorial is available at: http://swcarpentry.github.
io/git-novice/) you might think of creating a separate branch inside your ASPECT repository and
making your changes in this branch. This way you keep the history of your local modifications separate
from the changes made to the main version. You can also uniquely describe the ASPECT version you
used for a set of models, and you can upload your branch to make your changes reproducible. This
approach is also the ideal starting point if you intend to contribute your changes back, as it already
is the first step of our guide to contributing back (see also Section 6.9). However, for projects with
functionality that is not intended to be merged into the main version (e.g. because it is too specific
to be of general use) we have found that this approach is not ideal, as you will still run into conflicts
when you want to update your ASPECT version, and you need to merge the main version into your
branch, or rebase the branch every time you want to update. Thus, while ideal for contributing to

257

http://swcarpentry.github.io/git-novice/
http://swcarpentry.github.io/git-novice/

ASPECT we do not recommend this approach for keeping model-specific functionality around.

3. Create a shared library than contains your changes: The main benefit of the plugin architecture
described in the paragraph above is that if you want to extend ASPECT for your own purposes,
you can do this in a separate set of files that describe your situation, rather than by modifying the
ASPECT source files themselves. This is advantageous, because (i) it makes it possible for you to
update ASPECT itself to a newer version without losing the functionality you added (because you
did not make any changes to the ASPECT files themselves), (ii) because it makes it possible to keep
unrelated changes separate in your own set of files, in a place where they are simple to find, and (iii)
because it makes it much easier for you to share your modifications and additions with others, you
can for example include them as supplementary material in your publications. Of course you can (and
should) also use version control on your separate set of files to keep track of which version of files was
used for a given set of models. Two examples for keeping a separate shared library for model specific
changes are discussed in Section 5.2.9, and in Section 5.3.10. We will discuss the concept begind plugins
in Section 6.1, and how to write a plugin in Section 6.2.

Since ASPECT is written in C++ using the deal.II library, you will have to be proficient in C++.
You will also likely have to familiarize yourself with this library for which there is an extensive amount of
documentation:

• The manual at https://www.dealii.org/developer/doxygen/deal.II/index.html that describes
in detail what every class, function and variable in deal.II does.

• A collection of modules at https://www.dealii.org/developer/doxygen/deal.II/modules.html
that give an overview of whole groups of classes and functions and how they work together to achieve
their goal.

• The deal.II tutorial at https://www.dealii.org/developer/doxygen/tutorial/index.html that
provides a step-by-step introduction to the library using a sequence of several dozen programs that
introduce gradually more complex topics. In particular, you will learn deal.II’s way of dimension
independent programming that allows you to write the program once, test it in 2d, and run the exact
same code in 3d without having to debug it a second time.

• The step-31 and step-32 tutorial programs at https://www.dealii.org/developer/doxygen/deal.
II/step_31.html and https://www.dealii.org/developer/doxygen/deal.II/step_32.html from
which ASPECT directly descends.

• An overview of many general approaches to numerical methods, but also a discussion of deal.II
and tools we use in programming, debugging and visualizing data are given in Wolfgang Bangerth’s
video lectures. These are linked from the deal.II website at https://www.dealii.org/ and directly
available at http://www.math.colostate.edu/~bangerth/videos.html.

• The deal.II Frequently Asked Questions at https://github.com/dealii/dealii/wiki/Frequently-Asked-Questions
that also have extensive sections on developing code with deal.II as well as on debugging. It also
answers a number of questions we frequently get about the use of C++ in deal.II.

• Several other parts of the deal.II website at https://www.dealii.org/ also have information that
may be relevant if you dive deeper into developing code. If you have questions, the mailing lists at
https://www.dealii.org/mail.html are also of general help.

• A general overview of deal.II is also provided in the paper [9].

As described in Section 4.3 you should always compile and run ASPECT in debug mode when you are
making changes to the source code, as it will capture the vast majority of bugs everyone invariably introduces
in the code.

258

https://www.dealii.org/developer/doxygen/deal.II/index.html
https://www.dealii.org/developer/doxygen/deal.II/modules.html
https://www.dealii.org/developer/doxygen/tutorial/index.html
https://www.dealii.org/developer/doxygen/deal.II/step_31.html
https://www.dealii.org/developer/doxygen/deal.II/step_31.html
https://www.dealii.org/developer/doxygen/deal.II/step_32.html
https://www.dealii.org/
http://www.math.colostate.edu/~bangerth/videos.html
https://github.com/dealii/dealii/wiki/Frequently-Asked-Questions
https://www.dealii.org/
https://www.dealii.org/mail.html

When you write new functionality and run the code for the first time, you will almost invariably first
have to deal with a number of assertions that point out problems in your code. While this may be an-
noying at first, remember that these are actual bugs in your code that have to be fixed anyway and
that are much easier to find if the program aborts than if you have to go by their more indirect results
such as wrong answers. The Frequently Asked Questions at https://github.com/dealii/dealii/wiki/
Frequently-Asked-Questions contain a section on how to debug deal.II programs.

6.1 The idea of plugins and the SimulatorAccess and Introspection classes
The most common modification you will probably want to do to ASPECT are to switch to a different
material model (i.e., have different values of functional dependencies for the coefficients η, ρ, Cp, . . . discussed
in Section 2.2); change the geometry; change the direction and magnitude of the gravity vector g; or change
the initial and boundary conditions.

To make this as simple as possible, all of these parts of the program (and some more) have been separated
into what we call plugins that can be replaced quickly and where it is simple to add a new implementation
and make it available to the rest of the program and the input parameter file. There are a lot of plugins
already, see Fig. 122, that will often be useful starting points and examples if you want to implement plugins
yourself.

The way this is achieved is through the following two steps:

• The core of ASPECT really only communicates with material models, geometry descriptions, etc.,
through a simple and very basic interface. These interfaces are declared in the include/aspect/
material_model/interface.h, include/aspect/geometry_model/interface.h, etc., header files.
These classes are always called Interface, are located in namespaces that identify their purpose, and
their documentation can be found from the general class overview in https://aspect.geodynamics.
org/doc/doxygen/classes.html.
To show an example of a rather minimal case, here is the declaration of the aspect::GravityModel::Interface
class (documentation comments have been removed):

class Interface
{

public:
virtual ~Interface();

virtual
Tensor<1,dim>
gravity_vector (const Point<dim> &position) const = 0;

static void declare_parameters (ParameterHandler &prm);

virtual void parse_parameters (ParameterHandler &prm);
};

If you want to implement a new model for gravity, you just need to write a class that derives from this
base class and implements the gravity_vector function. If your model wants to read parameters from
the input file, you also need to have functions called declare_parameters and parse_parameters in
your class with the same signatures as the ones above. On the other hand, if the new model does not
need any run-time parameters, you do not need to overload these functions.38

38At first glance one may think that only the parse_parameters function can be overloaded since declare_parameters is not
virtual. However, while the latter is called by the class that manages plugins through pointers to the interface class, the former
function is called essentially at the time of registering a plugin, from code that knows the actual type and name of the class
you are implementing. Thus, it can call the function – if it exists in your class, or the default implementation in the base class
if it doesn’t – even without it being declared as virtual.

259

https://github.com/dealii/dealii/wiki/Frequently-Asked-Questions
https://github.com/dealii/dealii/wiki/Frequently-Asked-Questions
include/aspect/material_model/interface.h
include/aspect/material_model/interface.h
include/aspect/geometry_model/interface.h
https://aspect.geodynamics.org/doc/doxygen/classes.html
https://aspect.geodynamics.org/doc/doxygen/classes.html
https://aspect.geodynamics.org/doc/doxygen/classaspect_1_1GravityModel_1_1Interface.html

Simulator

SimulatorAccess

ascii data

compute
profile

function

ascii data

box

box with
lithosphere
boundary
indicators

function

initial
composition

spherical
constant

density

ascii data

box

box with
lithosphere
boundary
indicators

constant

dynamic core

function

initial
temperature

spherical
constant

ascii data

function

initial
lithostatic
pressure

ascii data

function

gplates

ascii data

function

box

box with
lithosphere
boundary
indicators

chunk

ellipsoidal
chunk

sphere
spherical

shell

ascii data

radial
constant

radial
earth-like

radial linear

vertical

adiabatic
heating

adiabatic
heating of

melt

compositional
heating

function

latent heat
melt

radioactive
decay

shear heating

shear heating
with melt

adiabatic
density

ascii data

ascii data
layered

function

porosity

world builder

S40RTS
perturbation

SAVANI
perturbation

adiabatic

adiabatic
boundary

ascii data

ascii data
layered

ascii profile

continental
geotherm

function

harmonic
perturbation

inclusion shape
perturbation

lithosphere
mask

mandelbox

patch on
S40RTS

perturbed box

polar box

spherical
gaussian

perturbation

spherical
hexagonal

perturbation

world builder

Steinberger

ascii reference
profile

averaging

compositing

composition
reaction

depth
dependent

diffusion
dislocation

drucker prager

dynamic
friction

grain size

latent heat

latent heat
melt

melt global

melt simple

modified tait

multicomponent

multicomponent
compressible

nondimensional

replace
lithosphere
viscosity

simple

simple
compressible

visco plastic

viscoelastic

artificial
viscosity

boundary

compaction
length

composition

composition
approximate

gradient

composition
gradient

composition
threshold

density

maximum
refinement

function

minimum
refinement

function

nonadiabatic
temperatureparticle

density

slope

strain rate

temperature

thermal energy
density

topography

velocity

viscosity

volume of fluid
interface

ascii file

probability
density
function

quadrature
points

random uniform

reference cell

uniform box

uniform radial

rk2

bilinear least
squares

cell average

harmonic
average

nearest
neighbor

composition

initial
composition

integrated
strain

integrated
strain

invariant

melt particle

pT path

velocity

viscoplastic
strain

invariants

Stokes
residual

basic
statistics

boundary
densities

boundary
pressures

command

composition
statistics

core
statistics

depth average

dynamic
topography

entropy
viscosity
statistics

geoid

global
statistics

gravity
calculation

heat flux
densities

heat flux map

heat flux
statistics

heating
statistics

load balance
statistics

mass flux
statistics

material
statistics

matrix
statistics

melt
statistics

memory
statistics

particle count
statistics

particles

point values

pressure
statistics

rotation
statistics

spherical
velocity

statistics

temperature
statistics

topography

velocity
boundary
statistics

velocity
statistics

visualization

volume of fluid
statistics

ISA rotation
timescale

Vp anomaly

Vs anomaly

adiabat

artificial
viscosity

artificial
viscosity

composition

boundary
indicators

compositional
vector

depth

dynamic
topography

error
indicator

geoid

grain lag
angle

gravity

heat flux map

heating

material
properties

maximum
horizontal

compressive
stress

melt fraction

melt material
properties

named
additional
outputs

nonadiabatic
pressure

nonadiabatic
temperature

particle count

partition

shear stress

spd factor

spherical
velocity

components

strain rate

strain rate
tensor

stress

temperature
anomaly

vertical heat
flux

volume of fluid
values

volumetric
strain rate

ascii data

circle

function

end step

end time

steady state
temperature

steady state
velocity

user request

wall time

Adiabatic conditions interface

Boundary composition interface

Boundary fluid pressure interface

Boundary temperature interface

Boundary traction interface

zero traction

Boundary velocity interface

zero velocity

Initial topography interface

prm polygon

zero
topography

Geometry model interface

Gravity model interface

function

Heating model interface

constant
heating

latent heat

Initial composition interface

Initial temperature interface

Material model interface

perplex lookup

simpler

Mesh refinement criteria interface

Particle generator interface

Particle integrator interface

euler

rk4

Particle interpolator interface

Particle property interface

function

initial
position

position

Postprocessor interface

Visualization postprocessor interface

Prescribed Stokes solution interface

Termination criteria interface

Figure 122: The graph of all current plugins of ASPECT. The yellow octagon and square represent the
Simulator and SimulatorAccess classes. The green boxes are interface classes for everything that can be
changed by plugins. Blue circles correspond to plugins that implement particular behavior. The graph is of
course too large to allow reading individual plugin names (unless you zoom far into the page), but is intended
to illustrate the architecture of ASPECT.

260

Each of the categories above that allow plugins have several implementations of their respective inter-
faces that you can use to get an idea of how to implement a new model.

• At the end of the file where you implement your new model, you need to have a call to the macro
ASPECT_REGISTER_GRAVITY_MODEL (or the equivalent for the other kinds of plugins). For exam-
ple, let us say that you had implemented a gravity model that takes actual gravimetric readings
from the GRACE satellites into account, and had put everything that is necessary into a class
aspect::GravityModel::GRACE. Then you need a statement like this at the bottom of the file:

ASPECT_REGISTER_GRAVITY_MODEL
(GRACE,
"grace",
"A gravity model derived from GRACE "
"data. Run-time parameters are read from the parameter "
"file in subsection ’Radial constant’.");

Here, the first argument to the macro is the name of the class. The second is the name by which this
model can be selected in the parameter file. And the third one is a documentation string that describes
the purpose of the class (see, for example, Section A.54 for an example of how existing models describe
themselves).
This little piece of code ensures several things: (i) That the parameters this class declares are known
when reading the parameter file. (ii) That you can select this model (by the name “grace”) via the
run-time parameter Gravity model/Model name. (iii) That ASPECT can create an object of this
kind when selected in the parameter file.
Note that you need not announce the existence of this class in any other part of the code: Everything
should just work automatically.39 This has the advantage that things are neatly separated: You do
not need to understand the core of ASPECT to be able to add a new gravity model that can then
be selected in an input file. In fact, this is true for all of the plugins we have: by and large, they
just receive some data from the simulator and do something with it (e.g., postprocessors), or they just
provide information (e.g., initial meshes, gravity models), but their writing does not require that you
have a fundamental understanding of what the core of the program does.

The procedure for the other areas where plugins are supported works essentially the same, with the
obvious change in namespace for the interface class and macro name.

In the following, we will discuss the requirements for individual plugins. Before doing so, however, let
us discuss ways in which plugins can query other information, in particular about the current state of the
simulation. To this end, let us not consider those plugins that by and large just provide information without
any context of the simulation, such as gravity models, prescribed boundary velocities, or initial temperatures.
Rather, let us consider things like postprocessors that can compute things like boundary heat fluxes. Taking
this as an example (see Section 6.4.8), you are required to write a function with the following interface

template <int dim>
class MyPostprocessor : public aspect::Postprocess::Interface
{

public:
virtual
std::pair<std::string,std::string>
execute (TableHandler &statistics);

39The existing implementations of models of the gravity and other interfaces declare the class in a header file and define the
member functions in a .cc file. This is done so that these classes show up in our doxygen-generated documentation, but it is
not necessary: you can put your entire class declaration and implementation into a single file as long as you call the macro
discussed above on it. This single file is all you need to touch to add a new model.

261

// ... more things ...

The idea is that in the implementation of the execute function you would compute whatever you are
interested in (e.g., heat fluxes) and return this information in the statistics object that then gets written to
a file (see Sections 4.1 and 4.4.2). A postprocessor may also generate other files if it so likes – e.g., graphical
output, a file that stores the locations of particles, etc. To do so, obviously you need access to the current
solution. This is stored in a vector somewhere in the core of ASPECT. However, this vector is, by itself, not
sufficient: you also need to know the finite element space it is associated with, and for that the triangulation
it is defined on. Furthermore, you may need to know what the current simulation time is. A variety of other
pieces of information enters computations in these kinds of plugins.

All of this information is of course part of the core of ASPECT, as part of the aspect::Simulator class.
However, this is a rather heavy class: it’s got dozens of member variables and functions, and it is the one
that does all of the numerical heavy lifting. Furthermore, to access data in this class would require that
you need to learn about the internals, the data structures, and the design of this class. It would be poor
design if plugins had to access information from this core class directly. Rather, the way this works is
that those plugin classes that wish to access information about the state of the simulation inherit from the
aspect::SimulatorAccess class. This class has an interface that looks like this:

template <int dim>
class SimulatorAccess
{
protected:

double get_time () const;

std::string get_output_directory () const;

const LinearAlgebra::BlockVector &
get_solution () const;

const DoFHandler<dim> &
get_dof_handler () const;

// ... many more things ...

This way, SimulatorAccess makes information available to plugins without the need for them to understand
details of the core of ASPECT. Rather, if the core changes, the SimulatorAccess class can still provide
exactly the same interface. Thus, it insulates plugins from having to know the core. Equally importantly,
since SimulatorAccess only offers its information in a read-only way it insulates the core from plugins since
they can not interfere in the workings of the core except through the interface they themselves provide to
the core.

Using this class, if a plugin class MyPostprocess is then not only derived from the corresponding
Interface class but also from the SimulatorAccess class (as indeed most plugins are, see the dashed arrows
in Fig. 122), then you can write a member function of the following kind (a nonsensical but instructive
example; see Section 6.4.8 for more details on what postprocessors do and how they are implemented):40

template <int dim>
std::pair<std::string,std::string>
MyPostprocessor<dim>::execute (TableHandler &statistics)
{

// compute the mean value of vector component ’dim’ of the solution
// (which here is the pressure block) using a deal.II function:
const double

40For complicated, technical reasons, in the code below we need to access elements of the SimulatorAccess class using the
notation this->get_solution(), etc. This is due to the fact that both the current class and the base class are templates. A
long description of why it is necessary to use this-> can be found in the deal.II Frequently Asked Questions.

262

doc/doxygen/classaspect_1_1Simulator.html
doc/doxygen/classaspect_1_1SimulatorAccess.html
doc/doxygen/classaspect_1_1SimulatorAccess.html
doc/doxygen/classaspect_1_1SimulatorAccess.html
doc/doxygen/classaspect_1_1SimulatorAccess.html
doc/doxygen/classaspect_1_1SimulatorAccess.html
doc/doxygen/classaspect_1_1SimulatorAccess.html

average_pressure = VectorTools::compute_mean_value (this->get_mapping(),
this->get_dof_handler(),
QGauss<dim>(2),
this->get_solution(),
dim);

statistics.add_value ("Average pressure", average_pressure);

// return that there is nothing to print to screen (a useful
// plugin would produce something more elaborate here):
return std::pair<std::string,std::string>();

}

The second piece of information that plugins can use is called “introspection”. In the code snippet above,
we had to use that the pressure variable is at position dim. This kind of implicit knowledge is usually bad
style: it is error prone because one can easily forget where each component is located; and it is an obstacle
to the extensibility of a code if this kind of knowledge is scattered all across the code base.

Introspection is a way out of this dilemma. Using the SimulatorAccess::introspection() function
returns a reference to an object (of type aspect::Introspection) that plugins can use to learn about these sort of
conventions. For example, this->introspection().component_mask.pressure returns a component mask
(a deal.II concept that describes a list of booleans for each component in a finite element that are true if a
component is part of a variable we would like to select and false otherwise) that describes which component
of the finite element corresponds to the pressure. The variable, dim, we need above to indicate that we
want the pressure component can be accessed as this->introspection().component_indices.pressure.
While this is certainly not shorter than just writing dim, it may in fact be easier to remember. It is most
definitely less prone to errors and makes it simpler to extend the code in the future because we don’t litter
the sources with “magic constants” like the one above.

This aspect::Introspection class has a significant number of variables that can be used in this way, i.e.,
they provide symbolic names for things one frequently has to do and that would otherwise require implicit
knowledge of things such as the order of variables, etc.

6.2 How to write a plugin
Before discussing what each kind of plugin actually has to implement (see the next subsection), let us briefly
go over what you actually have to do when implementing a new plugin. Essentially, the following steps are
all you need to do:

• Create a file, say my_plugin.cc that contains the declaration of the class you want to implement. This
class must be derived from one of the Interface classes we will discuss below. The file also needs to
contain the implementation of all member functions of your class.
As discussed above, it is possible – but not necessary – to split this file into two: a header file, say
my_plugin.h, and the my_plugin.cc file (or, if you prefer, into multiple source files). We do this
for all the existing plugins in ASPECT so that the documentation of these plugins shows up in the
doxygen-generated documentation. However, for your own plugins, there is typically no need for this
split. The only occasion where this would be useful is if some plugin actually makes use of a different
plugin (e.g., the implementation of a gravity model of your own may want to query some specifics of
a geometry model you also implemented); in that case the using plugin needs to be able to see the
declaration of the class of the used plugin, and for this you will need to put the declaration of the latter
into a header file.

• At the bottom of the my_plugin.cc file, put a statement that instantiates the plugin, documents it,
and makes it available to the parameter file handlers by registering it. This is always done using one
of the ASPECT_REGISTER_* macros that will be discussed in the next subsections; take a look at how
they are used in the existing plugins in the ASPECT source files.

263

doc/doxygen/structaspect_1_1Introspection.html
doc/doxygen/structaspect_1_1Introspection.html

• You need to compile the file. There are two ways by which this can be achieved:

– Put the my_plugin.cc into one of the ASPECT source directories and call cmake . followed by
make to ensure that it actually gets compiled. This approach has the advantage that you do not
need to worry much about how the file actually gets compiled. On the other hand, every time
you modify the file, calling make requires not only compiling this one file, but also link ASPECT.
Furthermore, when you upgrade from one version of ASPECT to another, you need to remember
to copy the my_plugin.cc file.

– Put the my_plugin.cc file into a directory of your choice and compile it into a shared library
yourself. This may be as easy as calling

NOTE: do not do this, but use the cmake command below!
g++ -I/path/to/aspect/headers -I/path/to/deal.II/headers \

-fPIC -shared my_plugin.cc -o my_plugin.so

on Linux, but the command may be different on other systems. Now you only need to tell
ASPECT to load this shared library at startup so that the plugin becomes available at run time
and can be selected from the input parameter file. This is done using the Additional shared
libraries parameter in the input file, see Section A.1. This approach has the upside that you can
keep all files that define new plugins in your own directories where you also run the simulations,
also making it easier to keep around your plugins as you upgrade your ASPECT installation. On
the other hand, compiling the file into a shared library is a bit more that you need to do yourself.
Nevertheless, this is the preferred approach.
In practice, the compiler line above can become tedious because it includes paths to the ASPECT
and deal.II header files, but possibly also other things such as Trilinos headers, etc. Having to
remember all of these pieces is a hassle, and a much easier way is in fact to set up a mini-CMake
project for this. To this end, simply copy the file doc/plugin-CMakeLists.txt to the directory
where you have your plugin source files and rename it to CMakeLists.txt.

You can then just run the commands

cmake -DAspect_DIR=/path/to/aspect/build/ .
make

and it should compile your plugin files into a shared library my_plugin.so. A concrete example of this
process is discussed in Section 5.4.1. Of course, you may want to choose different names for the source
files source_1.cc, source_2.cc or the name of the plugin my_plugin.
In essence, what these few lines do is that they find an ASPECT installation (i.e., the directory where
you configured and compiled it, which may be the same directory as where you keep your sources, or
a different one, as discussed in Section 3) in either the directory explicitly specified in the Aspect_DIR
variable passed to cmake, the shell environment variable ASPECT_DIR, or just one directory up. It then
sets up compiler paths and similar, and the following lines simply define the name of a plugin, list the
source files for it, and define everything that’s necessary to compile them into a shared library. Calling
make on the command line then simply compiles everything.

264

doc/plugin-CMakeLists.txt

Note: Complex projects built on ASPECT often require plugins of more than just one kind. For
example, they may have plugins for the geometry, the material model, and for postprocessing.
In such cases, you can either define multiple shared libraries by repeating the calls to PROJECT,
ADD_LIBRARY and ASPECT_SETUP_PLUGIN for each shared library in your CMakeLists.txt file
above, or you can just compile all of your source files into a single shared library. In the latter
case, you only need to list a single library in your input file, but each plugin will still be selectable
in the various sections of your input file as long as each of your classes has a corresponding
ASPECT_REGISTER_* statement somewhere in the file where you have its definition. An even
simpler approach is to just put everything into a single file – there is no requirement that different
plugins are in separate files, though this is often convenient from a code organization point of
view.

Note: If you choose to compile your plugins into a shared library yourself, you will need to
recompile them every time you upgrade your ASPECT installation since we do not guarantee
that the ASPECT application binary interface (ABI) will remain stable, even if it may not be
necessary to actually change anything in the implementation of your plugin.

6.3 How to write a cookbook
ASPECT has a number of cookbooks (see Section 5) that introduce certain features of the code to new
users or explain how to set up a certain type of application model. If you have a model setup that fits into
one of those categories and are willing to share it and write some explanation about it, we are always happy
about that! We also keep a list of cookbooks we think would be great additions to ASPECT as an issue on
github.

All cookbooks consist of an input file for the model run, which is located in the cookbooks folder, a
section in the manual describing the setup, and – if additional plugins are required to run the model – the
corresponding .cc file(s) located in a subdirectory of the cookbooks folder corresponding to the individual
cookbook.

6.3.1 Parameter file

You can create the parameter file in the same way you would do it for any other model. Beyond that, make
sure to start the file with a comment that explains what this cookbook is about in a few sentences. After
that, you will list all of the input parameters. In general, it makes sense to begin with the ones that are
most important for the setup you want to show, and otherwise to group parameters and sections that are
related to each other (like all boundary conditions or all initial conditions). To make the input file easy
to understand for other users, it is a good practice to add a short comment to each section or important
parameter used in the file, explaining what this input option accomplishes and why it is needed for the model
setup.

Once you have finalized your input file, you can put it into the cookbooks folder.

6.3.2 Plugins and other additional file

In case you need other files (like shared libraries) to run your cookbook, you have to create a new folder in the
cookbooks directory that is named after your cookbook (with words divided by underscores). Section 6.2 ex-
plains how to add a CMakeLists.txt file to that directory so that your plugin can be compiled easily (see the
bullet point starting with “Put the my_plugin.cc file into a directory of your choice...”). Note that after you
have copied and renamed the doc/plugin-CMakeLists.txt file, you have to modify it in the following way:
in the command SET(TARGET "my_plugin"), replace "my_plugin" by the name you want your shared library
to have (usually the name of the cookbook), and in ADD_LIBRARY(${TARGET} SHARED source_1.cc source_2.cc),
replace source_1.cc source_2.cc by the name of your .cc file.

265

https://github.com/geodynamics/aspect/issues/2110
https://github.com/geodynamics/aspect/issues/2110
cookbooks/.
cookbooks/.
cookbooks/.
doc/plugin-CMakeLists.txt

6.3.3 Section in the manual

Then you have to decide if the cookbook you want to contribute is a Simple setup (that explains how to use
one specific feature, but does not try to reproduce any earth-like setting, see Section 5.2), a Geophysical setup
(that teaches how to setup a specific type of geodynamic model like a global convection model, a subduction
zone or a mid-ocean ridge, see Section 5.3) or a Benchmark (see Section 5.4). Depending on that choice,
you will then start a new \subsubsection in the manual.tex file at the end of the corresponding subsection
(Simple setups, Geophysical setups or Benchmarks). This is where your description of the model will go.

In addition to the text in the manual, you also have to create a subfolder in the doc/manual/cookbooks
directory. This is the place where all figures and input file/code snippets that accompany the description go
into.

Note also one special case: If your setup is a benchmark, you will have to put your input file into the
benchmarks folder rather than into the cookbooks folder, and you have to create the subfolder for your
figures and code snippets in the doc/manual/cookbooks/benchmarks directory.

To give you some guidelines on how to write the section in the manual, you can follow this general
structure:
• Start with a short description of what feature the cookbook introduces or what the model setup is
meant to accomplish, including the relevant physics. Specifically, this paragraph should also address
the question of what motivates the model. If the setup comes from a publication, make sure to mention
that and include the reference.

• If the model uses a new plugin, describe the new feature this plugin introduces and how this is imple-
mented in the code. Ideally, this paragraph includes essential code snippets from the plugin file that
complement and illustrate the description in the text. Place the code snippet in the corresponding
subfolder you created in the doc/manual/cookbooks directory and use the command

\lstinline{\lstinputlisting[language=C++]{cookbooks/subfolder_name/code_snippet.cc}!

to insert the code in the manual.tex file.

• Explain what the important input parameters in this setup are, what values you set them to and why.
This paragraph should give an overview of your model setup, including the initial conditions, boundary
conditions, geometry, etc., and anything that is special about the setup. Ideally, this description
includes snippets from the input file. You can place these snippets in the subfolder you created in the
doc/manual/cookbooks directory and include them in the manual.tex file using a command like

\lstinputlisting[language=prmfile]{cookbooks/subfolder_name/doc/input_snippet.prm.out}

• Show the model results in form of figures and/or plots, accompanied by an explanation of what hap-
pens in the model. This can also include a link to an animation of the model you made and uploaded
somewhere, for example on YouTube. When creating figures or animations, you should think about
the color scale that you use. Some colormaps – like the rainbow color palette that is still the default in
some visualization tools – can obscure features present in the data and introduce artifacts, because the
rainbow color scale is not perceptually uniform. For more background on this topic, there is a great
summary on https://matplotlib.org/users/colormaps.html. To state some of their recommen-
dations here, in most cases it is best to choose a perceptually uniform color palette. For representing
information that has ordering, they recommend sequential color palettes that change in lightness/color
incrementally like “viridis”, “inferno”, “plasma” and “magma”. For representing data that deviates
around zero, they recommend diverging color palettes where two different colors change in lightness
and meet at an unsaturated color in the middle such as “BrBG” and “RdBu”. If you use a recent
version of ParaView or VisIt, these color palettes are included with the preset color maps under the
names given above, and you may want to choose one of these options rather than the default.

266

doc/manual/manual.tex
doc/manual/cookbooks/.
benchmarks/.
cookbooks/.
doc/manual/cookbooks/benchmarks/.
doc/manual/cookbooks/.
doc/manual/cookbooks/.
https://matplotlib.org/users/colormaps.html

• Finally, mention some ways the users could modify or extend the cookbook, such as parameters to
vary to get new and interesting results, or to better understand the numerical methods or the physical
processes occurring in the model. These can just be suggestions, or you can also extend on these ideas
by adding subsections that illustrate how these modifications influence the model results.

And that’s it, you have just created your first cookbook! Make a pull request to contribute it to the main
repository! You can find more information on how to do that on our github page.

You will get bonus points if you also create a test (see Section 6.8.2) that only runs the first time step
(or a lower resolution version) of your cookbook.

6.4 Available plugin types
6.4.1 Material models

The material model is responsible for describing the various coefficients in the equations that ASPECT
solves. To implement a new material model, you need to overload the aspect::MaterialModel::Interface class
and use the ASPECT_REGISTER_MATERIAL_MODELmacro to register your new class. The implementation of the
new class should be in namespace aspect::MaterialModel. An example of a material model implemented
this way is given in Section 5.4.17.

Specifically, your new class needs to implement the following interface:

template <int dim>
class aspect::MaterialModel::Interface
{

public:
// Physical parameters used in the basic equations
virtual void evaluate(const MaterialModelInputs &in, MaterialModelOutputs &out) const=0;

virtual bool is_compressible () const = 0;

// Reference quantities
virtual double reference_viscosity () const = 0;

// Functions used in dealing with run-time parameters
static void
declare_parameters (ParameterHandler &prm);

virtual void
parse_parameters (ParameterHandler &prm);

// Optional:
virtual void initialize ();

virtual void update ();
}

The main properties of the material are computed in the function evaluate() that takes a struct of type
MaterialModelInputs and is supposed to fill a MaterialModelOutputs structure. For performance reasons
this function is handling lookups at an arbitrary number of positions, so for each variable (for example
viscosity), a std::vector is returned. The following members of MaterialModelOutputs need to be filled:

struct MaterialModelOutputs
{

267

https://guides.github.com/introduction/flow/
https://github.com/geodynamics/aspect/blob/master/CONTRIBUTING.md
doc/doxygen/classaspect_1_1MaterialModel_1_1Interface.html

std::vector<double> viscosities;
std::vector<double> densities;
std::vector<double> thermal_expansion_coefficients;
std::vector<double> specific_heat;
std::vector<double> thermal_conductivities;
std::vector<double> compressibilities;

}

The variables refer to the coefficients η, Cp, k, ρ in equations (1)–(3), each as a function of temperature,
pressure, position, compositional fields and, in the case of the viscosity, the strain rate (all handed in
by MaterialModelInputs). Implementations of evaluate() may of course choose to ignore dependencies on
any of these arguments. In writing a new material model, you should consider coefficient self-consistency
(Section 2.2.1).

The remaining functions are used in postprocessing as well as handling run-time parameters. The exact
meaning of these member functions is documented in the aspect::MaterialModel::Interface class documen-
tation. Note that some of the functions listed above have a default implementation, as discussed on the
documentation page just mentioned.

The function is_compressible returns whether we should consider the material as compressible or not,
see Section 2.10.3 on the Boussinesq model. As discussed there, incompressibility as described by this
function does not necessarily imply that the density is constant; rather, it may still depend on temperature
or pressure. In the current context, compressibility simply means whether we should solve the continuity
equation as ∇ · (ρu) = 0 (compressible Stokes) or as ∇ · u = 0 (incompressible Stokes).

The purpose of the parameter handling functions has been discussed in the general overview of plugins
above.

The functions initialize() and update() can be implemented if desired (the default implementation does
nothing) and are useful if the material model has internal state. The function initialize() is called once during
the initialization of ASPECT and can be used to allocate memory, initialize state, or read information from
an external file. The function update() is called at the beginning of every time step.

Additionally, every material model has a member variable “model_dependence”, declared in the Interface
class, which can be accessed from the plugin as “this→model_dependence”. This structure describes the
nonlinear dependence of the various coefficients on pressure, temperature, composition or strain rate. This
information will be used in future versions of ASPECT to implement a fully nonlinear solution scheme based
on, for example, a Newton iteration. The initialization of this variable is optional, but only plugins that
declare correct dependencies can benefit from these solver types. All packaged material models declare their
dependencies in the parse_parameters() function and can be used as a starting point for implementations
of new material models.

Older versions of ASPECT used to have individual functions like viscosity() instead of the evaluate()
function discussed above. This old interface is no longer supported, restructure your plugin to implement
evaluate() instead (even if this function only calls the old functions).

6.4.2 Heating models

The heating model is responsible for describing the various terms in the energy equation (3), using the
coefficients provided by the material model. These can be source terms such as radiogenic heat production
or shear heating, they can be terms on the left-hand side of the equation, such as part of the latent heating
terms, or they can be heating processes related to reactions. Each of these terms is described by a “heating
model”, and a simulation can have none, one, or many heating models that are active throughout a simulation,
with each heating model usually only implementing the terms for one specific heating process. One can then
decide in the input file which heating processes should be included in the computation by providing a list of
heating models in the input file.

When the equations are assembled and solved, the heating terms from all heating models used in the
computation are added up.

268

doc/doxygen/classaspect_1_1MaterialModel_1_1Interface.html
doc/doxygen/classaspect_1_1MaterialModel_1_1Interface.html

To implement a new heating model, you need to overload the aspect::HeatingModel::Interface class and
use the ASPECT_REGISTER_HEATING_MODEL macro to register your new class. The implementation of the new
class should be in namespace aspect::HeatingModel.

Specifically, your new class needs to implement the following basic interface:

template <int dim>
class aspect::HeatingModel::Interface
{

public:
// compute heating terms used in the energy equation
virtual
void
evaluate (const MaterialModel::MaterialModelInputs<dim> &material_model_inputs,

const MaterialModel::MaterialModelOutputs<dim> &material_model_outputs,
HeatingModel::HeatingModelOutputs &heating_model_outputs) const;

// All the following functions are optional:
virtual
void
initialize ();

virtual
void
update ();

// Functions used in dealing with run-time parameters
static
void
declare_parameters (ParameterHandler &prm);

virtual
void
parse_parameters (ParameterHandler &prm);

// Allow the heating model to attach additional material model outputs in case it needs
// them to compute the heating terms
virtual
void
create_additional_material_model_outputs(MaterialModel::MaterialModelOutputs<dim> &) const;

};

The main properties of the material are computed in the function evaluate() that takes references to
MaterialModelInputs and MaterialModelOutputs objects and is supposed to fill the HeatingModelOutputs
structure. As in the material model, this function is handling lookups at an arbitrary number of positions,
so for each heating term (for example the heating source terms), a std::vector is returned. The following
members of HeatingModelOutputs need to be filled:

struct HeatingModelOutputs
{

std::vector<double> heating_source_terms;
std::vector<double> lhs_latent_heat_terms;

// optional:
std::vector<double> rates_of_temperature_change;

}

269

doc/doxygen/classaspect_1_1HeatingModel_1_1Interface.html

Heating source terms are terms on the right-hand side of the equations, such as the adiabatic heating
αT (u · ∇p) in equation (3). An example for a left-hand side heating term is the temperature-derivative
term ρT∆S ∂X∂T that is part of latent heat production (see equation (5)).41 Rates of temperature change42
are used when the heating term is related to a reaction process, happening on a faster time scale than the
temperature advection. All of these terms can depend on any of the material model inputs or outputs.
Implementations of evaluate() may of course choose to ignore dependencies on any of these arguments.

The remaining functions are used in postprocessing as well as handling run-time parameters. The exact
meaning of these member functions is documented in the aspect::HeatingModel::Interface class documen-
tation. Note that some of the functions listed above have a default implementation, as discussed on the
documentation page just mentioned.

Just like for material models, the functions initialize() and update() can be implemented if desired
(the default implementation does nothing) and are useful if the heating model has an internal state. The
function initialize() is called once during the initialization of ASPECT and can be used to allocate
memory for the heating model, initialize state, or read information from an external file. The function
update() is called at the beginning of every time step.

6.4.3 Geometry models

The geometry model is responsible for describing the domain in which we want to solve the equations. A
domain is described in deal.II by a coarse mesh and, if necessary, an object that characterizes the boundary.
Together, these two suffice to reconstruct any domain by adaptively refining the coarse mesh and placing new
nodes generated by refining cells onto the surface described by the boundary object. The geometry model is
also responsible for marking different parts of the boundary with different boundary indicators for which one
can then, in the input file, select whether these boundaries should be Dirichlet-type (fixed temperature) or
Neumann-type (no heat flux) boundaries for the temperature, and what kind of velocity conditions should
hold there. In deal.II, a boundary indicator is a number of type types::boundary_id, but since boundaries
are hard to remember and get right in input files, geometry models also have a function that provide a map
from symbolic names that can be used to describe pieces of the boundary to the corresponding boundary
indicators. For example, the simple box geometry model in 2d provides the map {"left"→0, "right"→1,
"bottom"→2,"top"→3}, and we have consistently used these symbolic names in the input files used in this
manual.

To implement a new geometry model, you need to overload the aspect::GeometryModel::Interface class
and use the ASPECT_REGISTER_GEOMETRY_MODEL macro to register your new class. The implementation of
the new class should be in namespace aspect::GeometryModel.

Specifically, your new class needs to implement the following basic interface:

template <int dim>
class aspect::GeometryModel::Interface
{

public:
virtual
void
create_coarse_mesh (parallel::distributed::Triangulation<dim> &coarse_grid) const = 0;

virtual
double
length_scale () const = 0;

41Whether a term should go on the left or right hand side of the equation is, in some sense, a choice one can make. Putting
a term onto the right hand side makes it an explicit term as far as time stepping is concerned, and so may imply a time step
restriction if its dynamics are too fast. On the other hand, it does not introduce a nonlinearity if it depends on more than just
a multiple of the temperature (such as the term αT (u · ∇p)). In practice, whether one wants to put a specific term on one side
or the other may be a judgment call based on experience with numerical methods.

42Or, more correctly: Rates of thermal energy change.

270

doc/doxygen/classaspect_1_1HeatingModel_1_1Interface.html
doc/doxygen/classaspect_1_1HeatingModel_1_1Interface.html
doc/doxygen/classaspect_1_1GeometryModel_1_1Interface.html

virtual
double depth(const Point<dim> &position) const = 0;

virtual
Point<dim> representative_point(const double depth) const = 0;

virtual
double maximal_depth() const = 0;

virtual
std::set<types::boundary_id_t>
get_used_boundary_indicators () const = 0;

virtual
std::map<std::string,types::boundary_id>
get_symbolic_boundary_names_map () const;

static
void
declare_parameters (ParameterHandler &prm);

virtual
void
parse_parameters (ParameterHandler &prm);

};

The kind of information these functions need to provide is extensively discussed in the documentation of
this interface class at aspect::GeometryModel::Interface. The purpose of the last two functions has been
discussed in the general overview of plugins above.

The create_coarse_mesh function does not only create the actual mesh (i.e., the locations of the vertices
of the coarse mesh and how they connect to cells) but it must also set the boundary indicators for all parts
of the boundary of the mesh. The deal.II glossary describes the purpose of boundary indicators as follows:

In a Triangulation object, every part of the boundary is associated with a unique number (of
type types::boundary_id) that is used to identify which boundary geometry object is responsible
to generate new points when the mesh is refined. By convention, this boundary indicator is also
often used to determine what kinds of boundary conditions are to be applied to a particular part
of a boundary. The boundary is composed of the faces of the cells and, in 3d, the edges of these
faces.
By default, all boundary indicators of a mesh are zero, unless you are reading from a mesh file
that specifically sets them to something different, or unless you use one of the mesh generation
functions in namespace GridGenerator that have a ’colorize’ option. A typical piece of code that
sets the boundary indicator on part of the boundary to something else would look like this, here
setting the boundary indicator to 42 for all faces located at x = −1:

for (typename Triangulation<dim>::active_cell_iterator
cell = triangulation.begin_active();

cell != triangulation.end();
++cell)

for (unsigned int f=0; f<GeometryInfo<dim>::faces_per_cell; ++f)
if (cell->face(f)->at_boundary())

if (cell->face(f)->center()[0] == -1)
cell->face(f)->set_boundary_indicator (42);

271

doc/doxygen/classaspect_1_1GeometryModel_1_1Interface.html

This calls functions TriaAccessor::set_boundary_indicator. In 3d, it may also be appropriate
to call TriaAccessor::set_all_boundary_indicators instead on each of the selected faces. To
query the boundary indicator of a particular face or edge, use TriaAccessor::boundary_indicator.
The code above only sets the boundary indicators of a particular part of the boundary, but it
does not by itself change the way the Triangulation class treats this boundary for the purposes
of mesh refinement. For this, you need to call Triangulation::set_boundary to associate a
boundary object with a particular boundary indicator. This allows the Triangulation object to
use a different method of finding new points on faces and edges to be refined; the default is to use
a StraightBoundary object for all faces and edges. The results section of step-49 has a worked
example that shows all of this in action.
The second use of boundary indicators is to describe not only which geometry object to use on
a particular boundary but to select a part of the boundary for particular boundary conditions.
[...]
Note: Boundary indicators are inherited from mother faces and edges to their children upon
mesh refinement. Some more information about boundary indicators is also presented in a section
of the documentation of the Triangulation class.

Two comments are in order here. First, if a coarse triangulation’s faces already accurately represent where
you want to pose which boundary condition (for example to set temperature values or determine which are
no-flow and which are tangential flow boundary conditions), then it is sufficient to set these boundary
indicators only once at the beginning of the program since they will be inherited upon mesh refinement to
the child faces. Here, at the beginning of the program is equivalent to inside the create_coarse_mesh())
function of the geometry module shown above that generates the coarse mesh.

Secondly, however, if you can only accurately determine which boundary indicator should hold where
on a refined mesh – for example because the coarse mesh is the cube [0, L]3 and you want to have a fixed
velocity boundary describing an extending slab only for those faces for which z > L−Lslab – then you need
a way to set the boundary indicator for all boundary faces either to the value representing the slab or the
fluid underneath after every mesh refinement step. By doing so, child faces can obtain boundary indicators
different from that of their parents. deal.II triangulations support this kind of operations using a so-called
post-refinement signal. In essence, what this means is that you can provide a function that will be called by
the triangulation immediately after every mesh refinement step.

The way to do this is by writing a function that sets boundary indicators and that will be called by the
Triangulation class. The triangulation does not provide a pointer to itself to the function being called,
nor any other information, so the trick is to get this information into the function. C++ provides a nice
mechanism for this that is best explained using an example:

#include <deal.II/base/std_cxx1x/bind.h>

template <int dim>
void set_boundary_indicators (parallel::distributed::Triangulation<dim> &triangulation)
{

... set boundary indicators on the triangulation object ...
}

template <int dim>
void
MyGeometry<dim>::
create_coarse_mesh (parallel::distributed::Triangulation<dim> &coarse_grid) const
{

... create the coarse mesh ...

coarse_grid.signals.post_refinement.connect
(std_cxx1x::bind (&set_boundary_indicators<dim>,

272

std_cxx1x::ref(coarse_grid)));

}

What the call to std_cxx1x::bind does is to produce an object that can be called like a function
with no arguments. It does so by taking the address of a function that does, in fact, take an argument but
permanently fix this one argument to a reference to the coarse grid triangulation. After each refinement step,
the triangulation will then call the object so created which will in turn call set_boundary_indicators<dim>
with the reference to the coarse grid as argument.

This approach can be generalized. In the example above, we have used a global function that will be
called. However, sometimes it is necessary that this function is in fact a member function of the class that
generates the mesh, for example because it needs to access run-time parameters. This can be achieved as
follows: assuming the set_boundary_indicators() function has been declared as a (non-static, but possibly
private) member function of the MyGeometry class, then the following will work:

#include <deal.II/base/std_cxx1x/bind.h>

template <int dim>
void
MyGeometry<dim>::
set_boundary_indicators (parallel::distributed::Triangulation<dim> &triangulation) const
{

... set boundary indicators on the triangulation object ...
}

template <int dim>
void
MyGeometry<dim>::
create_coarse_mesh (parallel::distributed::Triangulation<dim> &coarse_grid) const
{

... create the coarse mesh ...

coarse_grid.signals.post_refinement.connect
(std_cxx1x::bind (&MyGeometry<dim>::set_boundary_indicators,

std_cxx1x::cref(*this),
std_cxx1x::ref(coarse_grid)));

}

Here, like any other member function, set_boundary_indicators implicitly takes a pointer or reference to
the object it belongs to as first argument. std::bind again creates an object that can be called like a global
function with no arguments, and this object in turn calls set_boundary_indicators with a pointer to the
current object and a reference to the triangulation to work on. Note that because the create_coarse_mesh
function is declared as const, it is necessary that the set_boundary_indicators function is also declared
const.

Note: For reasons that have to do with the way the parallel::distributed::Triangulation is
implemented, functions that have been attached to the post-refinement signal of the triangulation
are called more than once, sometimes several times, every time the triangulation is actually refined.

6.4.4 Gravity models

The gravity model is responsible for describing the magnitude and direction of the gravity vector at each point
inside the domain. To implement a new gravity model, you need to overload the aspect::GravityModel::Interface
class and use the ASPECT_REGISTER_GRAVITY_MODEL macro to register your new class. The implementation
of the new class should be in namespace aspect::GravityModel.

273

doc/doxygen/classaspect_1_1GravityModel_1_1Interface.html

Specifically, your new class needs to implement the following basic interface:

template <int dim>
class aspect::GravityModel::Interface
{

public:
virtual
Tensor<1,dim>
gravity_vector (const Point<dim> &position) const = 0;

virtual
void
update ();

static
void
declare_parameters (ParameterHandler &prm);

virtual
void
parse_parameters (ParameterHandler &prm);

};

The kind of information these functions need to provide is discussed in the documentation of this interface
class at aspect::GravityModel::Interface. The first needs to return a gravity vector at a given position,
whereas the second is called at the beginning of each time step, for example to allow a model to update itself
based on the current time or the solution of the previous time step. The purpose of the last two functions
has been discussed in the general overview of plugins above.

6.4.5 Initial conditions

The initial conditions model is responsible for describing the initial temperature distribution throughout the
domain. It essentially has to provide a function that for each point can return the initial temperature. Note
that the model (1)–(3) does not require initial values for the pressure or velocity. However, if coefficients
are nonlinear, one can significantly reduce the number of initial nonlinear iterations if a good guess for them
is available; consequently, ASPECT initializes the pressure with the adiabatically computed hydrostatic
pressure, and a zero velocity. Neither of these two has to be provided by the objects considered in this
section.

To implement a new initial conditions model, you need to overload the aspect::InitialConditions::Interface
class and use the ASPECT_REGISTER_INITIAL_CONDITIONS macro to register your new class. The implemen-
tation of the new class should be in namespace aspect::InitialConditions.

Specifically, your new class needs to implement the following basic interface:

template <int dim>
class aspect::InitialConditions::Interface
{

public:
void
initialize (const GeometryModel::Interface<dim> &geometry_model,

const BoundaryTemperature::Interface<dim> &boundary_temperature,
const AdiabaticConditions<dim> &adiabatic_conditions);

virtual
double
initial_temperature (const Point<dim> &position) const = 0;

274

doc/doxygen/classaspect_1_1GravityModel_1_1Interface.html
doc/doxygen/classaspect_1_1InitialConditions_1_1Interface.html

static
void
declare_parameters (ParameterHandler &prm);

virtual
void
parse_parameters (ParameterHandler &prm);

};

The meaning of the first class should be clear. The purpose of the last two functions has been discussed in
the general overview of plugins above.

6.4.6 Prescribed velocity boundary conditions

Most of the time, one chooses relatively simple boundary values for the velocity: either a zero boundary
velocity, a tangential flow model in which the tangential velocity is unspecified but the normal velocity is
zero at the boundary, or one in which all components of the velocity are unspecified (i.e., for example, an
outflow or inflow condition where the total stress in the fluid is assumed to be zero). However, sometimes
we want to choose a velocity model in which the velocity on the boundary equals some prescribed value.
A typical example is one in which plate velocities are known, for example their current values or historical
reconstructions. In that case, one needs a model in which one needs to be able to evaluate the velocity at
individual points at the boundary. This can be implemented via plugins.

To implement a new boundary velocity model, you need to overload the aspect::VelocityBoundaryConditions::Interface
class and use the ASPECT_REGISTER_VELOCITY_BOUNDARY_CONDITIONS macro to register your new class. The
implementation of the new class should be in namespace aspect::VelocityBoundaryConditions.

Specifically, your new class needs to implement the following basic interface:

template <int dim>
class aspect::VelocityBoundaryConditions::Interface
{

public:
virtual
Tensor<1,dim>
boundary_velocity (const Point<dim> &position) const = 0;

virtual
void
initialize (const GeometryModel::Interface<dim> &geometry_model);

virtual
void
update ();

static
void
declare_parameters (ParameterHandler &prm);

virtual
void
parse_parameters (ParameterHandler &prm);

};

The first of these functions needs to provide the velocity at the given point. The next two are other member
functions that can (but need not) be overloaded if a model wants to do initialization steps at the beginning
of the program or at the beginning of each time step. Examples are models that need to call an external

275

doc/doxygen/classaspect_1_1VelocityBoundaryConditions_1_1Interface.html

program to obtain plate velocities for the current time, or from historical records, in which case it is far
cheaper to do so only once at the beginning of the time step than for every boundary point separately. See,
for example, the aspect::VelocityBoundaryConditions::GPlates class.

The remaining functions are obvious, and are also discussed in the documentation of this interface class
at aspect::VelocityBoundaryConditions::Interface. The purpose of the last two functions has been discussed
in the general overview of plugins above.

6.4.7 Temperature boundary conditions

The boundary conditions are responsible for describing the temperature values at those parts of the boundary
at which the temperature is fixed (see Section 6.4.3 for how it is determined which parts of the boundary
this applies to).

To implement a new boundary conditions model, you need to overload the aspect::BoundaryTemperature::Interface
class and use the ASPECT_REGISTER_BOUNDARY_TEMPERATURE_MODEL macro to register your new class. The
implementation of the new class should be in namespace aspect::BoundaryTemperature.

Specifically, your new class needs to implement the following basic interface:

template <int dim>
class aspect::BoundaryTemperature::Interface
{

public:
virtual
double
temperature (const GeometryModel::Interface<dim> &geometry_model,

const unsigned int boundary_indicator,
const Point<dim> &location) const = 0;

virtual
double minimal_temperature () const = 0;

virtual
double maximal_temperature () const = 0;

static
void
declare_parameters (ParameterHandler &prm);

virtual
void
parse_parameters (ParameterHandler &prm);

};

The first of these functions needs to provide the fixed temperature at the given point. The geometry model
and the boundary indicator of the particular piece of boundary on which the point is located is also given
as a hint in determining where this point may be located; this may, for example, be used to determine if a
point is on the inner or outer boundary of a spherical shell. The remaining functions are obvious, and are
also discussed in the documentation of this interface class at aspect::BoundaryTemperature::Interface. The
purpose of the last two functions has been discussed in the general overview of plugins above.

6.4.8 Postprocessors: Evaluating the solution after each time step

Postprocessors are arguably the most complex and powerful of the plugins available in ASPECT since they
do not only passively provide any information but can actually compute quantities derived from the solution.
They are executed once at the end of each time step and, unlike all the other plugins discussed above, there

276

doc/doxygen/classaspect_1_1VelocityBoundaryConditions_1_1GPlates.html
doc/doxygen/classaspect_1_1VelocityBoundaryConditions_1_1Interface.html
doc/doxygen/classaspect_1_1BoundaryTemperature_1_1Interface.html
doc/doxygen/classaspect_1_1BoundaryTemperature_1_1Interface.html

can be an arbitrary number of active postprocessors in the same program (for the plugins discussed in
previous sections it was clear that there is always exactly one material model, geometry model, etc.).

Motivation. The original motivation for postprocessors is that the goal of a simulation is of course not
the simulation itself, but that we want to do something with the solution. Examples for already existing
postprocessors are:

• Generating output in file formats that are understood by visualization programs. This is facilitated
by the aspect::Postprocess::Visualization class and a separate class of visualization postprocessors, see
Section 6.4.9.

• Computing statistics about the velocity field (e.g., computing minimal, maximal, and average ve-
locities), temperature field (minimal, maximal, and average temperatures), or about the heat fluxes
across boundaries of the domain. This is provided by the aspect::Postprocess::VelocityStatistics, as-
pect::Postprocess::TemperatureStatistics, aspect::Postprocess::HeatFluxStatistics classes, respectively.

Since writing this text, there may have been other additions as well.
However, postprocessors can be more powerful than this. For example, while the ones listed above are

by and large stateless, i.e., they do not carry information from one invocation at one timestep to the next
invocation,43 there is nothing that prohibits postprocessors from doing so. For example, the following ideas
would fit nicely into the postprocessor framework:

• Passive particles: If one would like to follow the trajectory of material as it is advected along with
the flow field, one technique is to use particles. To implement this, one would start with an initial
population of particles distributed in a certain way, for example close to the core-mantle boundary.
At the end of each time step, one would then need to move them forward with the flow field by one
time increment. As long as these particles do not affect the flow field (i.e., they do not carry any
information that feeds into material properties; in other words, they are passive), their location could
well be stored in a postprocessor object and then be output in periodic intervals for visualization. In
fact, such a passive particle postprocessor is already available.

• Surface or crustal processes: Another possibility would be to keep track of surface or crustal processes
induced by mantle flow. An example would be to keep track of the thermal history of a piece of crust
by updating it every time step with the heat flux from the mantle below. One could also imagine
integrating changes in the surface topography by considering the surface divergence of the surface
velocity computed in the previous time step: if the surface divergence is positive, the topography is
lowered, eventually forming a trench; if the divergence is negative, a mountain belt eventually forms.

In all of these cases, the essential limitation is that postprocessors are passive, i.e., that they do not affect
the simulation but only observe it.

The statistics file. Postprocessors fall into two categories: ones that produce lots of output every time
they run (e.g., the visualization postprocessor), and ones that only produce one, two, or in any case a small
and fixed number of often numerical results (e.g., the postprocessors computing velocity, temperature, or
heat flux statistics). While the former are on their own in implementing how they want to store their data
to disk, there is a mechanism in place that allows the latter class of postprocessors to store their data into
a central file that is updated at the end of each time step, after all postprocessors are run.

To this end, the function that executes each of the postprocessors is given a reference to a dealii::TableHandler
object that allows to store data in named columns, with one row for each time step. This table is then stored
in the statistics file in the directory designated for output in the input parameter file. It allows for easy
visualization of trends over all time steps. To see how to put data into this statistics object, take a look at
the existing postprocessor objects.

43This is not entirely true. The visualization plugin keeps track of how many output files it has already generated, so that
they can be numbered consecutively.

277

doc/doxygen/classaspect_1_1Postprocess_1_1Visualization.html
doc/doxygen/classaspect_1_1Postprocess_1_1VelocityStatistics.html
doc/doxygen/classaspect_1_1Postprocess_1_1TemperatureStatistics.html
doc/doxygen/classaspect_1_1Postprocess_1_1TemperatureStatistics.html
doc/doxygen/classaspect_1_1Postprocess_1_1HeatFluxStatistics.html

Note that the data deposited into the statistics object need not be numeric in type, though it often is.
An example of text-based entries in this table is the visualization class that stores the name of the graphical
output file written in a particular time step.

Implementing a postprocessor. Ultimately, implementing a new postprocessor is no different than any
of the other plugins. Specifically, you’ll have to write a class that overloads the aspect::Postprocess::Interface
base class and use the ASPECT_REGISTER_POSTPROCESSOR macro to register your new class. The implemen-
tation of the new class should be in namespace aspect::Postprocess.

In reality, however, implementing new postprocessors is often more difficult. Primarily, this difficulty
results from two facts:

• Postprocessors are not self-contained (only providing information) but in fact need to access the solution
of the model at each time step. That is, of course, the purpose of postprocessors, but it requires that
the writer of a plugin has a certain amount of knowledge of how the solution is computed by the main
Simulator class, and how it is represented in data structures. To alleviate this somewhat, and to
insulate the two worlds from each other, postprocessors do not directly access the data structures of
the simulator class. Rather, in addition to deriving from the aspect::Postprocess::Interface base class,
postprocessors also derive from the SimulatorAccess class that has a number of member functions
postprocessors can call to obtain read-only access to some of the information stored in the main class
of ASPECT. See the documentation of this class to see what kind of information is available to
postprocessors. See also Section 6.1 for more information about the SimulatorAccess class.

• Writing a new postprocessor typically requires a fair amount of knowledge how to leverage the deal.II
library to extract information from the solution. The existing postprocessors are certainly good exam-
ples to start from in trying to understand how to do this.

Given these comments, the interface a postprocessor class has to implement is rather basic:

template <int dim>
class aspect::Postprocess::Interface
{

public:
virtual
std::pair<std::string,std::string>
execute (TableHandler &statistics) = 0;

virtual
void
save (std::map<std::string, std::string> &status_strings) const;

virtual
void
load (const std::map<std::string, std::string> &status_strings);

static
void
declare_parameters (ParameterHandler &prm);

virtual
void
parse_parameters (ParameterHandler &prm);

};

The purpose of these functions is described in detail in the documentation of the aspect::Postprocess::Interface
class. While the first one is responsible for evaluating the solution at the end of a time step, the save/load

278

doc/doxygen/classaspect_1_1Postprocess_1_1Interface.html
doc/doxygen/classaspect_1_1Postprocess_1_1Interface.html
doc/doxygen/classaspect_1_1SimulatorAccess.html
doc/doxygen/classaspect_1_1SimulatorAccess.html
doc/doxygen/classaspect_1_1Postprocess_1_1Interface.html

functions are used in checkpointing the program and restarting it at a previously saved point during the
simulation. The first of these functions therefore needs to store the status of the object as a string under a
unique key in the database described by the argument, while the latter function restores the same state as
before by looking up the status string under the same key. The default implementation of these functions is
to do nothing; postprocessors that do have non-static member variables that contain a state need to overload
these functions.

There are numerous postprocessors already implemented. If you want to implement a new one, it would
be helpful to look at the existing ones to see how they implement their functionality.

Postprocessors and checkpoint/restart. Postprocessors have save() and load() functions that are
used to write the data a postprocessor has into a checkpoint file, and to load it again upon restart. This is
important since many postprocessors store some state – say, a temporal average over all the time steps seen
so far, or the number of the last graphical output file generated so that we know how the next one needs to
be numbered.

The typical case is that this state is the same across all processors of a parallel computation. Consequently,
what ASPECT writes into the checkpoint file is only the state obtained from the postprocessors on processor
0 of a parallel computation. On restart, all processors read from the same file and the postprocessors on all
processors will be initialized by what the same postprocessor on processor 0 wrote.

There are situations where postprocessors do in fact store complementary information on different proces-
sors. At the time of writing this, one example is the postprocessor that supports advecting passive particles
along the velocity field: on every processor, it handles only those particles that lie inside the part of the
domain that is owned by this MPI rank. The serialization approach outlined above can not work in this
case, for obvious reasons. In cases like this, one needs to implement the save() and load() differently than
usual: one needs to put all variables that are common across processors into the maps of string as usual, but
one then also needs to save all state that is different across processors, from all processors. There are two
ways: If the amount of data is small, you can use MPI communications to send the state of all processors
to processor zero, and have processor zero store it in the result so that it gets written into the checkpoint
file; in the load() function, you will then have to identify which part of the text written by processor 0 is
relevant to the current processor. Or, if your postprocessor stores a large amount of data, you may want to
open a restart file specifically for this postprocessor, use MPI I/O or other ways to write into it, and do the
reverse operation in load().

Note that this approach requires that ASPECT actually calls the save() function on all processors.
This in fact happens – though ASPECT also discards the result on all but processor zero.

6.4.9 Visualization postprocessors

As mentioned in the previous section, one of the postprocessors that are already implemented in ASPECT
is the aspect::Postprocess::Visualization class that takes the solution and outputs it as a collection of files
that can then be visualized graphically, see Section 4.4. The question is which variables to output: the
solution of the basic equations we solve here is characterized by the velocity, pressure and temperature; on
the other hand, we are frequently interested in derived, spatially and temporally variable quantities such as
the viscosity for the actual pressure, temperature and strain rate at a given location, or seismic wave speeds.

ASPECT already implements a good number of such derived quantities that one may want to visualize.
On the other hand, always outputting all of them would yield very large output files, and would furthermore
not scale very well as the list continues to grow. Consequently, as with the postprocessors described in the
previous section, what can be computed is implemented in a number of plugins and what is computed is
selected in the input parameter file (see Section A.160).

Defining visualization postprocessors works in much the same way as for the other plugins discussed in this
section. Specifically, an implementation of such a plugin needs to be a class that derives from interface classes,
should by convention be in namespace aspect::Postprocess::VisualizationPostprocessors, and is reg-
istered using a macro, here called ASPECT_REGISTER_VISUALIZATION_POSTPROCESSOR. Like the postproces-
sor plugins, visualization postprocessors can derive from class aspect::Postprocess::SimulatorAccess if they

279

doc/doxygen/classaspect_1_1Postprocess_1_1Visualization.html
doc/doxygen/classaspect_1_1Postprocess_1_1SimulatorAccess.html

need to know specifics of the simulation such as access to the material models and to get access to the intro-
spection facility outlined in Section 6.1. A typical example is the plugin that produces the viscosity as a spa-
tially variable field by evaluating the viscosity function of the material model using the pressure, temperature
and location of each visualization point (implemented in the aspect::Postprocess::VisualizationPostprocessors::Viscosity
class). On the other hand, a hypothetical plugin that simply outputs the norm of the strain rate

√
ε(u) : ε(u)

would not need access to anything but the solution vector (which the plugin’s main function is given as an
argument) and consequently is not derived from the aspect::Postprocess::SimulatorAccess class.44

Visualization plugins can come in two flavors:

• Plugins that compute things from the solution in a point-wise way: The classes in this group are
derived not only from the respective interface class (and possibly the SimulatorAccess class) but also
from the deal.II class DataPostprocessor or any of the classes like DataPostprocessorScalar or
DataPostprocessorVector. These classes can be thought of as filters: DataOut will call a function
in them for every cell and this function will transform the values or gradients of the solution and
other information such as the location of quadrature points into the desired quantity to output. A
typical case would be if the quantity g(x) you want to output can be written as a function g(x) =
G(u(x),∇u(x), x, ...) in a point-wise sense where u(x) is the value of the solution vector (i.e., the
velocities, pressure, temperature, etc) at an evaluation point. In the context of this program an
example would be to output the density of the medium as a spatially variable function since this is a
quantity that for realistic media depends point-wise on the values of the solution.
To sum this, slightly confusing multiple inheritance up, visualization postprocessors do the following:

– If necessary, they derive from aspect::Postprocess::SimulatorAccess.
– They derive from aspect::Postprocess::VisualizationPostprocessors::Interface. The functions of

this interface class are all already implemented as doing nothing in the base class but can be
overridden in a plugin. Specifically, the following functions exist:

class Interface
{

public:
static
void
declare_parameters (ParameterHandler &prm);

virtual
void
parse_parameters (ParameterHandler &prm);

virtual
void save (std::map<std::string, std::string> &status_strings) const;

virtual
void load (const std::map<std::string, std::string> &status_strings);

};

– They derive from either the dealii::DataPostprocessor class, or the simpler to use dealii::DataPostprocessorScalar
or dealii::DataPostprocessorVector classes. For example, to derive from the second of these
classes, the following interface functions has to be implemented:

44The actual plugin aspect::Postprocess::VisualizationPostprocessors::StrainRate only computes
√
ε(u) : ε(u) in the

incompressible case. In the compressible case, it computes
√

[ε(u)− 1
3 (tr ε(u))I] : [ε(u)− 1

3 (tr ε(u))I] instead. To test whether
the model is compressible or not, the plugin needs access to the material model object, which the class gains by deriving from
aspect::Postprocess::SimulatorAccess and then calling this->get_material_model().is_compressible().

280

doc/doxygen/classaspect_1_1Postprocess_1_1SimulatorAccess.html
doc/doxygen/classaspect_1_1SimulatorAccess.html
doc/doxygen/classaspect_1_1Postprocess_1_1SimulatorAccess.html
doc/doxygen/classaspect_1_1Postprocess_1_1VisualizationPostprocessors_1_1Interface.html
doc/doxygen/classaspect_1_1Postprocess_1_1SimulatorAccess.html

class dealii::DataPostprocessorScalar
{

public:
virtual
void
compute_derived_quantities_vector

(const std::vector<Vector<double> > &uh,
const std::vector<std::vector<Tensor<1,dim> > > &duh,
const std::vector<std::vector<Tensor<2,dim> > > &dduh,
const std::vector<Point<dim> > &normals,
const std::vector<Point<dim> > &evaluation_points,
std::vector<Vector<double> > &computed_quantities) const;

};

What this function does is described in detail in the deal.II documentation. In addition, one has to
write a suitable constructor to call dealii::DataPostprocessorScalar::DataPostprocessorScalar.

• Plugins that compute things from the solution in a cell-wise way: The second possibility is for a class to
not derive from dealii::DataPostprocessor but instead from the aspect::Postprocess::VisualizationPostprocessors::CellDataVectorCreator
class. In this case, a visualization postprocessor would generate and return a vector that consists of
one element per cell. The intent of this option is to output quantities that are not point-wise functions
of the solution but instead can only be computed as integrals or other functionals on a per-cell basis.
A typical case would be error estimators that do depend on the solution but not in a point-wise sense;
rather, they yield one value per cell of the mesh. See the documentation of the CellDataVectorCreator
class for more information.

If all of this sounds confusing, we recommend consulting the implementation of the various visualization
plugins that already exist in the ASPECT sources, and using them as a template.

6.4.10 Mesh refinement criteria

Despite research since the mid-1980s, it isn’t completely clear how to refine meshes for complex situations
like the ones modeled by ASPECT. The basic problem is that mesh refinement criteria either can refine
based on some variable such as the temperature, the pressure, the velocity, or a compositional field, but that
oftentimes this by itself is not quite what one wants. For example, we know that Earth has discontinuities,
e.g., at 440km and 610km depth. In these places, densities and other material properties suddenly change.
Their resolution in computation models is important as we know that they affect convection patterns. At
the same time, there is only a small effect on the primary variables in a computation – maybe a jump in the
second or third derivative, for example, but not a discontinuity that would be clear to see. As a consequence,
automatic refinement criteria do not always refine these interfaces as well as necessary.

To alleviate this, ASPECT has plugins for mesh refinement. Through the parameters in Section A.125,
one can select when to refine but also which refinement criteria should be used and how they should be
combined if multiple refinement criteria are selected. Furthermore, through the usual plugin mechanism, one
can extend the list of available mesh refinement criteria (see the parameter “Strategy” in Section A.125).
Each such plugin is responsible for producing a vector of values (one per active cell on the current processor,
though only those values for cells that the current processor owns are used) with an indicator of how badly
this cell needs to be refined: large values mean that the cell should be refined, small values that the cell may
be coarsened away.

To implement a new mesh refinement criterion, you need to overload the aspect::MeshRefinement::Interface
class and use the ASPECT_REGISTER_MESH_REFINEMENT_CRITERION macro to register your new class. The
implementation of the new class should be in namespace aspect::MeshRefinement.

Specifically, your new class needs to implement the following basic interface:

281

doc/doxygen/classaspect_1_1Postprocess_1_1VisualizationPostprocessors_1_1CellDataVectorCreator.html
doc/doxygen/classaspect_1_1MeshRefinement_1_1Interface.html

template <int dim>
class aspect::MeshRefinement::Interface
{

public:
virtual
void
execute (Vector<float> &error_indicators) const = 0;

static
void
declare_parameters (ParameterHandler &prm);

virtual
void
parse_parameters (ParameterHandler &prm);

};

The first of these functions computes the set of refinement criteria (one per cell) and returns it in the given
argument. Typical examples can be found in the existing implementations in the source/mesh_refinement
directory. As usual, your termination criterion implementation will likely need to be derived from the
SimulatorAccess to get access to the current state of the simulation.

The remaining functions are obvious, and are also discussed in the documentation of this interface class at
aspect::MeshRefinement::Interface. The purpose of the last two functions has been discussed in the general
overview of plugins above.

6.4.11 Criteria for terminating a simulation

ASPECT allows for different ways of terminating a simulation. For example, the simulation may have
reached a final time specified in the input file. However, it also allows for ways to terminate a simulation
when it has reached a steady state (or, rather, some criterion determines that it is close enough to steady
state), or by an external action such as placing a specially named file in the output directory. The criteria
determining termination of a simulation are all implemented in plugins. The parameters describing these
criteria are listed in Section A.186.

To implement a termination criterion, you need to overload the aspect::TerminationCriteria::Interface
class and use the ASPECT_REGISTER_TERMINATION_CRITERION macro to register your new class. The imple-
mentation of the new class should be in namespace aspect::TerminationCriteria.

Specifically, your new class needs to implement the following basic interface:

template <int dim>
class aspect::TerminationCriteria::Interface
{

public:
virtual
bool
execute () const = 0;

static
void
declare_parameters (ParameterHandler &prm);

virtual
void
parse_parameters (ParameterHandler &prm);

};

282

doc/doxygen/classaspect_1_1MeshRefinement_1_1Interface.html
doc/doxygen/classaspect_1_1TerminationCriteria_1_1Interface.html

The first of these functions returns a value that indicates whether the simulation should be terminated. Typ-
ical examples can be found in the existing implementations in the source/termination_criteria directory.
As usual, your termination criterion implementation will likely need to be derived from the SimulatorAccess
to get access to the current state of the simulation.

The remaining functions are obvious, and are also discussed in the documentation of this interface class
at aspect::TerminationCriteria::Interface. The purpose of the last two functions has been discussed in the
general overview of plugins above.

6.5 Compatibility of plugins with newer ASPECT versions
We strive to maintain compatibility for user written plugins with new versions of ASPECT for as long as
possible. However, occasionally we have to restructure interface classes to improve ASPECT further. This
is in particular true for new major versions. In order to allow running old plugins with newer ASPECT
versions we provide scripts that can automatically update existing plugins to the new syntax. Executing
doc/update_source_files.sh with one or more plugin files as arguments will create a backup of the old file
(named old_filename.bak), and replace the existing file with a version that should work with the current
ASPECT version. Using this script would look like this:

bash doc/update_source_files.sh cookbooks/finite_strain/finite_strain.cc

Note: Not all text replacements are unique, and the structure of plugin files allows for constructs
the script can not properly parse. Thus, it is important that you check your updated plugin file for
errors. That being said, all plugin files in the main ASPECT repository are updated successfully
using this script.

6.6 Extending ASPECT through the signals mechanism
Not all things you may want to do fit neatly into the list of plugins of the previous sections. Rather, there
are cases where you may want to change things that are more of the one-off kind and that require code
that is at a lower level and requires more knowledge about ASPECT’s internal workings. For such changes,
we still want to stick with the general principle outlined at the beginning of Section 6: You should be able
to make all of your changes and extensions in your own files, without having to modify ASPECT’s own
sources.

To support this, ASPECT uses a “signals” mechanism. Signals are, in essence, objects that represent
events, for example the fact that the solver has finished a time step. The core of ASPECT defines a number
of such signals, and triggers them at the appropriate points. The idea of signals is now that you can connect
to them: you can tell the signal that it should call a particular function every time the signal is triggered.
The functions that are connected to a signal are called “slots” in common diction. One, several, or no slots
may be connected to each signal.

There are two kinds of signals that ASPECT provides:

• Signals that are triggered at startup of the program: These are, in essence, signals that live in some
kind of global scope. Examples are signals that declare additional parameters for use in input files, or
that read the values of these parameters from a ParameterHandler object. These signals are static
member variables of the structure that contains them and consequently exist only once for the entire
program.

• Signals that reference specific events that happen inside a simulator object. These are regular member
variables of the structure that contains them, and because each simulator object has such a structure,
the signals exist once per simulator object. (Which in practice is only once per program, of course.)

283

doc/doxygen/classaspect_1_1TerminationCriteria_1_1Interface.html

For both of these kinds, a user-written plugin file can (but does not need) to register functions that connect
functions in this file (i.e., slots) to their respective signals.

In the first case, code that registers slots with global signals would look like this:

// A function that will be called at the time when parameters are declared.
// It receives the dimension in which ASPECT will be run as the first argument,
// and the ParameterHandler object that holds the runtime parameter
// declarations as second argument.
void declare_parameters(const unsigned int dim,

ParameterHandler &prm)
{

prm.declare_entry("My parameter", ...);
}

// The same for parsing parameters. ’my_parameter’ is a parameter
// that stores something we want to read from the input file
// and use in other functions in this file (which we don’t show here).
// For simplicity, we assume that it is an integer.
//
// The function also receives a first argument that contains all
// of the other (already parsed) arguments of the simulation, in
// case what you want to do here wants to refer to other parameters.
int my_parameter;

template <int dim>
void parse_parameters(const Parameters<dim> ¶meters,

ParameterHandler &prm)
{

my_parameter = prm.get_integer ("My parameter");
}

// Now have a function that connects slots (i.e., the two functions
// above) to the static signals. Do this for both the 2d and 3d
// case for generality.
void parameter_connector ()
{

SimulatorSignals<2>::declare_additional_parameters.connect (&declare_parameters);
SimulatorSignals<3>::declare_additional_parameters.connect (&declare_parameters);

SimulatorSignals<2>::parse_additional_parameters.connect (&parse_parameters<2>);
SimulatorSignals<3>::parse_additional_parameters.connect (&parse_parameters<3>);

}

// Finally register the connector function above to make sure it gets run
// whenever we load a user plugin that is mentioned among the additional
// shared libraries in the input file:
ASPECT_REGISTER_SIGNALS_PARAMETER_CONNECTOR(parameter_connector)

The second kind of signal can be connected to once a simulator object has been created. As above, one
needs to define the slots, define a connector function, and register the connector function. The following
gives an example:

// A function that is called at the end of creating the current constraints

284

// on degrees of freedom (i.e., the constraints that describe, for example,
// hanging nodes, boundary conditions, etc).
template <int dim>
void post_constraints_creation (const SimulatorAccess<dim> &simulator_access,

ConstraintMatrix ¤t_constraints)
{

...; // do whatever you want to do here
}

// A function that is called from the simulator object and that can connect
// a slot (such as the function above) to any of the signals declared in the
// structure passed as argument:
template <int dim>
void signal_connector (SimulatorSignals<dim> &signals)
{

signals.post_constraints_creation.connect (&post_constraints_creation<dim>);
}

// Finally register the connector function so that it is called whenever
// a simulator object has been set up. For technical reasons, we need to
// register both 2d and 3d versions of this function:
ASPECT_REGISTER_SIGNALS_CONNECTOR(signal_connector<2>,

signal_connector<3>)

As mentioned above, each signal may be connected to zero, one, or many slots. Consequently, you could
have multiple plugins each of which connect to the same slot, or the connector function above may just
connect multiple slots (i.e., functions in your program) to the same signal.

So what could one do in a place like this? One option would be to just monitor what is going on, e.g., in
code like this that simply outputs into the statistics file (see Section 4.4.2):

template <int dim>
void post_constraints_creation (const SimulatorAccess<dim> &simulator_access,

ConstraintMatrix ¤t_constraints)
{

simulator_access.get_statistics_object()
.add_value ("number of constraints",

current_constraints.n_constraints());
}

This will produce, for every time step (because this is how often the signal is called) an entry in a new column
in the statistics file that records the number of constraints. On the other hand, it is equally possible to also
modify the constraints object at this point. An application would be if you wanted to run a simulation where
you prescribe the velocity in a part of the domain, e.g., for a subducting slab (see Section 5.2.9).

Signals exist for various waypoints in a simulation and you can consequently monitor and change what
is happening inside a simulation by connecting your own functions to these signals. It would be pointless to
list here what signals actually exist – simply refer to the documentation of the SimulatorSignals class for a
complete list of signals you can connect to.

As a final note, it is generally true that writing functions that can connect to signals require significantly
more internal knowledge of the workings of ASPECT than writing plugins through the mechanisms outlined
above. It also allows to affect the course of a simulation by working on the internal data structures of
ASPECT in ways that are not available to the largely passive and reactive plugins discussed in previous
sections. With this obviously also comes the potential for trouble. On the other hand, it also allows to do
things with ASPECT that were not initially intended by the authors, and that would be hard or impossible

285

doc/doxygen/structaspect_1_1SimulatorSignals.html

to implement through plugins. An example would be to couple different codes by exchanging details of the
internal data structures, or even update the solution vectors using information received from another code.

Note: Chances are that if you think about using the signal mechanism, there is not yet a signal
that is triggered at exactly the point where you need it. Consequently, you will be tempted to
just put your code into the place where it fits inside ASPECT where it fits best. This is poor
practice: it prevents you from upgrading to a newer version of ASPECT at a later time because
this would overwrite the code you inserted.
Rather, a more productive approach would be to either define a new signal that is triggered
where you need it, and connect a function (slot) in your own plugin file to this signal using
the mechanisms outlined above. Then send the code that defines and triggers the signal to the
developers of ASPECT to make sure that it is also included in the next release. Alternatively,
you can also simply ask on the mailing lists for someone to add such a signal in the place where
you want it. Either way, adding signals is something that is easy to do, and we would much rather
add signals than have people who modify the ASPECT source files for their own needs and are
then stuck on a particular version.

6.7 Extending the basic solver
The core functionality of the code, i.e., that part of the code that implements the time stepping, assembles
matrices, solves linear and nonlinear systems, etc., is in the aspect::Simulator class (see the doxygen
documentation of this class). Since the implementation of this class has more than 3,000 lines of code, it is
split into several files that are all located in the source/simulator directory. Specifically, functionality is
split into the following files:

• source/simulator/core.cc: This file contains the functions that drive the overall algorithm (in
particular Simulator::run) through the main time stepping loop and the functions immediately called
by Simulator::run.

• source/simulator/assembly.cc: This is where all the functions are located that are related to as-
sembling linear systems.

• source/simulator/solver.cc: This file provides everything that has to do with solving and precon-
ditioning the linear systems.

• source/simulator/initial_conditions.cc: The functions in this file deal with setting initial con-
ditions for all variables.

• source/simulator/checkpoint_restart.cc: The location of functionality related to saving the cur-
rent state of the program to a set of files and restoring it from these files again.

• source/simulator/helper_functions.cc: This file contains a set of functions that do the odd thing
in support of the rest of the simulator class.

• source/simulator/parameters.cc: This is where we define and read run-time parameters that per-
tain to the top-level functionality of the program.

Obviously, if you want to extend this core functionality, it is useful to first understand the numerical
methods this class implements. To this end, take a look at the paper that describes these methods, see
[59]. Further, there are two predecessor programs whose extensive documentation is at a much higher level
than the one typically found inside ASPECT itself, since they are meant to teach the basic components of
convection simulators as part of the deal.II tutorial:

286

doc/doxygen/classaspect_1_1Simulator.html
doc/doxygen/classaspect_1_1Simulator.html

• The step-31 program at https://www.dealii.org/developer/doxygen/deal.II/step_31.html: This
program is the first version of a convection solver. It does not run in parallel, but it introduces many
of the concepts relating to the time discretization, the linear solvers, etc.

• The step-32 program at https://www.dealii.org/developer/doxygen/deal.II/step_32.html: This
is a parallel version of the step-31 program that already solves on a spherical shell geometry. The fo-
cus of the documentation in this program is on the techniques necessary to make the program run in
parallel, as well as some of the consequences of making things run with realistic geometries, material
models, etc.

Neither of these two programs is nearly as modular as ASPECT, but that was also not the goal in creating
them. They will, however, serve as good introductions to the general approach for solving thermal convection
problems.

Note: Neither this manual, nor the documentation in ASPECT makes much of an attempt at
teaching how to use the deal.II library upon which ASPECT is built. Nevertheless, you will
likely have to know at least the basics of deal.II to successfully work on the ASPECT code. We
refer to the resources listed at the beginning of this section as well as references [9, 10].

6.8 Testing ASPECT
ASPECT makes use of a large suite of tests to ensure correct behavior. The test suite is run automatically
for each change to the Github repository, and it is good practice to add new tests for any new functionality.

6.8.1 Running tests

In order to run the tests, it is necessary to have either Diff or Numdiff to compare the results to the known
good case. Diff is installed by default on most Linux systems, and Numdiff is usually available as a package
so this is not a severe limitation. While it is possible to use Diff, Numdiff is preferred due to being able
to more accurately identify whether a variation in numerical output is significant. The test suite is run
using the ctest program that comes with cmake, and should therefore be available on all systems that have
compiled ASPECT.

After running cmake and then compiling ASPECT, you can run the testsuite by using the command
ctest in your build directory. By default, this will only run a small subset of all tests given that both setting
up all tests (several hundred) and running them takes a non-trivial amount of time. To set up the full test
suite, you can run

make setup_tests

in the build directory. To run the entire set of tests, then execute

ctest

Unless you have a very fast machine with lots of processors, running the entire testsuite will take hours,
though it can be made substantially faster if you use

ctest -j <N>

where <N> is the number of tests you want ctest to run in parallel; you may want to choose <N> equal to
or slightly smaller than the number of processors you have. Alternatively, you can run only a subset of all
tests by saying

ctest -R <regex>

287

https://www.dealii.org/developer/doxygen/deal.II/step_31.html
https://www.dealii.org/developer/doxygen/deal.II/step_32.html

where <regex> is a regular expression and the only tests that will be run are those whose names match the
expression.

When ctest runs a test, it will ultimately output results of the form

build> ctest -R additional_outputs
Test project /home/fac/f/bangerth/p/deal.II/1/projects/build

Start 1: additional_outputs
1/3 Test #1: additional_outputs Passed 2.03 sec

Start 2: additional_outputs_02
2/3 Test #2: additional_outputs_02 Passed 1.84 sec

Start 3: additional_outputs_03
3/3 Test #3: additional_outputs_03 Passed 1.91 sec

100% tests passed, 0 tests failed out of 3

Total Test time (real) = 5.88 sec

While the small default subset of tests should work on almost all platforms, you will find that some of the
tests fail on your machine when you run the entire testsuite. This is because success of failure of a test is
determined by looking at whether its output matches the one saved at the time when the test was written
to the last digit, both as far as numerical output in floating point precision is concerned (e.g., for heat
fluxes or other things we compute via postprocessors) as well as for integers such as the number of iterations
that is printed in the screen output.45 Unfortunately, systems almost always differ by compiler version,
processor type and version, system libraries, etc, that can all lead to small changes in output – generally
(and hopefully!) not large enough to produce qualitatively different results, but quantitatively large enough
to change the number of iterations necessary to reach a specific tolerance, or to change the computed heat
flux by one part in a million. This leads to ctest reporting that a test failed, when in reality it produced
output that is qualitatively correct.

Given that some tests are expected to fail on any given system raises the question why it makes sense to
have tests at all? The answer is that there is one system on which all tests are supposed to succeed: This
system is a machine that churns through all tests every time someone proposes a change to the ASPECT
code base via the ASPECT GitHub page.46 Upon completion of the test suite, both the general summary
(pass/fail) and a full verbose log will available from the GitHub page. Because the official test setup is set
up in a Docker container, it is simple to replicate the results on a local machine. To this end, follow the
instructions in Section 3.1 to set up Docker, and then run the following command in any terminal (replace
ASPECT_SOURCE_DIR with the path to your ASPECT directory):

docker run -v ASPECT_SOURCE_DIR:/home/dealii/aspect \
--name=aspect-tester --rm -it \
dealii/dealii:v8.5.0-gcc-mpi-fulldepscandi-debugrelease \
bash /home/dealii/aspect/cmake/compile_and_update_tests.sh

This command executes the shell script cmake/compile_and_update_tests.sh inside the docker con-
tainer that contains the official ASPECT test system. Note that by mounting your ASPECT folder into
the container you are actually updating the reference test results on the host system (i.e. your computer).

45This is not actually completely true. Rather, if cmake finds a program called numdiff on your system, it uses numdiff to
compare the output of a test run against the saved output, and calls two files the same if all numbers differ by no more than
some tolerance.

46This is again not completely true: The test machine will only go to work for pull requests by a set of trusted maintainers
since the test machine will execute code that is proposed as part of the pull request – posing a security risk if anyone’s patches
were allowed to run on that system. For pull requests by others, one of the trusted maintainers has to specifically request a
test run, and this will usually happen as soon as the patch developer indicates the patch is ready for review.

288

6.8.2 Writing tests

To write a test for a new feature, copy one of the existing parameter files in the tests/ folder in the ASPECT
source directory, or simply any other parameter file, modify it to use the new feature, check that the new
feature does what it is supposed to do, and then just add the parameter file to the tests directory. You will
then need to add another folder to that directory that is named exactly like the parameter file, and add the
model output files that prove that the feature is working (usually, these are the log file and the statistics
file, and you will have to rename log.txt to screen-output for historical reasons). The test and output
files should be as small and quick to run as possible. If you need to include graphical output to test your
feature, you will have to use the gnuplot output format, so that the tester can compare the actual numbers
(in the vtu format, the output files are compressed, and can not be compared using Numdiff). An easy way
to create all of the files you need is to copy the folder of an existing test and rename it to the name of your
parameter file.

To actually run the test, you have to go to your ASPECT build directory and run

make setup_tests

so that your new test is added to the test suite. Then you can run it by executing

ctest -R name_of_your_test -V

and you will get an output telling you if the test has passed or failed (and why it failed). If you have just
copied the output files of a different test in the tests/ directory to make your test, you of course expect
your test to fail. In this case, the output you see should contain a line that starts with ******* Check and
then just shows two paths. Those two paths are the one where the output files of the test are located (the
ones you just created by running the test) and where the reference output of the test is located (the one you
created by copying an existing test). So you can copy this whole line and replace ******* Check by cp to
copy the output you just created over the reference output. Of course, you should only do that after you
have made sure that these output files show that the feature you want to test is working as expected.

When you make a new test part of a pull request on GitHub, then as explained above that will lead to
a run of all tests – including your new one – on a “reference machine”. The reference machine that runs the
tests may of course produce slightly different results than the machine on which a pull request was developed
and from which the output was taken. If this has been confirmed to be the source of a failed test run, a
file that contains the differences between the test output you submitted as part of your pull request and the
“reference” tester output will be available from GitHub (You will have to click on the link labelled “Details”
next to the line that tells you if tests have failed; for the jenkins tester that will bring you to a new page,
where you have to go to the “Artifacts” tab in the top right corner. Depending on the tester, the file might
be called changes-gcc.diff or changes-test-results.diff). To use this file to update your test output,
you will have to download it and put it into your top-level ASPECT directory. There you can apply the
.diff file using the program patch:

patch -p1 < changes-test-results.diff

This will update your test output so that it matches the results from the official tester.
On the other hand, if a change leads to even a single existing test failing on that system, then we know

that some more investigation as to the causes is necessary.

6.9 Contributing to ASPECT’s development
To end this section, let us repeat something already stated in the introduction:

289

Note: ASPECT is a community project. As such, we strongly encourage contributions from
the community to improve this code over time. Obvious candidates for such contributions are
implementations of new plugins as discussed in Section 6.4, since they are typically self-contained
and do not require much knowledge of the details of the remaining code. Other much appreciated
contributions are new test models or benchmarks, extended documentation (every paragraph
helps), and in particular fixing typos or updating outdated documentation. Obviously, however,
we also encourage contributions to the core functionality in any form!

Let us assume you found something in ASPECT to improve, something you did not understand, or
something that is simply wrong. Do something about it! No matter whether you are a C++ expert or first-
time user, there are no such things as too-unimportant contributions, and if you struggled with something, it
is most likely somebody else will as well. The process of contributing to a new project can be daunting, but we
appreciate every contribution and are happy to work with you on improving ASPECT. To get you started we
have collected a set of guidelines and advice on how to get involved in the community. To avoid duplication we
store these guidelines in a separate file CONTRIBUTING.md in the main folder of the repository, and you can also
access them online at https://github.com/geodynamics/aspect/blob/master/CONTRIBUTING.md. Even
if something in that file is not clear, this is an opportunity for you to ask your question on the mailing list
(see Section 7, and let us know that file needs improvement.

6.10 Future plans for ASPECT
The ASPECT community is working on various future features. If you are curious or want to con-
tribute, please see the “future plans” project page on github: https://github.com/geodynamics/aspect/
projects/2.

7 Finding answers to more questions
If you have questions that go beyond this manual, there are a number of resources:

• For questions on the source code of ASPECT, portability, installation, new or existing features, etc.,
use the ASPECT forum at https://community.geodynamics.org/c/aspect. This forum is where
the ASPECT developers all hang out. Archived discussions from the archived aspect-devel mailing
list can be downloaded at http://lists.geodynamics.org/pipermail/aspect-devel.

• ASPECT is primarily based on the deal.II library (the dependency on Trilinos and p4est is primarily
through deal.II, and not directly visible in the ASPECT source code). If you have particular questions
about deal.II, contact the mailing lists described at https://www.dealii.org/mail.html.

• In case of more general questions about mantle convection, you can contact the CIG mantle convection
mailing lists at http://lists.geodynamics.org/cgi-bin/mailman/listinfo/cig-MC.

• If you have specific questions about ASPECT that are not suitable for public and archived mailing
lists, you can contact the primary developers:

– Wolfgang Bangerth: bangerth@colostate.edu,
– Juliane Dannberg: judannberg@gmail.com,
– Rene Gassmöller: rene.gassmoeller@mailbox.org,
– Timo Heister: heister@clemson.edu.

290

CONTRIBUTING.md
https://github.com/geodynamics/aspect/blob/master/CONTRIBUTING.md
https://github.com/geodynamics/aspect/projects/2
https://github.com/geodynamics/aspect/projects/2
https://community.geodynamics.org/c/aspect
http://lists.geodynamics.org/pipermail/aspect-devel
https://www.dealii.org/mail.html
http://lists.geodynamics.org/cgi-bin/mailman/listinfo/cig-MC
bangerth@colostate.edu
judannberg@gmail.com
rene.gassmoeller@mailbox.org
heister@clemson.edu

A Run-time input parameters
A.1 Global parameters
• Parameter name: Additional shared libraries

Value:
Default:
Description: A list of names of additional shared libraries that should be loaded upon starting up the
program. The names of these files can contain absolute or relative paths (relative to the directory
in which you call ASPECT). In fact, file names that do not contain any directory information (i.e.,
only the name of a file such as <myplugin.so> will not be found if they are not located in one of
the directories listed in the LD_LIBRARY_PATH environment variable. In order to load a library in the
current directory, use <./myplugin.so> instead.
The typical use of this parameter is so that you can implement additional plugins in your own directo-
ries, rather than in the ASPECT source directories. You can then simply compile these plugins into a
shared library without having to re-compile all of ASPECT. See the section of the manual discussing
writing extensions for more information on how to compile additional files into a shared library.
Possible values: A list of 0 to 4294967295 elements where each element is [an input filename]

• Parameter name: Adiabatic surface temperature

Value: 0.
Default: 0.
Description: In order to make the problem in the first time step easier to solve, we need a reasonable
guess for the temperature and pressure. To obtain it, we use an adiabatic pressure and temperature
field. This parameter describes what the ‘adiabatic’ temperature would be at the surface of the domain
(i.e. at depth zero). Note that this value need not coincide with the boundary condition posed at this
point. Rather, the boundary condition may differ significantly from the adiabatic value, and then
typically induce a thermal boundary layer.
For more information, see the section in the manual that discusses the general mathematical model.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: CFL number

Value: 1.0
Default: 1.0
Description: In computations, the time step k is chosen according to k = cminK hK

‖u‖∞,KpT where hK is
the diameter of cell K, and the denominator is the maximal magnitude of the velocity on cell K times
the polynomial degree pT of the temperature discretization. The dimensionless constant c is called the
CFL number in this program. For time discretizations that have explicit components, c must be less
than a constant that depends on the details of the time discretization and that is no larger than one.
On the other hand, for implicit discretizations such as the one chosen here, one can choose the time
step as large as one wants (in particular, one can choose c > 1) though a CFL number significantly
larger than one will yield rather diffusive solutions. Units: None.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Dimension
Value: 2
Default: 2

291

Description: The number of space dimensions you want to run this program in. ASPECT can run in
2 and 3 space dimensions.
Possible values: An integer n such that 2 ≤ n ≤ 3

• Parameter name: End time

Value: 0.0
Default: 5.69e+300
Description: The end time of the simulation. The default value is a number so that when converted
from years to seconds it is approximately equal to the largest number representable in floating point
arithmetic. For all practical purposes, this equals infinity. Units: Years if the ’Use years in output
instead of seconds’ parameter is set; seconds otherwise.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Max nonlinear iterations

Value: 10
Default: 10
Description: The maximal number of nonlinear iterations to be performed.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Max nonlinear iterations in pre-refinement

Value: 2147483647
Default: 2147483647
Description: The maximal number of nonlinear iterations to be performed in the pre-refinement steps.
This does not include the last refinement step before moving to timestep 1. When this parameter has
a larger value than max nonlinear iterations, the latter is used.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Maximum first time step

Value: 5.69e+300
Default: 5.69e+300
Description: Set a maximum time step size for only the first timestep. Generally the time step based
on the CFL number should be sufficient, but for complicated models or benchmarking it may be useful
to limit the first time step to some value, especially when using the free surface, which needs to settle
to prevent instabilities. This should in that case be combined with a value set for “Maximum relative
increase in time step”. The default value is a value so that when converted from years into seconds it
equals the largest number representable by a floating point number, implying an unlimited time step.
Units: Years or seconds, depending on the “Use years in output instead of seconds” parameter.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Maximum relative increase in time step

Value: 2147483647
Default: 2147483647
Description: Set a percentage with which the the time step is limited to increase. Generally the time
step based on the CFL number should be sufficient, but for complicated models which may suddenly
drastically change behavior, it may be useful to limit the increase in the time step, without limiting
the time step size of the whole simulation to a particular number. For example, if this parameter is

292

set to 50, then that means that the time step can at most increase by 50% from one time step to the
next, or by a factor of 1.5. Units: %
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Maximum time step

Value: 5.69e+300
Default: 5.69e+300
Description: Set a maximum time step size for the solver to use. Generally the time step based on
the CFL number should be sufficient, but for complicated models or benchmarking it may be useful
to limit the time step to some value. The default value is a value so that when converted from
years into seconds it equals the largest number representable by a floating point number, implying an
unlimited time step.Units: Years or seconds, depending on the “Use years in output instead of seconds”
parameter.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Nonlinear solver scheme

Value: single Advection, single Stokes
Default: single Advection, single Stokes
Description: The kind of scheme used to resolve the nonlinearity in the system. ‘single Advection, sin-
gle Stokes’ means that no nonlinear iterations are done, and the temperature, compositional fields and
Stokes equations are solved exactly once per time step, one after the other. The ‘iterated Advection
and Stokes’ scheme iterates this decoupled approach by alternating the solution of the temperature,
composition and Stokes systems. The ‘single Advection, iterated Stokes’ scheme solves the temperature
and composition equation once at the beginning of each time step and then iterates out the solution of
the Stokes equation. The ‘no Advection, iterated Stokes’ scheme only solves the Stokes system, iter-
ating out the solution, and ignores compositions and the temperature equation (careful, the material
model must not depend on the temperature or composition; this is mostly useful for Stokes bench-
marks). The ‘no Advection, single Stokes’ scheme only solves the Stokes system once per timestep.
This is also mostly useful for Stokes benchmarks. The ‘single Advection, no Stokes’ scheme only solves
the temperature and other advection systems once, and instead of solving for the Stokes system, a
prescribed velocity and pressure is used. The ‘iterated Advection and Newton Stokes’ scheme iterates
by alternating the solution of the temperature, composition and Stokes equations, using Picard itera-
tions for the temperature and composition, and Newton iterations for the Stokes system. The ‘single
Advection, iterated Newton Stokes’ scheme solves the temperature and composition equations once at
the beginning of each time step and then iterates out the solution of the Stokes equation, using New-
ton iterations for the Stokes system. The ‘first timestep only, single Stokes’ scheme solves the Stokes
equations exactly once, at the first time step. No nonlinear iterations are done, and the temperature
and composition systems are not solved.
The ‘IMPES’ scheme is deprecated and only allowed for reasons of backwards compatibility. It is the
same as ‘single Advection, single Stokes’ .The ‘iterated IMPES’ scheme is deprecated and only allowed
for reasons of backwards compatibility. It is the same as ‘iterated Advection and Stokes’. The ‘iterated
Stokes’ scheme is deprecated and only allowed for reasons of backwards compatibility. It is the same
as ‘single Advection, iterated Stokes’. The ‘Stokes only’ scheme is deprecated and only allowed for
reasons of backwards compatibility. It is the same as ‘no Advection, iterated Stokes’. The ‘Advection
only’ scheme is deprecated and only allowed for reasons of backwards compatibility. It is the same as
‘single Advection, no Stokes’. The ‘Newton Stokes’ scheme is deprecated and only allowed for reasons
of backwards compatibility. It is the same as ‘iterated Advection and Newton Stokes’.
Possible values: Any one of single Advection, single Stokes, iterated Advection and Stokes, single Ad-
vection, iterated Stokes, no Advection, iterated Stokes, no Advection, single Stokes, iterated Advection

293

and Newton Stokes, single Advection, iterated Newton Stokes, single Advection, no Stokes, IMPES,
iterated IMPES, iterated Stokes, Newton Stokes, Stokes only, Advection only, first timestep only, single
Stokes, no Advection, no Stokes

• Parameter name: Nonlinear solver tolerance

Value: 1e-5
Default: 1e-5
Description: A relative tolerance up to which the nonlinear solver will iterate. This parameter is
only relevant if the ‘Nonlinear solver scheme’ does nonlinear iterations, in other words, if it is set to
something other than ‘single Advection, single Stokes’ or ‘single Advection, no Stokes’.
Possible values: A floating point number v such that 0 ≤ v ≤ 1

• Parameter name: Output directory

Value: output
Default: output
Description: The name of the directory into which all output files should be placed. This may be an
absolute or a relative path.
Possible values: A directory name

• Parameter name: Pressure normalization

Value: surface
Default: surface
Description: If and how to normalize the pressure after the solution step. This is necessary because
depending on boundary conditions, in many cases the pressure is only determined by the model up to
a constant. On the other hand, we often would like to have a well-determined pressure, for example for
table lookups of material properties in models or for comparing solutions. If the given value is ‘surface’,
then normalization at the end of each time steps adds a constant value to the pressure in such a way
that the average pressure at the surface of the domain is what is set in the ‘Surface pressure’ parameter;
the surface of the domain is determined by asking the geometry model whether a particular face of
the geometry has a zero or small ‘depth’. If the value of this parameter is ‘volume’ then the pressure
is normalized so that the domain average is zero. If ‘no’ is given, the no pressure normalization is
performed.
Possible values: Any one of surface, volume, no

• Parameter name: Resume computation

Value: false
Default: false
Description: A flag indicating whether the computation should be resumed from a previously saved
state (if true) or start from scratch (if false). If auto is selected, models will be resumed if there is an
existing checkpoint file, otherwise started from scratch.
Possible values: Any one of true, false, auto

• Parameter name: Start time

Value: 0.
Default: 0.
Description: The start time of the simulation. Units: Years if the ’Use years in output instead of
seconds’ parameter is set; seconds otherwise.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

294

• Parameter name: Surface pressure

Value: 0.
Default: 0.
Description: The value the pressure is normalized to in each time step when ‘Pressure normalization’
is set to ‘surface’ with default value 0. This setting is ignored in all other cases.
The mathematical equations that describe thermal convection only determine the pressure up to an
arbitrary constant. On the other hand, for comparison and for looking up material parameters it is
important that the pressure be normalized somehow. We do this by enforcing a particular average
pressure value at the surface of the domain, where the geometry model determines where the surface
is. This parameter describes what this average surface pressure value is supposed to be. By default,
it is set to zero, but one may want to choose a different value for example for simulating only the
volume of the mantle below the lithosphere, in which case the surface pressure should be the lithostatic
pressure at the bottom of the lithosphere.
For more information, see the section in the manual that discusses the general mathematical model.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Timing output frequency

Value: 100
Default: 100
Description: How frequently in timesteps to output timing information. This is generally adjusted only
for debugging and timing purposes. If the value is set to zero it will also output timing information at
the initiation timesteps.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Use conduction timestep

Value: false
Default: false
Description: Mantle convection simulations are often focused on convection dominated systems. How-
ever, these codes can also be used to investigate systems where heat conduction plays a dominant role.
This parameter indicates whether the simulator should also use heat conduction in determining the
length of each time step.
Possible values: A boolean value (true or false)

• Parameter name: Use operator splitting

Value: false
Default: false
Description: If set to true, the advection and reactions of compositional fields and temperature are
solved separately, and can use different time steps. Note that this will only work if the material/heating
model fills the reaction_rates/heating_reaction_rates structures. Operator splitting can be used with
any existing solver schemes that solve the temperature/composition equations.
Possible values: A boolean value (true or false)

• Parameter name: Use years in output instead of seconds

Value: true
Default: true

295

Description: When computing results for mantle convection simulations, it is often difficult to judge the
order of magnitude of results when they are stated in MKS units involving seconds. Rather, some kinds
of results such as velocities are often stated in terms of meters per year (or, sometimes, centimeters per
year). On the other hand, for non-dimensional computations, one wants results in their natural unit
system as used inside the code. If this flag is set to ‘true’ conversion to years happens; if it is ‘false’,
no such conversion happens. Note that when ‘true’, some input such as prescribed velocities should
also use years instead of seconds.
Possible values: A boolean value (true or false)

• Parameter name: World builder file

Value:
Default:
Description: Name of the world builder file. If empty, the world builder is not initialized.
Possible values: an input filename

A.2 Parameters in section Adiabatic conditions model
• Parameter name: Model name

Value: compute profile
Default: compute profile
Description: Select one of the following models:
‘ascii data’: A model in which the adiabatic profile is read from a file that describes the reference state.
Note the required format of the input data: The first lines may contain any number of comments if
they begin with ‘#’, but one of these lines needs to contain the number of points in the reference state
as for example ‘# POINTS: 3’. Following the comment lines there has to be a single line containing
the names of all data columns, separated by arbitrarily many spaces. Column names are not allowed
to contain spaces. The file can contain unnecessary columns, but for this plugin it needs to at least
provide columns named ‘temperature’, ‘pressure’, and ‘density’. Note that the data lines in the file need
to be sorted in order of increasing depth from 0 to the maximal depth in the model domain. Points
in the model that are outside of the provided depth range will be assigned the maximum or minimum
depth values, respectively. Points do not need to be equidistant, but the computation of properties is
optimized in speed if they are.
‘compute profile’: A model in which the adiabatic profile is calculated by solving the hydrostatic
equations for pressure and temperature in depth. The gravity is assumed to be in depth direction
and the composition is either given by the initial composition at reference points or computed as a
reference depth-function. All material parameters are computed by the material model plugin. The
surface conditions are either constant or changing over time as prescribed by a user-provided function.
‘function’: A model in which the adiabatic profile is specified by a user defined function. The supplied
function has to contain temperature, pressure, and density as a function of depth in this order.
Possible values: Any one of ascii data, compute profile, function

A.3 Parameters in section Adiabatic conditions model/Ascii data model
• Parameter name: Data directory

Value: $ASPECT_SOURCE_DIR/tests/adiabatic-conditions/ascii-data/test/
Default: $ASPECT_SOURCE_DIR/tests/adiabatic-conditions/ascii-data/test/
Description: The name of a directory that contains the model data. This path may either be absolute
(if starting with a ‘/’) or relative to the current directory. The path may also include the special text

296

‘$ASPECT_SOURCE_DIR’ which will be interpreted as the path in which the ASPECT source files
were located when ASPECT was compiled. This interpretation allows, for example, to reference files
located in the ‘data/’ subdirectory of ASPECT.
Possible values: A directory name

• Parameter name: Data file name

Value:
Default:
Description: The file name of the model data. Provide file in format: (Velocity file name).%s%d where
%s is a string specifying the boundary of the model according to the names of the boundary indicators
(of the chosen geometry model).%d is any sprintf integer qualifier, specifying the format of the current
file number.
Possible values: Any string

• Parameter name: Scale factor

Value: 1.
Default: 1.
Description: Scalar factor, which is applied to the model data. You might want to use this to scale
the input to a reference model. Another way to use this factor is to convert units of the input files.
For instance, if you provide velocities in cm/yr set this factor to 0.01.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

A.4 Parameters in section Adiabatic conditions model/Compute profile
• Parameter name: Composition reference profile

Value: initial composition
Default: initial composition
Description: Select how the reference profile for composition is computed. This profile is used to
evaluate the material model, when computing the pressure and temperature profile.
Possible values: Any one of initial composition, function

• Parameter name: Function constants

Value:
Default:
Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘var1=value1, var2=value2, ...’.
A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: Any string

• Parameter name: Function expression

Value: 0
Default: 0
Description: The formula that denotes the function you want to evaluate for particular values of the
independent variables. This expression may contain any of the usual operations such as addition or

297

multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may contain
expressions like ‘if(x>0, 1, -1)’ where the expression evaluates to the second argument if the first
argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.
If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.
Possible values: Any string

• Parameter name: Number of points

Value: 1000
Default: 1000
Description: The number of points we use to compute the adiabatic profile. The higher the number of
points, the more accurate the downward integration from the adiabatic surface temperature will be.
Possible values: An integer n such that 5 ≤ n ≤ 2147483647

• Parameter name: Use surface condition function

Value: false
Default: false
Description: Whether to use the ’Surface condition function’ to determine surface conditions, or the
’Adiabatic surface temperature’ and ’Surface pressure’ parameters. If this is set to true the reference
profile is updated every timestep. The function expression of the function should be independent of
space, but can depend on time ’t’. The function must return two components, the first one being
reference surface pressure, the second one being reference surface temperature.
Possible values: A boolean value (true or false)

• Parameter name: Variable names

Value: x,t
Default: x,t
Description: The names of the variables as they will be used in the function, separated by commas.
By default, the names of variables at which the function will be evaluated are ‘x’ (in 1d), ‘x,y’ (in 2d)
or ‘x,y,z’ (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’ and then use these variable names in your
function expression.
Possible values: Any string

A.5 Parameters in section Adiabatic conditions model/Compute profile/Surface
condition function

• Parameter name: Function constants

Value:
Default:
Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘var1=value1, var2=value2, ...’.

298

A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: Any string

• Parameter name: Function expression

Value: 0; 0
Default: 0; 0
Description: The formula that denotes the function you want to evaluate for particular values of the
independent variables. This expression may contain any of the usual operations such as addition or
multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may contain
expressions like ‘if(x>0, 1, -1)’ where the expression evaluates to the second argument if the first
argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.
If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.
Possible values: Any string

• Parameter name: Variable names

Value: x,t
Default: x,t
Description: The names of the variables as they will be used in the function, separated by commas.
By default, the names of variables at which the function will be evaluated are ‘x’ (in 1d), ‘x,y’ (in 2d)
or ‘x,y,z’ (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’ and then use these variable names in your
function expression.
Possible values: Any string

A.6 Parameters in section Adiabatic conditions model/Function
• Parameter name: Function constants

Value:
Default:
Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘var1=value1, var2=value2, ...’.
A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: Any string

• Parameter name: Function expression

Value: 0.0; 0.0; 1.0
Default: 0.0; 0.0; 1.0

299

Description: Expression for the adiabatic temperature, pressure, and density separated by semicolons
as a function of ‘depth’.
Possible values: Any string

• Parameter name: Variable names

Value: depth
Default: depth
Possible values: Any string

A.7 Parameters in section Boundary composition model
• Parameter name: Allow fixed composition on outflow boundaries

Value: false for models without melt
Default: false for models without melt
Description: When the composition is fixed on a given boundary as determined by the list of ’Fixed
composition boundary indicators’, there might be parts of the boundary where material flows out and
one may want to prescribe the composition only on those parts of the boundary where there is inflow.
This parameter determines if compositions are only prescribed at these inflow parts of the boundary (if
false) or everywhere on a given boundary, independent of the flow direction (if true). By default, this
parameter is set to false, except in models with melt transport (see below). Note that in this context,
‘fixed’ refers to the fact that these are the boundary indicators where Dirichlet boundary conditions
are applied, and does not imply that the boundary composition is time-independent.
Mathematically speaking, the compositional fields satisfy an advection equation that has no diffusion.
For this equation, one can only impose Dirichlet boundary conditions (i.e., prescribe a fixed composi-
tional field value at the boundary) at those boundaries where material flows in. This would correspond
to the “false” setting of this parameter, which is correspondingly the default. On the other hand, on
a finite dimensional discretization such as the one one obtains from the finite element method, it is
possible to also prescribe values on outflow boundaries, even though this may make no physical sense.
This would then correspond to the “true” setting of this parameter.
A warning for models with melt transport: In models with fluid flow, some compositional fields (in
particular the porosity) might be transported with the fluid velocity, and would need to set the con-
straints based on the fluid velocity. However, this is currently not possible, because we reuse the same
matrix for all compositional fields, and therefore can not use different constraints for different fields.
Consequently, we set this parameter to true by default in models where melt transport is enabled. Be
aware that if you change this default setting, you will not use the melt velocity, but the solid velocity
to determine on which parts of the boundaries there is outflow.
Possible values: Any one of true, false, false for models without melt

• Parameter name: Fixed composition boundary indicators

Value:
Default:
Description: A comma separated list of names denoting those boundaries on which the composition is
fixed and described by the boundary composition object selected in its own section of this input file.
All boundary indicators used by the geometry but not explicitly listed here will end up with no-flux
(insulating) boundary conditions.
The names of the boundaries listed here can either be numbers (in which case they correspond to the
numerical boundary indicators assigned by the geometry object), or they can correspond to any of the

300

symbolic names the geometry object may have provided for each part of the boundary. You may want
to compare this with the documentation of the geometry model you use in your model.
This parameter only describes which boundaries have a fixed composition, but not what composition
should hold on these boundaries. The latter piece of information needs to be implemented in a plugin
in the BoundaryComposition group, unless an existing implementation in this group already provides
what you want.
Possible values: A list of 0 to 4294967295 elements where each element is [Any string]

• Parameter name: List of model names

Value:
Default:
Description: A comma-separated list of boundary composition models that will be used to initialize
the composition. These plugins are loaded in the order given, and modify the existing composition
field via the operators listed in ’List of model operators’.
The following boundary composition models are available:
‘ascii data’: Implementation of a model in which the boundary composition is derived from files
containing data in ascii format. Note the required format of the input data: The first lines may
contain any number of comments if they begin with ‘#’, but one of these lines needs to contain the
number of grid points in each dimension as for example ‘# POINTS: 3 3’. The order of the data
columns has to be ‘x’, ‘composition1’, ‘composition2’, etc. in a 2d model and ‘x’, ‘y’, ‘composition1’,
‘composition2’, etc., in a 3d model, according to the number of compositional fields, which means that
there has to be a single column for every composition in the model. Note that the data in the input
files need to be sorted in a specific order: the first coordinate needs to ascend first, followed by the
second in order to assign the correct data to the prescribed coordinates.If you use a spherical model,
then the assumed grid changes. ‘x’ will be replaced by the radial distance of the point to the bottom of
the model, ‘y’ by the azimuth angle and ‘z’ by the polar angle measured positive from the north pole.
The grid will be assumed to be a latitude-longitude grid. Note that the order of spherical coordinates
is ‘r’, ‘phi’, ‘theta’ and not ‘r’, ‘theta’, ‘phi’, since this allows for dimension independent expressions.
‘box’: A model in which the composition is chosen constant on the sides of a box which are selected
by the parameters Left/Right/Top/Bottom/Front/Back composition
‘box with lithosphere boundary indicators’: A model in which the composition is chosen constant on
all the sides of a box. Additional boundary indicators are added to the lithospheric parts of the vertical
boundaries. This model is to be used with the ’Two Merged Boxes’ Geometry Model.
‘function’: Implementation of a model in which the boundary composition is given in terms of an explicit
formula that is elaborated in the parameters in section “Boundary composition model|Function”.
Since the symbol t indicating time may appear in the formulas for the prescribed composition, it is
interpreted as having units seconds unless the global input parameter “Use years in output instead of
seconds” is set, in which case we interpret the formula expressions as having units year.
The format of these functions follows the syntax understood by the muparser library, see Section 4.7.3.
‘initial composition’: A model in which the composition at the boundary is chosen to be the same as
given in the initial conditions.
Because this class simply takes what the initial composition had described, this class can not know
certain pieces of information such as the minimal and maximal composition on the boundary. For
operations that require this, for example in post-processing, this boundary composition model must
therefore be told what the minimal and maximal values on the boundary are. This is done using
parameters set in section “Boundary composition model/Initial composition”.

301

‘spherical constant’: A model in which the composition is chosen constant on the inner and outer
boundaries of a surface, spherical shell, chunk or ellipsoidal chunk. Parameters are read from subsection
’Spherical constant’.
Possible values: A comma-separated list of any of ascii data, box, box with lithosphere boundary
indicators, function, initial composition, spherical constant

• Parameter name: List of model operators

Value: add
Default: add
Description: A comma-separated list of operators that will be used to append the listed composition
models onto the previous models. If only one operator is given, the same operator is applied to all
models.
Possible values: A comma-separated list of any of add, subtract, minimum, maximum, replace if valid

• Parameter name: Model name

Value: unspecified
Default: unspecified
Description: Select one of the following models:
‘ascii data’: Implementation of a model in which the boundary composition is derived from files
containing data in ascii format. Note the required format of the input data: The first lines may
contain any number of comments if they begin with ‘#’, but one of these lines needs to contain the
number of grid points in each dimension as for example ‘# POINTS: 3 3’. The order of the data
columns has to be ‘x’, ‘composition1’, ‘composition2’, etc. in a 2d model and ‘x’, ‘y’, ‘composition1’,
‘composition2’, etc., in a 3d model, according to the number of compositional fields, which means that
there has to be a single column for every composition in the model. Note that the data in the input
files need to be sorted in a specific order: the first coordinate needs to ascend first, followed by the
second in order to assign the correct data to the prescribed coordinates.If you use a spherical model,
then the assumed grid changes. ‘x’ will be replaced by the radial distance of the point to the bottom of
the model, ‘y’ by the azimuth angle and ‘z’ by the polar angle measured positive from the north pole.
The grid will be assumed to be a latitude-longitude grid. Note that the order of spherical coordinates
is ‘r’, ‘phi’, ‘theta’ and not ‘r’, ‘theta’, ‘phi’, since this allows for dimension independent expressions.
‘box’: A model in which the composition is chosen constant on the sides of a box which are selected
by the parameters Left/Right/Top/Bottom/Front/Back composition
‘box with lithosphere boundary indicators’: A model in which the composition is chosen constant on
all the sides of a box. Additional boundary indicators are added to the lithospheric parts of the vertical
boundaries. This model is to be used with the ’Two Merged Boxes’ Geometry Model.
‘function’: Implementation of a model in which the boundary composition is given in terms of an explicit
formula that is elaborated in the parameters in section “Boundary composition model|Function”.
Since the symbol t indicating time may appear in the formulas for the prescribed composition, it is
interpreted as having units seconds unless the global input parameter “Use years in output instead of
seconds” is set, in which case we interpret the formula expressions as having units year.
The format of these functions follows the syntax understood by the muparser library, see Section 4.7.3.
‘initial composition’: A model in which the composition at the boundary is chosen to be the same as
given in the initial conditions.
Because this class simply takes what the initial composition had described, this class can not know
certain pieces of information such as the minimal and maximal composition on the boundary. For
operations that require this, for example in post-processing, this boundary composition model must

302

therefore be told what the minimal and maximal values on the boundary are. This is done using
parameters set in section “Boundary composition model/Initial composition”.
‘spherical constant’: A model in which the composition is chosen constant on the inner and outer
boundaries of a surface, spherical shell, chunk or ellipsoidal chunk. Parameters are read from subsection
’Spherical constant’.
Warning: This parameter provides an old and deprecated way of specifying boundary composition
models and shouldn’t be used. Please use ’List of model names’ instead.
Possible values: Any one of ascii data, box, box with lithosphere boundary indicators, function, initial
composition, spherical constant, unspecified

A.8 Parameters in section Boundary composition model/Ascii data model
• Parameter name: Data directory

Value: $ASPECT_SOURCE_DIR/data/boundary-composition/ascii-data/test/
Default: $ASPECT_SOURCE_DIR/data/boundary-composition/ascii-data/test/
Description: The name of a directory that contains the model data. This path may either be absolute
(if starting with a ‘/’) or relative to the current directory. The path may also include the special text
‘$ASPECT_SOURCE_DIR’ which will be interpreted as the path in which the ASPECT source files
were located when ASPECT was compiled. This interpretation allows, for example, to reference files
located in the ‘data/’ subdirectory of ASPECT.
Possible values: A directory name

• Parameter name: Data file name

Value: box_2d_%s.%d.txt
Default: box_2d_%s.%d.txt
Description: The file name of the model data. Provide file in format: (Velocity file name).%s%d where
%s is a string specifying the boundary of the model according to the names of the boundary indicators
(of the chosen geometry model).%d is any sprintf integer qualifier, specifying the format of the current
file number.
Possible values: Any string

• Parameter name: Data file time step

Value: 1e6
Default: 1e6
Description: Time step between following data files. Depending on the setting of the global ‘Use years
in output instead of seconds’ flag in the input file, this number is either interpreted as seconds or as
years. The default is one million, i.e., either one million seconds or one million years.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Decreasing file order

Value: false
Default: false
Description: In some cases the boundary files are not numbered in increasing but in decreasing order
(e.g. ‘Ma BP’). If this flag is set to ‘True’ the plugin will first load the file with the number ‘First data
file number’ and decrease the file number during the model run.
Possible values: A boolean value (true or false)

303

• Parameter name: First data file model time

Value: 0
Default: 0
Description: Time from which on the data file with number ‘First data file number’ is used as boundary
condition. Until this time, a boundary condition equal to zero everywhere is assumed. Depending on
the setting of the global ‘Use years in output instead of seconds’ flag in the input file, this number is
either interpreted as seconds or as years.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: First data file number

Value: 0
Default: 0
Description: Number of the first velocity file to be loaded when the model time is larger than ‘First
velocity file model time’.
Possible values: An integer n such that −2147483648 ≤ n ≤ 2147483647

• Parameter name: Scale factor

Value: 1.
Default: 1.
Description: Scalar factor, which is applied to the model data. You might want to use this to scale
the input to a reference model. Another way to use this factor is to convert units of the input files.
For instance, if you provide velocities in cm/yr set this factor to 0.01.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

A.9 Parameters in section Boundary composition model/Box
• Parameter name: Bottom composition

Value:
Default:
Description: A comma separated list of composition boundary values at the bottom boundary (at
minimal y-value in 2d, or minimal z-value in 3d). This list must have as many entries as there are
compositional fields. Units: none.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE]

• Parameter name: Left composition

Value:
Default:
Description: A comma separated list of composition boundary values at the left boundary (at minimal
x-value). This list must have as many entries as there are compositional fields. Units: none.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE]

• Parameter name: Right composition

Value:
Default:

304

Description: A comma separated list of composition boundary values at the right boundary (at maximal
x-value). This list must have as many entries as there are compositional fields. Units: none.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE]

• Parameter name: Top composition

Value:
Default:
Description: A comma separated list of composition boundary values at the top boundary (at maximal
y-value in 2d, or maximal z-value in 3d). This list must have as many entries as there are compositional
fields. Units: none.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE]

A.10 Parameters in section Boundary composition model/Box with lithosphere
boundary indicators

• Parameter name: Bottom composition

Value:
Default:
Description: A comma separated list of composition boundary values at the bottom boundary (at
minimal y-value in 2d, or minimal z-value in 3d). This list must have as many entries as there are
compositional fields. Units: none.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE]

• Parameter name: Left composition

Value:
Default:
Description: A comma separated list of composition boundary values at the left boundary (at minimal
x-value). This list must have as many entries as there are compositional fields. Units: none.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE]

• Parameter name: Left composition lithosphere

Value:
Default:
Description: A comma separated list of composition boundary values at the left boundary (at minimal
x-value). This list must have as many entries as there are compositional fields. Units: none.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE]

• Parameter name: Right composition

Value:
Default:
Description: A comma separated list of composition boundary values at the right boundary (at maximal
x-value). This list must have as many entries as there are compositional fields. Units: none.

305

Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE]

• Parameter name: Right composition lithosphere

Value:
Default:
Description: A comma separated list of composition boundary values at the right boundary (at maximal
x-value). This list must have as many entries as there are compositional fields. Units: none.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE]

• Parameter name: Top composition

Value:
Default:
Description: A comma separated list of composition boundary values at the top boundary (at maximal
y-value in 2d, or maximal z-value in 3d). This list must have as many entries as there are compositional
fields. Units: none.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE]

A.11 Parameters in section Boundary composition model/Function
• Parameter name: Coordinate system

Value: cartesian
Default: cartesian
Description: A selection that determines the assumed coordinate system for the function variables.
Allowed values are ’cartesian’, ’spherical’, and ’depth’. ’spherical’ coordinates are interpreted as r,phi
or r,phi,theta in 2D/3D respectively with theta being the polar angle. ’depth’ will create a function,
in which only the first parameter is non-zero, which is interpreted to be the depth of the point.
Possible values: Any one of cartesian, spherical, depth

• Parameter name: Function constants

Value:
Default:
Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘var1=value1, var2=value2, ...’.
A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: Any string

• Parameter name: Function expression

Value: 0
Default: 0
Description: The formula that denotes the function you want to evaluate for particular values of the
independent variables. This expression may contain any of the usual operations such as addition or

306

multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may contain
expressions like ‘if(x>0, 1, -1)’ where the expression evaluates to the second argument if the first
argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.
If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.
Possible values: Any string

• Parameter name: Variable names

Value: x,y,t
Default: x,y,t
Description: The names of the variables as they will be used in the function, separated by commas.
By default, the names of variables at which the function will be evaluated are ‘x’ (in 1d), ‘x,y’ (in 2d)
or ‘x,y,z’ (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’ and then use these variable names in your
function expression.
Possible values: Any string

A.12 Parameters in section Boundary composition model/Initial composition
• Parameter name: Maximal composition

Value: 1.
Default: 1.
Description: Maximal composition. Units: none.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Minimal composition

Value: 0.
Default: 0.
Description: Minimal composition. Units: none.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

A.13 Parameters in section Boundary composition model/Spherical constant
• Parameter name: Inner composition

Value: 1.
Default: 1.
Description: Composition at the inner boundary (core mantle boundary). Units: none.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Outer composition

Value: 0.
Default: 0.

307

Description: Composition at the outer boundary (lithosphere water/air). For a spherical geometry
model, this is the only boundary. Units: none.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

A.14 Parameters in section Boundary fluid pressure model
• Parameter name: Plugin name

Value: density
Default: density
Description: Select one of the following plugins:
‘density’: A plugin that prescribes the fluid pressure gradient at the boundary based on fluid/solid
density from the material model.
Possible values: Any one of density

A.15 Parameters in section Boundary fluid pressure model/Density
• Parameter name: Density formulation

Value: solid density
Default: solid density
Description: The density formulation used to compute the fluid pressure gradient at the model bound-
ary.
‘solid density’ prescribes the gradient of the fluid pressure as solid density times gravity (which is the
lithostatic pressure) and leads to approximately the same pressure in the melt as in the solid, so that
fluid is only flowing in or out due to differences in dynamic pressure.
‘fluid density’ prescribes the gradient of the fluid pressure as fluid density times gravity and causes
melt to flow in with the same velocity as inflowing solid material, or no melt flowing in or out if the
solid velocity normal to the boundary is zero.
’average density’ prescribes the gradient of the fluid pressure as the averaged fluid and solid density
times gravity (which is a better approximation for the lithostatic pressure than just the solid density)
and leads to approximately the same pressure in the melt as in the solid, so that fluid is only flowing
in or out due to differences in dynamic pressure.
Possible values: Any one of solid density, fluid density, average density

A.16 Parameters in section Boundary heat flux model
• Parameter name: Fixed heat flux boundary indicators

Value:
Default:
Description: A comma separated list of names denoting those boundaries on which the heat flux is
fixed and described by the boundary heat flux object selected in the ’Model name’ parameter. All
boundary indicators used by the geometry but not explicitly listed here or in the list of ’Fixed temper-
ature boundary indicators’ in the ’Boundary temperature model’ will end up with no-flux (insulating)
boundary conditions.
The names of the boundaries listed here can either be numbers (in which case they correspond to the
numerical boundary indicators assigned by the geometry object), or they can correspond to any of the
symbolic names the geometry object may have provided for each part of the boundary. You may want
to compare this with the documentation of the geometry model you use in your model.

308

This parameter only describes which boundaries have a fixed heat flux, but not what heat flux should
hold on these boundaries. The latter piece of information needs to be implemented in a plugin in the
BoundaryHeatFlux group, unless an existing implementation in this group already provides what you
want.
Possible values: A list of 0 to 4294967295 elements where each element is [Any string]

• Parameter name: Model name

Value: function
Default: function
Description: Select one of the following plugins:
‘function’: Implementation of a model in which the boundary heat flux is given in terms of an explicit
formula that is elaborated in the parameters in section “Boundary heat flux model|Function”. The
format of these functions follows the syntax understood by the muparser library, see Section 4.7.3.
The formula you describe in the mentioned section is a scalar value for the heat flux that is assumed to
be the flux normal to the boundary, and that has the unit W/(m2) (in 3d) or W/m (in 2d). Negative
fluxes are interpreted as the flow of heat into the domain, and positive fluxes are interpreted as heat
flowing out of the domain.
The symbol t indicating time that may appear in the formulas for the prescribed heat flux is interpreted
as having units seconds unless the global parameter “Use years in output instead of seconds” has been
set.
Possible values: Any one of function

A.17 Parameters in section Boundary heat flux model/Function
• Parameter name: Coordinate system

Value: cartesian
Default: cartesian
Description: A selection that determines the assumed coordinate system for the function variables.
Allowed values are ‘cartesian’, ‘spherical’, and ‘depth’. ‘spherical’ coordinates are interpreted as r,phi
or r,phi,theta in 2D/3D respectively with theta being the polar angle. ‘depth’ will create a function,
in which only the first parameter is non-zero, which is interpreted to be the depth of the point.
Possible values: Any one of cartesian, spherical, depth

• Parameter name: Function constants

Value:
Default:
Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘var1=value1, var2=value2, ...’.
A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: Any string

• Parameter name: Function expression

Value: 0
Default: 0

309

Description: The formula that denotes the function you want to evaluate for particular values of the
independent variables. This expression may contain any of the usual operations such as addition or
multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may contain
expressions like ‘if(x>0, 1, -1)’ where the expression evaluates to the second argument if the first
argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.
If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.
Possible values: Any string

• Parameter name: Variable names

Value: x,y,t
Default: x,y,t
Description: The names of the variables as they will be used in the function, separated by commas.
By default, the names of variables at which the function will be evaluated are ‘x’ (in 1d), ‘x,y’ (in 2d)
or ‘x,y,z’ (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’ and then use these variable names in your
function expression.
Possible values: Any string

A.18 Parameters in section Boundary temperature model
• Parameter name: Allow fixed temperature on outflow boundaries

Value: true
Default: true
Description: When the temperature is fixed on a given boundary as determined by the list of ’Fixed
temperature boundary indicators’, there might be parts of the boundary where material flows out and
one may want to prescribe the temperature only on the parts of the boundary where there is inflow.
This parameter determines if temperatures are only prescribed at these inflow parts of the boundary
(if false) or everywhere on a given boundary, independent of the flow direction (if true).Note that in
this context, ‘fixed’ refers to the fact that these are the boundary indicators where Dirichlet boundary
conditions are applied, and does not imply that the boundary temperature is time-independent.
Mathematically speaking, the temperature satisfies an advection-diffusion equation. For this type
of equation, one can prescribe the temperature even on outflow boundaries as long as the diffusion
coefficient is nonzero. This would correspond to the “true” setting of this parameter, which is cor-
respondingly the default. In practice, however, this would only make physical sense if the diffusion
coefficient is actually quite large to prevent the creation of a boundary layer. In addition, if there is no
diffusion, one can only impose Dirichlet boundary conditions (i.e., prescribe a fixed temperature value
at the boundary) at those boundaries where material flows in. This would correspond to the “false”
setting of this parameter.
Possible values: A boolean value (true or false)

• Parameter name: Fixed temperature boundary indicators

Value:
Default:

310

Description: A comma separated list of names denoting those boundaries on which the temperature
is fixed and described by the boundary temperature object selected in the ’List of model names’
parameter. All boundary indicators used by the geometry but not explicitly listed here will end up
with no-flux (insulating) boundary conditions, or, if they are listed in the ’Fixed heat flux boundary
indicators’, with Neumann boundary conditions.
The names of the boundaries listed here can either be numbers (in which case they correspond to the
numerical boundary indicators assigned by the geometry object), or they can correspond to any of the
symbolic names the geometry object may have provided for each part of the boundary. You may want
to compare this with the documentation of the geometry model you use in your model.
This parameter only describes which boundaries have a fixed temperature, but not what temperature
should hold on these boundaries. The latter piece of information needs to be implemented in a plugin
in the BoundaryTemperature group, unless an existing implementation in this group already provides
what you want.
Possible values: A list of 0 to 4294967295 elements where each element is [Any string]

• Parameter name: List of model names

Value: box
Default:
Description: A comma-separated list of boundary temperature models that will be used to initialize
the temperature. These plugins are loaded in the order given, and modify the existing temperature
field via the operators listed in ’List of model operators’.
The following boundary temperature models are available:
‘ascii data’: Implementation of a model in which the boundary data is derived from files containing
data in ascii format. Note the required format of the input data: The first lines may contain any
number of comments if they begin with ‘#’, but one of these lines needs to contain the number of grid
points in each dimension as for example ‘# POINTS: 3 3’. The order of the data columns has to be ‘x’,
‘Temperature [K]’ in a 2d model and ‘x’, ‘y’, ‘Temperature [K]’ in a 3d model, which means that there
has to be a single column containing the temperature. Note that the data in the input files need to be
sorted in a specific order: the first coordinate needs to ascend first, followed by the second in order to
assign the correct data to the prescribed coordinates. If you use a spherical model, then the assumed
grid changes. ‘x’ will be replaced by the radial distance of the point to the bottom of the model, ‘y’
by the azimuth angle and ‘z’ by the polar angle measured positive from the north pole. The grid will
be assumed to be a latitude-longitude grid. Note that the order of spherical coordinates is ‘r’, ‘phi’,
‘theta’ and not ‘r’, ‘theta’, ‘phi’, since this allows for dimension independent expressions.
‘box’: A model in which the temperature is chosen constant on the sides of a box which are selected
by the parameters Left/Right/Top/Bottom/Front/Back temperature
‘box with lithosphere boundary indicators’: A model in which the temperature is chosen constant on
all the sides of a box. Additional boundary indicators are added to the lithospheric parts of the vertical
boundaries. This model is to be used with the ’Two Merged Boxes’ Geometry Model.
‘constant’: A model in which the temperature is chosen constant on a given boundary indicator.
Parameters are read from the subsection ’Constant’.
‘dynamic core’: This is a boundary temperature model working only with spherical shell geometry and
core statistics postprocessor. The temperature at the top is constant, and the core mantle boundary
temperature is dynamically evolving through time by calculating the heat flux into the core and solving
the core energy balance. The formulation is mainly following [66], and the plugin is used in Zhang et
al. [2016]. The energy of core cooling and freeing of the inner core is included in the plugin. However,
current plugin can not deal with the energy balance if the core is in the ‘snowing core’ regime (i.e., the
core solidifies from the top instead of bottom).

311

‘function’: Implementation of a model in which the boundary temperature is given in terms of an ex-
plicit formula that is elaborated in the parameters in section “Boundary temperature model|Function”.
Since the symbol t indicating time may appear in the formulas for the prescribed temperatures, it is
interpreted as having units seconds unless the global input parameter “Use years in output instead of
seconds” is set, in which case we interpret the formula expressions as having units year.
Because this class simply takes what the function calculates, this class can not know certain pieces
of information such as the minimal and maximal temperature on the boundary. For operations that
require this, for example in post-processing, this boundary temperature model must therefore be told
what the minimal and maximal values on the boundary are. This is done using parameters set in
section “Boundary temperature model/Initial temperature”.
The format of these functions follows the syntax understood by the muparser library, see Section 4.7.3.
‘initial temperature’: A model in which the temperature at the boundary is chosen to be the same as
given in the initial conditions.
Because this class simply takes what the initial temperature had described, this class can not know
certain pieces of information such as the minimal and maximal temperature on the boundary. For
operations that require this, for example in post-processing, this boundary temperature model must
therefore be told what the minimal and maximal values on the boundary are. This is done using
parameters set in section “Boundary temperature model/Initial temperature”.
‘spherical constant’: A model in which the temperature is chosen constant on the inner and outer
boundaries of a spherical shell, ellipsoidal chunk or chunk. Parameters are read from subsection
’Spherical constant’.
Possible values: A comma-separated list of any of ascii data, box, box with lithosphere boundary
indicators, constant, dynamic core, function, initial temperature, spherical constant

• Parameter name: List of model operators

Value: add
Default: add
Description: A comma-separated list of operators that will be used to append the listed temperature
models onto the previous models. If only one operator is given, the same operator is applied to all
models.
Possible values: A comma-separated list of any of add, subtract, minimum, maximum, replace if valid

• Parameter name: Model name

Value: unspecified
Default: unspecified
Description: Select one of the following models:
‘ascii data’: Implementation of a model in which the boundary data is derived from files containing
data in ascii format. Note the required format of the input data: The first lines may contain any
number of comments if they begin with ‘#’, but one of these lines needs to contain the number of grid
points in each dimension as for example ‘# POINTS: 3 3’. The order of the data columns has to be ‘x’,
‘Temperature [K]’ in a 2d model and ‘x’, ‘y’, ‘Temperature [K]’ in a 3d model, which means that there
has to be a single column containing the temperature. Note that the data in the input files need to be
sorted in a specific order: the first coordinate needs to ascend first, followed by the second in order to
assign the correct data to the prescribed coordinates. If you use a spherical model, then the assumed
grid changes. ‘x’ will be replaced by the radial distance of the point to the bottom of the model, ‘y’
by the azimuth angle and ‘z’ by the polar angle measured positive from the north pole. The grid will
be assumed to be a latitude-longitude grid. Note that the order of spherical coordinates is ‘r’, ‘phi’,
‘theta’ and not ‘r’, ‘theta’, ‘phi’, since this allows for dimension independent expressions.

312

‘box’: A model in which the temperature is chosen constant on the sides of a box which are selected
by the parameters Left/Right/Top/Bottom/Front/Back temperature
‘box with lithosphere boundary indicators’: A model in which the temperature is chosen constant on
all the sides of a box. Additional boundary indicators are added to the lithospheric parts of the vertical
boundaries. This model is to be used with the ’Two Merged Boxes’ Geometry Model.
‘constant’: A model in which the temperature is chosen constant on a given boundary indicator.
Parameters are read from the subsection ’Constant’.
‘dynamic core’: This is a boundary temperature model working only with spherical shell geometry and
core statistics postprocessor. The temperature at the top is constant, and the core mantle boundary
temperature is dynamically evolving through time by calculating the heat flux into the core and solving
the core energy balance. The formulation is mainly following [66], and the plugin is used in Zhang et
al. [2016]. The energy of core cooling and freeing of the inner core is included in the plugin. However,
current plugin can not deal with the energy balance if the core is in the ‘snowing core’ regime (i.e., the
core solidifies from the top instead of bottom).
‘function’: Implementation of a model in which the boundary temperature is given in terms of an ex-
plicit formula that is elaborated in the parameters in section “Boundary temperature model|Function”.
Since the symbol t indicating time may appear in the formulas for the prescribed temperatures, it is
interpreted as having units seconds unless the global input parameter “Use years in output instead of
seconds” is set, in which case we interpret the formula expressions as having units year.
Because this class simply takes what the function calculates, this class can not know certain pieces
of information such as the minimal and maximal temperature on the boundary. For operations that
require this, for example in post-processing, this boundary temperature model must therefore be told
what the minimal and maximal values on the boundary are. This is done using parameters set in
section “Boundary temperature model/Initial temperature”.
The format of these functions follows the syntax understood by the muparser library, see Section 4.7.3.
‘initial temperature’: A model in which the temperature at the boundary is chosen to be the same as
given in the initial conditions.
Because this class simply takes what the initial temperature had described, this class can not know
certain pieces of information such as the minimal and maximal temperature on the boundary. For
operations that require this, for example in post-processing, this boundary temperature model must
therefore be told what the minimal and maximal values on the boundary are. This is done using
parameters set in section “Boundary temperature model/Initial temperature”.
‘spherical constant’: A model in which the temperature is chosen constant on the inner and outer
boundaries of a spherical shell, ellipsoidal chunk or chunk. Parameters are read from subsection
’Spherical constant’.
Warning: This parameter provides an old and deprecated way of specifying boundary temperature
models and shouldn’t be used. Please use ’List of model names’ instead.
Possible values: Any one of ascii data, box, box with lithosphere boundary indicators, constant, dy-
namic core, function, initial temperature, spherical constant, unspecified

A.19 Parameters in section Boundary temperature model/Ascii data model
• Parameter name: Data directory

Value: $ASPECT_SOURCE_DIR/data/boundary-temperature/ascii-data/test/
Default: $ASPECT_SOURCE_DIR/data/boundary-temperature/ascii-data/test/
Description: The name of a directory that contains the model data. This path may either be absolute
(if starting with a ‘/’) or relative to the current directory. The path may also include the special text

313

‘$ASPECT_SOURCE_DIR’ which will be interpreted as the path in which the ASPECT source files
were located when ASPECT was compiled. This interpretation allows, for example, to reference files
located in the ‘data/’ subdirectory of ASPECT.
Possible values: A directory name

• Parameter name: Data file name

Value: box_2d_%s.%d.txt
Default: box_2d_%s.%d.txt
Description: The file name of the model data. Provide file in format: (Velocity file name).%s%d where
%s is a string specifying the boundary of the model according to the names of the boundary indicators
(of the chosen geometry model).%d is any sprintf integer qualifier, specifying the format of the current
file number.
Possible values: Any string

• Parameter name: Data file time step

Value: 1e6
Default: 1e6
Description: Time step between following data files. Depending on the setting of the global ‘Use years
in output instead of seconds’ flag in the input file, this number is either interpreted as seconds or as
years. The default is one million, i.e., either one million seconds or one million years.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Decreasing file order

Value: false
Default: false
Description: In some cases the boundary files are not numbered in increasing but in decreasing order
(e.g. ‘Ma BP’). If this flag is set to ‘True’ the plugin will first load the file with the number ‘First data
file number’ and decrease the file number during the model run.
Possible values: A boolean value (true or false)

• Parameter name: First data file model time

Value: 0
Default: 0
Description: Time from which on the data file with number ‘First data file number’ is used as boundary
condition. Until this time, a boundary condition equal to zero everywhere is assumed. Depending on
the setting of the global ‘Use years in output instead of seconds’ flag in the input file, this number is
either interpreted as seconds or as years.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: First data file number

Value: 0
Default: 0
Description: Number of the first velocity file to be loaded when the model time is larger than ‘First
velocity file model time’.
Possible values: An integer n such that −2147483648 ≤ n ≤ 2147483647

314

• Parameter name: Scale factor

Value: 1.
Default: 1.
Description: Scalar factor, which is applied to the model data. You might want to use this to scale
the input to a reference model. Another way to use this factor is to convert units of the input files.
For instance, if you provide velocities in cm/yr set this factor to 0.01.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

A.20 Parameters in section Boundary temperature model/Box
• Parameter name: Bottom temperature

Value: 0.
Default: 0.
Description: Temperature at the bottom boundary (at minimal z-value). Units: K.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Left temperature

Value: 1.
Default: 1.
Description: Temperature at the left boundary (at minimal x-value). Units: K.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Right temperature

Value: 0.
Default: 0.
Description: Temperature at the right boundary (at maximal x-value). Units: K.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Top temperature

Value: 0.
Default: 0.
Description: Temperature at the top boundary (at maximal x-value). Units: K.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

A.21 Parameters in section Boundary temperature model/Box with lithosphere
boundary indicators

• Parameter name: Bottom temperature

Value: 0.
Default: 0.
Description: Temperature at the bottom boundary (at minimal z-value). Units: K.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

315

• Parameter name: Left temperature

Value: 1.
Default: 1.
Description: Temperature at the left boundary (at minimal x-value). Units: K.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Left temperature lithosphere

Value: 0.
Default: 0.
Description: Temperature at the additional left lithosphere boundary (specified by user in Geometry
Model). Units: K.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Right temperature

Value: 0.
Default: 0.
Description: Temperature at the right boundary (at maximal x-value). Units: K.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Right temperature lithosphere

Value: 0.
Default: 0.
Description: Temperature at the additional right lithosphere boundary (specified by user in Geometry
Model). Units: K.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Top temperature

Value: 0.
Default: 0.
Description: Temperature at the top boundary (at maximal x-value). Units: K.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

A.22 Parameters in section Boundary temperature model/Constant
• Parameter name: Boundary indicator to temperature mappings

Value:
Default:
Description: A comma separated list of mappings between boundary indicators and the temperature
associated with the boundary indicators. The format for this list is “indicator1 : value1, indicator2 :
value2, ...”, where each indicator is a valid boundary indicator (either a number or the symbolic name
of a boundary as provided by the geometry model) and each value is the temperature of that boundary.
Possible values: A key:value map of 0 to 4294967295 elements where each key is [Any string] and each
value is [A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE]

316

A.23 Parameters in section Boundary temperature model/Dynamic core
• Parameter name: Alpha
Value: 1.35e-5
Default: 1.35e-5
Description: Core thermal expansivity. Units: 1/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Beta composition

Value: 1.1
Default: 1.1
Description: Compositional expansion coefficient Betac. See [66] for more details.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: CMB pressure

Value: 0.14e12
Default: 0.14e12
Description: Pressure at CMB. Units: Pa.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Core conductivity

Value: 60.
Default: 60.
Description: Core heat conductivity kc. Units: W/m/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Core density

Value: 12.5e3
Default: 12.5e3
Description: Density of the core. Units: kg/m3.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Core heat capacity

Value: 840.
Default: 840.
Description: Heat capacity of the core. Units: J/kg/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Delta
Value: 0.5
Default: 0.5
Description: Partition coefficient of the light element.
Possible values: A floating point number v such that 0 ≤ v ≤ 1

317

• Parameter name: Gravity acceleration

Value: 9.8
Default: 9.8
Description: Gravitation acceleration at CMB. Units: m/s2.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Initial light composition

Value: 0.01
Default: 0.01
Description: Initial light composition (eg. S,O) concentration in weight fraction.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Inner temperature

Value: 6000.
Default: 6000.
Description: Temperature at the inner boundary (core mantle boundary) at the beginning. Units: K.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: K0
Value: 4.111e11
Default: 4.111e11
Description: Core compressibility at zero pressure. See [66] for more details.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Lh
Value: 750e3
Default: 750e3
Description: The latent heat of core freeze. Units: J/kg.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Max iteration

Value: 30000
Default: 30000
Description: The max iterations for nonliner core energy solver.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Outer temperature

Value: 0.
Default: 0.
Description: Temperature at the outer boundary (lithosphere water/air). Units: K.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

318

• Parameter name: Rh
Value: -27.7e6
Default: -27.7e6
Description: The heat of reaction. Units: J/kg.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Rho0
Value: 7.019e3
Default: 7.019e3
Description: Core density at zero pressure. Units: kg/m3. See [66] for more details.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: dR over dt

Value: 0.
Default: 0.
Description: Initial inner core radius changing rate. Units: km/year.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: dT over dt

Value: 0.
Default: 0.
Description: Initial CMB temperature changing rate. Units: K/year.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: dX over dt

Value: 0.
Default: 0.
Description: Initial light composition changing rate. Units: 1/year.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

A.24 Parameters in section Boundary temperature model/Dynamic core/Geotherm
parameters

• Parameter name: Composition dependency

Value: true
Default: true
Description: If melting curve dependent on composition.
Possible values: A boolean value (true or false)

• Parameter name: Theta
Value: 0.11
Default: 0.11
Description: Melting curve ([66] eq. (40)) parameter Theta.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

319

• Parameter name: Tm0
Value: 1695.
Default: 1695.
Description: Melting curve ([66] eq. (40)) parameter Tm0. Units: K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Tm1
Value: 10.9
Default: 10.9
Description: Melting curve ([66] eq. (40)) parameter Tm1. Units: 1/Tpa.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Tm2
Value: -8.0
Default: -8.0
Description: Melting curve ([66] eq. (40)) parameter Tm2. Units: 1/TPa2.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Use BW11

Value: false
Default: false
Description: If using the Fe-FeS system solidus from Buono & Walker (2011) instead.
Possible values: A boolean value (true or false)

A.25 Parameters in section Boundary temperature model/Dynamic core/Other energy
source

• Parameter name: File name

Value:
Default:
Description: Data file name for other energy source into the core. The ’other energy source’ is used
for external core energy source.For example if someone want to test the early lunar core powered by
precession (Dwyer, C. A., et al. (2011). A long-lived lunar dynamo driven by continuous mechanical
stirring. Nature 479(7372): 212-214.)Format [Time(Gyr) Energy rate(W)]
Possible values: Any string

A.26 Parameters in section Boundary temperature model/Dynamic core/Radioactive
heat source

• Parameter name: Half life times

Value:
Default:
Description: Half decay times of different elements (Ga)
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE]

320

• Parameter name: Heating rates

Value:
Default:
Description: Heating rates of different elements (W/kg)
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE]

• Parameter name: Initial concentrations

Value:
Default:
Description: Initial concentrations of different elements (ppm)
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE]

• Parameter name: Number of radioactive heating elements

Value: 0
Default: 0
Description: Number of different radioactive heating elements in core
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

A.27 Parameters in section Boundary temperature model/Function
• Parameter name: Coordinate system

Value: cartesian
Default: cartesian
Description: A selection that determines the assumed coordinate system for the function variables.
Allowed values are ‘cartesian’, ‘spherical’, and ‘depth’. ‘spherical’ coordinates are interpreted as r,phi
or r,phi,theta in 2D/3D respectively with theta being the polar angle. ‘depth’ will create a function,
in which only the first parameter is non-zero, which is interpreted to be the depth of the point.
Possible values: Any one of cartesian, spherical, depth

• Parameter name: Function constants

Value:
Default:
Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘var1=value1, var2=value2, ...’.
A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: Any string

• Parameter name: Function expression

Value: 0
Default: 0

321

Description: The formula that denotes the function you want to evaluate for particular values of the
independent variables. This expression may contain any of the usual operations such as addition or
multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may contain
expressions like ‘if(x>0, 1, -1)’ where the expression evaluates to the second argument if the first
argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.
If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.
Possible values: Any string

• Parameter name: Maximal temperature

Value: 3773.
Default: 3773.
Description: Maximal temperature. Units: K.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Minimal temperature

Value: 273.
Default: 273.
Description: Minimal temperature. Units: K.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Variable names

Value: x,y,t
Default: x,y,t
Description: The names of the variables as they will be used in the function, separated by commas.
By default, the names of variables at which the function will be evaluated are ‘x’ (in 1d), ‘x,y’ (in 2d)
or ‘x,y,z’ (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’ and then use these variable names in your
function expression.
Possible values: Any string

A.28 Parameters in section Boundary temperature model/Initial temperature
• Parameter name: Maximal temperature

Value: 3773.
Default: 3773.
Description: Maximal temperature. Units: K.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Minimal temperature

Value: 0.
Default: 0.
Description: Minimal temperature. Units: K.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

322

A.29 Parameters in section Boundary temperature model/Spherical constant
• Parameter name: Inner temperature

Value: 6000.
Default: 6000.
Description: Temperature at the inner boundary (core mantle boundary). Units: K.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Outer temperature

Value: 0.
Default: 0.
Description: Temperature at the outer boundary (lithosphere water/air). Units: K.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

A.30 Parameters in section Boundary traction model
• Parameter name: Prescribed traction boundary indicators

Value:
Default:
Description: A comma separated list denoting those boundaries on which a traction force is prescribed,
i.e., where known external forces act, resulting in an unknown velocity. This is often used to model
“open” boundaries where we only know the pressure. This pressure then produces a force that is
normal to the boundary and proportional to the pressure.
The format of valid entries for this parameter is that of a map given as “key1 [selector]: value1, key2
[selector]: value2, key3: value3, ...” where each key must be a valid boundary indicator (which is
either an integer or the symbolic name the geometry model in use may have provided for this part of
the boundary) and each value must be one of the currently implemented boundary traction models.
“selector” is an optional string given as a subset of the letters ‘xyz’ that allows you to apply the
boundary conditions only to the components listed. As an example, ’1 y: function’ applies the type
‘function’ to the y component on boundary 1. Without a selector it will affect all components of the
traction.
Possible values: A key:value map of 0 to 4294967295 elements where each key is [Any string] and each
value is [Any one of ascii data, function, initial lithostatic pressure, zero traction]

A.31 Parameters in section Boundary traction model/Ascii data model
• Parameter name: Data directory

Value: $ASPECT_SOURCE_DIR/data/boundary-traction/ascii-data/test/
Default: $ASPECT_SOURCE_DIR/data/boundary-traction/ascii-data/test/
Description: The name of a directory that contains the model data. This path may either be absolute
(if starting with a ‘/’) or relative to the current directory. The path may also include the special text
‘$ASPECT_SOURCE_DIR’ which will be interpreted as the path in which the ASPECT source files
were located when ASPECT was compiled. This interpretation allows, for example, to reference files
located in the ‘data/’ subdirectory of ASPECT.
Possible values: A directory name

323

• Parameter name: Data file name

Value: box_2d_%s.%d.txt
Default: box_2d_%s.%d.txt
Description: The file name of the model data. Provide file in format: (Velocity file name).%s%d where
%s is a string specifying the boundary of the model according to the names of the boundary indicators
(of the chosen geometry model).%d is any sprintf integer qualifier, specifying the format of the current
file number.
Possible values: Any string

• Parameter name: Data file time step

Value: 1e6
Default: 1e6
Description: Time step between following data files. Depending on the setting of the global ‘Use years
in output instead of seconds’ flag in the input file, this number is either interpreted as seconds or as
years. The default is one million, i.e., either one million seconds or one million years.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Decreasing file order

Value: false
Default: false
Description: In some cases the boundary files are not numbered in increasing but in decreasing order
(e.g. ‘Ma BP’). If this flag is set to ‘True’ the plugin will first load the file with the number ‘First data
file number’ and decrease the file number during the model run.
Possible values: A boolean value (true or false)

• Parameter name: First data file model time

Value: 0
Default: 0
Description: Time from which on the data file with number ‘First data file number’ is used as boundary
condition. Until this time, a boundary condition equal to zero everywhere is assumed. Depending on
the setting of the global ‘Use years in output instead of seconds’ flag in the input file, this number is
either interpreted as seconds or as years.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: First data file number

Value: 0
Default: 0
Description: Number of the first velocity file to be loaded when the model time is larger than ‘First
velocity file model time’.
Possible values: An integer n such that −2147483648 ≤ n ≤ 2147483647

• Parameter name: Scale factor

Value: 1.
Default: 1.
Description: Scalar factor, which is applied to the model data. You might want to use this to scale
the input to a reference model. Another way to use this factor is to convert units of the input files.
For instance, if you provide velocities in cm/yr set this factor to 0.01.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

324

A.32 Parameters in section Boundary traction model/Function
• Parameter name: Coordinate system

Value: cartesian
Default: cartesian
Description: A selection that determines the assumed coordinate system for the function variables.
Allowed values are ‘cartesian’, ‘spherical’, and ‘depth’. ‘spherical’ coordinates are interpreted as r,phi
or r,phi,theta in 2D/3D respectively with theta being the polar angle. ‘depth’ will create a function,
in which only the first parameter is non-zero, which is interpreted to be the depth of the point.
Possible values: Any one of cartesian, spherical, depth

• Parameter name: Function constants

Value:
Default:
Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘var1=value1, var2=value2, ...’.
A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: Any string

• Parameter name: Function expression

Value: 0; 0
Default: 0; 0
Description: The formula that denotes the function you want to evaluate for particular values of the
independent variables. This expression may contain any of the usual operations such as addition or
multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may contain
expressions like ‘if(x>0, 1, -1)’ where the expression evaluates to the second argument if the first
argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.
If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.
Possible values: Any string

• Parameter name: Variable names

Value: x,y,t
Default: x,y,t
Description: The names of the variables as they will be used in the function, separated by commas.
By default, the names of variables at which the function will be evaluated are ‘x’ (in 1d), ‘x,y’ (in 2d)
or ‘x,y,z’ (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’ and then use these variable names in your
function expression.
Possible values: Any string

325

A.33 Parameters in section Boundary traction model/Initial lithostatic pressure
• Parameter name: Number of integration points

Value: 1000
Default: 1000
Description: The number of integration points over which we integrate the lithostatic pressure down-
wards.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Representative point

Value:
Default:
Description: The point where the pressure profile will be calculated. Cartesian coordinates when
geometry is a box, otherwise enter radius, longitude, and in 3D latitude.Units: m or degrees.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE]

A.34 Parameters in section Boundary velocity model
• Parameter name: Prescribed velocity boundary indicators

Value:
Default:
Description: A comma separated list denoting those boundaries on which the velocity is prescribed,
i.e., where unknown external forces act to prescribe a particular velocity. This is often used to prescribe
a velocity that equals that of overlying plates.
The format of valid entries for this parameter is that of a map given as “key1 [selector]: value1, key2
[selector]: value2, key3: value3, ...” where each key must be a valid boundary indicator (which is
either an integer or the symbolic name the geometry model in use may have provided for this part of
the boundary) and each value must be one of the currently implemented boundary velocity models.
“selector” is an optional string given as a subset of the letters ‘xyz’ that allows you to apply the
boundary conditions only to the components listed. As an example, ’1 y: function’ applies the type
‘function’ to the y component on boundary 1. Without a selector it will affect all components of the
velocity.
Note that the no-slip boundary condition is a special case of the current one where the prescribed
velocity happens to be zero. It can thus be implemented by indicating that a particular boundary is
part of the ones selected using the current parameter and using “zero velocity” as the boundary values.
Alternatively, you can simply list the part of the boundary on which the velocity is to be zero with the
parameter “Zero velocity boundary indicator” in the current parameter section.
Note that when “Use years in output instead of seconds” is set to true, velocity should be given in
m/yr. The following boundary velocity models are available:
‘ascii data’: Implementation of a model in which the boundary velocity is derived from files containing
data in ascii format. Note the required format of the input data: The first lines may contain any
number of comments if they begin with ‘#’, but one of these lines needs to contain the number of grid
points in each dimension as for example ‘# POINTS: 3 3’. The order of the data columns has to be
‘x’, ‘velocityx’, ‘velocityy’ in a 2d model or ‘x’, ‘y’, ‘velocityx’, ‘velocityy’, ‘velocityz’ in a 3d model.
Note that the data in the input files need to be sorted in a specific order: the first coordinate needs to
ascend first, followed by the second in order to assign the correct data to the prescribed coordinates.If
you use a spherical model, then the assumed grid changes. ‘x’ will be replaced by the radial distance

326

of the point to the bottom of the model, ‘y’ by the azimuth angle and ‘z’ by the polar angle measured
positive from the north pole. The grid will be assumed to be a latitude-longitude grid. Note that
the order of spherical coordinates is ‘r’, ‘phi’, ‘theta’ and not ‘r’, ‘theta’, ‘phi’, since this allows for
dimension independent expressions. Velocities can be specified using cartesian (by default) or spherical
unit vectors. No matter which geometry model is chosen, the unit of the velocities is assumed to be
m/s or m/yr depending on the ‘Use years in output instead of seconds’ flag. If you provide velocities
in cm/yr, set the ‘Scale factor’ option to 0.01.
‘function’: Implementation of a model in which the boundary velocity is given in terms of an explicit
formula that is elaborated in the parameters in section “Boundary velocity model|Function”. The
format of these functions follows the syntax understood by the muparser library, see Section 4.7.3.
The formula you describe in the mentioned section is a semicolon separated list of velocities for each of
the d components of the velocity vector. These d formulas are interpreted as having units m/s, unless
the global input parameter “Use years in output instead of seconds” is set, in which case we interpret
the formula expressions as having units m/year.
Likewise, since the symbol t indicating time may appear in the formulas for the prescribed velocities,
it is interpreted as having units seconds unless the global parameter above has been set.
‘gplates’: Implementation of a model in which the boundary velocity is derived from files that are
generated by the GPlates program.
‘zero velocity’: Implementation of a model in which the boundary velocity is zero. This is commonly
referred to as a “stick boundary condition”, indicating that the material “sticks” to the material on
the other side of the boundary.
Possible values: A key:value map of 0 to 4294967295 elements where each key is [Any string] and each
value is [Any one of ascii data, function, gplates, zero velocity]

• Parameter name: Tangential velocity boundary indicators

Value:
Default:
Description: A comma separated list of names denoting those boundaries on which the velocity is tan-
gential and unrestrained, i.e., free-slip where no external forces act to prescribe a particular tangential
velocity (although there is a force that requires the flow to be tangential).
The names of the boundaries listed here can either by numbers (in which case they correspond to the
numerical boundary indicators assigned by the geometry object), or they can correspond to any of the
symbolic names the geometry object may have provided for each part of the boundary. You may want
to compare this with the documentation of the geometry model you use in your model.
Possible values: A list of 0 to 4294967295 elements where each element is [Any string]

• Parameter name: Zero velocity boundary indicators

Value:
Default:
Description: A comma separated list of names denoting those boundaries on which the velocity is zero.
The names of the boundaries listed here can either by numbers (in which case they correspond to the
numerical boundary indicators assigned by the geometry object), or they can correspond to any of the
symbolic names the geometry object may have provided for each part of the boundary. You may want
to compare this with the documentation of the geometry model you use in your model.
Possible values: A list of 0 to 4294967295 elements where each element is [Any string]

327

A.35 Parameters in section Boundary velocity model/Ascii data model
• Parameter name: Data directory

Value: $ASPECT_SOURCE_DIR/data/boundary-velocity/ascii-data/test/
Default: $ASPECT_SOURCE_DIR/data/boundary-velocity/ascii-data/test/
Description: The name of a directory that contains the model data. This path may either be absolute
(if starting with a ‘/’) or relative to the current directory. The path may also include the special text
‘$ASPECT_SOURCE_DIR’ which will be interpreted as the path in which the ASPECT source files
were located when ASPECT was compiled. This interpretation allows, for example, to reference files
located in the ‘data/’ subdirectory of ASPECT.
Possible values: A directory name

• Parameter name: Data file name

Value: box_2d_%s.%d.txt
Default: box_2d_%s.%d.txt
Description: The file name of the model data. Provide file in format: (Velocity file name).%s%d where
%s is a string specifying the boundary of the model according to the names of the boundary indicators
(of the chosen geometry model).%d is any sprintf integer qualifier, specifying the format of the current
file number.
Possible values: Any string

• Parameter name: Data file time step

Value: 1e6
Default: 1e6
Description: Time step between following data files. Depending on the setting of the global ‘Use years
in output instead of seconds’ flag in the input file, this number is either interpreted as seconds or as
years. The default is one million, i.e., either one million seconds or one million years.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Decreasing file order

Value: false
Default: false
Description: In some cases the boundary files are not numbered in increasing but in decreasing order
(e.g. ‘Ma BP’). If this flag is set to ‘True’ the plugin will first load the file with the number ‘First data
file number’ and decrease the file number during the model run.
Possible values: A boolean value (true or false)

• Parameter name: First data file model time

Value: 0
Default: 0
Description: Time from which on the data file with number ‘First data file number’ is used as boundary
condition. Until this time, a boundary condition equal to zero everywhere is assumed. Depending on
the setting of the global ‘Use years in output instead of seconds’ flag in the input file, this number is
either interpreted as seconds or as years.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

328

• Parameter name: First data file number

Value: 0
Default: 0
Description: Number of the first velocity file to be loaded when the model time is larger than ‘First
velocity file model time’.
Possible values: An integer n such that −2147483648 ≤ n ≤ 2147483647

• Parameter name: Scale factor

Value: 1.
Default: 1.
Description: Scalar factor, which is applied to the model data. You might want to use this to scale
the input to a reference model. Another way to use this factor is to convert units of the input files.
For instance, if you provide velocities in cm/yr set this factor to 0.01.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Use spherical unit vectors

Value: false
Default: false
Description: Specify velocity as r, phi, and theta components instead of x, y, and z. Positive velocities
point up, east, and north (in 3D) or out and clockwise (in 2D). This setting only makes sense for
spherical geometries.
Possible values: A boolean value (true or false)

A.36 Parameters in section Boundary velocity model/Function
• Parameter name: Coordinate system

Value: cartesian
Default: cartesian
Description: A selection that determines the assumed coordinate system for the function variables.
Allowed values are ‘cartesian’, ‘spherical’, and ‘depth’. ‘spherical’ coordinates are interpreted as r,phi
or r,phi,theta in 2D/3D respectively with theta being the polar angle. ‘depth’ will create a function,
in which only the first parameter is non-zero, which is interpreted to be the depth of the point.
Possible values: Any one of cartesian, spherical, depth

• Parameter name: Function constants

Value:
Default:
Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘var1=value1, var2=value2, ...’.
A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: Any string

329

• Parameter name: Function expression

Value: 0; 0
Default: 0; 0
Description: The formula that denotes the function you want to evaluate for particular values of the
independent variables. This expression may contain any of the usual operations such as addition or
multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may contain
expressions like ‘if(x>0, 1, -1)’ where the expression evaluates to the second argument if the first
argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.
If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.
Possible values: Any string

• Parameter name: Use spherical unit vectors

Value: false
Default: false
Description: Specify velocity as r, phi, and theta components instead of x, y, and z. Positive velocities
point up, east, and north (in 3D) or out and clockwise (in 2D). This setting only makes sense for
spherical geometries.
Possible values: A boolean value (true or false)

• Parameter name: Variable names

Value: x,y,t
Default: x,y,t
Description: The names of the variables as they will be used in the function, separated by commas.
By default, the names of variables at which the function will be evaluated are ‘x’ (in 1d), ‘x,y’ (in 2d)
or ‘x,y,z’ (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’ and then use these variable names in your
function expression.
Possible values: Any string

A.37 Parameters in section Boundary velocity model/GPlates model
• Parameter name: Data directory

Value: $ASPECT_SOURCE_DIR/data/boundary-velocity/gplates/
Default: $ASPECT_SOURCE_DIR/data/boundary-velocity/gplates/
Description: The name of a directory that contains the model data. This path may either be absolute
(if starting with a ’/’) or relative to the current directory. The path may also include the special text
’$ASPECT_SOURCE_DIR’ which will be interpreted as the path in which the ASPECT source files
were located when ASPECT was compiled. This interpretation allows, for example, to reference files
located in the ‘data/’ subdirectory of ASPECT.
Possible values: A directory name

330

• Parameter name: Data file time step

Value: 1e6
Default: 1e6
Description: Time step between following velocity files. Depending on the setting of the global ’Use
years in output instead of seconds’ flag in the input file, this number is either interpreted as seconds
or as years. The default is one million, i.e., either one million seconds or one million years.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Decreasing file order

Value: false
Default: false
Description: In some cases the boundary files are not numbered in increasing but in decreasing order
(e.g. ’Ma BP’). If this flag is set to ’True’ the plugin will first load the file with the number ’First
velocity file number’ and decrease the file number during the model run.
Possible values: A boolean value (true or false)

• Parameter name: First data file model time

Value: 0.
Default: 0.
Description: Time from which on the velocity file with number ’First velocity file number’ is used as
boundary condition. Previous to this time, a no-slip boundary condition is assumed. Depending on
the setting of the global ’Use years in output instead of seconds’ flag in the input file, this number is
either interpreted as seconds or as years.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: First data file number

Value: 0
Default: 0
Description: Number of the first velocity file to be loaded when the model time is larger than ’First
velocity file model time’.
Possible values: An integer n such that −2147483648 ≤ n ≤ 2147483647

• Parameter name: Lithosphere thickness

Value: 100000.
Default: 100000.
Description: Determines the depth of the lithosphere, so that the GPlates velocities can be applied at
the sides of the model as well as at the surface.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Point one

Value: 1.570796,0.0
Default: 1.570796,0.0
Description: Point that determines the plane in which a 2D model lies in. Has to be in the format
‘a,b’ where a and b are theta (polar angle) and phi in radians.
Possible values: Any string

331

• Parameter name: Point two

Value: 1.570796,1.570796
Default: 1.570796,1.570796
Description: Point that determines the plane in which a 2D model lies in. Has to be in the format
‘a,b’ where a and b are theta (polar angle) and phi in radians.
Possible values: Any string

• Parameter name: Scale factor

Value: 1.
Default: 1.
Description: Scalar factor, which is applied to the boundary velocity. You might want to use this to
scale the velocities to a reference model (e.g. with free-slip boundary) or another plate reconstruction.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Velocity file name

Value: phi.%d
Default: phi.%d
Description: The file name of the material data. Provide file in format: (Velocity file name).%d.gpml
where %d is any sprintf integer qualifier, specifying the format of the current file number.
Possible values: Any string

A.38 Parameters in section Checkpointing
• Parameter name: Steps between checkpoint

Value: 0
Default: 0
Description: The number of timesteps between performing checkpoints. If 0 and time between check-
point is not specified, checkpointing will not be performed. Units: None.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Time between checkpoint

Value: 0
Default: 0
Description: The wall time between performing checkpoints. If 0, will use the checkpoint step frequency
instead. Units: Seconds.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

A.39 Parameters in section Compositional fields
• Parameter name: Compositional field methods

Value:
Default:
Description: A comma separated list denoting the solution method of each compositional field. Each
entry of the list must be one of the currently implemented field types.
These choices correspond to the following methods by which compositional fields gain their values:

332

– “field”: If a compositional field is marked with this method, then its values are computed in each
time step by advecting along the values of the previous time step using the velocity field, and
applying reaction rates to it. In other words, this corresponds to the usual notion of a composition
field as mentioned in Section 2.7.

– “particles”: If a compositional field is marked with this method, then its values are obtained in
each time step by interpolating the corresponding properties from the particles located on each
cell. The time evolution therefore happens because particles move along with the velocity field,
and particle properties can react with each other as well. See Section 2.16 for more information
about how particles behave.

– “volume of fluid“: If a compositional field is marked with this method, then its values are obtained
in each timestep by reconstructing a polynomial finite element approximation on each cell from a
volume of fluid interface tracking method, which is used to compute the advection updates.

– “static”: If a compositional field is marked this way, then it does not evolve at all. Its values are
simply set to the initial conditions, and will then never change.

– “melt field”: If a compositional field is marked with this method, then its values are computed in
each time step by advecting along the values of the previous time step using the melt velocity, and
applying reaction rates to it. In other words, this corresponds to the usual notion of a composition
field as mentioned in Section 2.7, except that it is advected with the melt velocity instead of the
solid velocity. This method can only be chosen if melt transport is active in the model.

– “prescribed field”: The value of these fields is determined in each time step from the material
model. If a compositional field is marked with this method, then the value of a specific additional
material model output, called the ‘PrescribedFieldOutputs’ is interpolated onto the field. This
field does not change otherwise, it is not advected with the flow.

– “prescribed field with diffusion”: If a compositional field is marked this way, the value of a specific
additional material model output, called the ‘PrescribedFieldOutputs’ is interpolated onto the
field, as in the “prescribed field” method. Afterwards, the field is diffused based on a solver
parameter, the diffusion length scale, smoothing the field. Specifically, the field is updated by
solving the equation (I − l2∆)Csmoothed = Cprescribed, where l is the diffusion length scale. Note
that this means that the amount of diffusion is independent of the time step size, and that the
field is not advected with the flow.

Possible values: A list of 0 to 4294967295 elements where each element is [Any one of field, particles,
volume of fluid, static, melt field, prescribed field, prescribed field with diffusion]

• Parameter name: List of normalized fields

Value:
Default:
Description: A list of integers smaller than or equal to the number of compositional fields. All compo-
sitional fields in this list will be normalized before the first timestep. The normalization is implemented
in the following way: First, the sum of the fields to be normalized is calculated at every point and the
global maximum is determined. Second, the compositional fields to be normalized are divided by this
maximum.
Possible values: A list of 0 to 4294967295 elements where each element is [An integer n such that
0 ≤ n ≤ 2147483647]

• Parameter name: Mapped particle properties

Value:
Default:

333

Description: A comma separated list denoting the particle properties that will be projected to those
compositional fields that are of the “particles” field type.
The format of valid entries for this parameter is that of a map given as “key1: value1, key2: value2
[component2], key3: value3 [component4], ...” where each key must be a valid field name of the
“particles” type, and each value must be one of the currently selected particle properties. Component
is a component index of the particle property that is 0 by default, but can be set up to n-1, where n
is the number of vector components of this particle property. The component indicator only needs to
be set if not the first component of the particle property should be mapped (e.g. the y-component of
the velocity at the particle positions).
Possible values: A key:value map of 0 to 4294967295 elements where each key is [Any string] and each
value is [Any string]

• Parameter name: Names of fields

Value:
Default:
Description: A user-defined name for each of the compositional fields requested.
Possible values: A list of 0 to 4294967295 elements where each element is [Any string]

• Parameter name: Number of fields

Value: 0
Default: 0
Description: The number of fields that will be advected along with the flow field, excluding velocity,
pressure and temperature.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

A.40 Parameters in section Discretization
• Parameter name: Composition polynomial degree

Value: 2
Default: 2
Description: The polynomial degree to use for the composition variable(s). As an example, a value of
2 for this parameter will yield either the element Q2 or DGQ2 for the compositional field(s), depending
on whether we use continuous or discontinuous field(s).
For continuous elements, the value needs to be 1 or larger as Q1 is the lowest order element, while
DGQ0 is a valid choice. Units: None.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Stokes velocity polynomial degree

Value: 2
Default: 2
Description: The polynomial degree to use for the velocity variables in the Stokes system. The poly-
nomial degree for the pressure variable will then be one less in order to make the velocity/pressure pair
conform with the usual LBB (Babuška-Brezzi) condition. In other words, we are using a Taylor-Hood
element for the Stokes equations and this parameter indicates the polynomial degree of it. As an ex-
ample, a value of 2 for this parameter will yield the element Qd2×Q1 for the d velocity components and
the pressure, respectively (unless the ‘Use locally conservative discretization’ parameter is set, which
modifies the pressure element).

334

Be careful if you choose 1 as the degree. The resulting element is not stable and it may lead to artifacts
in the solution. Units: None.
Possible values: An integer n such that 1 ≤ n ≤ 2147483647

• Parameter name: Temperature polynomial degree

Value: 2
Default: 2
Description: The polynomial degree to use for the temperature variable. As an example, a value of 2
for this parameter will yield either the element Q2 or DGQ2 for the temperature field, depending on
whether we use a continuous or discontinuous field. Units: None.
Possible values: An integer n such that 1 ≤ n ≤ 2147483647

• Parameter name: Use discontinuous composition discretization

Value: false
Default: false
Description: Whether to use a composition discretization that is discontinuous as opposed to contin-
uous. This then requires the assembly of face terms between cells, and weak imposition of boundary
terms for the composition field via the discontinuous Galerkin method.
Possible values: A boolean value (true or false)

• Parameter name: Use discontinuous temperature discretization

Value: false
Default: false
Description: Whether to use a temperature discretization that is discontinuous as opposed to contin-
uous. This then requires the assembly of face terms between cells, and weak imposition of boundary
terms for the temperature field via the interior-penalty discontinuous Galerkin method.
Possible values: A boolean value (true or false)

• Parameter name: Use equal order interpolation for Stokes

Value: false
Default: false
Description: By default (i.e., when this parameter is set to its default value ‘false’) ASPECT uses finite
element combinations in which the pressure shape functions are polynomials one degree lower than the
shape functions for the velocity. An example is the Taylor-Hood element that uses Qk elements for
the velocity and Qk−1 for the pressure. This is because using the same polynomial degree for both
the velocity and the pressure turns out to violate some mathematical properties necessary to make
the problem solvable. (In particular, thecondition in question goes by the name “inf-sup” or Babuška-
Brezzi or LBB condition.) A consequence of violating this condition is that the pressure may show
oscillations and not converge to the correct pressure.
That said, people have often used Q1 elements for both thevelocity and pressure anyway. This is
commonly referred to as using the Q1-Q1 method. It is, by default, not stable as mentioned above, but
it can be made stable by adding small amount of compressibility to the model. There are numerous
ways to do that. Today, the way that is generally considered to be the best approach is the one by
Dohrmann and Bochev [31].
When this parameter is set to “true”, then ASPECT will use this method by using QkimesQk elements
for velocity and pressure, respectively, where k is the value provided for the parameter “Stokes velocity
polynomial degree”.

335

Note: While ASPECT allows you to use this method, it is generally understood that this
is not a great idea as it leads to rather low accuracy in general. It also leads to substantial
problems when using free surfaces. As a consequence, the presence of this parameter should
not be seen as an endorsement of the method, or a suggestion to actually use it. It simply
makes the method available.

Possible values: A boolean value (true or false)

• Parameter name: Use locally conservative discretization

Value: false
Default: false
Description: Whether to use a Stokes discretization that is locally conservative at the expense of a
larger number of degrees of freedom (true), or to go with a cheaper discretization that does not locally
conserve mass, although it is globally conservative (false).
When using a locally conservative discretization, the finite element space for the pressure is discon-
tinuous between cells and is the polynomial space P−(k−1) of polynomials of degree k − 1 in each
variable separately. Here, k is the value given in the parameter “Stokes velocity polynomial degree”,
and consequently the polynomial degree for the pressure, k− 1, is one lower than that for the velocity.
As a consequence of choosing this element for the pressure rather than the more commonly used Qk−1
element that is continuous, it can be shown that if the medium is considered incompressible then the
computed discrete velocity field uh satisfies the property

∫
∂K

uh · n = 0 for every cell K, i.e., for each
cell inflow and outflow exactly balance each other as one would expect for an incompressible medium.
In other words, the velocity field is locally conservative.
On the other hand, if this parameter is set to “false”(the default), then the finite element space is
chosen as Qk−1. This choice does not yield the local conservation property but has the advantage of
requiring fewer degrees of freedom. Furthermore, the error is generally smaller with this choice.
For an in-depth discussion of these issues and a quantitative evaluation of the different choices, see
[59].
Possible values: A boolean value (true or false)

A.41 Parameters in section Discretization/Stabilization parameters
• Parameter name: Discontinuous penalty

Value: 10.
Default: 10.
Description: The value used to penalize discontinuities in the discontinuous Galerkin method. This is
used only for the temperature field, and not for the composition field, as pure advection does not use
the interior penalty method. This is largely empirically decided – it must be large enough to ensure
the bilinear form is coercive, but not so large as to penalize discontinuity at all costs.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Global composition maximum

Value: 1.7976931348623157e+308
Default: 1.7976931348623157e+308
Description: The maximum global composition values that will be used in the bound preserving limiter
for the discontinuous solutions from composition advection fields. The number of the input ’Global

336

composition maximum’ values separated by ’,’ has to be the same as the number of the compositional
fields
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE]

• Parameter name: Global composition minimum

Value: -1.7976931348623157e+308
Default: -1.7976931348623157e+308
Description: The minimum global composition value that will be used in the bound preserving limiter
for the discontinuous solutions from composition advection fields. The number of the input ’Global
composition minimum’ values separated by ’,’ has to be the same as the number of the compositional
fields
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE]

• Parameter name: Global temperature maximum

Value: 1.7976931348623157e+308
Default: 1.7976931348623157e+308
Description: The maximum global temperature value that will be used in the bound preserving limiter
for the discontinuous solutions from temperature advection fields.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Global temperature minimum

Value: -1.7976931348623157e+308
Default: -1.7976931348623157e+308
Description: The minimum global temperature value that will be used in the bound preserving limiter
for the discontinuous solutions from temperature advection fields.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Stabilization method

Value: entropy viscosity
Default: entropy viscosity
Description: Select the method for stabilizing the advection equation. The original method imple-
mented is ’entropy viscosity’ as described in [59]. SUPG is currently experimental.
Possible values: Any one of entropy viscosity, SUPG

• Parameter name: Use artificial viscosity smoothing

Value: false
Default: false
Description: If set to false, the artificial viscosity of a cell is computed and is computed on every cell
separately as discussed in [59]. If set to true, the maximum of the artificial viscosity in the cell as well
as the neighbors of the cell is computed and used instead.
Possible values: A boolean value (true or false)

337

• Parameter name: Use limiter for discontinuous composition solution

Value: false
Default: false
Description: Whether to apply the bound preserving limiter as a correction after having the discontin-
uous composition solution. Currently we apply this only to the compositional solution if the ’Global
composition maximum’ and ’Global composition minimum’ are already defined in the .prm file. This
limiter keeps the discontinuous solution in the range given by Global composition maximum’ and
’Global composition minimum’.
Possible values: A boolean value (true or false)

• Parameter name: Use limiter for discontinuous temperature solution

Value: false
Default: false
Description: Whether to apply the bound preserving limiter as a correction after computing the
discontinuous temperature solution. Currently we apply this only to the temperature solution if the
’Global temperature maximum’ and ’Global temperature minimum’ are already defined in the .prm
file. This limiter keeps the discontinuous solution in the range given by ’Global temperature maximum’
and ’Global temperature minimum’.
Possible values: A boolean value (true or false)

• Parameter name: alpha
Value: 2
Default: 2
Description: The exponent α in the entropy viscosity stabilization. Valid options are 1 or 2. The
recommended setting is 2. (This parameter does not correspond to any variable in the 2012 paper by
Kronbichler, Heister and Bangerth that describes ASPECT, see [59]. Rather, the paper always uses 2
as the exponent in the definition of the entropy, following equation (15) of the paper. The full approach
is discussed in [41].) Note that this is not the thermal expansion coefficient, also commonly referred to
as α.Units: None.
Possible values: An integer n such that 1 ≤ n ≤ 2

• Parameter name: beta
Value: 0.052
Default: 0.052
Description: The β factor in the artificial viscosity stabilization. This parameter controls the maximum
dissipation of the entropy viscosity, which is the part that only scales with the cell diameter and the
maximum velocity in the cell, but does not depend on the solution field itself or its residual. An
appropriate value for 2d is 0.052 and 0.78 for 3d. (For historical reasons, the name used here is
different from the one used in the 2012 paper by Kronbichler, Heister and Bangerth that describes
ASPECT, see [59]. This parameter can be given as a single value or as a list with as many entries
as one plus the number of compositional fields. In the former case all advection fields use the same
stabilization parameters, in the latter case each field (temperature first, then all compositions) use
individual parameters. This can be useful to reduce the stabilization for the temperature, which
already has some physical diffusion. This parameter corresponds to the factor αmax in the formulas
following equation (15) of the paper.) Units: None.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

338

• Parameter name: cR
Value: 0.11
Default: 0.11
Description: The cR factor in the entropy viscosity stabilization. This parameter controls the part
of the entropy viscosity that depends on the solution field itself and its residual in addition to the
cell diameter and the maximum velocity in the cell. This parameter can be given as a single value or
as a list with as many entries as one plus the number of compositional fields. In the former case all
advection fields use the same stabilization parameters, in the latter case each field (temperature first,
then all compositions) use individual parameters. This can be useful to reduce the stabilization for the
temperature, which already has some physical diffusion. (For historical reasons, the name used here
is different from the one used in the 2012 paper by Kronbichler, Heister and Bangerth that describes
ASPECT, see [59]. This parameter corresponds to the factor αE in the formulas following equation
(15) of the paper.) Units: None.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: gamma
Value: 0.0
Default: 0.0
Description: The strain rate scaling factor in the artificial viscosity stabilization. This parameter
determines how much the strain rate (in addition to the velocity) should influence the stabilization.
(This parameter does not correspond to any variable in the 2012 paper by Kronbichler, Heister and
Bangerth that describes ASPECT, see [59]. Rather, the paper always uses 0, i.e. they specify the
maximum dissipation νmax

h as νmax
h |K = αmaxhK‖u‖∞,K . Here, we use ‖|u|+ γhK |ε(u)|‖∞,K instead

of ‖u‖∞,K . Units: None.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.42 Parameters in section Formulation
• Parameter name: Enable additional Stokes RHS

Value: false
Default: false
Description: Whether to ask the material model for additional terms for the right-hand side of the
Stokes equation. This feature is likely only used when implementing force vectors for manufactured
solution problems and requires filling additional outputs of type AdditionalMaterialOutputsStokesRHS.
Possible values: A boolean value (true or false)

• Parameter name: Enable elasticity

Value: false
Default: false
Description: Whether to include the additional elastic terms on the right-hand side of the Stokes
equation.
Possible values: A boolean value (true or false)

• Parameter name: Enable prescribed dilation

Value: false
Default: false

339

Description: Whether to include additional terms on the right-hand side of the Stokes equation to set
a given compression term specified in the MaterialModel output PrescribedPlasticDilation.
Possible values: A boolean value (true or false)

• Parameter name: Formulation
Value: custom
Default: custom
Description: Select a formulation for the basic equations. Different published formulations are available
in ASPECT (see the list of possible values for this parameter in the manual for available options). Two
ASPECT specific options are

1. ‘isentropic compression’: ASPECT’s original formulation, using the explicit compressible mass
equation, and the full density for the temperature equation.

2. ‘custom’: A custom selection of ‘Mass conservation’ and ‘Temperature equation’.

Note: Warning: The ‘custom’ option is implemented for advanced users that want full
control over the equations solved. It is possible to choose inconsistent formulations and no
error checking is performed on the consistency of the resulting equations.

Note: The ‘anelastic liquid approximation’ option here can also be used to set up the
‘truncated anelastic liquid approximation’ as long as this option is chosen together with a
material model that defines a density that depends on temperature and depth and not on
the pressure.

Possible values: Any one of isentropic compression, custom, anelastic liquid approximation, Boussinesq
approximation

• Parameter name: Mass conservation

Value: ask material model
Default: ask material model
Description: Possible approximations for the density derivatives in the mass conservation equation.
Note that this parameter is only evaluated if ‘Formulation’ is set to ‘custom’. Other formulations ignore
the value of this parameter.
Possible values: Any one of incompressible, isentropic compression, hydrostatic compression, reference
density profile, implicit reference density profile, projected density field, ask material model

• Parameter name: Temperature equation

Value: real density
Default: real density
Description: Possible approximations for the density in the temperature equation. Possible approxi-
mations are ‘real density’ and ‘reference density profile’. Note that this parameter is only evaluated if
‘Formulation’ is set to ‘custom’. Other formulations ignore the value of this parameter.
Possible values: Any one of real density, reference density profile

340

A.43 Parameters in section Geometry model
• Parameter name: Model name

Value: box
Default: unspecified
Description: Select one of the following models:
‘box’: A box geometry parallel to the coordinate directions. The extent of the box in each coordinate
direction is set in the parameter file. The box geometry labels its 2*dim sides as follows: in 2d, boundary
indicators 0 through 3 denote the left, right, bottom and top boundaries; in 3d, boundary indicators
0 through 5 indicate left, right, front, back, bottom and top boundaries (see also the documentation
of the deal.II class “GeometryInfo”). You can also use symbolic names “left”, “right”, etc., to refer to
these boundaries in input files. It is also possible to add initial topography to the box model. Note
however that this is done after the last initial adaptive refinement cycle. Also, initial topography is
supposed to be small, as it is not taken into account when depth or a representative point is computed.
‘box with lithosphere boundary indicators’: A box geometry parallel to the coordinate directions.
The extent of the box in each coordinate direction is set in the parameter file. This geometry model
labels its sides with 2*dim+2*(dim-1) boundary indicators: in 2d, boundary indicators 0 through 3
denote the left, right, bottom and top boundaries, while indicators4 and 5 denote the upper part of
the left and right vertical boundary, respectively. In 3d, boundary indicators 0 through 5 indicate
left, right, front, back, bottom and top boundaries (see also the documentation of the deal.II class
“GeometryInfo”), while indicators 6, 7, 8 and 9 denote the left, right, front and back upper parts of the
vertical boundaries, respectively. You can also use symbolic names “left”, “right”, “left lithosphere”,
etc., to refer to these boundaries in input files.
Note that for a given “Global refinement level” and no user-specified “Repetitions”, the lithosphere
part of the mesh will be more refined.
The additional boundary indicators for the lithosphere allow for selecting boundary conditions for the
lithosphere different from those for the underlying mantle. An example application of this geometry is
to prescribe a velocity on the lithospheric plates, but use open boundary conditions underneath.
‘chunk’: A geometry which can be described as a chunk of a spherical shell, bounded by lines of
longitude, latitude and radius. The minimum and maximum longitude, latitude (if in 3d) and depth of
the chunk is set in the parameter file. The chunk geometry labels its 2*dim sides as follows: “west” and
“east”: minimum and maximum longitude, “south” and “north”: minimum and maximum latitude,
“inner” and “outer”: minimum and maximum radii.
The dimensions of the model are specified by parameters of the following form: Chunk (minimum ||
maximum) (longitude || latitude): edges of geographical quadrangle (in degrees)Chunk (inner || outer)
radius: Radii at bottom and top of chunk(Longitude || Latitude || Radius) repetitions: number of cells
in each coordinate direction.
When used in 2d, this geometry does not imply the use of a spherical coordinate system. Indeed, in
2d the geometry is simply a sector of an annulus in a Cartesian coordinate system and consequently
would correspond to a sector of a cross section of the fluid filled space between two infinite cylinders
where one has made the assumption that the velocity in direction of the cylinder axes is zero. This is
consistent with the definition of what we consider the two-dimension case given in Section 2.1.3. It is
also possible to add initial topography to the chunk geometry, based on an ascii data file.
‘ellipsoidal chunk’: A 3D chunk geometry that accounts for Earth’s ellipticity (default assuming the
WGS84 ellipsoid definition) which can be defined in non-coordinate directions. In the description of
the ellipsoidal chunk, two of the ellipsoidal axes have the same length so that there is only a semi-major
axis and a semi-minor axis. The user has two options for creating an ellipsoidal chunk geometry: 1)
by defining two opposing points (SW and NE or NW and SE) a coordinate parallel ellipsoidal chunk

341

geometry will be created. 2) by defining three points a non-coordinate parallel ellipsoidal chunk will
be created. The points are defined in the input file by longitude:latitude. It is also possible to define
additional subdivisions of the mesh in each direction. The boundary of the domain is formed by linear
interpolation in longitude-latitude space between adjacent points (i.e. [lon, lat](f) = [lon1*f + lon2*(1-
f), lat1*f + lat2*(1-f)], where f is a value between 0 and 1). Faces of the model are defined as 0, west;
1,east; 2, south; 3, north; 4, inner; 5, outer.
This geometry model supports initial topography for deforming the initial mesh.
‘sphere’: A geometry model for a sphere with a user specified radius. This geometry has only a single
boundary, so the only valid boundary indicator to specify in input files is “0”. It can also be referenced
by the symbolic name “surface” in input files.
Despite the name, this geometry does not imply the use of a spherical coordinate system when used in
2d. Indeed, in 2d the geometry is simply a circle in a Cartesian coordinate system and consequently
would correspond to a cross section of the fluid filled interior of an infinite cylinder where one has made
the assumption that the velocity in direction of the cylinder axes is zero. This is consistent with the
definition of what we consider the two-dimension case given in Section 2.1.3.
‘spherical shell’: A geometry representing a spherical shell or a piece of it. Inner and outer radii are
read from the parameter file in subsection ’Spherical shell’.
The spherical shell may be generated as per the original code (with respect to the inner and outer
radius, and an initial number of cells along circumference) or following a custom mesh scheme: list of
radial values or number of slices. A surface mesh is first generated and refined as desired, before it is
extruded radially. A list of radial values subdivides the spherical shell at specified radii. The number
of slices subdivides the spherical shell into N slices of equal thickness. The custom spherical shell only
works with an opening angle of 360 degrees.
Despite the name, this geometry does not imply the use of a spherical coordinate system when used in
2d. Indeed, in 2d the geometry is simply an annulus in a Cartesian coordinate system and consequently
would correspond to a cross section of the fluid filled space between two infinite cylinders where one
has made the assumption that the velocity in direction of the cylinder axes is zero. This is consistent
with the definition of what we consider the two-dimension case given in Section 2.1.3.
The model assigns boundary indicators as follows: In 2d, inner and outer boundaries get boundary
indicators zero and one, and if the opening angle set in the input file is less than 360, then left and
right boundaries are assigned indicators two and three. These boundaries can also be referenced using
the symbolic names ‘inner’, ‘outer’ and (if applicable) ‘left’, ‘right’.
In 3d, inner and outer indicators are treated as in 2d. If the opening angle is chosen as 90 degrees, i.e.,
the domain is the intersection of a spherical shell and the first octant, then indicator 2 is at the face
x = 0, 3 at y = 0, and 4 at z = 0. These last three boundaries can then also be referred to as ‘east’,
‘west’ and ‘south’ symbolically in input files.
Possible values: Any one of box, box with lithosphere boundary indicators, chunk, ellipsoidal chunk,
sphere, spherical shell, unspecified

A.44 Parameters in section Geometry model/Box
• Parameter name: Box origin X coordinate

Value: 0.
Default: 0.
Description: X coordinate of box origin. Units: m.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

342

• Parameter name: Box origin Y coordinate

Value: 0.
Default: 0.
Description: Y coordinate of box origin. Units: m.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Box origin Z coordinate

Value: 0.
Default: 0.
Description: Z coordinate of box origin. This value is ignored if the simulation is in 2d. Units: m.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: X extent

Value: 1.
Default: 1.
Description: Extent of the box in x-direction. Units: m.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: X periodic

Value: false
Default: false
Description: Whether the box should be periodic in X direction
Possible values: A boolean value (true or false)

• Parameter name: X repetitions

Value: 1
Default: 1
Description: Number of cells in X direction.
Possible values: An integer n such that 1 ≤ n ≤ 2147483647

• Parameter name: Y extent

Value: 1.
Default: 1.
Description: Extent of the box in y-direction. Units: m.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Y periodic

Value: false
Default: false
Description: Whether the box should be periodic in Y direction
Possible values: A boolean value (true or false)

343

• Parameter name: Y repetitions

Value: 1
Default: 1
Description: Number of cells in Y direction.
Possible values: An integer n such that 1 ≤ n ≤ 2147483647

• Parameter name: Z extent

Value: 1.
Default: 1.
Description: Extent of the box in z-direction. This value is ignored if the simulation is in 2d. Units:
m.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Z periodic

Value: false
Default: false
Description: Whether the box should be periodic in Z direction
Possible values: A boolean value (true or false)

• Parameter name: Z repetitions

Value: 1
Default: 1
Description: Number of cells in Z direction.
Possible values: An integer n such that 1 ≤ n ≤ 2147483647

A.45 Parameters in section Geometry model/Box with lithosphere boundary indicators
• Parameter name: Box origin X coordinate

Value: 0.
Default: 0.
Description: X coordinate of box origin. Units: m.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Box origin Y coordinate

Value: 0.
Default: 0.
Description: Y coordinate of box origin. Units: m.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Box origin Z coordinate

Value: 0.
Default: 0.
Description: Z coordinate of box origin. This value is ignored if the simulation is in 2d. Units: m.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

344

• Parameter name: Lithospheric thickness

Value: 0.2
Default: 0.2
Description: The thickness of the lithosphere used to create additional boundary indicators to set
specific boundary conditions for the lithosphere.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: X extent

Value: 1.
Default: 1.
Description: Extent of the box in x-direction. Units: m.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: X periodic

Value: false
Default: false
Description: Whether the box should be periodic in X direction.
Possible values: A boolean value (true or false)

• Parameter name: X periodic lithosphere

Value: false
Default: false
Description: Whether the box should be periodic in X direction in the lithosphere.
Possible values: A boolean value (true or false)

• Parameter name: X repetitions

Value: 1
Default: 1
Description: Number of cells in X direction of the lower box. The same number of repetitions will be
used in the upper box.
Possible values: An integer n such that 1 ≤ n ≤ 2147483647

• Parameter name: Y extent

Value: 1.
Default: 1.
Description: Extent of the box in y-direction. Units: m.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Y periodic

Value: false
Default: false
Description: Whether the box should be periodic in Y direction.
Possible values: A boolean value (true or false)

345

• Parameter name: Y periodic lithosphere

Value: false
Default: false
Description: Whether the box should be periodic in Y direction in the lithosphere. This value is
ignored if the simulation is in 2d.
Possible values: A boolean value (true or false)

• Parameter name: Y repetitions

Value: 1
Default: 1
Description: Number of cells in Y direction of the lower box. If the simulation is in 3d, the same
number of repetitions will be used in the upper box.
Possible values: An integer n such that 1 ≤ n ≤ 2147483647

• Parameter name: Y repetitions lithosphere

Value: 1
Default: 1
Description: Number of cells in Y direction in the lithosphere. This value is ignored if the simulation
is in 3d.
Possible values: An integer n such that 1 ≤ n ≤ 2147483647

• Parameter name: Z extent

Value: 1.
Default: 1.
Description: Extent of the box in z-direction. This value is ignored if the simulation is in 2d. Units:
m.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Z periodic

Value: false
Default: false
Description: Whether the box should be periodic in Z direction. This value is ignored if the simulation
is in 2d.
Possible values: A boolean value (true or false)

• Parameter name: Z repetitions

Value: 1
Default: 1
Description: Number of cells in Z direction of the lower box. This value is ignored if the simulation is
in 2d.
Possible values: An integer n such that 1 ≤ n ≤ 2147483647

• Parameter name: Z repetitions lithosphere

Value: 1
Default: 1

346

Description: Number of cells in Z direction in the lithosphere. This value is ignored if the simulation
is in 2d.
Possible values: An integer n such that 1 ≤ n ≤ 2147483647

A.46 Parameters in section Geometry model/Chunk
• Parameter name: Chunk inner radius

Value: 0.
Default: 0.
Description: Radius at the bottom surface of the chunk. Units: m.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Chunk maximum latitude

Value: 1.
Default: 1.
Description: Maximum latitude of the chunk. This value is ignored if the simulation is in 2d. Units:
degrees.
Possible values: A floating point number v such that −90 ≤ v ≤ 90

• Parameter name: Chunk maximum longitude

Value: 1.
Default: 1.
Description: Maximum longitude of the chunk. Units: degrees.
Possible values: A floating point number v such that −180 ≤ v ≤ 360

• Parameter name: Chunk minimum latitude

Value: 0.
Default: 0.
Description: Minimum latitude of the chunk. This value is ignored if the simulation is in 2d. Units:
degrees.
Possible values: A floating point number v such that −90 ≤ v ≤ 90

• Parameter name: Chunk minimum longitude

Value: 0.
Default: 0.
Description: Minimum longitude of the chunk. Units: degrees.
Possible values: A floating point number v such that −180 ≤ v ≤ 360

• Parameter name: Chunk outer radius

Value: 1.
Default: 1.
Description: Radius at the top surface of the chunk. Units: m.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

347

• Parameter name: Latitude repetitions

Value: 1
Default: 1
Description: Number of cells in latitude. This value is ignored if the simulation is in 2d
Possible values: An integer n such that 1 ≤ n ≤ 2147483647

• Parameter name: Longitude repetitions

Value: 1
Default: 1
Description: Number of cells in longitude.
Possible values: An integer n such that 1 ≤ n ≤ 2147483647

• Parameter name: Radius repetitions

Value: 1
Default: 1
Description: Number of cells in radius.
Possible values: An integer n such that 1 ≤ n ≤ 2147483647

A.47 Parameters in section Geometry model/Ellipsoidal chunk
• Parameter name: Depth
Value: 500000.0
Default: 500000.0
Description: Bottom depth of model region.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Depth subdivisions

Value: 1
Default: 1
Description: The number of subdivisions of the coarse (initial) mesh in depth.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: East-West subdivisions

Value: 1
Default: 1
Description: The number of subdivisions of the coarse (initial) mesh in the East-West direction.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Eccentricity
Value: 8.1819190842622e-2
Default: 8.1819190842622e-2
Description: Eccentricity of the ellipsoid. Zero is a perfect sphere, default (8.1819190842622e-2) is
WGS84.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

348

• Parameter name: NE corner

Value:
Default:
Description: Longitude:latitude in degrees of the North-East corner point of model region.The North-
East direction is positive. If one of the three corners is not provided the missing corner value will be
calculated so all faces are parallel.
Possible values: Any string

• Parameter name: NW corner

Value:
Default:
Description: Longitude:latitude in degrees of the North-West corner point of model region. The North-
East direction is positive. If one of the three corners is not provided the missing corner value will be
calculated so all faces are parallel.
Possible values: Any string

• Parameter name: North-South subdivisions

Value: 1
Default: 1
Description: The number of subdivisions of the coarse (initial) mesh in the North-South direction.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: SE corner

Value:
Default:
Description: Longitude:latitude in degrees of the South-East corner point of model region. The North-
East direction is positive. If one of the three corners is not provided the missing corner value will be
calculated so all faces are parallel.
Possible values: Any string

• Parameter name: SW corner

Value:
Default:
Description: Longitude:latitude in degrees of the South-West corner point of model region. The North-
East direction is positive. If one of the three corners is not provided the missing corner value will be
calculated so all faces are parallel.
Possible values: Any string

• Parameter name: Semi-major axis

Value: 6378137.0
Default: 6378137.0
Description: The semi-major axis (a) of an ellipsoid. This is the radius for a sphere (eccentricity=0).
Default WGS84 semi-major axis.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

349

A.48 Parameters in section Geometry model/Initial topography model
• Parameter name: Model name

Value: zero topography
Default: zero topography
Description: Select one of the following models:
‘ascii data’: Implementation of a model in which the surface topography is derived from a file containing
data in ascii format. The following geometry models are currently supported: box, chunk. Note the
required format of the input data: The first lines may contain any number of comments if they begin
with ‘#’, but one of these lines needs to contain the number of grid points in each dimension as for
example ‘# POINTS: 3 3’. The order of the data columns has to be ‘x’, ‘Topography [m]’ in a 2d
model and ‘x’, ‘y’, ‘Topography [m]’ in a 3d model, which means that there has to be a single column
containing the topography. Note that the data in the input file needs to be sorted in a specific order:
the first coordinate needs to ascend first, followed by the second in order to assign the correct data to
the prescribed coordinates. If you use a spherical model, then the assumed grid changes. ‘x’ will be
replaced by the azimuth angle in radians and ‘y’ by the polar angle in radians measured positive from
the north pole. The grid will be assumed to be a longitude-colatitude grid. Note that the order of
spherical coordinates is ‘phi’, ‘theta’ and not ‘theta’, ‘phi’, since this allows for dimension independent
expressions.
‘function’: Implementation of a model in which the initial topography is described by a function in
cartesian or spherical coordinates.
‘prm polygon’: An initial topography model that defines the initial topography as constant inside each
of a set of polygonal parts of the surface. The polygons, and their associated surface elevation, are
defined in the ‘Geometry model/Initial topography/Prm polygon’ section.
‘zero topography’: Implementation of a model in which the initial topography is zero.
Possible values: Any one of ascii data, function, prm polygon, zero topography

A.49 Parameters in section Geometry model/Initial topography model/Ascii data
model

• Parameter name: Data directory

Value: $ASPECT_SOURCE_DIR/data/geometry-model/initial-topography-model/ascii-data/test/
Default: $ASPECT_SOURCE_DIR/data/geometry-model/initial-topography-model/ascii-data/test/
Description: The name of a directory that contains the model data. This path may either be absolute
(if starting with a ‘/’) or relative to the current directory. The path may also include the special text
‘$ASPECT_SOURCE_DIR’ which will be interpreted as the path in which the ASPECT source files
were located when ASPECT was compiled. This interpretation allows, for example, to reference files
located in the ‘data/’ subdirectory of ASPECT.
Possible values: A directory name

• Parameter name: Data file name

Value: box_2d_%s.0.txt
Default: box_2d_%s.0.txt
Description: The file name of the model data. Provide file in format: (Velocity file name).%s%d where
%s is a string specifying the boundary of the model according to the names of the boundary indicators
(of the chosen geometry model).%d is any sprintf integer qualifier, specifying the format of the current
file number.
Possible values: Any string

350

• Parameter name: Scale factor

Value: 1.
Default: 1.
Description: Scalar factor, which is applied to the model data. You might want to use this to scale
the input to a reference model. Another way to use this factor is to convert units of the input files.
For instance, if you provide velocities in cm/yr set this factor to 0.01.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

A.50 Parameters in section Geometry model/Initial topography model/Function
• Parameter name: Coordinate system

Value: cartesian
Default: cartesian
Description: A selection that determines the assumed coordinate system for the function variables. Al-
lowed values are ‘cartesian’ and ‘spherical’. ‘spherical’ coordinates are interpreted as r,phi or r,phi,theta
in 2D/3D respectively with theta being the polar angle.
Possible values: Any one of cartesian, spherical

• Parameter name: Function constants

Value:
Default:
Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘var1=value1, var2=value2, ...’.
A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: Any string

• Parameter name: Function expression

Value: 0
Default: 0
Description: The formula that denotes the function you want to evaluate for particular values of the
independent variables. This expression may contain any of the usual operations such as addition or
multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may contain
expressions like ‘if(x>0, 1, -1)’ where the expression evaluates to the second argument if the first
argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.
If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.
Possible values: Any string

• Parameter name: Maximum topography value

Value: 2000.
Default: 2000.
Description: The maximum value the topography given by the function can take.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

351

• Parameter name: Variable names

Value: x,y,t
Default: x,y,t
Description: The names of the variables as they will be used in the function, separated by commas.
By default, the names of variables at which the function will be evaluated are ‘x’ (in 1d), ‘x,y’ (in 2d)
or ‘x,y,z’ (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’ and then use these variable names in your
function expression.
Possible values: Any string

A.51 Parameters in section Geometry model/Initial topography model/Prm polygon
• Parameter name: Topography parameters

Value:
Default:
Description: Set the topography height and the polygon which should be set to that height. The format
is : "The topography height extgreater The point list describing a polygon & The next topography
height extgreater the next point list describing a polygon." The format for the point list describing the
polygon is "x1,y1;x2,y2". For example for two triangular areas of 100 and -100 meters high set: ’100
extgreater 0,0;5,5;0,10 & -100 extgreater 10,10;10,15;20,15’. Units of the height are always in meters.
The units of the coordinates are dependent on the geometry model. In the box model they are in
meters, in the chunks they are in degrees, etc. Please refer to the manual of the individual geometry
model to so see how the topography is implemented.
Possible values: Any string

A.52 Parameters in section Geometry model/Sphere
• Parameter name: Radius
Value: 6371000.
Default: 6371000.
Description: Radius of the sphere. Units: m.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.53 Parameters in section Geometry model/Spherical shell
• Parameter name: Cells along circumference

Value: 0
Default: 0
Description: The number of cells in circumferential direction that are created in the coarse mesh in
2d. If zero, this number is chosen automatically in a way that produces meshes in which cells have a
reasonable aspect ratio for models in which the depth of the mantle is roughly that of the Earth. For
planets with much shallower mantles and larger cores, you may want to chose a larger number to avoid
cells that are elongated in tangential and compressed in radial direction.

352

In 3d, the number of cells is computed differently and does not have an easy interpretation. Valid
values for this parameter in 3d are 0 (let this class choose), 6, 12 and 96. Other possible values may
be discussed in the documentation of the deal.II function GridGenerator::hyper_shell. The parameter
is best left at its default in 3d.
In either case, this parameter is ignored unless the opening angle of the domain is 360 degrees. This
parameter is also ignored when using a custom mesh subdivision scheme.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Custom mesh subdivision

Value: none
Default: none
Description: Choose how the spherical shell mesh is generated. By default, a coarse mesh is generated
with respect to the inner and outer radius, and an initial number of cells along circumference. In
the other cases, a surface mesh is first generated and refined as desired, before it is extruded radially
following the specified subdivision scheme.
Possible values: Any one of none, list of radial values, number of slices

• Parameter name: Initial lateral refinement

Value: 0
Default: 0
Description: Initial lateral refinement for the custom mesh subdivision schemes.The number of refine-
ment steps performed on the initial coarse surface mesh, before the surface is extruded radially. This
parameter allows the user more control over the ratio between radial and lateral refinement of the
mesh.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Inner radius

Value: 3481000.
Default: 3481000.
Description: Inner radius of the spherical shell. Units: m.

Note: The default value of 3,481,000 m equals the radius of a sphere with equal volume as
Earth (i.e., 6371 km) minus the average depth of the core-mantle boundary (i.e., 2890 km).

Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: List of radial values

Value:
Default:
Description: List of radial values for the custom mesh scheme. Units: m. A list of radial values
subdivides the spherical shell at specified radii. The list must be strictly ascending, and the first value
must be greater than the inner radius while the last must be less than the outer radius.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE]

353

• Parameter name: Number of slices

Value: 1
Default: 1
Description: Number of slices for the custom mesh subdivision scheme. The number of slices subdivides
the spherical shell into N slices of equal thickness. Must be greater than 0.
Possible values: An integer n such that 1 ≤ n ≤ 2147483647

• Parameter name: Opening angle

Value: 360.
Default: 360.
Description: Opening angle in degrees of the section of the shell that we want to build. The only
opening angles that are allowed for this geometry are 90, 180, and 360 in 2d; and 90 and 360 in 3d.
Units: degrees.
Possible values: A floating point number v such that 0 ≤ v ≤ 360

• Parameter name: Outer radius

Value: 6336000.
Default: 6336000.
Description: Outer radius of the spherical shell. Units: m.

Note: The default value of 6,336,000 m equals the radius of a sphere with equal volume as
Earth (i.e., 6371 km) minus the average depth of the mantle-crust interface (i.e., 35 km).

Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.54 Parameters in section Gravity model
• Parameter name: Model name

Value: vertical
Default: unspecified
Description: Select one of the following models:
‘ascii data’: Gravity is read from a file that describes the reference state. The default profile follows
the preliminary reference Earth model (PREM, Dziewonski and Anderson, 1981). Note the required
format of the input data: The first lines may contain any number of comments if they begin with ‘#’,
but one of these lines needs to contain the number of points in the reference state as for example ‘#
POINTS: 3’. Following the comment lines there has to be a single line containing the names of all data
columns, separated by arbitrarily many spaces. Column names are not allowed to contain spaces. The
file can contain unnecessary columns, but for this plugin it needs to at least provide a column named
‘gravity’. Note that the data lines in the file need to be sorted in order of increasing depth from 0 to
the maximal depth in the model domain. Points in the model that are outside of the provided depth
range will be assigned the maximum or minimum depth values, respectively. Points do not need to be
equidistant, but the computation of properties is optimized in speed if they are.
‘function’: Gravity is given in terms of an explicit formula that is elaborated in the parameters in
section “Gravity model|Function”. The format of these functions follows the syntax understood by the
muparser library, see Section 4.7.3.

354

‘radial constant’: A gravity model in which the gravity has a constant magnitude and the direction
is radial (pointing inward if the value is positive). The magnitude is read from the parameter file in
subsection ’Radial constant’.
‘radial earth-like’: This plugin has been removed due to its misleading name. The included profile was
hard-coded and was less earth-like than the ‘ascii data’ plugin, which uses the profile of the Preliminary
Reference Earth Model (PREM). Use ‘ascii data’ instead of ‘radial earth-like’.
‘radial linear’: A gravity model which is radial (pointing inward if the gravity is positive) and the
magnitude changes linearly with depth. The magnitude of gravity at the surface and bottom is read
from the input file in a section “Gravity model/Radial linear”.
‘vertical’: A gravity model in which the gravity direction is vertical (pointing downward for positive
values) and at a constant magnitude by default equal to one.
Possible values: Any one of ascii data, function, radial constant, radial earth-like, radial linear, vertical,
unspecified

A.55 Parameters in section Gravity model/Ascii data model
• Parameter name: Data directory

Value: $ASPECT_SOURCE_DIR/data/gravity-model/
Default: $ASPECT_SOURCE_DIR/data/gravity-model/
Description: The name of a directory that contains the model data. This path may either be absolute
(if starting with a ‘/’) or relative to the current directory. The path may also include the special text
‘$ASPECT_SOURCE_DIR’ which will be interpreted as the path in which the ASPECT source files
were located when ASPECT was compiled. This interpretation allows, for example, to reference files
located in the ‘data/’ subdirectory of ASPECT.
Possible values: A directory name

• Parameter name: Data file name

Value: prem.txt
Default: prem.txt
Description: The file name of the model data. Provide file in format: (Velocity file name).%s%d where
%s is a string specifying the boundary of the model according to the names of the boundary indicators
(of the chosen geometry model).%d is any sprintf integer qualifier, specifying the format of the current
file number.
Possible values: Any string

• Parameter name: Scale factor

Value: 1.
Default: 1.
Description: Scalar factor, which is applied to the model data. You might want to use this to scale
the input to a reference model. Another way to use this factor is to convert units of the input files.
For instance, if you provide velocities in cm/yr set this factor to 0.01.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

355

A.56 Parameters in section Gravity model/Function
• Parameter name: Function constants

Value:
Default:
Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘var1=value1, var2=value2, ...’.
A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: Any string

• Parameter name: Function expression

Value: 0; 0
Default: 0; 0
Description: The formula that denotes the function you want to evaluate for particular values of the
independent variables. This expression may contain any of the usual operations such as addition or
multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may contain
expressions like ‘if(x>0, 1, -1)’ where the expression evaluates to the second argument if the first
argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.
If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.
Possible values: Any string

• Parameter name: Variable names

Value: x,y,t
Default: x,y,t
Description: The names of the variables as they will be used in the function, separated by commas.
By default, the names of variables at which the function will be evaluated are ‘x’ (in 1d), ‘x,y’ (in 2d)
or ‘x,y,z’ (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’ and then use these variable names in your
function expression.
Possible values: Any string

A.57 Parameters in section Gravity model/Radial constant
• Parameter name: Magnitude
Value: 9.81
Default: 9.81
Description: Magnitude of the gravity vector in m/s2. For positive values the direction is radially
inward towards the center of the earth.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

356

A.58 Parameters in section Gravity model/Radial linear
• Parameter name: Magnitude at bottom

Value: 10.7
Default: 10.7
Description: Magnitude of the radial gravity vector at the bottom of the domain. ‘Bottom’ means
themaximum depth in the chosen geometry, and for example represents the core-mantle boundary in
the case of the ‘spherical shell’ geometry model, and the center in the case of the ‘sphere’ geometry
model. Units: m/s2

Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Magnitude at surface

Value: 9.8
Default: 9.8
Description: Magnitude of the radial gravity vector at the surface of the domain. Units: m/s2

Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

A.59 Parameters in section Gravity model/Vertical
• Parameter name: Magnitude
Value: 1.
Default: 1.
Description: Value of the gravity vector in m/s2 directed along negative y (2D) or z (3D) axis (if the
magnitude is positive.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

A.60 Parameters in section Heating model
• Parameter name: List of model names

Value:
Default:
Description: A comma separated list of heating models that will be used to calculate the heating terms
in the energy equation. The results of each of these criteria, i.e., the heating source terms and the
latent heat terms for the left hand side will be added.
The following heating models are available:
‘adiabatic heating’: Implementation of a standard and a simplified model of adiabatic heating.
‘adiabatic heating of melt’: Implementation of a standard and a simplified model of adiabatic heating
of melt. The full model implements the heating term αT (−φus ·∇p)+αT (φuf ·∇p). For full adiabatic
heating, this has to be used in combination with the heating model ‘adiabatic heating’ to also include
adiabatic heating for the solid part, and the full heating term is then αT ((1−φ)us ·∇p)+αT (φuf ·∇p).
‘compositional heating’: Implementation of a model in which magnitude of internal heat production
is determined from fixed values assigned to each compositional field. These values are interpreted as
having units W/m3.
‘constant heating’: Implementation of a model in which the heating rate is constant.

357

‘function’: Implementation of a model in which the heating rate is given in terms of an explicit formula
that is elaborated in the parameters in section “Heating model|Function”. The format of these functions
follows the syntax understood by the muparser library, see Section 4.7.3.
The formula is interpreted as having units W/kg.
Since the symbol t indicating time may appear in the formulas for the heating rate, it is interpreted
as having units seconds unless the global parameter “Use years in output instead of seconds” is set.
‘latent heat’: Implementation of a standard model for latent heat.
‘latent heat melt’: Implementation of a standard model for latent heat of melting. This assumes that
there is a compositional field called porosity, and it uses the reaction term of this field (the fraction
of material that melted in the current time step) multiplied by a constant entropy change for melting
all of the material as source term of the heating model. If there is no field called porosity, the heating
terms are 0.
‘radioactive decay’: Implementation of a model in which the internal heating rate is radioactive decaying
in the following rule:

(initial concentration) · 0.5time/(half life)

The crust and mantle can have different concentrations, and the crust can be defined either by depth
or by a certain compositional field. The formula is interpreted as having units W/kg.
‘shear heating’: Implementation of a standard model for shear heating. Adds the term: 2η

(
ε− 1

3 trε1
)

:(
ε− 1

3 trε1
)
to the right-hand side of the temperature equation.

‘shear heating with melt’: Implementation of a standard model for shear heating of migrating melt,
including bulk (compression) heating ξ (∇ · us)2 and heating due to melt segregation ηfφ

2

k (uf − us)2.
For full shear heating, this has to be used in combination with the heating model shear heating to also
include shear heating for the solid part.
Possible values: A comma-separated list of any of adiabatic heating, adiabatic heating of melt, com-
positional heating, constant heating, function, latent heat, latent heat melt, radioactive decay, shear
heating, shear heating with melt

A.61 Parameters in section Heating model/Adiabatic heating
• Parameter name: Use simplified adiabatic heating

Value: false
Default: false
Description: A flag indicating whether the adiabatic heating should be simplified from αT (u · ∇p) to
αρT (u · g).
Possible values: A boolean value (true or false)

A.62 Parameters in section Heating model/Adiabatic heating of melt
• Parameter name: Use simplified adiabatic heating

Value: false
Default: false
Description: A flag indicating whether the adiabatic heating should be simplified from αT (u · ∇p) to
αρT (u · g).
Possible values: A boolean value (true or false)

358

A.63 Parameters in section Heating model/Compositional heating
• Parameter name: Compositional heating values

Value: 0.
Default: 0.
Description: List of heat production per unit volume values for background and compositional fields,
for a total of N+1 values, where the first value correponds to the background material, and N is the
number of compositional fields. Units: W/m3.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Use compositional field for heat production averaging

Value: 1
Default: 1
Description: A list of integers with as many entries as compositional fields plus one. The first entry
corresponds to the background material, each following entry corresponds to a particular compositional
field. If the entry for a field is ’1’ this field is considered during the computation of volume fractions,
if it is ’0’ the field is ignored. This is useful if some compositional fields are used to track properties
like finite strain that should not contribute to heat production. The first entry determines whether the
background field contributes to heat production or not (essentially similar to setting its ’Compositional
heating values’ to zero, but included for consistency in the length of the input lists).
Possible values: A list of 0 to 4294967295 elements where each element is [An integer n such that
0 ≤ n ≤ 1]

A.64 Parameters in section Heating model/Constant heating
• Parameter name: Radiogenic heating rate

Value: 0.
Default: 0.
Description: The specific rate of heating due to radioactive decay (or other bulk sources you may want
to describe). This parameter corresponds to the variable H in the temperature equation stated in the
manual, and the heating term is hoH. Units: W/kg.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.65 Parameters in section Heating model/Function
• Parameter name: Function constants

Value:
Default:
Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘var1=value1, var2=value2, ...’.
A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: Any string

359

• Parameter name: Function expression

Value: 0
Default: 0
Description: The formula that denotes the function you want to evaluate for particular values of the
independent variables. This expression may contain any of the usual operations such as addition or
multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may contain
expressions like ‘if(x>0, 1, -1)’ where the expression evaluates to the second argument if the first
argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.
If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.
Possible values: Any string

• Parameter name: Variable names

Value: x,y,t
Default: x,y,t
Description: The names of the variables as they will be used in the function, separated by commas.
By default, the names of variables at which the function will be evaluated are ‘x’ (in 1d), ‘x,y’ (in 2d)
or ‘x,y,z’ (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’ and then use these variable names in your
function expression.
Possible values: Any string

A.66 Parameters in section Heating model/Latent heat melt
• Parameter name: Melting entropy change

Value: -300.
Default: -300.
Description: The entropy change for the phase transition from solid to melt. Units: J/(kgK).
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

A.67 Parameters in section Heating model/Radioactive decay
• Parameter name: Crust composition number

Value: 0
Default: 0
Description: Which composition field should be treated as crust
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Crust defined by composition

Value: false
Default: false
Description: Whether crust defined by composition or depth
Possible values: A boolean value (true or false)

360

• Parameter name: Crust depth

Value: 0.
Default: 0.
Description: Depth of the crust when crust if defined by depth. Units: m
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Half decay times

Value:
Default:
Description: Half decay times. Units: (Seconds), or (Years) if set ‘use years instead of seconds’.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Heating rates

Value:
Default:
Description: Heating rates of different elements (W/kg)
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE]

• Parameter name: Initial concentrations crust

Value:
Default:
Description: Initial concentrations of different elements (ppm)
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Initial concentrations mantle

Value:
Default:
Description: Initial concentrations of different elements (ppm)
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Number of elements

Value: 0
Default: 0
Description: Number of radioactive elements
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

361

A.68 Parameters in section Initial composition model
• Parameter name: List of model names

Value:
Default:
Description: A comma-separated list of initial composition models that together describe the initial
composition field. These plugins are loaded in the order given, and modify the existing composition
field via the operators listed in ’List of model operators’.
The following composition models are available:
‘adiabatic density’: Specify the initial composition as the adiabatic reference density at each position.
Note that only the field with the name ’density_field’ will be filled for all other fields this plugin returns
0.0.
‘ascii data’: Implementation of a model in which the initial composition is derived from files containing
data in ascii format. Note the required format of the input data: The first lines may contain any
number of comments if they begin with ‘#’, but one of these lines needs to contain the number of grid
points in each dimension as for example ‘# POINTS: 3 3’. The order of the data columns has to be ‘x’,
‘y’, ‘composition1’, ‘composition2’, etc. in a 2d model and ‘x’, ‘y’, ‘z’, ‘composition1’, ‘composition2’,
etc. in a 3d model, according to the number of compositional fields, which means that there has to
be a single column for every composition in the model.Note that the data in the input files need to
be sorted in a specific order: the first coordinate needs to ascend first, followed by the second and the
third at last in order to assign the correct data to the prescribed coordinates. If you use a spherical
model, then the assumed grid changes. ‘x’ will be replaced by the radial distance of the point to the
bottom of the model, ‘y’ by the azimuth angle and ‘z’ by the polar angle measured positive from the
north pole. The grid will be assumed to be a latitude-longitude grid. Note that the order of spherical
coordinates is ‘r’, ‘phi’, ‘theta’ and not ‘r’, ‘theta’, ‘phi’, since this allows for dimension independent
expressions.
‘ascii data layered’: Implementation of a model in which the initial composition is derived from files
containing data in ascii format. Each file defines a surface on which compositional fields are defined.
Between the surfaces, the fields can be chosen to be constant (with a value defined by the nearest
shallower surface), or linearly interpolated between surfaces. Note the required format of the input
ascii data file: The first lines may contain any number of comments if they begin with ‘#’, but one of
these lines needs to contain the number of grid points in each dimension as for example ‘# POINTS:
3 3’. The order of the data columns has to be ‘x’, ‘y’, ‘composition1’, ‘composition2’ etc. in a 2d
model and ‘x’, ‘y’, ‘z’, ‘composition1’, ‘composition2’ etc. in a 3d model; i.e. the columns before the
lcompositional field always contains the position of the surface along the vertical direction. The first
column needs to ascend first, followed by the second in order to assign the correct data to the prescribed
coordinates. If you use a spherical model, then the assumed grid changes. ‘x’ will be replaced by the
azimuth angle and ‘y’ (if 3D) by the polar angle measured positive from the north pole. The last
column will be the distance of the point from the origin (i.e. radial position). The grid in this case
will be a latitude-longitude grid. Note that the order of spherical coordinates in 3D is ‘phi’, ‘theta’,
‘r’, ‘T’and not ‘theta’, ‘phi’, ‘r’, ‘T’ as this is more consistent with other ASPECT plugins. Outside of
the region defined by the grid, the plugin will use the value at the edge of the region.
‘function’: Specify the composition in terms of an explicit formula. The format of these functions
follows the syntax understood by the muparser library, see Section 4.7.3.
‘porosity’: A class that implements initial conditions for the porosity field by computing the equilibrium
melt fraction for the given initial condition and reference pressure profile. Note that this plugin only
works if there is a compositional field called ‘porosity’, and the used material model implements the
’MeltFractionModel’ interface. For all compositional fields except porosity this plugin returns 0.0, and
they are therefore not changed as long as the default ‘add’ operator is selected for this plugin.

362

‘world builder’: Specify the initial composition through the World Builder. More information on the
World Builder can be found at https://geodynamicworldbuilder.github.io. Make sure to specify
the location of the World Builder file in the parameter ’World builder file’.
Possible values: A comma-separated list of any of adiabatic density, ascii data, ascii data layered,
function, porosity, world builder

• Parameter name: List of model operators

Value: add
Default: add
Description: A comma-separated list of operators that will be used to append the listed composition
models onto the previous models. If only one operator is given, the same operator is applied to all
models.
Possible values: A comma-separated list of any of add, subtract, minimum, maximum, replace if valid

• Parameter name: Model name

Value: unspecified
Default: unspecified
Description: Select one of the following models:
‘adiabatic density’: Specify the initial composition as the adiabatic reference density at each position.
Note that only the field with the name ’density_field’ will be filled for all other fields this plugin returns
0.0.
‘ascii data’: Implementation of a model in which the initial composition is derived from files containing
data in ascii format. Note the required format of the input data: The first lines may contain any
number of comments if they begin with ‘#’, but one of these lines needs to contain the number of grid
points in each dimension as for example ‘# POINTS: 3 3’. The order of the data columns has to be ‘x’,
‘y’, ‘composition1’, ‘composition2’, etc. in a 2d model and ‘x’, ‘y’, ‘z’, ‘composition1’, ‘composition2’,
etc. in a 3d model, according to the number of compositional fields, which means that there has to
be a single column for every composition in the model.Note that the data in the input files need to
be sorted in a specific order: the first coordinate needs to ascend first, followed by the second and the
third at last in order to assign the correct data to the prescribed coordinates. If you use a spherical
model, then the assumed grid changes. ‘x’ will be replaced by the radial distance of the point to the
bottom of the model, ‘y’ by the azimuth angle and ‘z’ by the polar angle measured positive from the
north pole. The grid will be assumed to be a latitude-longitude grid. Note that the order of spherical
coordinates is ‘r’, ‘phi’, ‘theta’ and not ‘r’, ‘theta’, ‘phi’, since this allows for dimension independent
expressions.
‘ascii data layered’: Implementation of a model in which the initial composition is derived from files
containing data in ascii format. Each file defines a surface on which compositional fields are defined.
Between the surfaces, the fields can be chosen to be constant (with a value defined by the nearest
shallower surface), or linearly interpolated between surfaces. Note the required format of the input
ascii data file: The first lines may contain any number of comments if they begin with ‘#’, but one of
these lines needs to contain the number of grid points in each dimension as for example ‘# POINTS:
3 3’. The order of the data columns has to be ‘x’, ‘y’, ‘composition1’, ‘composition2’ etc. in a 2d
model and ‘x’, ‘y’, ‘z’, ‘composition1’, ‘composition2’ etc. in a 3d model; i.e. the columns before the
lcompositional field always contains the position of the surface along the vertical direction. The first
column needs to ascend first, followed by the second in order to assign the correct data to the prescribed
coordinates. If you use a spherical model, then the assumed grid changes. ‘x’ will be replaced by the
azimuth angle and ‘y’ (if 3D) by the polar angle measured positive from the north pole. The last
column will be the distance of the point from the origin (i.e. radial position). The grid in this case
will be a latitude-longitude grid. Note that the order of spherical coordinates in 3D is ‘phi’, ‘theta’,

363

https://geodynamicworldbuilder.github.io

‘r’, ‘T’and not ‘theta’, ‘phi’, ‘r’, ‘T’ as this is more consistent with other ASPECT plugins. Outside of
the region defined by the grid, the plugin will use the value at the edge of the region.
‘function’: Specify the composition in terms of an explicit formula. The format of these functions
follows the syntax understood by the muparser library, see Section 4.7.3.
‘porosity’: A class that implements initial conditions for the porosity field by computing the equilibrium
melt fraction for the given initial condition and reference pressure profile. Note that this plugin only
works if there is a compositional field called ‘porosity’, and the used material model implements the
’MeltFractionModel’ interface. For all compositional fields except porosity this plugin returns 0.0, and
they are therefore not changed as long as the default ‘add’ operator is selected for this plugin.
‘world builder’: Specify the initial composition through the World Builder. More information on the
World Builder can be found at https://geodynamicworldbuilder.github.io. Make sure to specify
the location of the World Builder file in the parameter ’World builder file’.
Warning: This parameter provides an old and deprecated way of specifying initial composition models
and shouldn’t be used. Please use ’List of model names’ instead.
Possible values: Any one of adiabatic density, ascii data, ascii data layered, function, porosity, world
builder, unspecified

• Parameter name: Volume of fluid intialization type

Value:
Default:
Description: A comma separated list denoting the method to be used to initialize a composition field
specified to be advected using the volume of fluid method.
The format of valid entries for this parameter is that of a map given as “key1:value1, key2:value2“
where each key must be the name of a compositional field using the volume of fluid advection method,
and the value is one of “composition“ or “level set“. “composition“ is the default
When “composition is specified, the initial model is treated as a standard composition field with bounds
between 0 and 1 assumed, The initial fluid fractions are then based on an iterated midpoint quadrature.
Resultant volume fractions outside of the bounds will be coerced to the nearest valid value (ie 0 or 1).
If “level set“ is specified, the intial data will be assumed to be in the form of a signed distance level set
function (i.e. a function which is positive when in the fluid, negative outside, and zero on the interface
and the magnitude is always the distance to the interface so the gradient is one everywhere).
Possible values: A key:value map of 0 to 4294967295 elements where each key is [Any string] and each
value is [Any one of composition, level set]

A.69 Parameters in section Initial composition model/Ascii data model
• Parameter name: Data directory

Value: $ASPECT_SOURCE_DIR/data/initial-composition/ascii-data/test/
Default: $ASPECT_SOURCE_DIR/data/initial-composition/ascii-data/test/
Description: The name of a directory that contains the model data. This path may either be absolute
(if starting with a ‘/’) or relative to the current directory. The path may also include the special text
‘$ASPECT_SOURCE_DIR’ which will be interpreted as the path in which the ASPECT source files
were located when ASPECT was compiled. This interpretation allows, for example, to reference files
located in the ‘data/’ subdirectory of ASPECT.
Possible values: A directory name

364

https://geodynamicworldbuilder.github.io

• Parameter name: Data file name

Value: initial_composition_top_mantle_box_3d.txt
Default: initial_composition_top_mantle_box_3d.txt
Description: The file name of the model data. Provide file in format: (Velocity file name).%s%d where
%s is a string specifying the boundary of the model according to the names of the boundary indicators
(of the chosen geometry model).%d is any sprintf integer qualifier, specifying the format of the current
file number.
Possible values: Any string

• Parameter name: Data file names

Value: initial_composition_top_mantle_box_3d.txt
Default: initial_composition_top_mantle_box_3d.txt
Description: The file names of the model data (comma separated).
Possible values: A list of 0 to 4294967295 elements where each element is [Any string]

• Parameter name: Interpolation scheme

Value: linear
Default: linear
Description: Method to interpolate between layer boundaries. Select from piecewise constant or linear.
Piecewise constant takes the value from the nearest layer boundary above the data point. The linear
option interpolates linearly between layer boundaries. Above and below the domain given by the layer
boundaries, the values aregiven by the top and bottom layer boundary.
Possible values: Any one of piecewise constant, linear

• Parameter name: Scale factor

Value: 1.
Default: 1.
Description: Scalar factor, which is applied to the model data. You might want to use this to scale
the input to a reference model. Another way to use this factor is to convert units of the input files.
For instance, if you provide velocities in cm/yr set this factor to 0.01.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

A.70 Parameters in section Initial composition model/Function
• Parameter name: Coordinate system

Value: cartesian
Default: cartesian
Description: A selection that determines the assumed coordinate system for the function variables.
Allowed values are ‘cartesian’, ‘spherical’, and ‘depth’. ‘spherical’ coordinates are interpreted as r,phi
or r,phi,theta in 2D/3D respectively with theta being the polar angle. ‘depth’ will create a function,
in which only the first parameter is non-zero, which is interpreted to be the depth of the point.
Possible values: Any one of cartesian, spherical, depth

• Parameter name: Function constants

Value:
Default:

365

Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘var1=value1, var2=value2, ...’.
A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: Any string

• Parameter name: Function expression

Value: 0
Default: 0
Description: The formula that denotes the function you want to evaluate for particular values of the
independent variables. This expression may contain any of the usual operations such as addition or
multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may contain
expressions like ‘if(x>0, 1, -1)’ where the expression evaluates to the second argument if the first
argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.
If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.
Possible values: Any string

• Parameter name: Variable names

Value: x,y,t
Default: x,y,t
Description: The names of the variables as they will be used in the function, separated by commas.
By default, the names of variables at which the function will be evaluated are ‘x’ (in 1d), ‘x,y’ (in 2d)
or ‘x,y,z’ (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’ and then use these variable names in your
function expression.
Possible values: Any string

A.71 Parameters in section Initial temperature model
• Parameter name: List of model names

Value:
Default:
Description: A comma-separated list of initial temperature models that will be used to initialize the
temperature. These plugins are loaded in the order given, and modify the existing temperature field
via the operators listed in ’List of model operators’.
The following initial temperature models are available:
‘S40RTS perturbation’: An initial temperature field in which the temperature is perturbed following
the S20RTS or S40RTS shear wave velocity model by Ritsema and others, which can be downloaded
here http://www.earth.lsa.umich.edu/~jritsema/research.html. Information on the vs model

366

http://www.earth.lsa.umich.edu/~jritsema/research.html

can be found in Ritsema, J., Deuss, A., van Heijst, H.J. & Woodhouse, J.H., 2011. S40RTS: a degree-
40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and
normal-mode splitting function measurements, Geophys. J. Int. 184, 1223-1236. The scaling between
the shear wave perturbation and the density perturbation can be constant and set by the user with the
’Vs to density scaling’ parameter or depth-dependent and read in from a file. To convert density the user
can specify the ’Thermal expansion coefficient in initial temperature scaling’ parameter. The scaling
is as follows: δlnρ(r, θ, φ) = ξ · δlnvs(r, θ, φ) and δT (r, θ, φ) = − 1

αδlnρ(r, θ, φ). ξ is the ‘vs to density
scaling’ parameter and α is the ’Thermal expansion coefficient in initial temperature scaling’ parameter.
The temperature perturbation is added to an otherwise constant temperature (incompressible model)
or adiabatic reference profile (compressible model). If a depth is specified in ’Remove temperature
heterogeneity down to specified depth’, there is no temperature perturbation prescribed down to that
depth. Note the required file format if the vs to density scaling is read in from a file: The first lines
may contain any number of comments if they begin with ’#’, but one of these lines needs to contain
the number of points in the reference state as for example ’# POINTS: 3’. Following the comment lines
there has to be a single line containing the names of all data columns, separated by arbitrarily many
spaces. Column names are not allowed to contain spaces. The file can contain unnecessary columns,
but for this plugin it needs to at least provide the columns named ‘depth’ and ‘vs_to_density’. Note
that the data lines in the file need to be sorted in order of increasing depth from 0 to the maximal
depth in the model domain. Points in the model that are outside of the provided depth range will be
assigned the maximum or minimum depth values, respectively. Points do not need to be equidistant,
but the computation of properties is optimized in speed if they are. If the plugin is used in 2D it will
use an equatorial slice of the seismic tomography model.
‘SAVANI perturbation’: An initial temperature field in which the temperature is perturbed following
the SAVANI shear wave velocity model by Auer and others, which can be downloaded here http:
//n.ethz.ch/~auerl/savani.tar.bz2. Information on the vs model can be found in Auer, L., Boschi,
L., Becker, T.W., Nissen-Meyer, T. & Giardini, D., 2014. Savani: A variable resolution whole-mantle
model of anisotropic shear velocity variations based on multiple data sets. Journal of Geophysical
Research: Solid Earth 119.4 (2014): 3006-3034. The scaling between the shear wave perturbation and
the density perturbation can be constant and set by the user with the ’Vs to density scaling’ parameter
or depth-dependent and read in from a file. To convert density the user can specify the ’Thermal
expansion coefficient in initial temperature scaling’ parameter. The scaling is as follows: δlnρ(r, θ, φ) =
ξ ·δlnvs(r, θ, φ) and δT (r, θ, φ) = − 1

αδlnρ(r, θ, φ). ξ is the ‘vs to density scaling’ parameter and α is the
’Thermal expansion coefficient in initial temperature scaling’ parameter. The temperature perturbation
is added to an otherwise constant temperature (incompressible model) or adiabatic reference profile
(compressible model).If a depth is specified in ’Remove temperature heterogeneity down to specified
depth’, there is no temperature perturbation prescribed down to that depth. Note the required file
format if the vs to density scaling is read in from a file: The first lines may contain any number of
comments if they begin with ’#’, but one of these lines needs to contain the number of points in the
reference state as for example ’# POINTS: 3’. Following the comment lines there has to be a single line
containing the names of all data columns, separated by arbitrarily many spaces. Column names are
not allowed to contain spaces. The file can contain unnecessary columns, but for this plugin it needs
to at least provide the columns named ‘depth’ and ‘vs_to_density’. Note that the data lines in the
file need to be sorted in order of increasing depth from 0 to the maximal depth in the model domain.
Points in the model that are outside of the provided depth range will be assigned the maximum or
minimum depth values, respectively. Points do not need to be equidistant, but the computation of
properties is optimized in speed if they are.
‘adiabatic’: Temperature is prescribed as an adiabatic profile with upper and lower thermal boundary
layers, whose ages are given as input parameters.
‘adiabatic boundary’: An initial temperature condition that allows for discretizing the model domain
into two layers separated by a user-defined isothermal boundary. The user includes an input ascii
data file that is formatted as 3 columns of ‘longitude(radians)’, ‘colatitude(radians)’, and ‘isotherm

367

http://n.ethz.ch/~auerl/savani.tar.bz2
http://n.ethz.ch/~auerl/savani.tar.bz2

depth(meters)’, where ‘isotherm depth’ represents the depth of an initial temperature of 1673.15 K
(by default). The first lines in the data file may contain any number of comments if they begin with
‘#’, but one of these lines needs to contain the number of grid points in each dimension as for example
‘# POINTS: 69 121’. Note that the coordinates need to be sorted in a specific order: the ‘longitude’
coordinate needs to ascend first, followed by the ‘colatitude’ coordinate in order to assign the correct
data (isotherm depth) to the prescribed coordinates. The temperature is defined from the surface
(273.15 K) to the isotherm depth (1673.15 K) as a linear gradient. Below the isotherm depth the
temperature increases approximately adiabatically (0.0005 K per meter). This plugin should work for
all geometry models, but is currently only tested for spherical models.
‘ascii data’: Implementation of a model in which the initial temperature is derived from files containing
data in ascii format. Note the required format of the input data: The first lines may contain any number
of comments if they begin with ‘#’, but one of these lines needs to contain the number of grid points
in each dimension as for example ‘# POINTS: 3 3’. The order of the data columns has to be ‘x’, ‘y’,
‘Temperature [K]’ in a 2d model and ‘x’, ‘y’, ‘z’, ‘Temperature [K]’ in a 3d model, which means that
there has to be a single column containing the temperature. Note that the data in the input files need
to be sorted in a specific order: the first coordinate needs to ascend first, followed by the second and
the third at last in order to assign the correct data to the prescribed coordinates. If you use a spherical
model, then the assumed grid changes. ‘x’ will be replaced by the radial distance of the point to the
bottom of the model, ‘y’ by the azimuth angle and ‘z’ by the polar angle measured positive from the
north pole. The grid will be assumed to be a latitude-longitude grid. Note that the order of spherical
coordinates is ‘r’, ‘phi’, ‘theta’ and not ‘r’, ‘theta’, ‘phi’, since this allows for dimension independent
expressions.
‘ascii data layered’: Implementation of a model in which the initial temperature is derived from files
containing data in ascii format. Each file defines a surface on which temperature is defined. Between
the surfaces, the temperatures can be chosen to be constant (with a value defined by the nearest
shallower surface), or linearly interpolated between surfaces. Note the required format of the input
ascii data file: The first lines may contain any number of comments if they begin with ‘#’, but one of
these lines needs to contain the number of grid points in each dimension as for example ‘# POINTS:
3 3’. The order of the data columns has to be ‘x’, ‘y’, ‘Temperature [K]’ in a 2d model and ‘x’, ‘y’, ‘z’,
‘Temperature [K]’ in a 3d model; i.e. the last two columns always contain the position of the isotherm
along the vertical direction, and the temperature at that point. The first column needs to ascend first,
followed by the second in order to assign the correct data to the prescribed coordinates. If you use a
spherical model, then the assumed grid changes. ‘x’ will be replaced by the azimuth angle and ‘y’ (if
3D) by the polar angle measured positive from the north pole. The last column will be the distance of
the point from the origin (i.e. radial position). The grid in this case will be a latitude-longitude grid.
Note that the order of spherical coordinates in 3D is ‘phi’, ‘theta’, ‘r’, ‘T’and not ‘theta’, ‘phi’, ‘r’, ‘T’
as this is more consistent with other ASPECT plugins. Outside of the region defined by the grid, the
plugin will use the value at the edge of the region.
‘ascii profile’: Implementation of a model in which the initial temperature is read from a file that
provides these values as a function of depth. Note the required format of the input data: The first lines
may contain any number of comments if they begin with ‘#’, but one of these lines needs to contain
the number of points in the temperature profile, for example ‘# POINTS: 10’. Following the comment
lines, there has to be a single line containing the names of all data columns, separated by arbitrarily
many spaces. Column names are not allowed to contain spaces. The file can contain unnecessary
columns, but for this plugin it needs to at least provide columns named ‘depth’ and‘temperature’.Note
that the data lines in the file need to be sorted in order of increasing depth from 0 to the maximal
depth in the model domain. Points in the model that are outside of the provided depth range will be
assigned the maximum or minimum depth values, respectively. Points do not need to be equidistant,
but the computation of properties is optimized in speed if they are.
‘continental geotherm’: This is a temperature initial condition that computes a continental geotherm

368

based on the solution of the steady-state conductive equation k d
2T
dy2 + ρH = 0 as described in e.g.

Turcotte and Schubert, Ch. 4.6, or Chapman (1986). As boundary conditions, we take the surface
temperature and the temperature of the Lithosphere-Asthenosphere Boundary (LAB). The geotherm
is computed for a homogeneous lithosphere composed of an upper crust, lower crust and mantle layer.
The crustal layers are assumed to have a constant radioactive heating, and all layers are assumed to
have a constant thermal conductivity. Layer thicknesses, surface temperature and LAB temperature
should be specified by the user. For consistency, the density, heat production and thermal conduc-
tivity of each layer are read from the visco plastic material model and the compositional heating
model. For any depths below the depth of the LAB, a unrealistically high temperature is returned,
such that this plugin can be combined with another temperature plugin through the ’minimum’ op-
erator. Note that the current implementation only works for a 3-layer lithosphere, even though in
principle the heat conduction equation can be solved for any number of layers. The naming of the
compositional fields that represent the layers is also very specific, namely ‘upper_crust’, ‘lower_crust’,
and ‘lithospheric_mantle’. Make sure the top and bottom temperatures of the lithosphere agree with
temperatures set in for example the temperature boundary conditions.
‘function’: Specify the initial temperature in terms of an explicit formula. The format of these functions
follows the syntax understood by the muparser library, see Section 4.7.3.
‘harmonic perturbation’: An initial temperature field in which the temperature is perturbed following
a harmonic function (spherical harmonic or sine depending on geometry and dimension) in lateral and
radial direction from an otherwise constant temperature (incompressible model) or adiabatic reference
profile (compressible model).
‘inclusion shape perturbation’: An initial temperature field in which there is an inclusion in a constant-
temperature box field. The size, shape, gradient, position, and temperature of the inclusion are defined
by parameters.
‘lithosphere mask’: Implementation of a model in which the initial temperature is set to a specified
lithosphere temperature above the lithosphere-asthenosphere boundary (specified by an ascii file or
maximum lithosphere depth value). Below this the initial temperature is set as NaN. Note the required
format of the input data file: The first lines may contain any number of comments if they begin with
âĂŸ#âĂŹ, but one of these lines needs to contain the number of grid points in each dimension as for
exampleâĂŸ# POINTS: 3 3âĂŹ. For a spherical model, the order of the data columns has to be’phi’,
’theta’,’depth (m)’, where phi is the azimuth angle and theta is the polar angle measured positive from
the north pole. This plug-in can be combined with another using the ’replace if valid’ operator.
‘mandelbox’: Fractal-shaped temperature field.
‘patch on S40RTS’: Implementation of a model in which the initial temperature is derived from a
file containing shear wave velocity perturbations in ascii format (e.g. a high resolution upper mantle
tomography) combined with S40RTS. Note the required format of the input ascii input data: The first
lines may contain any number of comments if they begin with ’#’, but one of these lines needs to
contain the number of grid points in each dimension as for example ’# POINTS: 3 3 3’. The order of
the data columns has to be ‘x’, ‘y’, ‘z’, ’Vs Perturbation’ in a 3d model, which means that there has to
be a single column containing the temperature. Note that the data in the input files need to be sorted
in a specific order: the first coordinate needs to ascend first, followed by the second and the third
at last in order to assign the correct data to the prescribed coordinates. In the spherical model data
will be handled as Cartesian, however, ‘x’ will be replaced by the radial distance of the point to the
bottom of the model, ‘y’ by the azimuth angle and ‘z’ by the polar angle measured positive from the
north pole. The grid will be assumed to be a latitude-longitude grid. Note that the order of spherical
coordinates is ‘r’, ‘phi’, ‘theta’ and not ‘r’, ‘theta’, ‘phi’, since this allows for dimension independent
expressions. See S40RTS documentation for details on input parameters in the S40RTS perturbation
subsection. The boundary between the two tomography models is smoothed using a depth weighted
combination of Vs values within the region of smoothing.

369

‘perturbed box’: An initial temperature field in which the temperature is perturbed slightly from
an otherwise constant value equal to one. The perturbation is chosen in such a way that the initial
temperature is constant to one along the entire boundary.
‘polar box’: An initial temperature field in which the temperature is perturbed slightly from an oth-
erwise constant value equal to one. The perturbation is such that there are two poles on opposing
corners of the box.
‘spherical gaussian perturbation’: An initial temperature field in which the temperature is perturbed
by a single Gaussian added to an otherwise spherically symmetric state. Additional parameters are
read from the parameter file in subsection ’Spherical gaussian perturbation’.
‘spherical hexagonal perturbation’: An initial temperature field in which the temperature is perturbed
following an N -fold pattern in a specified direction from an otherwise spherically symmetric state. The
class’s name comes from previous versions when the only option was N = 6.
‘world builder’: Specify the initial temperature through the World Builder. More information on the
World Builder can be found at https://geodynamicworldbuilder.github.io. Make sure to specify
the location of the World Builder file in the parameter ’World builder file’.
Possible values: A comma-separated list of any of S40RTS perturbation, SAVANI perturbation, adia-
batic, adiabatic boundary, ascii data, ascii data layered, ascii profile, continental geotherm, function,
harmonic perturbation, inclusion shape perturbation, lithosphere mask, mandelbox, patch on S40RTS,
perturbed box, polar box, spherical gaussian perturbation, spherical hexagonal perturbation, world
builder

• Parameter name: List of model operators

Value: add
Default: add
Description: A comma-separated list of operators that will be used to append the listed temperature
models onto the previous models. If only one operator is given, the same operator is applied to all
models.
Possible values: A comma-separated list of any of add, subtract, minimum, maximum, replace if valid

• Parameter name: Model name

Value: adiabatic
Default: unspecified
Description: Select one of the following models:
‘S40RTS perturbation’: An initial temperature field in which the temperature is perturbed following
the S20RTS or S40RTS shear wave velocity model by Ritsema and others, which can be downloaded
here http://www.earth.lsa.umich.edu/~jritsema/research.html. Information on the vs model
can be found in Ritsema, J., Deuss, A., van Heijst, H.J. & Woodhouse, J.H., 2011. S40RTS: a degree-
40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and
normal-mode splitting function measurements, Geophys. J. Int. 184, 1223-1236. The scaling between
the shear wave perturbation and the density perturbation can be constant and set by the user with the
’Vs to density scaling’ parameter or depth-dependent and read in from a file. To convert density the user
can specify the ’Thermal expansion coefficient in initial temperature scaling’ parameter. The scaling
is as follows: δlnρ(r, θ, φ) = ξ · δlnvs(r, θ, φ) and δT (r, θ, φ) = − 1

αδlnρ(r, θ, φ). ξ is the ‘vs to density
scaling’ parameter and α is the ’Thermal expansion coefficient in initial temperature scaling’ parameter.
The temperature perturbation is added to an otherwise constant temperature (incompressible model)
or adiabatic reference profile (compressible model). If a depth is specified in ’Remove temperature
heterogeneity down to specified depth’, there is no temperature perturbation prescribed down to that
depth. Note the required file format if the vs to density scaling is read in from a file: The first lines

370

https://geodynamicworldbuilder.github.io
http://www.earth.lsa.umich.edu/~jritsema/research.html

may contain any number of comments if they begin with ’#’, but one of these lines needs to contain
the number of points in the reference state as for example ’# POINTS: 3’. Following the comment lines
there has to be a single line containing the names of all data columns, separated by arbitrarily many
spaces. Column names are not allowed to contain spaces. The file can contain unnecessary columns,
but for this plugin it needs to at least provide the columns named ‘depth’ and ‘vs_to_density’. Note
that the data lines in the file need to be sorted in order of increasing depth from 0 to the maximal
depth in the model domain. Points in the model that are outside of the provided depth range will be
assigned the maximum or minimum depth values, respectively. Points do not need to be equidistant,
but the computation of properties is optimized in speed if they are. If the plugin is used in 2D it will
use an equatorial slice of the seismic tomography model.
‘SAVANI perturbation’: An initial temperature field in which the temperature is perturbed following
the SAVANI shear wave velocity model by Auer and others, which can be downloaded here http:
//n.ethz.ch/~auerl/savani.tar.bz2. Information on the vs model can be found in Auer, L., Boschi,
L., Becker, T.W., Nissen-Meyer, T. & Giardini, D., 2014. Savani: A variable resolution whole-mantle
model of anisotropic shear velocity variations based on multiple data sets. Journal of Geophysical
Research: Solid Earth 119.4 (2014): 3006-3034. The scaling between the shear wave perturbation and
the density perturbation can be constant and set by the user with the ’Vs to density scaling’ parameter
or depth-dependent and read in from a file. To convert density the user can specify the ’Thermal
expansion coefficient in initial temperature scaling’ parameter. The scaling is as follows: δlnρ(r, θ, φ) =
ξ ·δlnvs(r, θ, φ) and δT (r, θ, φ) = − 1

αδlnρ(r, θ, φ). ξ is the ‘vs to density scaling’ parameter and α is the
’Thermal expansion coefficient in initial temperature scaling’ parameter. The temperature perturbation
is added to an otherwise constant temperature (incompressible model) or adiabatic reference profile
(compressible model).If a depth is specified in ’Remove temperature heterogeneity down to specified
depth’, there is no temperature perturbation prescribed down to that depth. Note the required file
format if the vs to density scaling is read in from a file: The first lines may contain any number of
comments if they begin with ’#’, but one of these lines needs to contain the number of points in the
reference state as for example ’# POINTS: 3’. Following the comment lines there has to be a single line
containing the names of all data columns, separated by arbitrarily many spaces. Column names are
not allowed to contain spaces. The file can contain unnecessary columns, but for this plugin it needs
to at least provide the columns named ‘depth’ and ‘vs_to_density’. Note that the data lines in the
file need to be sorted in order of increasing depth from 0 to the maximal depth in the model domain.
Points in the model that are outside of the provided depth range will be assigned the maximum or
minimum depth values, respectively. Points do not need to be equidistant, but the computation of
properties is optimized in speed if they are.
‘adiabatic’: Temperature is prescribed as an adiabatic profile with upper and lower thermal boundary
layers, whose ages are given as input parameters.
‘adiabatic boundary’: An initial temperature condition that allows for discretizing the model domain
into two layers separated by a user-defined isothermal boundary. The user includes an input ascii
data file that is formatted as 3 columns of ‘longitude(radians)’, ‘colatitude(radians)’, and ‘isotherm
depth(meters)’, where ‘isotherm depth’ represents the depth of an initial temperature of 1673.15 K
(by default). The first lines in the data file may contain any number of comments if they begin with
‘#’, but one of these lines needs to contain the number of grid points in each dimension as for example
‘# POINTS: 69 121’. Note that the coordinates need to be sorted in a specific order: the ‘longitude’
coordinate needs to ascend first, followed by the ‘colatitude’ coordinate in order to assign the correct
data (isotherm depth) to the prescribed coordinates. The temperature is defined from the surface
(273.15 K) to the isotherm depth (1673.15 K) as a linear gradient. Below the isotherm depth the
temperature increases approximately adiabatically (0.0005 K per meter). This plugin should work for
all geometry models, but is currently only tested for spherical models.
‘ascii data’: Implementation of a model in which the initial temperature is derived from files containing
data in ascii format. Note the required format of the input data: The first lines may contain any number

371

http://n.ethz.ch/~auerl/savani.tar.bz2
http://n.ethz.ch/~auerl/savani.tar.bz2

of comments if they begin with ‘#’, but one of these lines needs to contain the number of grid points
in each dimension as for example ‘# POINTS: 3 3’. The order of the data columns has to be ‘x’, ‘y’,
‘Temperature [K]’ in a 2d model and ‘x’, ‘y’, ‘z’, ‘Temperature [K]’ in a 3d model, which means that
there has to be a single column containing the temperature. Note that the data in the input files need
to be sorted in a specific order: the first coordinate needs to ascend first, followed by the second and
the third at last in order to assign the correct data to the prescribed coordinates. If you use a spherical
model, then the assumed grid changes. ‘x’ will be replaced by the radial distance of the point to the
bottom of the model, ‘y’ by the azimuth angle and ‘z’ by the polar angle measured positive from the
north pole. The grid will be assumed to be a latitude-longitude grid. Note that the order of spherical
coordinates is ‘r’, ‘phi’, ‘theta’ and not ‘r’, ‘theta’, ‘phi’, since this allows for dimension independent
expressions.
‘ascii data layered’: Implementation of a model in which the initial temperature is derived from files
containing data in ascii format. Each file defines a surface on which temperature is defined. Between
the surfaces, the temperatures can be chosen to be constant (with a value defined by the nearest
shallower surface), or linearly interpolated between surfaces. Note the required format of the input
ascii data file: The first lines may contain any number of comments if they begin with ‘#’, but one of
these lines needs to contain the number of grid points in each dimension as for example ‘# POINTS:
3 3’. The order of the data columns has to be ‘x’, ‘y’, ‘Temperature [K]’ in a 2d model and ‘x’, ‘y’, ‘z’,
‘Temperature [K]’ in a 3d model; i.e. the last two columns always contain the position of the isotherm
along the vertical direction, and the temperature at that point. The first column needs to ascend first,
followed by the second in order to assign the correct data to the prescribed coordinates. If you use a
spherical model, then the assumed grid changes. ‘x’ will be replaced by the azimuth angle and ‘y’ (if
3D) by the polar angle measured positive from the north pole. The last column will be the distance of
the point from the origin (i.e. radial position). The grid in this case will be a latitude-longitude grid.
Note that the order of spherical coordinates in 3D is ‘phi’, ‘theta’, ‘r’, ‘T’and not ‘theta’, ‘phi’, ‘r’, ‘T’
as this is more consistent with other ASPECT plugins. Outside of the region defined by the grid, the
plugin will use the value at the edge of the region.
‘ascii profile’: Implementation of a model in which the initial temperature is read from a file that
provides these values as a function of depth. Note the required format of the input data: The first lines
may contain any number of comments if they begin with ‘#’, but one of these lines needs to contain
the number of points in the temperature profile, for example ‘# POINTS: 10’. Following the comment
lines, there has to be a single line containing the names of all data columns, separated by arbitrarily
many spaces. Column names are not allowed to contain spaces. The file can contain unnecessary
columns, but for this plugin it needs to at least provide columns named ‘depth’ and‘temperature’.Note
that the data lines in the file need to be sorted in order of increasing depth from 0 to the maximal
depth in the model domain. Points in the model that are outside of the provided depth range will be
assigned the maximum or minimum depth values, respectively. Points do not need to be equidistant,
but the computation of properties is optimized in speed if they are.
‘continental geotherm’: This is a temperature initial condition that computes a continental geotherm
based on the solution of the steady-state conductive equation k d

2T
dy2 + ρH = 0 as described in e.g.

Turcotte and Schubert, Ch. 4.6, or Chapman (1986). As boundary conditions, we take the surface
temperature and the temperature of the Lithosphere-Asthenosphere Boundary (LAB). The geotherm
is computed for a homogeneous lithosphere composed of an upper crust, lower crust and mantle layer.
The crustal layers are assumed to have a constant radioactive heating, and all layers are assumed to
have a constant thermal conductivity. Layer thicknesses, surface temperature and LAB temperature
should be specified by the user. For consistency, the density, heat production and thermal conduc-
tivity of each layer are read from the visco plastic material model and the compositional heating
model. For any depths below the depth of the LAB, a unrealistically high temperature is returned,
such that this plugin can be combined with another temperature plugin through the ’minimum’ op-
erator. Note that the current implementation only works for a 3-layer lithosphere, even though in

372

principle the heat conduction equation can be solved for any number of layers. The naming of the
compositional fields that represent the layers is also very specific, namely ‘upper_crust’, ‘lower_crust’,
and ‘lithospheric_mantle’. Make sure the top and bottom temperatures of the lithosphere agree with
temperatures set in for example the temperature boundary conditions.
‘function’: Specify the initial temperature in terms of an explicit formula. The format of these functions
follows the syntax understood by the muparser library, see Section 4.7.3.
‘harmonic perturbation’: An initial temperature field in which the temperature is perturbed following
a harmonic function (spherical harmonic or sine depending on geometry and dimension) in lateral and
radial direction from an otherwise constant temperature (incompressible model) or adiabatic reference
profile (compressible model).
‘inclusion shape perturbation’: An initial temperature field in which there is an inclusion in a constant-
temperature box field. The size, shape, gradient, position, and temperature of the inclusion are defined
by parameters.
‘lithosphere mask’: Implementation of a model in which the initial temperature is set to a specified
lithosphere temperature above the lithosphere-asthenosphere boundary (specified by an ascii file or
maximum lithosphere depth value). Below this the initial temperature is set as NaN. Note the required
format of the input data file: The first lines may contain any number of comments if they begin with
âĂŸ#âĂŹ, but one of these lines needs to contain the number of grid points in each dimension as for
exampleâĂŸ# POINTS: 3 3âĂŹ. For a spherical model, the order of the data columns has to be’phi’,
’theta’,’depth (m)’, where phi is the azimuth angle and theta is the polar angle measured positive from
the north pole. This plug-in can be combined with another using the ’replace if valid’ operator.
‘mandelbox’: Fractal-shaped temperature field.
‘patch on S40RTS’: Implementation of a model in which the initial temperature is derived from a
file containing shear wave velocity perturbations in ascii format (e.g. a high resolution upper mantle
tomography) combined with S40RTS. Note the required format of the input ascii input data: The first
lines may contain any number of comments if they begin with ’#’, but one of these lines needs to
contain the number of grid points in each dimension as for example ’# POINTS: 3 3 3’. The order of
the data columns has to be ‘x’, ‘y’, ‘z’, ’Vs Perturbation’ in a 3d model, which means that there has to
be a single column containing the temperature. Note that the data in the input files need to be sorted
in a specific order: the first coordinate needs to ascend first, followed by the second and the third
at last in order to assign the correct data to the prescribed coordinates. In the spherical model data
will be handled as Cartesian, however, ‘x’ will be replaced by the radial distance of the point to the
bottom of the model, ‘y’ by the azimuth angle and ‘z’ by the polar angle measured positive from the
north pole. The grid will be assumed to be a latitude-longitude grid. Note that the order of spherical
coordinates is ‘r’, ‘phi’, ‘theta’ and not ‘r’, ‘theta’, ‘phi’, since this allows for dimension independent
expressions. See S40RTS documentation for details on input parameters in the S40RTS perturbation
subsection. The boundary between the two tomography models is smoothed using a depth weighted
combination of Vs values within the region of smoothing.
‘perturbed box’: An initial temperature field in which the temperature is perturbed slightly from
an otherwise constant value equal to one. The perturbation is chosen in such a way that the initial
temperature is constant to one along the entire boundary.
‘polar box’: An initial temperature field in which the temperature is perturbed slightly from an oth-
erwise constant value equal to one. The perturbation is such that there are two poles on opposing
corners of the box.
‘spherical gaussian perturbation’: An initial temperature field in which the temperature is perturbed
by a single Gaussian added to an otherwise spherically symmetric state. Additional parameters are
read from the parameter file in subsection ’Spherical gaussian perturbation’.
‘spherical hexagonal perturbation’: An initial temperature field in which the temperature is perturbed

373

following an N -fold pattern in a specified direction from an otherwise spherically symmetric state. The
class’s name comes from previous versions when the only option was N = 6.
‘world builder’: Specify the initial temperature through the World Builder. More information on the
World Builder can be found at https://geodynamicworldbuilder.github.io. Make sure to specify
the location of the World Builder file in the parameter ’World builder file’.
Warning: This parameter provides an old and deprecated way of specifying initial temperature models
and shouldn’t be used. Please use ’List of model names’ instead.
Possible values: Any one of S40RTS perturbation, SAVANI perturbation, adiabatic, adiabatic bound-
ary, ascii data, ascii data layered, ascii profile, continental geotherm, function, harmonic perturbation,
inclusion shape perturbation, lithosphere mask, mandelbox, patch on S40RTS, perturbed box, polar
box, spherical gaussian perturbation, spherical hexagonal perturbation, world builder, unspecified

A.72 Parameters in section Initial temperature model/Adiabatic
• Parameter name: Age bottom boundary layer

Value: 0.
Default: 0.
Description: The age of the lower thermal boundary layer, used for the calculation of the half-space
cooling model temperature. Units: years if the ’Use years in output instead of seconds’ parameter is
set; seconds otherwise.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Age top boundary layer

Value: 0.
Default: 0.
Description: The age of the upper thermal boundary layer, used for the calculation of the half-space
cooling model temperature. Units: years if the ’Use years in output instead of seconds’ parameter is
set; seconds otherwise.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Amplitude
Value: 0.
Default: 0.
Description: The amplitude (in K) of the initial spherical temperature perturbation at the bottom
of the model domain. This perturbation will be added to the adiabatic temperature profile, but not
to the bottom thermal boundary layer. Instead, the maximum of the perturbation and the bottom
boundary layer temperature will be used.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Position
Value: center
Default: center
Description: Where the initial temperature perturbation should be placed. If ‘center’ is given, then the
perturbation will be centered along a ‘midpoint’ of some sort of the bottom boundary. For example,
in the case of a box geometry, this is the center of the bottom face; in the case of a spherical shell
geometry, it is along the inner surface halfway between the bounding radial lines.
Possible values: Any one of center

374

https://geodynamicworldbuilder.github.io

• Parameter name: Radius
Value: 0.
Default: 0.
Description: The Radius (in m) of the initial spherical temperature perturbation at the bottom of the
model domain.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Subadiabaticity
Value: 0.
Default: 0.
Description: If this value is larger than 0, the initial temperature profile will not be adiabatic, but
subadiabatic. This value gives the maximal deviation from adiabaticity. Set to 0 for an adiabatic
temperature profile. Units: K.
The function object in the Function subsection represents the compositional fields that will be used as
a reference profile for calculating the thermal diffusivity. This function is one-dimensional and depends
only on depth. The format of this functions follows the syntax understood by the muparser library,
see Section 4.7.3.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.73 Parameters in section Initial temperature model/Adiabatic/Function
• Parameter name: Function constants

Value:
Default:
Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘var1=value1, var2=value2, ...’.
A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: Any string

• Parameter name: Function expression

Value: 0
Default: 0
Description: The formula that denotes the function you want to evaluate for particular values of the
independent variables. This expression may contain any of the usual operations such as addition or
multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may contain
expressions like ‘if(x>0, 1, -1)’ where the expression evaluates to the second argument if the first
argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.
If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.
Possible values: Any string

375

• Parameter name: Variable names

Value: x,t
Default: x,t
Description: The names of the variables as they will be used in the function, separated by commas.
By default, the names of variables at which the function will be evaluated are ‘x’ (in 1d), ‘x,y’ (in 2d)
or ‘x,y,z’ (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’ and then use these variable names in your
function expression.
Possible values: Any string

A.74 Parameters in section Initial temperature model/Adiabatic boundary
• Parameter name: Adiabatic temperature gradient

Value: 0.0005
Default: 0.0005
Description: The value of the adiabatic temperature gradient. Units: Km−1.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Data directory

Value: $ASPECT_SOURCE_DIR/data/initial-temperature/adiabatic-boundary/
Default: $ASPECT_SOURCE_DIR/data/initial-temperature/adiabatic-boundary/
Description: The name of a directory that contains the model data. This path may either be absolute
(if starting with a ‘/’) or relative to the current directory. The path may also include the special text
‘$ASPECT_SOURCE_DIR’ which will be interpreted as the path in which the ASPECT source files
were located when ASPECT was compiled. This interpretation allows, for example, to reference files
located in the ‘data/’ subdirectory of ASPECT.
Possible values: A directory name

• Parameter name: Data file name

Value: adiabatic_boundary.txt
Default: adiabatic_boundary.txt
Description: The file name of the model data. Provide file in format: (Velocity file name).%s%d where
%s is a string specifying the boundary of the model according to the names of the boundary indicators
(of the chosen geometry model).%d is any sprintf integer qualifier, specifying the format of the current
file number.
Possible values: Any string

• Parameter name: Isotherm temperature

Value: 1673.15
Default: 1673.15
Description: The value of the isothermal boundary temperature. Units: K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

376

• Parameter name: Scale factor

Value: 1.
Default: 1.
Description: Scalar factor, which is applied to the model data. You might want to use this to scale
the input to a reference model. Another way to use this factor is to convert units of the input files.
For instance, if you provide velocities in cm/yr set this factor to 0.01.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Surface temperature

Value: 273.15
Default: 273.15
Description: The value of the surface temperature. Units: K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.75 Parameters in section Initial temperature model/Ascii data model
• Parameter name: Data directory

Value: $ASPECT_SOURCE_DIR/data/initial-temperature/ascii-data/test/
Default: $ASPECT_SOURCE_DIR/data/initial-temperature/ascii-data/test/
Description: The name of a directory that contains the model data. This path may either be absolute
(if starting with a ‘/’) or relative to the current directory. The path may also include the special text
‘$ASPECT_SOURCE_DIR’ which will be interpreted as the path in which the ASPECT source files
were located when ASPECT was compiled. This interpretation allows, for example, to reference files
located in the ‘data/’ subdirectory of ASPECT.
Possible values: A directory name

• Parameter name: Data file name

Value: initial_isotherm_500K_box_3d.txt
Default: initial_isotherm_500K_box_3d.txt
Description: The file name of the model data. Provide file in format: (Velocity file name).%s%d where
%s is a string specifying the boundary of the model according to the names of the boundary indicators
(of the chosen geometry model).%d is any sprintf integer qualifier, specifying the format of the current
file number.
Possible values: Any string

• Parameter name: Data file names

Value: initial_isotherm_500K_box_3d.txt
Default: initial_isotherm_500K_box_3d.txt
Description: The file names of the model data (comma separated).
Possible values: A list of 0 to 4294967295 elements where each element is [Any string]

• Parameter name: Interpolation scheme

Value: linear
Default: linear
Description: Method to interpolate between layer boundaries. Select from piecewise constant or linear.
Piecewise constant takes the value from the nearest layer boundary above the data point. The linear

377

option interpolates linearly between layer boundaries. Above and below the domain given by the layer
boundaries, the values aregiven by the top and bottom layer boundary.
Possible values: Any one of piecewise constant, linear

• Parameter name: Scale factor

Value: 1.
Default: 1.
Description: Scalar factor, which is applied to the model data. You might want to use this to scale
the input to a reference model. Another way to use this factor is to convert units of the input files.
For instance, if you provide velocities in cm/yr set this factor to 0.01.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

A.76 Parameters in section Initial temperature model/Ascii profile
• Parameter name: Data directory

Value: $ASPECT_SOURCE_DIR/data/initial-temperature/ascii-profile/tests/
Default: $ASPECT_SOURCE_DIR/data/initial-temperature/ascii-profile/tests/
Description: The name of a directory that contains the model data. This path may either be absolute
(if starting with a ‘/’) or relative to the current directory. The path may also include the special text
‘$ASPECT_SOURCE_DIR’ which will be interpreted as the path in which the ASPECT source files
were located when ASPECT was compiled. This interpretation allows, for example, to reference files
located in the ‘data/’ subdirectory of ASPECT.
Possible values: A directory name

• Parameter name: Data file name

Value: simple_test.txt
Default: simple_test.txt
Description: The file name of the model data. Provide file in format: (Velocity file name).%s%d where
%s is a string specifying the boundary of the model according to the names of the boundary indicators
(of the chosen geometry model).%d is any sprintf integer qualifier, specifying the format of the current
file number.
Possible values: Any string

• Parameter name: Scale factor

Value: 1.
Default: 1.
Description: Scalar factor, which is applied to the model data. You might want to use this to scale
the input to a reference model. Another way to use this factor is to convert units of the input files.
For instance, if you provide velocities in cm/yr set this factor to 0.01.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

A.77 Parameters in section Initial temperature model/Continental geotherm
• Parameter name: Layer thicknesses

Value: 30000.
Default: 30000.

378

Description: List of the 3 thicknesses of the lithospheric layers ’upper_crust’, ’lower_crust’ and ’man-
tle_lithosphere’. If only one thickness is given, then the same thickness is used for all layers. Units:
m

Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Lithosphere-Asthenosphere boundary isotherm

Value: 1673.15
Default: 1673.15
Description: The value of the isotherm that is assumed at the Lithosphere-Asthenosphere boundary.
Units: K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Surface temperature

Value: 273.15
Default: 273.15
Description: The value of the surface temperature. Units: K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.78 Parameters in section Initial temperature model/Function
• Parameter name: Coordinate system

Value: cartesian
Default: cartesian
Description: A selection that determines the assumed coordinate system for the function variables.
Allowed values are ‘cartesian’, ‘spherical’, and ‘depth’. ‘spherical’ coordinates are interpreted as r,phi
or r,phi,theta in 2D/3D respectively with theta being the polar angle. ‘depth’ will create a function,
in which only the first parameter is non-zero, which is interpreted to be the depth of the point.
Possible values: Any one of cartesian, spherical, depth

• Parameter name: Function constants

Value:
Default:
Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘var1=value1, var2=value2, ...’.
A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: Any string

• Parameter name: Function expression

Value: 0
Default: 0
Description: The formula that denotes the function you want to evaluate for particular values of the
independent variables. This expression may contain any of the usual operations such as addition or

379

multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may contain
expressions like ‘if(x>0, 1, -1)’ where the expression evaluates to the second argument if the first
argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.
If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.
Possible values: Any string

• Parameter name: Variable names

Value: x,y,t
Default: x,y,t
Description: The names of the variables as they will be used in the function, separated by commas.
By default, the names of variables at which the function will be evaluated are ‘x’ (in 1d), ‘x,y’ (in 2d)
or ‘x,y,z’ (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’ and then use these variable names in your
function expression.
Possible values: Any string

A.79 Parameters in section Initial temperature model/Harmonic perturbation
• Parameter name: Lateral wave number one

Value: 3
Default: 3
Description: Doubled first lateral wave number of the harmonic perturbation. Equals the spherical
harmonic degree in 3D spherical shells. In all other cases one equals half of a sine period over the model
domain. This allows for single up-/downswings. Negative numbers reverse the sign of the perturbation
but are not allowed for the spherical harmonic case.
Possible values: An integer n such that −2147483648 ≤ n ≤ 2147483647

• Parameter name: Lateral wave number two

Value: 2
Default: 2
Description: Doubled second lateral wave number of the harmonic perturbation. Equals the spherical
harmonic order in 3D spherical shells. In all other cases one equals half of a sine period over the model
domain. This allows for single up-/downswings. Negative numbers reverse the sign of the perturbation.
Possible values: An integer n such that −2147483648 ≤ n ≤ 2147483647

• Parameter name: Magnitude
Value: 1.0
Default: 1.0
Description: The magnitude of the Harmonic perturbation.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

380

• Parameter name: Reference temperature

Value: 1600.0
Default: 1600.0
Description: The reference temperature that is perturbed by the harmonic function. Only used in
incompressible models.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Vertical wave number

Value: 1
Default: 1
Description: Doubled radial wave number of the harmonic perturbation. One equals half of a sine
period over the model domain. This allows for single up-/downswings. Negative numbers reverse the
sign of the perturbation.
Possible values: An integer n such that −2147483648 ≤ n ≤ 2147483647

A.80 Parameters in section Initial temperature model/Inclusion shape perturbation
• Parameter name: Ambient temperature

Value: 1.0
Default: 1.0
Description: The background temperature for the temperature field.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Center X

Value: 0.5
Default: 0.5
Description: The X coordinate for the center of the shape.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Center Y

Value: 0.5
Default: 0.5
Description: The Y coordinate for the center of the shape.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Center Z

Value: 0.5
Default: 0.5
Description: The Z coordinate for the center of the shape. This is only necessary for three-dimensional
fields.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

381

• Parameter name: Inclusion gradient

Value: constant
Default: constant
Description: The gradient of the inclusion to be generated.
Possible values: Any one of gaussian, linear, constant

• Parameter name: Inclusion shape

Value: circle
Default: circle
Description: The shape of the inclusion to be generated.
Possible values: Any one of square, circle

• Parameter name: Inclusion temperature

Value: 0.0
Default: 0.0
Description: The temperature of the inclusion shape. This is only the true temperature in the case
of the constant gradient. In all other cases, it gives one endpoint of the temperature gradient for the
shape.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Shape radius

Value: 1.0
Default: 1.0
Description: The radius of the inclusion to be generated. For shapes with no radius (e.g. square), this
will be the width, and for shapes with no width, this gives a general guideline for the size of the shape.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.81 Parameters in section Initial temperature model/Lithosphere Mask
• Parameter name: Data directory

Value: $ASPECT_SOURCE_DIR/data/initial-temperature/lithosphere-mask/
Default: $ASPECT_SOURCE_DIR/data/initial-temperature/lithosphere-mask/
Description: The path to the LAB depth data file
Possible values: A directory name

• Parameter name: Depth specification method

Value: Value
Default: Value
Description: Method that is used to specify the depth of the lithosphere-asthenosphere boundary.
Possible values: Any one of File, Value

• Parameter name: LAB depth filename

Value: LAB_CAM2016.txt
Default: LAB_CAM2016.txt
Description: File from which the lithosphere-asthenosphere boundary depth data is read.
Possible values: an input filename

382

• Parameter name: Lithosphere temperature

Value: 1600.
Default: 1600.
Description: The initial temperature within lithosphere, applied abovethe maximum lithosphere depth.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Maximum lithosphere depth

Value: 200000.0
Default: 200000.0
Description: Units: m.The maximum depth of the lithosphere. The model will be NaNs below this
depth.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.82 Parameters in section Initial temperature model/Patch on S40RTS
• Parameter name: Maximum grid depth

Value: 700000.0
Default: 700000.0
Description: The maximum depth of the Vs ascii grid. The model will read in Vs from S40RTS below
this depth.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Remove temperature heterogeneity down to specified depth

Value: -1.7976931348623157e+308
Default: -1.7976931348623157e+308
Description: This will set the heterogeneity prescribed by the Vs ascii grid and S40RTS to zero down
to the specified depth (in meters). Note that your resolution has to be adequate to capture this cutoff.
For example if you specify a depth of 660km, but your closest spherical depth layers are only at 500km
and 750km (due to a coarse resolution) it will only zero out heterogeneities down to 500km. Similar
caution has to be taken when using adaptive meshing.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Smoothing length scale

Value: 200000.0
Default: 200000.0
Description: The depth range (above maximum grid depth) over which to smooth. The boundary is
smoothed using a depth weighted combination of Vs values from the ascii grid and S40RTS at each
point in the region of smoothing.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.83 Parameters in section Initial temperature model/Patch on S40RTS/Ascii
data model

• Parameter name: Data directory

Value: $ASPECT_SOURCE_DIR/data/initial-temperature/patch-on-S40RTS/test/
Default: $ASPECT_SOURCE_DIR/data/initial-temperature/patch-on-S40RTS/test/

383

Description: The name of a directory that contains the model data. This path may either be absolute
(if starting with a ‘/’) or relative to the current directory. The path may also include the special text
‘$ASPECT_SOURCE_DIR’ which will be interpreted as the path in which the ASPECT source files
were located when ASPECT was compiled. This interpretation allows, for example, to reference files
located in the ‘data/’ subdirectory of ASPECT.
Possible values: A directory name

• Parameter name: Data file name

Value: upper_shell_3d.txt
Default: upper_shell_3d.txt
Description: The file name of the model data. Provide file in format: (Velocity file name).%s%d where
%s is a string specifying the boundary of the model according to the names of the boundary indicators
(of the chosen geometry model).%d is any sprintf integer qualifier, specifying the format of the current
file number.
Possible values: Any string

• Parameter name: Scale factor

Value: 1.
Default: 1.
Description: Scalar factor, which is applied to the model data. You might want to use this to scale
the input to a reference model. Another way to use this factor is to convert units of the input files.
For instance, if you provide velocities in cm/yr set this factor to 0.01.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

A.84 Parameters in section Initial temperature model/S40RTS perturbation
• Parameter name: Data directory

Value: $ASPECT_SOURCE_DIR/data/initial-temperature/S40RTS/
Default: $ASPECT_SOURCE_DIR/data/initial-temperature/S40RTS/
Description: The path to the model data.
Possible values: A directory name

• Parameter name: Initial condition file name

Value: S40RTS.sph
Default: S40RTS.sph
Description: The file name of the spherical harmonics coefficients from Ritsema et al.
Possible values: Any string

• Parameter name: Maximum order

Value: 20
Default: 20
Description: The maximum order the users specify when reading the data file of spherical harmonic
coefficients, which must be smaller than the maximum order the data file stored. This parameter will
be used only if ’Specify a lower maximum order’ is set to true.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

384

• Parameter name: Reference temperature

Value: 1600.0
Default: 1600.0
Description: The reference temperature that is perturbed by the spherical harmonic functions. Only
used in incompressible models.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Remove degree 0 from perturbation

Value: true
Default: true
Description: Option to remove the degree zero component from the perturbation, which will ensure
that the laterally averaged temperature for a fixed depth is equal to the background temperature.
Possible values: A boolean value (true or false)

• Parameter name: Remove temperature heterogeneity down to specified depth

Value: -1.7976931348623157e+308
Default: -1.7976931348623157e+308
Description: This will set the heterogeneity prescribed by S20RTS or S40RTS to zero down to the
specified depth (in meters). Note that your resolution has to be adequate to capture this cutoff. For
example if you specify a depth of 660km, but your closest spherical depth layers are only at 500km
and 750km (due to a coarse resolution) it will only zero out heterogeneities down to 500km. Similar
caution has to be taken when using adaptive meshing.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Specify a lower maximum order

Value: false
Default: false
Description: Option to use a lower maximum order when reading the data file of spherical harmonic
coefficients. This is probably used for the faster tests or when the users only want to see the spherical
harmonic pattern up to a certain order.
Possible values: A boolean value (true or false)

• Parameter name: Spline knots depth file name

Value: Spline_knots.txt
Default: Spline_knots.txt
Description: The file name of the spline knot locations from Ritsema et al.
Possible values: Any string

• Parameter name: Thermal expansion coefficient in initial temperature scaling

Value: 2e-5
Default: 2e-5
Description: The value of the thermal expansion coefficient β. Units: 1/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

385

• Parameter name: Use thermal expansion coefficient from material model

Value: false
Default: false
Description: Option to take the thermal expansion coefficient from the material model instead of from
what is specified in this section.
Possible values: A boolean value (true or false)

• Parameter name: Vs to density scaling

Value: 0.25
Default: 0.25
Description: This parameter specifies how the perturbation in shear wave velocity as prescribed by
S20RTS or S40RTS is scaled into a density perturbation. See the general description of this model for
more detailed information.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Vs to density scaling method

Value: constant
Default: constant
Description: Method that is used to specify how the vs-to-density scaling varies with depth.
Possible values: Any one of file, constant

A.85 Parameters in section Initial temperature model/S40RTS perturbation/Ascii
data vs to density model

• Parameter name: Data directory

Value: $ASPECT_SOURCE_DIR/data/initial-temperature/S40RTS/
Default: $ASPECT_SOURCE_DIR/data/initial-temperature/S40RTS/
Description: The name of a directory that contains the model data. This path may either be absolute
(if starting with a ‘/’) or relative to the current directory. The path may also include the special text
‘$ASPECT_SOURCE_DIR’ which will be interpreted as the path in which the ASPECT source files
were located when ASPECT was compiled. This interpretation allows, for example, to reference files
located in the ‘data/’ subdirectory of ASPECT.
Possible values: A directory name

• Parameter name: Data file name

Value: vs_to_density_Steinberger.txt
Default: vs_to_density_Steinberger.txt
Description: The file name of the model data. Provide file in format: (Velocity file name).%s%d where
%s is a string specifying the boundary of the model according to the names of the boundary indicators
(of the chosen geometry model).%d is any sprintf integer qualifier, specifying the format of the current
file number.
Possible values: Any string

• Parameter name: Scale factor

Value: 1.
Default: 1.

386

Description: Scalar factor, which is applied to the model data. You might want to use this to scale
the input to a reference model. Another way to use this factor is to convert units of the input files.
For instance, if you provide velocities in cm/yr set this factor to 0.01.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

A.86 Parameters in section Initial temperature model/SAVANI perturbation
• Parameter name: Data directory

Value: $ASPECT_SOURCE_DIR/data/initial-temperature/SAVANI/
Default: $ASPECT_SOURCE_DIR/data/initial-temperature/SAVANI/
Description: The path to the model data.
Possible values: A directory name

• Parameter name: Initial condition file name

Value: savani.dlnvs.60.m.ab
Default: savani.dlnvs.60.m.ab
Description: The file name of the spherical harmonics coefficients from Auer et al.
Possible values: Any string

• Parameter name: Maximum order

Value: 20
Default: 20
Description: The maximum order the users specify when reading the data file of spherical harmonic
coefficients, which must be smaller than the maximum order the data file stored. This parameter will
be used only if ’Specify a lower maximum order’ is set to true.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Reference temperature

Value: 1600.0
Default: 1600.0
Description: The reference temperature that is perturbed by the spherical harmonic functions. Only
used in incompressible models.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Remove degree 0 from perturbation

Value: true
Default: true
Description: Option to remove the degree zero component from the perturbation, which will ensure
that the laterally averaged temperature for a fixed depth is equal to the background temperature.
Possible values: A boolean value (true or false)

• Parameter name: Remove temperature heterogeneity down to specified depth

Value: -1.7976931348623157e+308
Default: -1.7976931348623157e+308
Description: This will set the heterogeneity prescribed by SAVANI to zero down to the specified depth
(in meters). Note that your resolution has to be adequate to capture this cutoff. For example if you

387

specify a depth of 660km, but your closest spherical depth layers are only at 500km and 750km (due
to a coarse resolution) it will only zero out heterogeneities down to 500km. Similar caution has to be
taken when using adaptive meshing.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Specify a lower maximum order

Value: false
Default: false
Description: Option to use a lower maximum order when reading the data file of spherical harmonic
coefficients. This is probably used for the faster tests or when the users only want to see the spherical
harmonic pattern up to a certain order.
Possible values: A boolean value (true or false)

• Parameter name: Spline knots depth file name

Value: Spline_knots.txt
Default: Spline_knots.txt
Description: The file name of the spline knots taken from the 28 spherical layers of SAVANI tomography
model.
Possible values: Any string

• Parameter name: Thermal expansion coefficient in initial temperature scaling

Value: 2e-5
Default: 2e-5
Description: The value of the thermal expansion coefficient β. Units: 1/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Use thermal expansion coefficient from material model

Value: false
Default: false
Description: Option to take the thermal expansion coefficient from the material model instead of from
what is specified in this section.
Possible values: A boolean value (true or false)

• Parameter name: Vs to density scaling

Value: 0.25
Default: 0.25
Description: This parameter specifies how the perturbation in shear wave velocity as prescribed by
SAVANI is scaled into a density perturbation. See the general description of this model for more
detailed information.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Vs to density scaling method

Value: constant
Default: constant
Description: Method that is used to specify how the vs-to-density scaling varies with depth.
Possible values: Any one of file, constant

388

A.87 Parameters in section Initial temperature model/SAVANI perturbation/Ascii
data vs to density model

• Parameter name: Data directory

Value: $ASPECT_SOURCE_DIR/data/initial-temperature/S40RTS/
Default: $ASPECT_SOURCE_DIR/data/initial-temperature/S40RTS/
Description: The name of a directory that contains the model data. This path may either be absolute
(if starting with a ‘/’) or relative to the current directory. The path may also include the special text
‘$ASPECT_SOURCE_DIR’ which will be interpreted as the path in which the ASPECT source files
were located when ASPECT was compiled. This interpretation allows, for example, to reference files
located in the ‘data/’ subdirectory of ASPECT.
Possible values: A directory name

• Parameter name: Data file name

Value: vs_to_density_Steinberger.txt
Default: vs_to_density_Steinberger.txt
Description: The file name of the model data. Provide file in format: (Velocity file name).%s%d where
%s is a string specifying the boundary of the model according to the names of the boundary indicators
(of the chosen geometry model).%d is any sprintf integer qualifier, specifying the format of the current
file number.
Possible values: Any string

• Parameter name: Scale factor

Value: 1.
Default: 1.
Description: Scalar factor, which is applied to the model data. You might want to use this to scale
the input to a reference model. Another way to use this factor is to convert units of the input files.
For instance, if you provide velocities in cm/yr set this factor to 0.01.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

A.88 Parameters in section Initial temperature model/Spherical gaussian perturbation
• Parameter name: Amplitude
Value: 0.01
Default: 0.01
Description: The amplitude of the perturbation.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Angle
Value: 0.
Default: 0.
Description: The angle where the center of the perturbation is placed.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

389

• Parameter name: Filename for initial geotherm table

Value: initial-geotherm-table
Default: initial-geotherm-table
Description: The file from which the initial geotherm table is to be read. The format of the file is
defined by what is read in source/initial_conditions/spherical_shell.cc.
Possible values: an input filename

• Parameter name: Non-dimensional depth

Value: 0.7
Default: 0.7
Description: The non-dimensional radial distance where the center of the perturbation is placed.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Sigma
Value: 0.2
Default: 0.2
Description: The standard deviation of the Gaussian perturbation.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Sign
Value: 1.
Default: 1.
Description: The sign of the perturbation.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

A.89 Parameters in section Initial temperature model/Spherical hexagonal perturbation
• Parameter name: Angular mode

Value: 6
Default: 6
Description: The number of convection cells with which to perturb the system.
Possible values: An integer n such that −2147483648 ≤ n ≤ 2147483647

• Parameter name: Rotation offset

Value: -45.
Default: -45.
Description: Amount of clockwise rotation in degrees to apply to the perturbations. Default is set to
-45 in order to provide backwards compatibility.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

390

A.90 Parameters in section Material model
• Parameter name: Material averaging

Value: none
Default: none
Description: Whether or not (and in the first case, how) to do any averaging of material model output
data when constructing the linear systems for velocity/pressure, temperature, and compositions in
each time step, as well as their corresponding preconditioners.
Possible choices: none|arithmetic average|harmonic average|geometric average|pick largest|project to
Q1|log average|harmonic average only viscosity|project to Q1 only viscosity
The process of averaging, and where it may be used, is discussed in more detail in Section 5.2.8.
More averaging schemes are available in the averaging material model. This material model is a
“compositing material model” which can be used in combination with other material models.
Possible values: Any one of none, arithmetic average, harmonic average, geometric average, pick largest,
project to Q1, log average, harmonic average only viscosity, project to Q1 only viscosity

• Parameter name: Model name

Value: simple
Default: unspecified
Description: The name of the material model to be used in this simulation. There are many material
models you can choose from, as listed below. They generally fall into two category: (i) models that
implement a particular case of material behavior, (ii) models that modify other models in some way.
We sometimes call the latter “compositing models”. An example of a compositing model is the “depth
dependent” model below in that it takes another, freely choosable model as its base and then modifies
that model’s output in some way.
You can select one of the following models:
‘Steinberger’: This material model looks up the viscosity from the tables that correspond to the paper
of Steinberger and Calderwood 2006 (“Models of large-scale viscous flow in the Earth’s mantle with
constraints from mineral physics and surface observations”, Geophys. J. Int., 167, 1461-1481, http:
//dx.doi.org/10.1111/j.1365-246X.2006.03131.x) and material data from a database generated
by the thermodynamics code Perplex, see http://www.perplex.ethz.ch/. The default example data
builds upon the thermodynamic database by Stixrude 2011 and assumes a pyrolitic composition by
Ringwood 1988 but is easily replaceable by other data files.
‘ascii reference profile’: A material model that reads in a reference state for density, thermal expansivity,
compressibility and specific heat from a text file. Note the required format of the input data: The
first lines may contain any number of comments if they begin with ‘#’, but one of these lines needs
to contain the number of points in the reference state as for example ‘# POINTS: 3’. Following
the comment lines there has to be a single line containing the names of all data columns, separated
by arbitrarily many spaces. Column names are not allowed to contain spaces. The file can contain
unnecessary columns, but for this plugin it needs to at least provide the columns named ‘density’,
‘thermal_expansivity’, ‘specific_heat’, and ‘compressibility’. Note that the data lines in the file need
to be sorted in order of increasing depth from 0 to the maximal depth in the model domain. Points
in the model that are outside of the provided depth range will be assigned the maximum or minimum
depth values, respectively. Points do not need to be equidistant, but the computation of properties is
optimized in speed if they are.
The viscosity η is computed as

η(z, T) = ηr(z)η0 exp
(
−AT − Tadi

Tadi

)
, (148)

391

http://dx.doi.org/10.1111/j.1365-246X.2006.03131.x
http://dx.doi.org/10.1111/j.1365-246X.2006.03131.x
http://www.perplex.ethz.ch/

where ηr(z) is the depth-dependence, which is a piecewise constant function computed according to
the list of “Viscosity prefactors” and “Transition depths”, η0 is the reference viscosity specified by
the parameter “Viscosity” and A describes the dependence on temperature and corresponds to the
parameter “Thermal viscosity exponent”.
‘averaging’: The “averaging” Material model applies an averaging of the quadrature points within
a cell. The values to average are supplied by any of the other available material models. In other
words, it is a “compositing material model”. Parameters related to the average model are read from a
subsection “Material model/Averaging”.
The user must specify a “Base model” from which material properties are derived. Furthermore
an averaging operation must be selected, where the Choice should be from the list none|arithmetic
average|harmonic average|geometric average|pick largest|log average|NWD arithmetic average|NWD
harmonic average|NWD geometric average.
NWD stands for Normalized Weighed Distance. The models with this in front of their name work
with a weighed average, which means each quadrature point requires an individual weight. The weight
is determined by the distance, where the exact relation is determined by a bell shaped curve. A bell
shaped curve is a continuous function which is one at its maximum and exactly zero at and beyond its
limit. This bell shaped curve is spanned around each quadrature point to determine the weighting map
for each quadrature point. The used bell shape comes from Lucy (1977). The distance is normalized
so the largest distance becomes one. This means that if variable ”Bell shape limit” is exactly one, the
farthest quadrature point is just on the limit and its weight will be exactly zero. In this plugin it is
not implemented as larger and equal than the limit, but larger than, to ensure the quadrature point
at distance zero is always included.
‘compositing’: The “compositing” Material model selects material model properties from a given set
of other material models, and is intended to make mixing different material models easier.
Specifically, this material model works by allowing to specify the name of another material model for
each coefficient that material models are asked for (such as the viscosity, density, etc.). Whenever the
material model is asked for the values of coefficients, it then evaluates all of the “base models” that
were listed for the various coefficients, and copies the values returned by these base models into the
output structure.
The implementation of this material model is somewhat expensive because it has to evaluate all ma-
terial coefficients of all underlying material models. Consequently, if performance of assembly and
postprocessing is important, then implementing a separate material model is a better choice than
using this material model.
‘composition reaction’: A material model that behaves in the same way as the simple material model,
but includes two compositional fields and a reaction between them. Above a depth given in the input
file, the first fields gets converted to the second field.
‘depth dependent’: The “depth dependent” Material model applies a depth-dependent scaling to any
of the other available material models. In other words, it is a “compositing material model”.
Parameters related to the depth dependent model are read from a subsection “Material model/Depth
dependent model”. The user must specify a “Base model” from which material properties are derived.
Currently the depth dependent model only allows depth dependence of viscosity - other material
properties are taken from the “Base model”. Viscosity η at depth z is calculated according to:

η(z, p, T,X, ...) = η(z)ηb(p, T,X, ..)/ηrb (149)

where η(z) is the depth-dependence specified by the depth dependent model, ηb(p, T,X, ...) is the viscos-
ity calculated from the base model, and ηrb is the reference viscosity of the “Base model”. In addition
to the specification of the “Base model”, the user must specify the method to be used to calculate
the depth-dependent viscosity η(z) as “Material model/Depth dependent model/Depth dependence

392

method”, which can be chosen among “None|Function|File|List”. Each method and the associated
parameters are as follows:
“Function”: read a user-specified parsed function from the input file in a subsection “Material mod-
el/Depth dependent model/Viscosity depth function”. By default, this function is uniformly equal to
1.0e21. Specifying a function that returns a value less than or equal to 0.0 anywhere in the model
domain will produce an error.
“File”: read a user-specified file containing viscosity values at specified depths. The file containing
depth-dependent viscosities is read from a directory specified by the user as “Material model/Depth
dependent model/Data directory”, from a file with name specified as “Material model/Depth dependent
model/Viscosity depth file”. The format of this file is ascii text and contains two columns with one
header line:
example Viscosity depth file:
Depth (m) Viscosity (Pa-s)
0.0000000e+00 1.0000000e+21
6.7000000e+05 1.0000000e+22

Viscosity is interpolated from this file using linear interpolation. “None”: no depth-dependence. Vis-
cosity is taken directly from “Base model”
“List:”: read a comma-separated list of depth values corresponding to the maximum depths of layers
having constant depth-dependence η(z). The layers must be specified in order of increasing depth, and
the last layer in the list must have a depth greater than or equal to the maximal depth of the model.
The list of layer depths is specified as “Material model/Depth dependent model/Depth list” and the
corresponding list of layer viscosities is specified as “Material model/Depth dependent model/Viscosity
list”
‘diffusion dislocation’: An implementation of a viscous rheology including diffusion and dislocation
creep. Compositional fields can each be assigned individual activation energies, reference densities,
thermal expansivities, and stress exponents. The effective viscosity is defined as

ηeff =
(

1
ηdiffeff

+ 1
ηdiseff

)−1

where
ηi = 1

2A
− 1
ni d

mi
ni ε̇i

1−ni
ni exp

(
E∗i + PV ∗i
niRT

)
where d is grain size, i corresponds to diffusion or dislocation creep, ε̇ is the square root of the second
invariant of the strain rate tensor, R is the gas constant, T is temperature, and P is pressure. Ai are
prefactors, ni and mi are stress and grain size exponents Ei are the activation energies and Vi are the
activation volumes.
This form of the viscosity equation is commonly used in geodynamic simulatons See, for example, Billen
and Hirth (2007), G3, 8, Q08012. Significantly, other studies may use slightly different forms of the
viscosity equation leading to variations in how specific terms are defined or combined. For example, the
grain size exponent should always be positive in the diffusion viscosity equation used here, while other
studies place the grain size term in the denominator and invert the sign of the grain size exponent.
When examining previous work, one should carefully check how the viscous prefactor and grain size
terms are defined.
The ratio of diffusion to dislocation strain rate is found by Newton’s method, iterating to find the
stress which satisfies the above equations. The value for the components of this formula and additional
parameters are read from the parameter file in subsection ’Material model/DiffusionDislocation’.

393

‘drucker prager’: A material model that has constant values for all coefficients but the density and
viscosity. The defaults for all coefficients are chosen to be similar to what is believed to be correct
for Earth’s mantle. All of the values that define this model are read from a section “Material model/-
Drucker Prager” in the input file, see Section A.99. Note that the model does not take into account
any dependencies of material properties on compositional fields.
The viscosity is computed according to the Drucker Prager frictional plasticity criterion (non-associative)
based on a user-defined internal friction angle φ and cohesion C. In 3D: σy = 6C cos(φ)√

(3)(3+sin(φ))
+

2P sin(φ)√
(3)(3+sin(φ))

, where P is the pressure. See for example Zienkiewicz, O. C., Humpheson, C. and
Lewis, R. W. (1975), Géotechnique 25, No. 4, 671-689. With this formulation we circumscribe instead
of inscribe the Mohr Coulomb yield surface. In 2D the Drucker Prager yield surface is the same as
the Mohr Coulomb surface: σy = P sin(φ) + C cos(φ). Note that in 2D for φ = 0, these criteria revert
to the von Mises criterion (no pressure dependence). See for example Thieulot, C. (2011), PEPI 188,
47-68.
Note that we enforce the pressure to be positive to prevent negative yield strengths and viscosities.
We then use the computed yield strength to scale back the viscosity on to the yield surface using
the Viscosity Rescaling Method described in Kachanov, L. M. (2004), Fundamentals of the Theory of
Plasticity, Dover Publications, Inc. (Not Radial Return.)A similar implementation can be found in
GALE (https://geodynamics.org/cig/software/gale/gale-manual.pdf).
To avoid numerically unfavourably large (or even negative) viscosity ranges, we cut off the viscosity
with a user-defined minimum and maximum viscosity: ηeff = 1

1
ηmin+η+ 1

ηmax

.

Note that this model uses the formulation that assumes an incompressible medium despite the fact
that the density follows the law ρ(T) = ρ0(1− β(T − Tref)).
‘dynamic friction’: This model is for use with an arbitrary number of compositional fields, where each
field represents a rock type which can have completely different properties from the others.Each rock
type itself has constant material properties, with the exception of viscosity which is modified according
to a Drucker-Prager yield criterion. Unlike the drucker prager or visco plastic material models, the
angle of internal friction is a function of velocity. This relationship is similar to rate-and-state friction
constitutive relationships, which are applicable to the strength of rocks during earthquakes. The
formulation used here is derived from van Dinther et al. 2013, JGR. Each compositional field is
interpreed as a volume fraction. If the sum of the fields is greater than one, they are renormalized. If
it is less than one, material properties for “background material” make up the rest. When more than
one field is present, the material properties are averaged arithmetically. An exception is the viscosity,
where the averaging should make more of a difference. For this, the user selectsbetween arithmetic,
harmonic, geometric, or maximum composition averaging.
‘grain size’: A material model that relies on compositional fields that correspond to the average grain
sizes of a mineral phase and source terms that determine the grain size evolution in terms of the
strain rate, temperature, phase transitions, and the creep regime. This material model only works
if a compositional field named ’grain_size’ is present. In the diffusion creep regime, the viscosity
depends on this grain size field. We use the grain size evolution laws described in Behn et al., 2009.
Implications of grain size evolution on the seismic structure of the oceanic upper mantle, Earth Planet.
Sci. Letters, 282, 178âĂŞ189. Other material parameters are either prescribed similar to the ’simple’
material model, or read from data files that were generated by the Perplex or Hefesto software. This
material model is described in more detail in Dannberg, J., Z. Eilon, U. Faul, R. Gassmoeller, P.
Moulik, and R. Myhill (2017), The importance of grain size to mantle dynamics and seismological
observations, Geochem. Geophys. Geosyst., 18, 3034âĂŞ3061, doi:10.1002/2017GC006944.
‘latent heat’: A material model that includes phase transitions and the possibility that latent heat is
released or absorbed when material crosses one of the phase transitions of up to two different materials
(compositional fields). This model implements a standard approximation of the latent heat terms

394

following Christensen & Yuen, 1985. The change of entropy is calculated as DeltaS = γ∆ρ
ρ2 with

the Clapeyron slope γ and the density change ∆ρ of the phase transition being input parameters.
The model employs an analytic phase function in the form X = 1

2

(
1 + tanh

(
∆p
∆p0

))
with ∆p =

p − ptransition − γ (T − Ttransition) and ∆p0 being the pressure difference over the width of the phase
transition (specified as input parameter).
‘latent heat melt’: A material model that includes the latent heat of melting for two materials: peri-
dotite and pyroxenite. The melting model for peridotite is taken from Katz et al., 2003 (A new
parameterization of hydrous mantle melting) and the one for pyroxenite from Sobolev et al., 2011
(Linking mantle plumes, large igneous provinces and environmental catastrophes). The model assumes
a constant entropy change for melting 100% of the material, which can be specified in the input file.
The partial derivatives of entropy with respect to temperature and pressure required for calculating
the latent heat consumption are then calculated as product of this constant entropy change, and the
respective derivative of the function the describes the melt fraction. This is linearly averaged with re-
spect to the fractions of the two materials present. If no compositional fields are specified in the input
file, the model assumes that the material is peridotite. If compositional fields are specified, the model
assumes that the first compositional field is the fraction of pyroxenite and the rest of the material is
peridotite.
Otherwise, this material model has a temperature- and pressure-dependent density and viscosity and
the density and thermal expansivity depend on the melt fraction present. It is possible to extent this
model to include a melt fraction dependence of all the material parameters by calling the function
melt_fraction in the calculation of the respective parameter. However, melt and solid move with the
same velocity and melt extraction is not taken into account (batch melting).
‘melt global’: A material model that implements a simple formulation of the material parameters
required for the modelling of melt transport, including a source term for the porosity according to a
simplified linear melting model similar to [79]: φequilibrium = T−Tsol

Tliq−Tsol with Tsol = Tsol,0+∆Tp p+∆Tc C
Tliq = Tsol + ∆Tsol-liq.
‘melt simple’: A material model that implements a simple formulation of the material parameters
required for the modelling of melt transport, including a source term for the porosity according to the
melting model for dry peridotite of [54]. This also includes a computation of the latent heat of melting
(if the ‘latent heat’ heating model is active).
Most of the material properties are constant, except for the shear, viscosity η, the compaction viscosity
ξ, and the permeability k, which depend on the porosity; and the solid and melt densities, which
depend on temperature and pressure: η(φ, T) = η0e

α(φ−φ0)e−β(T−T0)/T0 , ξ(φ, T) = ξ0
φ0
φ e
−β(T−T0)/T0 ,

k = k0φ
n(1− φ)m, ρ = ρ0(1− α(T − Tadi))eκp.

The model is compressible only if this is specified in the input file, and contains compressibility for
both solid and melt.
‘modified tait’: A material model that implements the thermal modified Tait equation of state as
written in [49]. Constant values are used for the thermal conductivity and viscosity. The defaults for
all coefficients are chosen to be similar to what is believed to be correct for Earth’s mantle. All of the
values that define this model are read from a section “Material model/Modified Tait model” in the
input file, see Section A.108.
‘multicomponent’: This model is for use with an arbitrary number of compositional fields, where each
field represents a rock type which can have completely different properties from the others. However,
each rock type itself has constant material properties. The value of the compositional field is interpreted
as a volume fraction. If the sum of the fields is greater than one, they are renormalized. If it is less
than one, material properties for “background mantle” make up the rest. When more than one field is
present, the material properties are averaged arithmetically. An exception is the viscosity, where the
averaging should make more of a difference. For this, the user selects between arithmetic, harmonic,
geometric, or maximum composition averaging.

395

‘multicomponent compressible’: This model is for use with an arbitrary number of compositional fields,
where each field represents a rock type which can have completely different properties from the others.
Each rock type is described by a self-consistent equation of state. The value of the compositional field
is interpreted as a volume fraction. If the sum of the fields is greater than one, they are renormalized.
If it is less than one, material properties for “background mantle” make up the rest. When more
than one field is present, the bulk material properties are calculated self-consistently. An exception
is the viscosity, where there is no unique solution to the averaging. For this, the user selects between
arithmetic, harmonic, geometric, or maximum composition averaging.
‘nondimensional’: A material model for nondimensionalized computations for compressible or incom-
pressible computations defined through Rayleigh number extRa and Dissipation number Di. This
model is made to be used with the Boussinesq, ALA, or TALA formulation.
The viscosity is defined as

η = Di/Ra · exp(−bT ′ + cz)
where T ′ is the temperature variation from the adiabatic temperature, z is the depth, b is given by
“Viscosity temperature prefactor”, and c by “Viscosity depth prefactor”. If Di is zero, it will be replaced
by 1.0 in η.
The density is defined as

ρ = exp(Di/γ · z)(1.0− αT ′ + Diγp′),
where α = Di is the thermal expansion coefficient, γ is the Grueneisen parameter, and p′ is the
pressure variation from the adiabatic pressure. The pressure dependent term is not present if “TALA”
is enabled.
‘perplex lookup’: A material model that has constant values for viscosity and thermal conductivity,
and calculates other properties on-the-fly using PerpleX meemum. Compositional fields correspond to
the individual components in the order given in the PerpleX file.
‘replace lithosphere viscosity’: The “replace lithosphere viscosity” Material model sets viscosity to a
prescribed constant above the lithosphere-asthenosphere boundary (specified by an ascii file or maxi-
mum lithosphere depth). Below the lithosphere-asthenosphereboundary the viscosity is taken from any
of the other available material model. In other words, it is a “compositing material model”. Parameters
related to the replace lithosphere viscosity model are read from a subsection “Material model/Replace
lithosphere viscosity”. The user must specify a “Base model” from which other material properties are
derived. Note the required format of the input data file: The first lines may contain any number of
comments if they begin with âĂŸ#âĂŹ, but one of these lines needs to contain the number of grid
points in each dimension as for exampleâĂŸ# POINTS: 3 3âĂŹ. For a spherical model, the order of
the data columns has to be’phi’, ’theta’,’depth (m)’, where phi is the azimuth angle and theta is the
polar angle measured positive from the north pole.
‘simple’: A material model that has constant values for all coefficients but the density and viscosity.
The defaults for all coefficients are chosen to be similar to what is believed to be correct for Earth’s
mantle. All of the values that define this model are read from a section “Material model/Simple model”
in the input file, see Section A.116.
This model uses the following set of equations for the two coefficients that are non-constant:

η(p, T, c) = τ(T)ζ(c)η0, (150)
ρ(p, T, c) = (1− α(T − T0)) ρ0 + ∆ρ c0, (151)

where c0 is the first component of the compositional vector c if the model uses compositional fields, or
zero otherwise.
The temperature pre-factor for the viscosity formula above is defined as

τ(T) = H
(
e−β(T−T0)/T0

)
, (152)

396

with

H(x) =

τmin if x < τmin,

x if 10−2 ≤ x ≤ 102,

τmax if x > τmax,

(153)

where x = e−β(T−T0)/T0 , β corresponds to the input parameter “Thermal viscosity exponent”, and T0
to the parameter “Reference temperature”. If you set T0 = 0 in the input file, the thermal pre-factor
τ(T) = 1. The parameters τmin and τmax set the minimum and maximum values of the temperature pre-
factor and are set using “Maximum thermal prefactor” and “Minimum thermal prefactor”. Specifying
a value of 0.0 for the minimum or maximum values will disable pre-factor limiting.
The compositional pre-factor for the viscosity is defined as

ζ(c) = ξc0 (154)

if the model has compositional fields and equals one otherwise. ξ corresponds to the parameter “Com-
position viscosity prefactor” in the input file.
Finally, in the formula for the density, α corresponds to the “Thermal expansion coefficient” and ∆ρ
corresponds to the parameter “Density differential for compositional field 1”.
Note that this model uses the formulation that assumes an incompressible medium despite the fact
that the density follows the law ρ(T) = ρ0(1− α(T − Tref)).

Note: Despite its name, this material model is not exactly “simple”, as indicated by the
formulas above. While it was originally intended to be simple, it has over time acquired
all sorts of temperature and compositional dependencies that weren’t initially intended.
Consequently, there is now a “simpler” material model that now fills the role the current
model was originally intended to fill.

‘simple compressible’: A material model that has constant values for all coefficients but the density.
The defaults for all coefficients are chosen to be similar to what is believed to be correct for Earth’s
mantle. All of the values that define this model are read from a section “Material model/Simple
compressible model” in the input file, see Section A.115.
This model uses the following equations for the density:

ρ(p, T) = ρ0 (1− α(T − Ta)) expβ(P − P0)) (155)

This formulation for the density assumes that the compressibility provided by the user is the adiabatic
compressibility (βS). The thermal expansivity and isentropic compressibility implied by the pressure
and temperature dependence are equal to the user-defined constant values only along the reference
isentrope, and there is also an implicit pressure dependence to the heat capacity Cp via Maxwell’s
relations.
‘simpler’: A material model that has constant values except for density, which depends linearly on
temperature:

ρ(p, T) = (1− α(T − T0)) ρ0. (156)

Note: This material model fills the role the “simple” material model was originally intended
to fill, before the latter acquired all sorts of complicated temperature and compositional
dependencies.

397

‘visco plastic’: An implementation of an incompressible visco(elastic)-plastic rheology with options
for selecting dislocation creep, diffusion creep or composite viscous flow laws. Prior to yielding, one
may select to modify the viscosity to account for viscoelastic effects. Plasticity limits viscous stresses
through a Drucker Prager yield criterion. Note that this material model is based heavily on the
DiffusionDislocation (Bob Myhill), DruckerPrager (Anne Glerum), and Viscoelastic (John Naliboff)
material models.
The viscosity for dislocation or diffusion creep is defined as

v = 1
2A
− 1
n d

m
n ε̇

1−n
n

ii exp
(
E + PV

nRT

)
where A is the prefactor, n is the stress exponent, ε̇ii is the square root of the deviatoric strain rate
tensor second invariant, d is grain size, m is the grain size exponent, E is activation energy, V is
activation volume, P is pressure, R is the gas exponent and T is temperature. This form of the
viscosity equation is commonly used in geodynamic simulations. See, for example, Billen and Hirth
(2007), G3, 8, Q08012. Significantly, other studies may use slightly different forms of the viscosity
equation leading to variations in how specific terms are defined or combined. For example, the grain
size exponent should always be positive in the diffusion viscosity equation used here, while other studies
place the grain size term in the denominator and invert the sign of the grain size exponent. When
examining previous work, one should carefully check how the viscous prefactor and grain size terms
are defined.
One may select to use the diffusion (vdiff; n = 1, m! = 0), dislocation (vdisl, n > 1, m = 0) or composite
vdiffvdisl
vdiff+vdisl equation form.
The diffusion and dislocation prefactors can be weakened with a factor between 0 and 1 according to
the total or the viscous strain only.
Viscosity is limited through one of two different ‘yielding’ mechanisms.
The first plasticity mechanism limits viscous stress through a Drucker Prager yield criterion, where the
yield stress in 3D is σy = 6C cos(φ)+2P sin(φ)√

(3)(3+sin(φ))
and σy = C cos(φ) + P sin(φ) in 2D. Above, C is cohesion

and φ is the angle of internal friction. Note that the 2D form is equivalent to the Mohr Coulomb yield
surface. If φ is 0, the yield stress is fixed and equal to the cohesion (Von Mises yield criterion). When
the viscous stress (2vεii) exceeds the yield stress, the viscosity is rescaled back to the yield surface:
vy = σy/(2εii). This form of plasticity is commonly used in geodynamic models. See, for example,
Thieulot, C. (2011), PEPI 188, pp. 47-68.
The user has the option to linearly reduce the cohesion and internal friction angle as a function of
the finite strain magnitude. The finite strain invariant or full strain tensor is calculated through
compositional fields within the material model. This implementation is identical to the compositional
field finite strain plugin and cookbook described in the manual (author: Gassmoeller, Dannberg). If
the user selects to track the finite strain invariant (eii), a single compositional field tracks the value
derived from etii = (eii)(t−1) + ėii dt, where t and t− 1 are the current and prior time steps, ėii is the
second invariant of the strain rate tensor and dt is the time step size. In the case of the full strain tensor
F , the finite strain magnitude is derived from the second invariant of the symmetric stretching tensor
L, where L = F [F]T . The user must specify a single compositional field for the finite strain invariant
or multiple fields (4 in 2D, 9 in 3D) for the finite strain tensor. These field(s) must be the first listed
compositional fields in the parameter file. Note that one or more of the finite strain tensor components
must be assigned a non-zero value initially. This value can be be quite small (e.g., 1.e-8), but still
non-zero. While the option to track and use the full finite strain tensor exists, tracking the associated
compositional fields is computationally expensive in 3D. Similarly, the finite strain magnitudes may in
fact decrease if the orientation of the deformation field switches through time. Consequently, the ideal
solution is track the finite strain invariant (single compositional) field within the material and track
the full finite strain tensor through particles.When only the second invariant of the strain is tracked,

398

one has the option to track the full strain or only the plastic strain. In the latter case, strain is only
tracked in case the material is plastically yielding, i.e. the viscous stess > yield stress.
Viscous stress may also be limited by a non-linear stress limiter that has a form similar to the Peierls
creep mechanism. This stress limiter assigns an effective viscosity σeff = τy

2εy
εii
εy

1
ny
−1 Above τy is a yield

stress, εy is the reference strain rate, εii is the strain rate and ny is the stress limiter exponent. The yield
stress, τy, is defined through the Drucker Prager yield criterion formulation. This method of limiting
viscous stress has been used in various forms within the geodynamic literature [21, 92, 22, 23].When
ny is 1, it essentially becomes a linear viscosity model, and in the limit ny → ∞ it converges to the
standard viscosity rescaling method (concretely, values ny > 20 are large enough).
The visco-plastic rheology described above may also be modified to include viscoelastic deformation,
thus producing a viscoelastic plastic constitutive relationship.
The viscoelastic rheology behavior takes into account the elastic shear strength (e.g., shear modulus),
while the tensile and volumetric strength (e.g., Young’s and bulk modulus) are not considered. The
model is incompressible and allows specifying an arbitrary number of compositional fields, where each
field represents a different rock type or component of the viscoelastic stress tensor. The stress tensor in
2D and 3D, respectively, contains 3 or 6 components. The compositional fields representing these com-
ponents must be named and listed in a very specific format, which is designed to minimize mislabeling
stress tensor components as distinct ’compositional rock types’ (or vice versa). For 2D models, the
first three compositional fields must be labeled ’stress_xx’, ’stress_yy’ and ’stress_xy’. In 3D, the first
six compositional fields must be labeled ’stress_xx’, ’stress_yy’, ’stress_zz’, ’stress_xy’, ’stress_xz’,
’stress_yz’.
Combining this viscoelasticity implementation with non-linear viscous flow and plasticity produces a
constitutive relationship commonly referred to as partial elastoviscoplastic (e.g., pEVP) in the geody-
namics community. While extensively discussed and applied within the geodynamics literature, notable
references include: Moresi et al. (2003), J. Comp. Phys., v. 184, p. 476-497. Gerya and Yuen (2007),
Phys. Earth. Planet. Inter., v. 163, p. 83-105. Gerya (2010), Introduction to Numerical Geodynamic
Modeling. Kaus (2010), Tectonophysics, v. 484, p. 36-47. Choi et al. (2013), J. Geophys. Res., v.
118, p. 2429-2444. Keller et al. (2013), Geophys. J. Int., v. 195, p. 1406-1442.
The overview below directly follows Moresi et al. (2003) eqns. 23-38. However, an important distinction
between this material model and the studies above is the use of compositional fields, rather than tracers,
to track individual components of the viscoelastic stress tensor. The material model will be updated
when an option to track and calculate viscoelastic stresses with tracers is implemented.
Moresi et al. (2003) begins (eqn. 23) by writing the deviatoric rate of deformation (D̂) as the sum
of elastic (D̂e) and viscous (D̂v) components: D̂ = D̂e + D̂v. These terms further decompose into
D̂v = τ

2η and D̂e =
O
τ
2µ , where τ is the viscous deviatoric stress, η is the shear viscosity, µ is the shear

modulus and O
τ is the Jaumann corotational stress rate. If plasticity is included the deviatoric rate of

deformation may be written as: D̂ = D̂e + D̂v + D̂p, where D̂p is the plastic component. As defined
in the second paragraph, D̂p decomposes to τy

2ηy , where τy is the yield stress and ηy is the viscosity
rescaled to the yield surface.
Above, the Jaimann corotational stress rate (eqn. 24) from the elastic component contains the time
derivative of the deviatoric stress (τ̇) and terms that account for material spin (e.g., rotation) due to
advection: O

τ = τ̇ + τW −Wτ . Above, W is the material spin tensor (eqn. 25): Wij = 1
2

(
∂Vi
∂xj
− ∂Vj

∂xi

)
.

The Jaumann stress-rate can also be approximated using terms from the time at the previous time step
(t) and current time step (t+∆te): O

τ t+∆te ≈ τt+∆te−τt

∆te −W tτ t+τ tW t. In this material model, the size
of the time step above (∆te) can be specified as the numerical time step size or an independent fixed
time step. If the latter case is a selected, the user has an option to apply a stress averaging scheme to
account for the differences between the numerical and fixed elastic time step (eqn. 32). If one selects

399

to use a fixed elastic time step throughout the model run, this can still be achieved by using CFL and
maximum time step values that restrict the numerical time step to a specific time.

The formulation above allows rewriting the total rate of deformation (eqn. 29) as τ t+∆te = ηeff

(
2D̂t+4te + τt

µ∆te + W tτt−τtW t

µ

)
.

The effective viscosity (eqn. 28) is a function of the viscosity (η), elastic time step size (∆te) and shear
relaxation time (α = η

µ): ηeff = η ∆te
∆te+α The magnitude of the shear modulus thus controls how much

the effective viscosity is reduced relative to the initial viscosity.
Elastic effects are introduced into the governing Stokes equations through an elastic force term (eqn.
30) using stresses from the previous time step: F e,t = − ηeff

µ∆te τ
t. This force term is added onto the

right-hand side force vector in the system of equations.
When plastic yielding occurs, the effective viscosity in equation 29 and 30 is the plastic viscosity
(equation 35). If the current stress is below the plastic yield stress, the effective viscosity is still as
defined in equation 28. During non-linear iterations, we define the current stress prior to yielding (e.g.,
value compared to yield stress) as τ t+∆te = ηeff

(
2D̂t+4te + τt

µ∆te

)
Compositional fields can each be assigned individual values of thermal diffusivity, heat capacity, density,
thermal expansivity and rheological parameters.
If more than one compositional field is present at a given point, viscosities are averaged with an
arithmetic, geometric harmonic (default) or maximum composition scheme.
The value for the components of this formula and additional parameters are read from the parameter
file in subsection ’Material model/Visco Plastic’.
‘viscoelastic’: An implementation of a simple linear viscoelastic rheology that only includes the devia-
toric components of elasticity. Specifically, the viscoelastic rheology only takes into account the elastic
shear strength (e.g., shear modulus), while the tensile and volumetric strength (e.g., Young’s and bulk
modulus) are not considered. The model is incompressible and allows specifying an arbitrary number of
compositional fields, where each field represents a different rock type or component of the viscoelastic
stress tensor. The stress tensor in 2D and 3D, respectively, contains 3 or 6 components. The composi-
tional fields representing these components must be named and listed in a very specific format, which
is designed to minimize mislabeling stress tensor components as distinct ’compositional rock types’ (or
vice versa). For 2D models, the first three compositional fields must be labeled ’stress_xx’, ’stress_yy’
and ’stress_xy’. In 3D, the first six compositional fields must be labeled ’stress_xx’, ’stress_yy’,
’stress_zz’, ’stress_xy’, ’stress_xz’, ’stress_yz’.
Expanding the model to include non-linear viscous flow (e.g., diffusion/dislocation creep) and plastic-
ity would produce a constitutive relationship commonly referred to as partial elastoviscoplastic (e.g.,
pEVP) in the geodynamics community. While extensively discussed and applied within the geodynam-
ics literature, notable references include: Moresi et al. (2003), J. Comp. Phys., v. 184, p. 476-497.
Gerya and Yuen (2007), Phys. Earth. Planet. Inter., v. 163, p. 83-105. Gerya (2010), Introduction to
Numerical Geodynamic Modeling. Kaus (2010), Tectonophysics, v. 484, p. 36-47. Choi et al. (2013),
J. Geophys. Res., v. 118, p. 2429-2444. Keller et al. (2013), Geophys. J. Int., v. 195, p. 1406-1442.
The overview below directly follows Moresi et al. (2003) eqns. 23-32. However, an important distinction
between this material model and the studies above is the use of compositional fields, rather than tracers,
to track individual components of the viscoelastic stress tensor. The material model will be updated
when an option to track and calculate viscoelastic stresses with tracers is implemented.
Moresi et al. (2003) begins (eqn. 23) by writing the deviatoric rate of deformation (D̂) as the sum
of elastic (D̂e) and viscous (D̂v) components: D̂ = D̂e + D̂v. These terms further decompose into
D̂v = τ

2η and D̂e =
∇
τ
2µ , where τ is the viscous deviatoric stress, η is the shear viscosity, µ is the shear

modulus and ∇τ is the Jaumann corotational stress rate. This later term (eqn. 24) contains the time

400

derivative of the deviatoric stress (τ̇) and terms that account for material spin (e.g., rotation) due to
advection: ∇τ = τ̇ + τW −Wτ . Above, W is the material spin tensor (eqn. 25): Wij = 1

2

(
∂Vi
∂xj
− ∂Vj

∂xi

)
.

The Jaumann stress-rate can also be approximated using terms from the time at the previous time step
(t) and current time step (t+∆te): ∇τ t+∆te ≈ τt+∆te−τt

∆te −W tτ t+τ tW t. In this material model, the size
of the time step above (∆te) can be specified as the numerical time step size or an independent fixed
time step. If the latter case is a selected, the user has an option to apply a stress averaging scheme to
account for the differences between the numerical and fixed elastic time step (eqn. 32). If one selects
to use a fixed elastic time step throughout the model run, this can still be achieved by using CFL and
maximum time step values that restrict the numerical time step to a specific time.

The formulation above allows rewriting the total rate of deformation (eqn. 29) as τ t+∆te = ηeff

(
2D̂t+4te + τt

µ∆te + W tτt−τtW t

µ

)
.

The effective viscosity (eqn. 28) is a function of the viscosity (η), elastic time step size (∆te) and shear
relaxation time (α = η

µ): ηeff = η ∆te
∆te+α The magnitude of the shear modulus thus controls how much

the effective viscosity is reduced relative to the initial viscosity.
Elastic effects are introduced into the governing Stokes equations through an elastic force term (eqn.
30) using stresses from the previous time step: F e,t = − ηeff

µ∆te τ
t. This force term is added onto the

right-hand side force vector in the system of equations.
The value of each compositional field representing distinct rock types at a point is interpreted to be a
volume fraction of that rock type. If the sum of the compositional field volume fractions is less than
one, then the remainder of the volume is assumed to be ’background material’.
Several model parameters (densities, elastic shear moduli, thermal expansivities, thermal conductivies,
specific heats) can be defined per-compositional field. For each material parameter the user supplies a
comma delimited list of length N+1, where N is the number of compositional fields. The additional field
corresponds to the value for background material. They should be ordered ”background, composition1,
composition2...”. However, the first 3 (2D) or 6 (3D) composition fields correspond to components of
the elastic stress tensor and their material values will not contribute to the volume fractions. If a
single value is given, then all the compositional fields are given that value. Other lengths of lists are
not allowed. For a given compositional field the material parameters are treated as constant, except
density, which varies linearly with temperature according to the thermal expansivity.
When more than one compositional field is present at a point, they are averaged arithmetically. An
exception is viscosity, which may be averaged arithmetically, harmonically, geometrically, or by selecting
the viscosity of the composition field with the greatest volume fraction.
Possible values: Any one of Steinberger, ascii reference profile, averaging, compositing, composition
reaction, depth dependent, diffusion dislocation, drucker prager, dynamic friction, grain size, latent
heat, latent heat melt, melt global, melt simple, modified tait, multicomponent, multicomponent com-
pressible, nondimensional, perplex lookup, replace lithosphere viscosity, simple, simple compressible,
simpler, visco plastic, viscoelastic, unspecified

A.91 Parameters in section Material model/Ascii reference profile
• Parameter name: Thermal conductivity

Value: 4.0
Default: 4.0
Description: Reference conductivity
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal viscosity exponent

Value: 0.

401

Default: 0.
Description: The temperature dependence of viscosity. Dimensionless exponent.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Transition depths

Value: 1.5e5, 4.1e5, 6.6e5
Default: 1.5e5, 4.1e5, 6.6e5
Description: A list of depths where the viscosity changes. Values must monotonically increase. Units:
m.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Use TALA

Value: false
Default: false
Description: Whether to use the TALA instead of the ALA approximation.
Possible values: A boolean value (true or false)

• Parameter name: Viscosity
Value: 1e21
Default: 1e21
Description: Viscosity
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Viscosity prefactors

Value: 10., 0.1, 1., 10.
Default: 10., 0.1, 1., 10.
Description: A list of prefactors for the viscosity that determine the viscosity profile. Each prefactor
is applied in a depth range specified by the list of ‘Transition depths’, i.e. the first prefactor is applied
above the first transition depth, the second one between the first and second transition depth, and so
on. To compute the viscosity profile, this prefactor is multiplied by the reference viscosity specified
through the parameter ‘Viscosity’. List must have one more entry than Transition depths. Units:
non-dimensional.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

A.92 Parameters in section Material model/Ascii reference profile/Ascii data
model

• Parameter name: Data directory

Value: $ASPECT_SOURCE_DIR/data/adiabatic-conditions/ascii-data/
Default: $ASPECT_SOURCE_DIR/data/adiabatic-conditions/ascii-data/
Description: The name of a directory that contains the model data. This path may either be absolute
(if starting with a ‘/’) or relative to the current directory. The path may also include the special text
‘$ASPECT_SOURCE_DIR’ which will be interpreted as the path in which the ASPECT source files

402

were located when ASPECT was compiled. This interpretation allows, for example, to reference files
located in the ‘data/’ subdirectory of ASPECT.
Possible values: A directory name

• Parameter name: Data file name

Value:
Default:
Description: The file name of the model data. Provide file in format: (Velocity file name).%s%d where
%s is a string specifying the boundary of the model according to the names of the boundary indicators
(of the chosen geometry model).%d is any sprintf integer qualifier, specifying the format of the current
file number.
Possible values: Any string

• Parameter name: Scale factor

Value: 1.
Default: 1.
Description: Scalar factor, which is applied to the model data. You might want to use this to scale
the input to a reference model. Another way to use this factor is to convert units of the input files.
For instance, if you provide velocities in cm/yr set this factor to 0.01.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

A.93 Parameters in section Material model/Averaging
• Parameter name: Averaging operation

Value: none
Default: none
Description: Choose the averaging operation to use.
Possible values: Any one of none, arithmetic average, harmonic average, geometric average, pick largest,
log average, nwd arithmetic average, nwd harmonic average, nwd geometric average

• Parameter name: Base model

Value: simple
Default: simple
Description: The name of a material model that will be modified by an averaging operation. Valid
values for this parameter are the names of models that are also valid for the “Material models/Model
name” parameter. See the documentation for that for more information.
Possible values: Any one of Steinberger, ascii reference profile, averaging, compositing, composition
reaction, depth dependent, diffusion dislocation, drucker prager, dynamic friction, grain size, latent
heat, latent heat melt, melt global, melt simple, modified tait, multicomponent, multicomponent com-
pressible, nondimensional, perplex lookup, replace lithosphere viscosity, simple, simple compressible,
simpler, visco plastic, viscoelastic

• Parameter name: Bell shape limit

Value: 1.
Default: 1.
Description: The limit normalized distance between 0 and 1 where the bell shape becomes zero. See
the manual for a more information.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

403

A.94 Parameters in section Material model/Compositing
• Parameter name: Compressibility
Value: unspecified
Default: unspecified
Description: Material model to use for Compressibility. Valid values for this parameter are the names
of models that are also valid for the “Material models/Model name” parameter. See the documentation
for that for more information.
Possible values: Any one of Steinberger, ascii reference profile, averaging, compositing, composition
reaction, depth dependent, diffusion dislocation, drucker prager, dynamic friction, grain size, latent
heat, latent heat melt, melt global, melt simple, modified tait, multicomponent, multicomponent com-
pressible, nondimensional, perplex lookup, replace lithosphere viscosity, simple, simple compressible,
simpler, visco plastic, viscoelastic, unspecified

• Parameter name: Density
Value: unspecified
Default: unspecified
Description: Material model to use for Density. Valid values for this parameter are the names of
models that are also valid for the “Material models/Model name” parameter. See the documentation
for that for more information.
Possible values: Any one of Steinberger, ascii reference profile, averaging, compositing, composition
reaction, depth dependent, diffusion dislocation, drucker prager, dynamic friction, grain size, latent
heat, latent heat melt, melt global, melt simple, modified tait, multicomponent, multicomponent com-
pressible, nondimensional, perplex lookup, replace lithosphere viscosity, simple, simple compressible,
simpler, visco plastic, viscoelastic, unspecified

• Parameter name: Entropy derivative pressure

Value: unspecified
Default: unspecified
Description: Material model to use for Entropy derivative pressure. Valid values for this parameter
are the names of models that are also valid for the “Material models/Model name” parameter. See the
documentation for that for more information.
Possible values: Any one of Steinberger, ascii reference profile, averaging, compositing, composition
reaction, depth dependent, diffusion dislocation, drucker prager, dynamic friction, grain size, latent
heat, latent heat melt, melt global, melt simple, modified tait, multicomponent, multicomponent com-
pressible, nondimensional, perplex lookup, replace lithosphere viscosity, simple, simple compressible,
simpler, visco plastic, viscoelastic, unspecified

• Parameter name: Entropy derivative temperature

Value: unspecified
Default: unspecified
Description: Material model to use for Entropy derivative temperature. Valid values for this parameter
are the names of models that are also valid for the “Material models/Model name” parameter. See the
documentation for that for more information.
Possible values: Any one of Steinberger, ascii reference profile, averaging, compositing, composition
reaction, depth dependent, diffusion dislocation, drucker prager, dynamic friction, grain size, latent
heat, latent heat melt, melt global, melt simple, modified tait, multicomponent, multicomponent com-
pressible, nondimensional, perplex lookup, replace lithosphere viscosity, simple, simple compressible,
simpler, visco plastic, viscoelastic, unspecified

404

• Parameter name: Reaction terms

Value: unspecified
Default: unspecified
Description: Material model to use for Reaction terms. Valid values for this parameter are the names
of models that are also valid for the “Material models/Model name” parameter. See the documentation
for that for more information.
Possible values: Any one of Steinberger, ascii reference profile, averaging, compositing, composition
reaction, depth dependent, diffusion dislocation, drucker prager, dynamic friction, grain size, latent
heat, latent heat melt, melt global, melt simple, modified tait, multicomponent, multicomponent com-
pressible, nondimensional, perplex lookup, replace lithosphere viscosity, simple, simple compressible,
simpler, visco plastic, viscoelastic, unspecified

• Parameter name: Specific heat

Value: unspecified
Default: unspecified
Description: Material model to use for Specific heat. Valid values for this parameter are the names of
models that are also valid for the “Material models/Model name” parameter. See the documentation
for that for more information.
Possible values: Any one of Steinberger, ascii reference profile, averaging, compositing, composition
reaction, depth dependent, diffusion dislocation, drucker prager, dynamic friction, grain size, latent
heat, latent heat melt, melt global, melt simple, modified tait, multicomponent, multicomponent com-
pressible, nondimensional, perplex lookup, replace lithosphere viscosity, simple, simple compressible,
simpler, visco plastic, viscoelastic, unspecified

• Parameter name: Thermal conductivity

Value: unspecified
Default: unspecified
Description: Material model to use for Thermal conductivity. Valid values for this parameter are
the names of models that are also valid for the “Material models/Model name” parameter. See the
documentation for that for more information.
Possible values: Any one of Steinberger, ascii reference profile, averaging, compositing, composition
reaction, depth dependent, diffusion dislocation, drucker prager, dynamic friction, grain size, latent
heat, latent heat melt, melt global, melt simple, modified tait, multicomponent, multicomponent com-
pressible, nondimensional, perplex lookup, replace lithosphere viscosity, simple, simple compressible,
simpler, visco plastic, viscoelastic, unspecified

• Parameter name: Thermal expansion coefficient

Value: unspecified
Default: unspecified
Description: Material model to use for Thermal expansion coefficient. Valid values for this parameter
are the names of models that are also valid for the “Material models/Model name” parameter. See the
documentation for that for more information.
Possible values: Any one of Steinberger, ascii reference profile, averaging, compositing, composition
reaction, depth dependent, diffusion dislocation, drucker prager, dynamic friction, grain size, latent
heat, latent heat melt, melt global, melt simple, modified tait, multicomponent, multicomponent com-
pressible, nondimensional, perplex lookup, replace lithosphere viscosity, simple, simple compressible,
simpler, visco plastic, viscoelastic, unspecified

405

• Parameter name: Viscosity
Value: unspecified
Default: unspecified
Description: Material model to use for Viscosity. Valid values for this parameter are the names of
models that are also valid for the “Material models/Model name” parameter. See the documentation
for that for more information.
Possible values: Any one of Steinberger, ascii reference profile, averaging, compositing, composition
reaction, depth dependent, diffusion dislocation, drucker prager, dynamic friction, grain size, latent
heat, latent heat melt, melt global, melt simple, modified tait, multicomponent, multicomponent com-
pressible, nondimensional, perplex lookup, replace lithosphere viscosity, simple, simple compressible,
simpler, visco plastic, viscoelastic, unspecified

A.95 Parameters in section Material model/Composition reaction model
• Parameter name: Composition viscosity prefactor 1

Value: 1.0
Default: 1.0
Description: A linear dependency of viscosity on the first compositional field. Dimensionless prefactor.
With a value of 1.0 (the default) the viscosity does not depend on the composition.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Composition viscosity prefactor 2

Value: 1.0
Default: 1.0
Description: A linear dependency of viscosity on the second compositional field. Dimensionless pref-
actor. With a value of 1.0 (the default) the viscosity does not depend on the composition.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Density differential for compositional field 1

Value: 0.
Default: 0.
Description: If compositional fields are used, then one would frequently want to make the density
depend on these fields. In this simple material model, we make the following assumptions: if no
compositional fields are used in the current simulation, then the density is simply the usual one with
its linear dependence on the temperature. If there are compositional fields, then the material model
determines how many of them influence the density. The composition-dependence adds a term of the
kind +∆ρ c1(x). This parameter describes the value of ∆ρ. Units: kg/m3/unit change in composition.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Density differential for compositional field 2

Value: 0.
Default: 0.
Description: If compositional fields are used, then one would frequently want to make the density
depend on these fields. In this simple material model, we make the following assumptions: if no
compositional fields are used in the current simulation, then the density is simply the usual one with
its linear dependence on the temperature. If there are compositional fields, then the material model

406

determines how many of them influence the density. The composition-dependence adds a term of the
kind +∆ρ c2(x). This parameter describes the value of ∆ρ. Units: kg/m3/unit change in composition.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Reaction depth

Value: 0.
Default: 0.
Description: Above this depth the compositional fields react: The first field gets converted to the
second field. Units: m.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference density

Value: 3300
Default: 3300
Description: Reference density ρ0. Units: kg/m3.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference specific heat

Value: 1250
Default: 1250
Description: The value of the specific heat Cp. Units: J/kg/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference temperature

Value: 293.
Default: 293.
Description: The reference temperature T0. Units: K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal conductivity

Value: 4.7
Default: 4.7
Description: The value of the thermal conductivity k. Units: W/m/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal expansion coefficient

Value: 2e-5
Default: 2e-5
Description: The value of the thermal expansion coefficient α. Units: 1/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal viscosity exponent

Value: 0.0
Default: 0.0
Description: The temperature dependence of viscosity. Dimensionless exponent.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

407

• Parameter name: Viscosity
Value: 5e24
Default: 5e24
Description: The value of the constant viscosity. Units: kg/m/s.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.96 Parameters in section Material model/Depth dependent model
• Parameter name: Base model

Value: simple
Default: simple
Description: The name of a material model that will be modified by a depth dependent viscosity. Valid
values for this parameter are the names of models that are also valid for the “Material models/Model
name” parameter. See the documentation for that for more information.
Possible values: Any one of Steinberger, ascii reference profile, averaging, compositing, composition
reaction, depth dependent, diffusion dislocation, drucker prager, dynamic friction, grain size, latent
heat, latent heat melt, melt global, melt simple, modified tait, multicomponent, multicomponent com-
pressible, nondimensional, perplex lookup, replace lithosphere viscosity, simple, simple compressible,
simpler, visco plastic, viscoelastic

• Parameter name: Data directory

Value: ./
Default: ./
Description: The path to the model data. The path may also include the special text ‘$ASPECT_SOURCE_DIR’
which will be interpreted as the path in which the ASPECT source files were located when ASPECT
was compiled. This interpretation allows, for example, to reference files located in the ‘data/’ subdi-
rectory of ASPECT.
Possible values: A directory name

• Parameter name: Depth dependence method

Value: None
Default: None
Description: Method that is used to specify how the viscosity should vary with depth.
Possible values: Any one of Function, File, List, None

• Parameter name: Depth list

Value:
Default:
Description: A comma-separated list of depth values for use with the “List” “Depth dependence
method”. The list must be provided in order of increasing depth, and the last value must be greater
than or equal to the maximal depth of the model. The depth list is interpreted as a layered viscosity
structure and the depth values specify the maximum depths of each layer.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE]

408

• Parameter name: Viscosity depth file

Value: visc-depth.txt
Default: visc-depth.txt
Description: The name of the file containing depth-dependent viscosity data.
Possible values: Any string

• Parameter name: Viscosity list

Value:
Default:
Description: A comma-separated list of viscosity values, corresponding to the depth values provided in
“Depth list”. The number of viscosity values specified here must be the same as the number of depths
provided in “Depth list”
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE]

A.97 Parameters in section Material model/Depth dependent model/Viscosity depth
function

• Parameter name: Function constants

Value:
Default:
Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘var1=value1, var2=value2, ...’.
A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: Any string

• Parameter name: Function expression

Value: 1.0e21
Default: 1.0e21
Possible values: Any string

• Parameter name: Variable names

Value: x,t
Default: x,t
Description: The names of the variables as they will be used in the function, separated by commas.
By default, the names of variables at which the function will be evaluated are ‘x’ (in 1d), ‘x,y’ (in 2d)
or ‘x,y,z’ (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’ and then use these variable names in your
function expression.
Possible values: Any string

409

A.98 Parameters in section Material model/Diffusion dislocation
• Parameter name: Activation energies for diffusion creep

Value: 375e3
Default: 375e3
Description: List of activation energies, Ea, for background mantle and compositional fields, for a total
of N+1 values, where N is the number of compositional fields. If only one value is given, then all use
the same value. Units: J/mol
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Activation energies for dislocation creep

Value: 530e3
Default: 530e3
Description: List of activation energies, Ea, for background mantle and compositional fields, for a total
of N+1 values, where N is the number of compositional fields. If only one value is given, then all use
the same value. Units: J/mol
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Activation volumes for diffusion creep

Value: 6e-6
Default: 6e-6
Description: List of activation volumes, Va, for background mantle and compositional fields, for a total
of N+1 values, where N is the number of compositional fields. If only one value is given, then all use
the same value. Units: m3/mol

Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Activation volumes for dislocation creep

Value: 1.4e-5
Default: 1.4e-5
Description: List of activation volumes, Va, for background mantle and compositional fields, for a total
of N+1 values, where N is the number of compositional fields. If only one value is given, then all use
the same value. Units: m3/mol

Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Densities
Value: 3300.
Default: 3300.
Description: List of densities, ρ, for background mantle and compositional fields, for a total of N+1
values, where N is the number of compositional fields. If only one value is given, then all use the same
value. Units: kg/m3

Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

410

• Parameter name: Effective viscosity coefficient

Value: 1.0
Default: 1.0
Description: Scaling coefficient for effective viscosity.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Grain size

Value: 1e-3
Default: 1e-3
Description: Units: m
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Grain size exponents for diffusion creep

Value: 3.
Default: 3.
Description: List of grain size exponents, mdiffusion, for background mantle and compositional fields,
for a total of N+1 values, where N is the number of compositional fields. If only one value is given,
then all use the same value. Units: None
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Heat capacity

Value: 1.25e3
Default: 1.25e3
Description: The value of the specific heat Cp. Units: J/kg/K
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Maximum strain rate ratio iterations

Value: 40
Default: 40
Description: Maximum number of iterations to find the correct diffusion/dislocation strain rate ratio.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Maximum viscosity

Value: 1e28
Default: 1e28
Description: Upper cutoff for effective viscosity. Units: Pa s
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Minimum strain rate

Value: 1.4e-20
Default: 1.4e-20
Description: Stabilizes strain dependent viscosity. Units: 1/s
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

411

• Parameter name: Minimum viscosity

Value: 1e17
Default: 1e17
Description: Lower cutoff for effective viscosity. Units: Pa s
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Prefactors for diffusion creep

Value: 1.5e-15
Default: 1.5e-15
Description: List of viscosity prefactors, A, for background mantle and compositional fields, for a total
of N+1 values, where N is the number of compositional fields. If only one value is given, then all use
the same value. Units: Pa−1mmdiffusions−1

Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Prefactors for dislocation creep

Value: 1.1e-16
Default: 1.1e-16
Description: List of viscosity prefactors, A, for background mantle and compositional fields, for a total
of N+1 values, where N is the number of compositional fields. If only one value is given, then all use
the same value. Units: Pa−ndislocations−1

Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Reference temperature

Value: 293.
Default: 293.
Description: For calculating density by thermal expansivity. Units: K
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference viscosity

Value: 1e22
Default: 1e22
Description: The reference viscosity that is used for pressure scaling. To understand how pressure
scaling works, take a look at [59]. In particular, the value of this parameter would not affect the
solution computed by ASPECT if we could do arithmetic exactly; however, computers do arithmetic
in finite precision, and consequently we need to scale quantities in ways so that their magnitudes
are roughly the same. As explained in [59], we scale the pressure during some computations (never
visible by users) by a factor that involves a reference viscosity. This parameter describes this reference
viscosity.
For problems with a constant viscosity, you will generally want to choose the reference viscosity equal
to the actual viscosity. For problems with a variable viscosity, the reference viscosity should be a value
that adequately represents the order of magnitude of the viscosities that appear, such as an average
value or the value one would use to compute a Rayleigh number.
Units: Pa s
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

412

• Parameter name: Strain rate residual tolerance

Value: 1e-22
Default: 1e-22
Description: Tolerance for correct diffusion/dislocation strain rate ratio.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Stress exponents for diffusion creep

Value: 1.
Default: 1.
Description: List of stress exponents, ndiffusion, for background mantle and compositional fields, for a
total of N+1 values, where N is the number of compositional fields. If only one value is given, then all
use the same value. Units: None
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Stress exponents for dislocation creep

Value: 3.5
Default: 3.5
Description: List of stress exponents, ndislocation, for background mantle and compositional fields, for
a total of N+1 values, where N is the number of compositional fields. If only one value is given, then
all use the same value. Units: None
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Thermal diffusivity

Value: 0.8e-6
Default: 0.8e-6
Description: Units: m2/s

Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal expansivities

Value: 3.5e-5
Default: 3.5e-5
Description: List of thermal expansivities for background mantle and compositional fields, for a total
of N+1 values, where N is the number of compositional fields. If only one value is given, then all use
the same value. Units: 1/K
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Viscosity averaging scheme

Value: harmonic
Default: harmonic
Description: When more than one compositional field is present at a point with different viscosities,
we need to come up with an average viscosity at that point. Select a weighted harmonic, arithmetic,
geometric, or maximum composition.
Possible values: Any one of arithmetic, harmonic, geometric, maximum composition

413

A.99 Parameters in section Material model/Drucker Prager
• Parameter name: Reference density

Value: 3300
Default: 3300
Description: Reference density ρ0. Units: kg/m3.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference specific heat

Value: 1250
Default: 1250
Description: The value of the specific heat Cp. Units: J/kg/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference temperature

Value: 293.
Default: 293.
Description: The reference temperature T0. The reference temperature is used in the density calcula-
tion. Units: K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference viscosity

Value: 1e22
Default: 1e22
Description: The reference viscosity that is used for pressure scaling. To understand how pressure
scaling works, take a look at [59]. In particular, the value of this parameter would not affect the
solution computed by ASPECT if we could do arithmetic exactly; however, computers do arithmetic
in finite precision, and consequently we need to scale quantities in ways so that their magnitudes
are roughly the same. As explained in [59], we scale the pressure during some computations (never
visible by users) by a factor that involves a reference viscosity. This parameter describes this reference
viscosity.
For problems with a constant viscosity, you will generally want to choose the reference viscosity equal
to the actual viscosity. For problems with a variable viscosity, the reference viscosity should be a value
that adequately represents the order of magnitude of the viscosities that appear, such as an average
value or the value one would use to compute a Rayleigh number.
Units: Pa s
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal conductivity

Value: 4.7
Default: 4.7
Description: The value of the thermal conductivity k. Units: W/m/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

414

• Parameter name: Thermal expansion coefficient

Value: 2e-5
Default: 2e-5
Description: The value of the thermal expansion coefficient α. Units: 1/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.100 Parameters in section Material model/Drucker Prager/Viscosity
• Parameter name: Angle of internal friction

Value: 0.
Default: 0.
Description: The value of the angle of internal friction φ. For a value of zero, in 2D the von Mises
criterion is retrieved. Angles higher than 30 degrees are harder to solve numerically. Units: degrees.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Cohesion
Value: 2e7
Default: 2e7
Description: The value of the cohesion C. Units: Pa.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Maximum viscosity

Value: 1e24
Default: 1e24
Description: The value of the maximum viscosity cutoff ηmax. Units: Pa s.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Minimum viscosity

Value: 1e19
Default: 1e19
Description: The value of the minimum viscosity cutoff ηmin. Units: Pa s.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference strain rate

Value: 1e-15
Default: 1e-15
Description: The value of the initial strain rate prescribed during the first nonlinear iteration ε̇ref .
Units: 1/s.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

415

A.101 Parameters in section Material model/Dynamic Friction
• Parameter name: Densities
Value: 3300.
Default: 3300.
Description: List of densities for background mantle and compositional fields,for a total of N+M+1
values, where N is the number of compositional fields and M is the number of phases. If only one value
is given, then all use the same value. Units: kg/m3

Possible values: Any string

• Parameter name: Heat capacities

Value: 1250.
Default: 1250.
Description: List of specific heats Cp for background mantle and compositional fields,for a total of
N+M+1 values, where N is the number of compositional fields and M is the number of phases. If only
one value is given, then all use the same value. Units: J/kg/K
Possible values: Any string

• Parameter name: Reference temperature

Value: 293.
Default: 293.
Description: The reference temperature T0. Units: K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Specific heats

This parameter is an alias for the parameter “Heat capacities”.

• Parameter name: Thermal conductivities

Value: 4.7
Default: 4.7
Description: List of thermal conductivities for background mantle and compositional fields,for a total
of N+1 values, where N is the number of compositional fields.If only one value is given, then all use
the same value. Units: W/m/K.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Thermal expansivities

Value: 0.000040
Default: 0.000040
Description: List of thermal expansivities for background mantle and compositional fields,for a total
of N+M+1 values, where N is the number of compositional fields and M is the number of phases. If
only one value is given, then all use the same value. Units: 1/K
Possible values: Any string

416

• Parameter name: Viscosity averaging scheme

Value: harmonic
Default: harmonic
Description: When more than one compositional field is present at a point with different viscosities,
we need to come up with an average viscosity at that point. Select a weighted harmonic, arithmetic,
geometric, or maximum composition.
Possible values: Any one of arithmetic, harmonic, geometric, maximum composition

A.102 Parameters in section Material model/Dynamic Friction/Viscosities
• Parameter name: Background Viscosities

Value: 1.e20
Default: 1.e20
Description: List of background viscosities for mantle and compositional fields,for a total of N+1
values, where N is the number of compositional fields.If only one value is given, then all use the same
value. Units: Pa s
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Coefficients of dynamic friction

Value: 0.4
Default: 0.4
Description: List of coefficients of dynamic friction for background mantle and compositional fields,for
a total of N+1 values, where N is the number of compositional fields.If only one value is given, then
all use the same value. Units: dimensionless
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Coefficients of static friction

Value: 0.5
Default: 0.5
Description: List of coefficients of static friction for background mantle and compositional fields,for a
total of N+1 values, where N is the number of compositional fields.If only one value is given, then all
use the same value. Units: dimensionless
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Cohesions
Value: 4.e6
Default: 4.e6
Description: List of cohesions for background mantle and compositional fields,for a total of N+1 values,
where N is the number of compositional fields.If only one value is given, then all use the same value.
Units: Pa
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

417

• Parameter name: Maximum viscosity

Value: 1e24
Default: 1e24
Description: The value of the maximum viscosity cutoff ηmax. Units: Pa s.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Minimum viscosity

Value: 1e19
Default: 1e19
Description: The value of the minimum viscosity cutoff ηmin. Units: Pa s.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference strain rate

Value: 1e-15
Default: 1e-15
Description: The value of the initial strain rate prescribed during the first nonlinear iteration ε̇ref .
Units: 1/s.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.103 Parameters in section Material model/Grain size model
• Parameter name: Advect logarithm of grain size

Value: false
Default: false
Description: This parameter determines whether to advect the logarithm of the grain size or the grain
size itself. The equation and the physics are the same, but for problems with high grain size gradients
it might be preferable to advect the logarithm.
Possible values: A boolean value (true or false)

• Parameter name: Average specific grain boundary energy

Value: 1.0
Default: 1.0
Description: The average specific grain boundary energy γ. Units: J/m2.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Bilinear interpolation

Value: true
Default: true
Description: This parameter determines whether to use bilinear interpolation to compute material
properties (slower but more accurate).
Possible values: A boolean value (true or false)

418

• Parameter name: Data directory

Value: $ASPECT_SOURCE_DIR/data/material-model/steinberger/
Default: $ASPECT_SOURCE_DIR/data/material-model/steinberger/
Description: The path to the model data. The path may also include the special text ’$ASPECT_SOURCE_DIR’
which will be interpreted as the path in which the ASPECT source files were located when ASPECT
was compiled. This interpretation allows, for example, to reference files located in the ’data/’ subdi-
rectory of ASPECT.
Possible values: A directory name

• Parameter name: Derivatives file names

Value:
Default:
Description: The file names of the enthalpy derivatives data. List with as many components as active
compositional fields (material data is assumed to be in order with the ordering of the fields).
Possible values: A list of 0 to 4294967295 elements where each element is [Any string]

• Parameter name: Diffusion activation energy

Value: 3.35e5
Default: 3.35e5
Description: The activation energy for diffusion creep Ediff . Units: J/mol.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Diffusion activation volume

Value: 4e-6
Default: 4e-6
Description: The activation volume for diffusion creep Vdiff . Units: m3/mol.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Diffusion creep exponent

Value: 1.
Default: 1.
Description: The power-law exponent ndiff for diffusion creep. Units: none.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Diffusion creep grain size exponent

Value: 3.
Default: 3.
Description: The diffusion creep grain size exponent pdiff that determines the dependence of vescosity
on grain size. Units: none.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

419

• Parameter name: Diffusion creep prefactor

Value: 7.4e-15
Default: 7.4e-15
Description: The prefactor for the diffusion creep law Adiff . Units: mpdiffPa−ndiff /s.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Dislocation activation energy

Value: 4.8e5
Default: 4.8e5
Description: The activation energy for dislocation creep Edis. Units: J/mol.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Dislocation activation volume

Value: 1.1e-5
Default: 1.1e-5
Description: The activation volume for dislocation creep Vdis. Units: m3/mol.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Dislocation creep exponent

Value: 3.5
Default: 3.5
Description: The power-law exponent ndis for dislocation creep. Units: none.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Dislocation creep prefactor

Value: 4.5e-15
Default: 4.5e-15
Description: The prefactor for the dislocation creep law Adis. Units: Pa−ndis/s.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Dislocation viscosity iteration number

Value: 100
Default: 100
Description: We need to perform an iteration inside the computation of the dislocation viscosity,
because it depends on the dislocation strain rate, which depends on the dislocation viscosity itself.
This number determines the maximum number of iterations that are performed.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

420

• Parameter name: Dislocation viscosity iteration threshold

Value: 1e-3
Default: 1e-3
Description: We need to perform an iteration inside the computation of the dislocation viscosity,
because it depends on the dislocation strain rate, which depends on the dislocation viscosity itself.
This number determines the termination accuracy, i.e. if the dislocation viscosity changes by less than
this factor we terminate the iteration.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Geometric constant

Value: 3.
Default: 3.
Description: The geometric constant c used in the paleowattmeter grain size reduction law. Units:
none.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Grain growth activation energy

Value: 3.5e5
Default: 3.5e5
Description: The activation energy for grain growth Eg. Units: J/mol.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Grain growth activation volume

Value: 8e-6
Default: 8e-6
Description: The activation volume for grain growth Vg. Units: m3/mol.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Grain growth exponent

Value: 3.
Default: 3.
Description: The exponent of the grain growth law pg. This is an experimentally determined grain
growth constant. Units: none.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Grain growth rate constant

Value: 1.5e-5
Default: 1.5e-5
Description: The prefactor for the Ostwald ripening grain growth law G0. This is dependent on water
content, which is assumed to be 50 H/106 Si for the default value. Units: mpg/s.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

421

• Parameter name: Lower mantle grain size scaling

Value: 1.0
Default: 1.0
Description: A scaling factor for the grain size in the lower mantle. In models where the high grain
size contrast between the upper and lower mantle causes numerical problems, the grain size in the
lower mantle can be scaled to a larger value, simultaneously scaling the viscosity prefactors and grain
growth parameters to keep the same physical behavior. Differences to the original formulation only
occur when material with a smaller grain size than the recrystallization grain size cross the upper-lower
mantle boundary. The real grain size can be obtained by dividing the model grain size by this value.
Units: none.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Material file format

Value: perplex
Default: perplex
Description: The material file format to be read in the property tables.
Possible values: Any one of perplex, hefesto

• Parameter name: Material file names

Value: pyr-ringwood88.txt
Default: pyr-ringwood88.txt
Description: The file names of the material data. List with as many components as active compositional
fields (material data is assumed to be in order with the ordering of the fields).
Possible values: A list of 0 to 4294967295 elements where each element is [Any string]

• Parameter name: Maximum latent heat substeps

Value: 1
Default: 1
Description: The maximum number of substeps over the temperature pressure range to calculate the
averaged enthalpy gradient over a cell.
Possible values: An integer n such that 1 ≤ n ≤ 2147483647

• Parameter name: Maximum specific heat

Value: 6000.
Default: 6000.
Description: The maximum specific heat that is allowed in the whole model domain. Units: J/kg/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Maximum temperature dependence of viscosity

Value: 100.
Default: 100.
Description: The factor by which viscosity at adiabatic temperature and ambient temperature are
allowed to differ (a value of x means that the viscosity can be x times higher or x times lower compared
to the value at adiabatic temperature. This parameter is introduced to limit local viscosity contrasts,
but still allow for a widely varying viscosity over the whole mantle range. Units: none.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

422

• Parameter name: Maximum thermal expansivity

Value: 1e-3
Default: 1e-3
Description: The maximum thermal expansivity that is allowed in the whole model domain. Units:
1/K.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Maximum viscosity

Value: 1e26
Default: 1e26
Description: The maximum viscosity that is allowed in the whole model domain. Units: Pa s.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Minimum grain size

Value: 1e-5
Default: 1e-5
Description: The minimum grain size that is used for the material model. This parameter is introduced
to limit local viscosity contrasts, but still allows for a widely varying viscosity over the whole mantle
range. Units: m.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Minimum specific heat

Value: 500.
Default: 500.
Description: The minimum specific heat that is allowed in the whole model domain. Units: J/kg/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Minimum thermal expansivity

Value: 1e-5
Default: 1e-5
Description: The minimum thermal expansivity that is allowed in the whole model domain. Units:
1/K.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Minimum viscosity

Value: 1e18
Default: 1e18
Description: The minimum viscosity that is allowed in the whole model domain. Units: Pa s.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Phase transition Clapeyron slopes

Value:
Default:
Description: A list of Clapeyron slopes for each phase transition. A positive Clapeyron slope indicates
that the phase transition will occur in a greater depth, if the temperature is higher than the one given

423

in Phase transition temperatures and in a smaller depth, if the temperature is smaller than the one
given in Phase transition temperatures. For negative slopes the other way round. List must have the
same number of entries as Phase transition depths. Units: Pa/K.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE]

• Parameter name: Phase transition depths

Value:
Default:
Description: A list of depths where phase transitions occur. Values must monotonically increase.
Units: m.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Phase transition temperatures

Value:
Default:
Description: A list of temperatures where phase transitions occur. Higher or lower temperatures lead to
phase transition ocurring in smaller or greater depths than given in Phase transition depths, depending
on the Clapeyron slope given in Phase transition Clapeyron slopes. List must have the same number
of entries as Phase transition depths. Units: K.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Phase transition widths

Value:
Default:
Description: A list of widths for each phase transition. This is only use to specify the region where the
recrystallized grain size is assigned after material has crossed a phase transition and should accordingly
be chosen similar to the maximum cell width expected at the phase transition.List must have the same
number of entries as Phase transition depths. Units: m.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Reciprocal required strain

Value: 10.
Default: 10.
Description: This parameter (λ) gives an estimate of the strain necessary to achieve a new grain size.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Recrystallized grain size

Value:
Default:
Description: The grain size dph to that a phase will be reduced to when crossing a phase transition.
When set to zero, grain size will not be reduced. Units: m.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

424

• Parameter name: Reference compressibility

Value: 4e-12
Default: 4e-12
Description: The value of the reference compressibility. Units: 1/Pa.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference density

Value: 3300
Default: 3300
Description: The reference density ρ0. Units: kg/m3.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference specific heat

Value: 1250.
Default: 1250.
Description: The value of the specific heat cp. Units: J/kg/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference temperature

Value: 293.
Default: 293.
Description: The reference temperature T0. Units: K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal conductivity

Value: 4.7
Default: 4.7
Description: The value of the thermal conductivity k. Units: W/m/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal expansion coefficient

Value: 2e-5
Default: 2e-5
Description: The value of the thermal expansion coefficient α. Units: 1/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Use enthalpy for material properties

Value: true
Default: true
Description: This parameter determines whether to use the enthalpy to calculate the thermal expansiv-
ity and specific heat (if true) or use the thermal expansivity and specific heat values from the material
properties table directly (if false).
Possible values: A boolean value (true or false)

425

• Parameter name: Use paleowattmeter

Value: true
Default: true
Description: A flag indicating whether the computation should be use the paleowattmeter approach
of Austin and Evans (2007) for grain size reduction in the dislocation creep regime (if true) or the
paleopiezometer approach from Hall and Parmetier (2003) (if false).
Possible values: A boolean value (true or false)

• Parameter name: Use table properties

Value: false
Default: false
Description: This parameter determines whether to use the table properties also for density, thermal
expansivity and specific heat. If false the properties are generated as in the simple compressible plugin.
Possible values: A boolean value (true or false)

• Parameter name: Viscosity
Value: 5e24
Default: 5e24
Description: The value of the constant viscosity. Units: kg/m/s.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Work fraction for boundary area change

Value: 0.1
Default: 0.1
Description: The fraction χ of work done by dislocation creep to change the grain boundary area.
Units: J/m2.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

A.104 Parameters in section Material model/Latent heat
• Parameter name: Composition viscosity prefactor

Value: 1.0
Default: 1.0
Description: A linear dependency of viscosity on composition. Dimensionless prefactor.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Compressibility
Value: 5.124e-12
Default: 5.124e-12
Description: The value of the compressibility κ. Units: 1/Pa.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

426

• Parameter name: Corresponding phase for density jump

Value:
Default:
Description: A list of phases, which correspond to the Phase transition density jumps. The density
jumps occur only in the phase that is given by this phase value. 0 stands for the 1st compositional
fields, 1 for the second compositional field and -1 for none of them. List must have the same number
of entries as Phase transition depths. Units: Pa/K.
Possible values: A list of 0 to 4294967295 elements where each element is [An integer n such that
0 ≤ n ≤ 2147483647]

• Parameter name: Define transition by depth instead of pressure

Value: true
Default: true
Description: Whether to list phase transitions by depth or pressure. If this parameter is true, then the
input file will use Phase transitions depths and Phase transition widths to define the phase transition.
If it is false, the parameter file will read in phase transition data from Phase transition pressures and
Phase transition pressure widths.
Possible values: A boolean value (true or false)

• Parameter name: Density differential for compositional field 1

Value: 0.
Default: 0.
Description: If compositional fields are used, then one would frequently want to make the density
depend on these fields. In this simple material model, we make the following assumptions: if no
compositional fields are used in the current simulation, then the density is simply the usual one with
its linear dependence on the temperature. If there are compositional fields, then the density only
depends on the first one in such a way that the density has an additional term of the kind +∆ρ c1(x).
This parameter describes the value of ∆ρ. Units: kg/m3/unit change in composition.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Maximum viscosity

Value: 1e24
Default: 1e24
Description: Limit for the maximum viscosity in the model. Units: Pa s.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Minimum viscosity

Value: 1e19
Default: 1e19
Description: Limit for the minimum viscosity in the model. Units: Pa s.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Phase transition Clapeyron slopes

Value:
Default:

427

Description: A list of Clapeyron slopes for each phase transition. A positive Clapeyron slope indicates
that the phase transition will occur in a greater depth, if the temperature is higher than the one given
in Phase transition temperatures and in a smaller depth, if the temperature is smaller than the one
given in Phase transition temperatures. For negative slopes the other way round. List must have the
same number of entries as Phase transition depths. Units: Pa/K.
Possible values: Any string

• Parameter name: Phase transition density jumps

Value:
Default:
Description: A list of density jumps at each phase transition. A positive value means that the density
increases with depth. The corresponding entry in Corresponding phase for density jump determines
if the density jump occurs in peridotite, eclogite or none of them.List must have the same number of
entries as Phase transition depths. Units: kg/m3.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Phase transition depths

Value:
Default:
Description: A list of depths where phase transitions occur. Values must monotonically increase.
Units: m.
Possible values: Any string

• Parameter name: Phase transition pressure widths

Value:
Default:
Description: A list of widths for each phase transition, in terms of pressure. The phase functions are
scaled with these values, leading to a jump between phases for a value of zero and a gradual transition
for larger values. List must have the same number of entries as Phase transition pressures. Define
transition by depth instead of pressure must be set to false to use this parameter. Units: Pa.
Possible values: Any string

• Parameter name: Phase transition pressures

Value:
Default:
Description: A list of pressures where phase transitions occur. Values must monotonically increase.
Define transition by depth instead of pressure must be set to false to use this parameter. Units: Pa.
Possible values: Any string

• Parameter name: Phase transition temperatures

Value:
Default:
Description: A list of temperatures where phase transitions occur. Higher or lower temperatures
lead to phase transition occurring in smaller or greater depths than given in Phase transition depths,
depending on the Clapeyron slope given in Phase transition Clapeyron slopes. List must have the same
number of entries as Phase transition depths. Units: K.
Possible values: Any string

428

• Parameter name: Phase transition widths

Value:
Default:
Description: A list of widths for each phase transition, in terms of depth. The phase functions are
scaled with these values, leading to a jump between phases for a value of zero and a gradual transition
for larger values. List must have the same number of entries as Phase transition depths. Units: m.
Possible values: Any string

• Parameter name: Reference density

Value: 3300.
Default: 3300.
Description: Reference density ρ0. Units: kg/m3.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference specific heat

Value: 1250.
Default: 1250.
Description: The value of the specific heat Cp. Units: J/kg/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference temperature

Value: 293.
Default: 293.
Description: The reference temperature T0. Units: K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal conductivity

Value: 2.38
Default: 2.38
Description: The value of the thermal conductivity k. Units: W/m/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal expansion coefficient

Value: 4e-5
Default: 4e-5
Description: The value of the thermal expansion coefficient β. Units: 1/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal viscosity exponent

Value: 0.0
Default: 0.0
Description: The temperature dependence of viscosity. Dimensionless exponent.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

429

• Parameter name: Viscosity
Value: 5e24
Default: 5e24
Description: The value of the constant viscosity. Units: kg/m/s.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Viscosity prefactors

Value:
Default:
Description: A list of prefactors for the viscosity for each phase. The reference viscosity will be
multiplied by this factor to get the corresponding viscosity for each phase. List must have one more
entry than Phase transition depths. Units: non-dimensional.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

A.105 Parameters in section Material model/Latent heat melt
• Parameter name: A1
Value: 1085.7
Default: 1085.7
Description: Constant parameter in the quadratic function that approximates the solidus of peridotite.
Units: ◦C.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: A2
Value: 1.329e-7
Default: 1.329e-7
Description: Prefactor of the linear pressure term in the quadratic function that approximates the
solidus of peridotite. Units: ◦C/Pa.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: A3
Value: -5.1e-18
Default: -5.1e-18
Description: Prefactor of the quadratic pressure term in the quadratic function that approximates the
solidus of peridotite. Units: ◦C/(Pa2).
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: B1
Value: 1475.0
Default: 1475.0
Description: Constant parameter in the quadratic function that approximates the lherzolite liquidus
used for calculating the fraction of peridotite-derived melt. Units: ◦C.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

430

• Parameter name: B2
Value: 8.0e-8
Default: 8.0e-8
Description: Prefactor of the linear pressure term in the quadratic function that approximates the
lherzolite liquidus used for calculating the fraction of peridotite-derived melt. Units: ◦C/Pa.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: B3
Value: -3.2e-18
Default: -3.2e-18
Description: Prefactor of the quadratic pressure term in the quadratic function that approximates the
lherzolite liquidus used for calculating the fraction of peridotite-derived melt. Units: ◦C/(Pa2).
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: C1
Value: 1780.0
Default: 1780.0
Description: Constant parameter in the quadratic function that approximates the liquidus of peridotite.
Units: ◦C.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: C2
Value: 4.50e-8
Default: 4.50e-8
Description: Prefactor of the linear pressure term in the quadratic function that approximates the
liquidus of peridotite. Units: ◦C/Pa.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: C3
Value: -2.0e-18
Default: -2.0e-18
Description: Prefactor of the quadratic pressure term in the quadratic function that approximates the
liquidus of peridotite. Units: ◦C/(Pa2).
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Composition viscosity prefactor

Value: 1.0
Default: 1.0
Description: A linear dependency of viscosity on composition. Dimensionless prefactor.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Compressibility
Value: 5.124e-12
Default: 5.124e-12
Description: The value of the compressibility κ. Units: 1/Pa.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

431

• Parameter name: D1
Value: 976.0
Default: 976.0
Description: Constant parameter in the quadratic function that approximates the solidus of pyroxenite.
Units: ◦C.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: D2
Value: 1.329e-7
Default: 1.329e-7
Description: Prefactor of the linear pressure term in the quadratic function that approximates the
solidus of pyroxenite. Note that this factor is different from the value given in Sobolev, 2011, because
they use the potential temperature whereas we use the absolute temperature. Units: ◦C/Pa.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: D3
Value: -5.1e-18
Default: -5.1e-18
Description: Prefactor of the quadratic pressure term in the quadratic function that approximates the
solidus of pyroxenite. Units: ◦C/(Pa2).
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Density differential for compositional field 1

Value: 0.
Default: 0.
Description: If compositional fields are used, then one would frequently want to make the density
depend on these fields. In this simple material model, we make the following assumptions: if no
compositional fields are used in the current simulation, then the density is simply the usual one with
its linear dependence on the temperature. If there are compositional fields, then the density only
depends on the first one in such a way that the density has an additional term of the kind +∆ρ c1(x).
This parameter describes the value of ∆ρ. Units: kg/m3/unit change in composition.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: E1
Value: 663.8
Default: 663.8
Description: Prefactor of the linear depletion term in the quadratic function that approximates the
melt fraction of pyroxenite. Units: ◦C/Pa.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: E2
Value: -611.4
Default: -611.4
Description: Prefactor of the quadratic depletion term in the quadratic function that approximates
the melt fraction of pyroxenite. Units: ◦C/(Pa2).
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

432

• Parameter name: Mass fraction cpx

Value: 0.15
Default: 0.15
Description: Mass fraction of clinopyroxene in the peridotite to be molten. Units: non-dimensional.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Maximum pyroxenite melt fraction

Value: 0.5429
Default: 0.5429
Description: Maximum melt fraction of pyroxenite in this parameterization. At higher temperatures
peridotite begins to melt.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Peridotite melting entropy change

Value: -300.
Default: -300.
Description: The entropy change for the phase transition from solid to melt of peridotite. Units:
J/(kgK).
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Pyroxenite melting entropy change

Value: -400.
Default: -400.
Description: The entropy change for the phase transition from solid to melt of pyroxenite. Units:
J/(kgK).
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference density

Value: 3300.
Default: 3300.
Description: Reference density ρ0. Units: kg/m3.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference specific heat

Value: 1250.
Default: 1250.
Description: The value of the specific heat Cp. Units: J/kg/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference temperature

Value: 293.
Default: 293.
Description: The reference temperature T0. Units: K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

433

• Parameter name: Relative density of melt

Value: 0.9
Default: 0.9
Description: The relative density of melt compared to the solid material. This means, the density
change upon melting is this parameter times the density of solid material.Units: non-dimensional.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal conductivity

Value: 2.38
Default: 2.38
Description: The value of the thermal conductivity k. Units: W/m/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal expansion coefficient

Value: 4e-5
Default: 4e-5
Description: The value of the thermal expansion coefficient αs. Units: 1/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal expansion coefficient of melt

Value: 6.8e-5
Default: 6.8e-5
Description: The value of the thermal expansion coefficient αf . Units: 1/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal viscosity exponent

Value: 0.0
Default: 0.0
Description: The temperature dependence of viscosity. Dimensionless exponent.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Viscosity
Value: 5e24
Default: 5e24
Description: The value of the constant viscosity. Units: kg/m/s.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: beta
Value: 1.5
Default: 1.5
Description: Exponent of the melting temperature in the melt fraction calculation. Units: non-
dimensional.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

434

• Parameter name: r1
Value: 0.5
Default: 0.5
Description: Constant in the linear function that approximates the clinopyroxene reaction coefficient.
Units: non-dimensional.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: r2
Value: 8e-11
Default: 8e-11
Description: Prefactor of the linear pressure term in the linear function that approximates the clinopy-
roxene reaction coefficient. Units: 1/Pa.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

A.106 Parameters in section Material model/Melt global
• Parameter name: Depletion density change

Value: 0.0
Default: 0.0
Description: The density contrast between material with a depletion of 1 and a depletion of zero. Neg-
ative values indicate lower densities of depleted material. Depletion is indicated by the compositional
field with the name peridotite. Not used if this field does not exist in the model. Units: kg/m3.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Depletion solidus change

Value: 200.0
Default: 200.0
Description: The solidus temperature change for a depletion of 100%. For positive values, the solidus
gets increased for a positive peridotite field (depletion) and lowered for a negative peridotite field
(enrichment). Scaling with depletion is linear. Only active when fractional melting is used. Units: K.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Exponential depletion strengthening factor

Value: 0.0
Default: 0.0
Description: αF : exponential dependency of viscosity on the depletion field F (called peridotite).
Dimensionless factor. With a value of 0.0 (the default) the viscosity does not depend on the depletion.
The effective viscosity increasedue to depletion is defined as exp(αF ∗F). Rationale: melting dehydrates
the source rock by removing most of the volatiles,and makes it stronger. Hirth and Kohlstedt (1996)
report typical values around a factor 100 to 1000 viscosity contrast between wet and dry rocks, although
some experimental studies report a smaller (factor 10) contrast (e.g. Fei et al., 2013).
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Exponential melt weakening factor

Value: 27.
Default: 27.

435

Description: The porosity dependence of the viscosity. Units: dimensionless.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Include melting and freezing

Value: true
Default: true
Description: Whether to include melting and freezing (according to a simplified linear melting approx-
imation in the model (if true), or not (if false).
Possible values: A boolean value (true or false)

• Parameter name: Maximum Depletion viscosity change

Value: 1.0e3
Default: 1.0e3
Description: ∆ηF,max: maximum depletion strengthening of viscosity. Rationale: melting dehydrates
the source rock by removing most of the volatiles,and makes it stronger. Hirth and Kohlstedt (1996)
report typical values around a factor 100 to 1000 viscosity contrast between wet and dry rocks, although
some experimental studies report a smaller (factor 10) contrast (e.g. Fei et al., 2013).
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Melt bulk modulus derivative

Value: 0.0
Default: 0.0
Description: The value of the pressure derivative of the melt bulk modulus. Units: None.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Melt compressibility

Value: 0.0
Default: 0.0
Description: The value of the compressibility of the melt. Units: 1/Pa.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Melting time scale for operator splitting

Value: 1e3
Default: 1e3
Description: In case the operator splitting scheme is used, the porosity field can not be set to a new
equilibrium melt fraction instantly, but the model has to provide a melting time scale instead. This
time scale defines how fast melting happens, or more specifically, the parameter defines the time after
which the deviation of the porosity from the equilibrium melt fraction will be reduced to a fraction of
1/e. So if the melting time scale is small compared to the time step size, the reaction will be so fast that
the porosity is very close to the equilibrium melt fraction after reactions are computed. Conversely,
if the melting time scale is large compared to the time step size, almost no melting and freezing will
occur.
Also note that the melting time scale has to be larger than or equal to the reaction time step used
in the operator splitting scheme, otherwise reactions can not be computed. If the model does not use
operator splitting, this parameter is not used. Units: yr or s, depending on the “Use years in output
instead of seconds” parameter.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

436

• Parameter name: Pressure solidus change

Value: 6e-8
Default: 6e-8
Description: The linear solidus temperature change with pressure. For positive values, the solidus gets
increased for positive pressures. Units: 1/Pa.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference bulk viscosity

Value: 1e22
Default: 1e22
Description: The value of the constant bulk viscosity ξ0 of the solid matrix. This viscosity may be
modified by both temperature and porosity dependencies. Units: Pa s.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference melt density

Value: 2500.
Default: 2500.
Description: Reference density of the melt/fluidρf,0. Units: kg/m3.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference melt viscosity

Value: 10.
Default: 10.
Description: The value of the constant melt viscosity ηf . Units: Pa s.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference permeability

Value: 1e-8
Default: 1e-8
Description: Reference permeability of the solid host rock.Units: m2.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference shear viscosity

Value: 5e20
Default: 5e20
Description: The value of the constant viscosity η0 of the solid matrix. This viscosity may be modified
by both temperature and porosity dependencies. Units: Pa s.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference solid density

Value: 3000.
Default: 3000.
Description: Reference density of the solid ρs,0. Units: kg/m3.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

437

• Parameter name: Reference specific heat

Value: 1250.
Default: 1250.
Description: The value of the specific heat Cp. Units: J/kg/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference temperature

Value: 293.
Default: 293.
Description: The reference temperature T0. The reference temperature is used in both the density and
viscosity formulas. Units: K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Solid compressibility

Value: 0.0
Default: 0.0
Description: The value of the compressibility of the solid matrix. Units: 1/Pa.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Surface solidus

Value: 1300.
Default: 1300.
Description: Solidus for a pressure of zero. Units: K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal bulk viscosity exponent

Value: 0.0
Default: 0.0
Description: The temperature dependence of the bulk viscosity. Dimensionless exponent. See the
general documentation of this model for a formula that states the dependence of the viscosity on this
factor, which is called β there.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal conductivity

Value: 4.7
Default: 4.7
Description: The value of the thermal conductivity k. Units: W/m/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal expansion coefficient

Value: 2e-5
Default: 2e-5
Description: The value of the thermal expansion coefficient β. Units: 1/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

438

• Parameter name: Thermal viscosity exponent

Value: 0.0
Default: 0.0
Description: The temperature dependence of the shear viscosity. Dimensionless exponent. See the
general documentation of this model for a formula that states the dependence of the viscosity on this
factor, which is called β there.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.107 Parameters in section Material model/Melt simple
• Parameter name: A1
Value: 1085.7
Default: 1085.7
Description: Constant parameter in the quadratic function that approximates the solidus of peridotite.
Units: ◦C.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: A2
Value: 1.329e-7
Default: 1.329e-7
Description: Prefactor of the linear pressure term in the quadratic function that approximates the
solidus of peridotite. Units: ◦C/Pa.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: A3
Value: -5.1e-18
Default: -5.1e-18
Description: Prefactor of the quadratic pressure term in the quadratic function that approximates the
solidus of peridotite. Units: ◦C/(Pa2).
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: B1
Value: 1475.0
Default: 1475.0
Description: Constant parameter in the quadratic function that approximates the lherzolite liquidus
used for calculating the fraction of peridotite-derived melt. Units: ◦C.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: B2
Value: 8.0e-8
Default: 8.0e-8
Description: Prefactor of the linear pressure term in the quadratic function that approximates the
lherzolite liquidus used for calculating the fraction of peridotite-derived melt. Units: ◦C/Pa.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

439

• Parameter name: B3
Value: -3.2e-18
Default: -3.2e-18
Description: Prefactor of the quadratic pressure term in the quadratic function that approximates the
lherzolite liquidus used for calculating the fraction of peridotite-derived melt. Units: ◦C/(Pa2).
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: C1
Value: 1780.0
Default: 1780.0
Description: Constant parameter in the quadratic function that approximates the liquidus of peridotite.
Units: ◦C.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: C2
Value: 4.50e-8
Default: 4.50e-8
Description: Prefactor of the linear pressure term in the quadratic function that approximates the
liquidus of peridotite. Units: ◦C/Pa.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: C3
Value: -2.0e-18
Default: -2.0e-18
Description: Prefactor of the quadratic pressure term in the quadratic function that approximates the
liquidus of peridotite. Units: ◦C/(Pa2).
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Depletion density change

Value: 0.0
Default: 0.0
Description: The density contrast between material with a depletion of 1 and a depletion of zero. Neg-
ative values indicate lower densities of depleted material. Depletion is indicated by the compositional
field with the name peridotite. Not used if this field does not exist in the model. Units: kg/m3.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Depletion solidus change

Value: 200.0
Default: 200.0
Description: The solidus temperature change for a depletion of 100%. For positive values, the solidus
gets increased for a positive peridotite field (depletion) and lowered for a negative peridotite field
(enrichment). Scaling with depletion is linear. Only active when fractional melting is used. Units: K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

440

• Parameter name: Exponential melt weakening factor

Value: 27.
Default: 27.
Description: The porosity dependence of the viscosity. Units: dimensionless.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Freezing rate

Value: 0.0
Default: 0.0
Description: Freezing rate of melt when in subsolidus regions. If this parameter is set to a number
larger than 0.0, it specifies the fraction of melt that will freeze per year (or per second, depending on the
“Use years in output instead of seconds” parameter), as soon as the porosity exceeds the equilibrium
melt fraction, and the equilibrium melt fraction falls below the depletion. In this case, melt will freeze
according to the given rate until one of those conditions is not fulfilled anymore. The reasoning behind
this is that there should not be more melt present than the equilibrium melt fraction, as melt production
decreases with increasing depletion, but the freezing process of melt also reduces the depletion by the
same amount, and as soon as the depletion falls below the equilibrium melt fraction, we expect that
material should melt again (no matter how much melt is present). This is quite a simplification and
not a realistic freezing parameterization, but without tracking the melt composition, there is no way
to compute freezing rates accurately. If this parameter is set to zero, no freezing will occur. Note
that freezing can never be faster than determined by the “Melting time scale for operator splitting”.
The product of the “Freezing rate” and the “Melting time scale for operator splitting” defines how
fast freezing occurs with respect to melting (if the product is 0.5, melting will occur twice as fast as
freezing). Units: 1/yr or 1/s, depending on the “Use years in output instead of seconds” parameter.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Mass fraction cpx

Value: 0.15
Default: 0.15
Description: Mass fraction of clinopyroxene in the peridotite to be molten. Units: non-dimensional.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Melt bulk modulus derivative

Value: 0.0
Default: 0.0
Description: The value of the pressure derivative of the melt bulk modulus. Units: None.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Melt compressibility

Value: 0.0
Default: 0.0
Description: The value of the compressibility of the melt. Units: 1/Pa.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

441

• Parameter name: Melt extraction depth

Value: 1000.0
Default: 1000.0
Description: Depth above that melt will be extracted from the model, which is done by a negative
reaction term proportional to the porosity field. Units: m.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Melting time scale for operator splitting

Value: 1e3
Default: 1e3
Description: Because the operator splitting scheme is used, the porosity field can not be set to a new
equilibrium melt fraction instantly, but the model has to provide a melting time scale instead. This
time scale defines how fast melting happens, or more specifically, the parameter defines the time after
which the deviation of the porosity from the equilibrium melt fraction will be reduced to a fraction of
1/e. So if the melting time scale is small compared to the time step size, the reaction will be so fast that
the porosity is very close to the equilibrium melt fraction after reactions are computed. Conversely,
if the melting time scale is large compared to the time step size, almost no melting and freezing will
occur.
Also note that the melting time scale has to be larger than or equal to the reaction time step used in
the operator splitting scheme, otherwise reactions can not be computed. Units: yr or s, depending on
the “Use years in output instead of seconds” parameter.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Peridotite melting entropy change

Value: -300.
Default: -300.
Description: The entropy change for the phase transition from solid to melt of peridotite. Units:
J/(kgK).
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference bulk viscosity

Value: 1e22
Default: 1e22
Description: The value of the constant bulk viscosity ξ0 of the solid matrix. This viscosity may be
modified by both temperature and porosity dependencies. Units: Pa s.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference melt density

Value: 2500.
Default: 2500.
Description: Reference density of the melt/fluidρf,0. Units: kg/m3.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference melt viscosity

Value: 10.
Default: 10.

442

Description: The value of the constant melt viscosity ηf . Units: Pa s.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference permeability

Value: 1e-8
Default: 1e-8
Description: Reference permeability of the solid host rock.Units: m2.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference shear viscosity

Value: 5e20
Default: 5e20
Description: The value of the constant viscosity η0 of the solid matrix. This viscosity may be modified
by both temperature and porosity dependencies. Units: Pa s.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference solid density

Value: 3000.
Default: 3000.
Description: Reference density of the solid ρs,0. Units: kg/m3.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference specific heat

Value: 1250.
Default: 1250.
Description: The value of the specific heat Cp. Units: J/kg/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference temperature

Value: 293.
Default: 293.
Description: The reference temperature T0. The reference temperature is used in both the density and
viscosity formulas. Units: K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Solid compressibility

Value: 0.0
Default: 0.0
Description: The value of the compressibility of the solid matrix. Units: 1/Pa.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal bulk viscosity exponent

Value: 0.0
Default: 0.0

443

Description: The temperature dependence of the bulk viscosity. Dimensionless exponent. See the
general documentation of this model for a formula that states the dependence of the viscosity on this
factor, which is called β there.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal conductivity

Value: 4.7
Default: 4.7
Description: The value of the thermal conductivity k. Units: W/m/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal expansion coefficient

Value: 2e-5
Default: 2e-5
Description: The value of the thermal expansion coefficient β. Units: 1/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal viscosity exponent

Value: 0.0
Default: 0.0
Description: The temperature dependence of the shear viscosity. Dimensionless exponent. See the
general documentation of this model for a formula that states the dependence of the viscosity on this
factor, which is called β there.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Use fractional melting

Value: false
Default: false
Description: If fractional melting should be used (if true), including a solidus change based on depletion
(in this case, the amount of melt that has migrated away from its origin), and freezing of melt when
it has moved to a region with temperatures lower than the solidus; or if batch melting should be used
(if false), assuming that the melt fraction only depends on temperature and pressure, and how much
melt has already been generated at a given point, but not considering movement of melt in the melting
parameterization.
Note that melt does not freeze unless the ’Freezing rate’ parameter is set to a value larger than 0.
Possible values: A boolean value (true or false)

• Parameter name: Use full compressibility

Value: false
Default: false
Description: If the compressibility should be used everywhere in the code (if true), changing the volume
of material when the density changes, or only in the momentum conservation and advection equations
(if false).
Possible values: A boolean value (true or false)

444

• Parameter name: beta
Value: 1.5
Default: 1.5
Description: Exponent of the melting temperature in the melt fraction calculation. Units: non-
dimensional.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: r1
Value: 0.5
Default: 0.5
Description: Constant in the linear function that approximates the clinopyroxene reaction coefficient.
Units: non-dimensional.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: r2
Value: 8e-11
Default: 8e-11
Description: Prefactor of the linear pressure term in the linear function that approximates the clinopy-
roxene reaction coefficient. Units: 1/Pa.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

A.108 Parameters in section Material model/Modified Tait model
• Parameter name: Einstein temperature

Value: 600.
Default: 600.
Description: The Einstein temperature at the reference pressure and temperature. Units: K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference bulk modulus derivative

Value: 4.
Default: 4.
Description: The value of the first pressure derivative of the isothermal bulk modulus at the reference
pressure and temperature. Units: [].
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference density

Value: 3300.
Default: 3300.
Description: The density at the reference pressure and temperature. Units: kg/m3.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

445

• Parameter name: Reference isothermal bulk modulus

Value: 125e9
Default: 125e9
Description: The isothermal bulk modulus at the reference pressure and temperature. Units: Pa.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference pressure

Value: 1e5
Default: 1e5
Description: Reference pressure P0. Units: Pa.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference temperature

Value: 298.15
Default: 298.15
Description: Reference temperature T0. Units: K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference thermal expansivity

Value: 2e-5
Default: 2e-5
Description: The thermal expansion coefficient at the reference pressure and temperature. Units: 1/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal conductivity

Value: 4.7
Default: 4.7
Description: The value of the constant thermal conductivity k. Units: W/m/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Viscosity
Value: 1e21
Default: 1e21
Description: The value of the constant viscosity η0. Units: Pas.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.109 Parameters in section Material model/Modified Tait model/Reference heat
capacity function

• Parameter name: Function constants

Value:
Default:
Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘var1=value1, var2=value2, ...’.

446

A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: Any string

• Parameter name: Function expression

Value: 1.25e3
Default: 1.25e3
Possible values: Any string

• Parameter name: Variable names

Value: x,t
Default: x,t
Description: The names of the variables as they will be used in the function, separated by commas.
By default, the names of variables at which the function will be evaluated are ‘x’ (in 1d), ‘x,y’ (in 2d)
or ‘x,y,z’ (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’ and then use these variable names in your
function expression.
Possible values: Any string

A.110 Parameters in section Material model/Multicomponent
• Parameter name: Densities
Value: 3300.
Default: 3300.
Description: List of densities for background mantle and compositional fields,for a total of N+M+1
values, where N is the number of compositional fields and M is the number of phases. If only one value
is given, then all use the same value. Units: kg/m3

Possible values: Any string

• Parameter name: Heat capacities

Value: 1250.
Default: 1250.
Description: List of specific heats Cp for background mantle and compositional fields,for a total of
N+M+1 values, where N is the number of compositional fields and M is the number of phases. If only
one value is given, then all use the same value. Units: J/kg/K
Possible values: Any string

• Parameter name: Reference temperature

Value: 293.
Default: 293.
Description: The reference temperature T0. Units: K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

447

• Parameter name: Specific heats

This parameter is an alias for the parameter “Heat capacities”.

• Parameter name: Thermal conductivities

Value: 4.7
Default: 4.7
Description: List of thermal conductivities for background mantle and compositional fields,for a total
of N+1 values, where N is the number of compositional fields.If only one value is given, then all use
the same value. Units: W/m/K.
Possible values: Any string

• Parameter name: Thermal expansivities

Value: 0.000040
Default: 0.000040
Description: List of thermal expansivities for background mantle and compositional fields,for a total
of N+M+1 values, where N is the number of compositional fields and M is the number of phases. If
only one value is given, then all use the same value. Units: 1/K
Possible values: Any string

• Parameter name: Viscosities
Value: 1.e21
Default: 1.e21
Description: List of viscosities for background mantle and compositional fields,for a total of N+1
values, where N is the number of compositional fields.If only one value is given, then all use the same
value. Units: Pa s
Possible values: Any string

• Parameter name: Viscosity averaging scheme

Value: harmonic
Default: harmonic
Description: When more than one compositional field is present at a point with different viscosities,
we need to come up with an average viscosity at that point. Select a weighted harmonic, arithmetic,
geometric, or maximum composition.
Possible values: Any one of arithmetic, harmonic, geometric, maximum composition

A.111 Parameters in section Material model/Multicomponent compressible
• Parameter name: Isochoric specific heats

Value: 1250.
Default: 1250.
Description: List of isochoric specific heats Cv for background mantle and compositional fields,for a
total of N+1 values, where N is the number of compositional fields.If only one value is given, then all
use the same value. Units: J/kg/K
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

448

• Parameter name: Isothermal bulk modulus pressure derivatives

Value: 4.
Default: 4.
Description: List of isothermal pressure derivatives of the bulk moduli for background mantle and
compositional fields,for a total of N+1 values, where N is the number of compositional fields.If only
one value is given, then all use the same value. Units: [].
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Reference densities

Value: 3300.
Default: 3300.
Description: List of densities for background mantle and compositional fields,for a total of N+1 values,
where N is the number of compositional fields.If only one value is given, then all use the same value.
Units: kg/m3

Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Reference isothermal compressibilities

Value: 4e-12
Default: 4e-12
Description: List of isothermal compressibilities for background mantle and compositional fields,for a
total of N+1 values, where N is the number of compositional fields.If only one value is given, then all
use the same value. Units: 1/Pa.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Reference temperatures

Value: 298.15
Default: 298.15
Description: List of reference temperatures T0 for background mantle and compositional fields,for a
total of N+1 values, where N is the number of compositional fields.If only one value is given, then all
use the same value. Units: K.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Reference thermal expansivities

Value: 4.e-5
Default: 4.e-5
Description: List of thermal expansivities for background mantle and compositional fields,for a total
of N+1 values, where N is the number of compositional fields.If only one value is given, then all use
the same value. Units: 1/K
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

449

• Parameter name: Thermal conductivities

Value: 4.7
Default: 4.7
Description: List of thermal conductivities for background mantle and compositional fields,for a total
of N+1 values, where N is the number of compositional fields.If only one value is given, then all use
the same value. Units: W/m/K.
Possible values: Any string

• Parameter name: Viscosities
Value: 1.e21
Default: 1.e21
Description: List of viscosities for background mantle and compositional fields,for a total of N+1
values, where N is the number of compositional fields.If only one value is given, then all use the same
value. Units: Pa s
Possible values: Any string

• Parameter name: Viscosity averaging scheme

Value: harmonic
Default: harmonic
Description: When more than one compositional field is present at a point with different viscosities,
we need to come up with an average viscosity at that point. Select a weighted harmonic, arithmetic,
geometric, or maximum composition.
Possible values: Any one of arithmetic, harmonic, geometric, maximum composition

A.112 Parameters in section Material model/Nondimensional model
• Parameter name: Di
Value: 0.0
Default: 0.0
Description: Dissipation number. Pick 0.0 for incompressible computations.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Ra
Value: 1e4
Default: 1e4
Description: Rayleigh number Ra
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference density

Value: 1.0
Default: 1.0
Description: Reference density ρ0. Units: kg/m3.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

450

• Parameter name: Reference specific heat

Value: 1.0
Default: 1.0
Description: The value of the specific heat Cp. Units: J/kg/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Use TALA

Value: false
Default: false
Description: Whether to use the TALA instead of the ALA approximation.
Possible values: A boolean value (true or false)

• Parameter name: Viscosity depth prefactor

Value: 0.0
Default: 0.0
Description: Exponential depth prefactor for viscosity.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Viscosity temperature prefactor

Value: 0.0
Default: 0.0
Description: Exponential temperature prefactor for viscosity.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: gamma
Value: 1.0
Default: 1.0
Description: Grueneisen parameter
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.113 Parameters in section Material model/PerpleX lookup model
• Parameter name: Maximum material pressure

Value: 1.e12
Default: 1.e12
Description: The value of the maximum pressure used to query PerpleX. Units: Pa.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Maximum material temperature

Value: 6000.
Default: 6000.
Description: The value of the maximum temperature used to query PerpleX. Units: K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

451

• Parameter name: Minimum material pressure

Value: 1.e5
Default: 1.e5
Description: The value of the minimum pressure used to query PerpleX. Units: Pa.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Minimum material temperature

Value: 0.
Default: 0.
Description: The value of the minimum temperature used to query PerpleX. Units: K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: PerpleX input file name

Value: rock.dat
Default: rock.dat
Description: The name of the PerpleX input file (should end with .dat).
Possible values: Any string

• Parameter name: Thermal conductivity

Value: 4.7
Default: 4.7
Description: The value of the thermal conductivity k. Units: W/m/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Viscosity
Value: 5e24
Default: 5e24
Description: The value of the viscosity η. Units: kg/m/s.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.114 Parameters in section Material model/Replace lithosphere viscosity
• Parameter name: Base model

Value: simple
Default: simple
Description: The name of a material model that will be modified by a replacingthe viscosity in the
lithosphere by a constant value. Valid values for this parameter are the names of models that are also
valid for the “Material models/Model name” parameter. See the documentation for more information.
Possible values: Any one of Steinberger, ascii reference profile, averaging, compositing, composition
reaction, depth dependent, diffusion dislocation, drucker prager, dynamic friction, grain size, latent
heat, latent heat melt, melt global, melt simple, modified tait, multicomponent, multicomponent com-
pressible, nondimensional, perplex lookup, replace lithosphere viscosity, simple, simple compressible,
simpler, visco plastic, viscoelastic

452

• Parameter name: Data directory

Value: $ASPECT_SOURCE_DIR/data/initial-temperature/lithosphere-mask/
Default: $ASPECT_SOURCE_DIR/data/initial-temperature/lithosphere-mask/
Description: The path to the LAB depth data file
Possible values: A directory name

• Parameter name: Depth specification method

Value: Value
Default: Value
Description: Method that is used to specify the depth of the lithosphere-asthenosphere boundary.
Possible values: Any one of File, Value

• Parameter name: LAB depth filename

Value: LAB_CAM2016.txt
Default: LAB_CAM2016.txt
Description: File from which the lithosphere-asthenosphere boundary depth data is read.
Possible values: an input filename

• Parameter name: Lithosphere viscosity

Value: 1e23
Default: 1e23
Description: The viscosity within lithosphere, applied abovethe maximum lithosphere depth.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Maximum lithosphere depth

Value: 200000.0
Default: 200000.0
Description: Units: m.The maximum depth of the lithosphere. The model will be NaNs below this
depth.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.115 Parameters in section Material model/Simple compressible model
• Parameter name: Reference compressibility

Value: 4e-12
Default: 4e-12
Description: The value of the reference compressibility. Units: 1/Pa.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference density

Value: 3300.
Default: 3300.
Description: Reference density ρ0. Units: kg/m3.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

453

• Parameter name: Reference specific heat

Value: 1250.
Default: 1250.
Description: The value of the specific heat Cp. Units: J/kg/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal conductivity

Value: 4.7
Default: 4.7
Description: The value of the thermal conductivity k. Units: W/m/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal expansion coefficient

Value: 2e-5
Default: 2e-5
Description: The value of the thermal expansion coefficient α. Units: 1/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Viscosity
Value: 1000000000000000000000.000000
Default: 1000000000000000000000.000000
Description: The value of the viscosity η. Units: kg/m/s or Pas.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.116 Parameters in section Material model/Simple model
• Parameter name: Composition viscosity prefactor

Value: 1.0
Default: 1.0
Description: A linear dependency of viscosity on the first compositional field. Dimensionless prefactor.
With a value of 1.0 (the default) the viscosity does not depend on the composition. See the general
documentation of this model for a formula that states the dependence of the viscosity on this factor,
which is called ξ there.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Density differential for compositional field 1

Value: 0.
Default: 0.
Description: If compositional fields are used, then one would frequently want to make the density
depend on these fields. In this simple material model, we make the following assumptions: if no
compositional fields are used in the current simulation, then the density is simply the usual one with
its linear dependence on the temperature. If there are compositional fields, then the material model
determines how many of them influence the density. The composition-dependence adds a term of the
kind +∆ρ c1(x). This parameter describes the value of ∆ρ. Units: kg/m3/unit change in composition.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

454

• Parameter name: Maximum thermal prefactor

Value: 1.0e2
Default: 1.0e2
Description: The maximum value of the viscosity prefactor associated with temperature dependence.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Minimum thermal prefactor

Value: 1.0e-2
Default: 1.0e-2
Description: The minimum value of the viscosity prefactor associated with temperature dependence.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference density

Value: 3300
Default: 3300
Description: Reference density ρ0. Units: kg/m3.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference specific heat

Value: 1250
Default: 1250
Description: The value of the specific heat Cp. Units: J/kg/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference temperature

Value: 293.
Default: 293.
Description: The reference temperature T0. The reference temperature is used in both the density and
viscosity formulas. Units: K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal conductivity

Value: 4.7
Default: 4.7
Description: The value of the thermal conductivity k. Units: W/m/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal expansion coefficient

Value: 2e-5
Default: 2e-5
Description: The value of the thermal expansion coefficient α. Units: 1/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

455

• Parameter name: Thermal viscosity exponent

Value: 0.0
Default: 0.0
Description: The temperature dependence of viscosity. Dimensionless exponent. See the general
documentation of this model for a formula that states the dependence of the viscosity on this factor,
which is called β there.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Viscosity
Value: 5e24
Default: 5e24
Description: The value of the constant viscosity η0. This viscosity may be modified by both tempera-
ture and compositional dependencies. Units: kg/m/s.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.117 Parameters in section Material model/Simpler model
• Parameter name: Reference density

Value: 3300
Default: 3300
Description: Reference density ρ0. Units: kg/m3.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference specific heat

Value: 1250
Default: 1250
Description: The value of the specific heat Cp. Units: J/kg/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference temperature

Value: 293.
Default: 293.
Description: The reference temperature T0. The reference temperature is used in the density formula.
Units: K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal conductivity

Value: 4.7
Default: 4.7
Description: The value of the thermal conductivity k. Units: W/m/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

456

• Parameter name: Thermal expansion coefficient

Value: 2e-5
Default: 2e-5
Description: The value of the thermal expansion coefficient α. Units: 1/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Viscosity
Value: 5000000000000000452984832.000000
Default: 5000000000000000452984832.000000
Description: The value of the viscosity η. Units: kg/m/s or Pas.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.118 Parameters in section Material model/Steinberger model
• Parameter name: Bilinear interpolation

Value: true
Default: true
Description: Whether to use bilinear interpolation to compute material properties (slower but more
accurate).
Possible values: A boolean value (true or false)

• Parameter name: Data directory

Value: $ASPECT_SOURCE_DIR/data/material-model/steinberger/
Default: $ASPECT_SOURCE_DIR/data/material-model/steinberger/
Description: The path to the model data. The path may also include the special text ’$ASPECT_SOURCE_DIR’
which will be interpreted as the path in which the ASPECT source files were located when ASPECT
was compiled. This interpretation allows, for example, to reference files located in the ‘data/’ subdi-
rectory of ASPECT.
Possible values: A directory name

• Parameter name: Latent heat

Value: false
Default: false
Description: Whether to include latent heat effects in the calculation of thermal expansivity and
specific heat. Following the approach of Nakagawa et al. 2009.
Possible values: A boolean value (true or false)

• Parameter name: Lateral viscosity file name

Value: temp-viscosity-prefactor.txt
Default: temp-viscosity-prefactor.txt
Description: The file name of the lateral viscosity data.
Possible values: Any string

457

• Parameter name: Material file names

Value: pyr-ringwood88.txt
Default: pyr-ringwood88.txt
Description: The file names of the material data (material data is assumed to be in order with the
ordering of the compositional fields). Note that there are three options on how many files need to be
listed here: 1. If only one file is provided, it is used for the whole model domain, and compositional
fields are ignored. 2. If there is one more file name than the number of compositional fields, then the
first file is assumed to define a ‘background composition’ that is modified by the compositional fields. If
there are exactly as many files as compositional fields, the fields are assumed to represent the fractions
of different materials and the average property is computed as a sum of the value of the compositional
field times the material property of that field.
Possible values: A list of 0 to 4294967295 elements where each element is [Any string]

• Parameter name: Maximum lateral viscosity variation

Value: 1e2
Default: 1e2
Description: The relative cutoff value for lateral viscosity variations caused by temperature deviations.
The viscosity may vary laterally by this factor squared.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Maximum viscosity

Value: 1e23
Default: 1e23
Description: The maximum viscosity that is allowed in the viscosity calculation. Larger values will be
cut off.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Minimum viscosity

Value: 1e19
Default: 1e19
Description: The minimum viscosity that is allowed in the viscosity calculation. Smaller values will
be cut off.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Number lateral average bands

Value: 10
Default: 10
Description: Number of bands to compute laterally averaged temperature within.
Possible values: An integer n such that 1 ≤ n ≤ 2147483647

• Parameter name: Radial viscosity file name

Value: radial-visc.txt
Default: radial-visc.txt
Description: The file name of the radial viscosity data.
Possible values: Any string

458

• Parameter name: Reference viscosity

Value: 1e23
Default: 1e23
Description: The reference viscosity that is used for pressure scaling. To understand how pressure
scaling works, take a look at [59]. In particular, the value of this parameter would not affect the
solution computed by ASPECT if we could do arithmetic exactly; however, computers do arithmetic
in finite precision, and consequently we need to scale quantities in ways so that their magnitudes
are roughly the same. As explained in [59], we scale the pressure during some computations (never
visible by users) by a factor that involves a reference viscosity. This parameter describes this reference
viscosity.
For problems with a constant viscosity, you will generally want to choose the reference viscosity equal
to the actual viscosity. For problems with a variable viscosity, the reference viscosity should be a value
that adequately represents the order of magnitude of the viscosities that appear, such as an average
value or the value one would use to compute a Rayleigh number.
Units: Pa s
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Thermal conductivity

Value: 4.7
Default: 4.7
Description: The value of the thermal conductivity k. Units: W/m/K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Use lateral average temperature for viscosity

Value: true
Default: true
Description: Whether to use to use the laterally averaged temperature instead of the adiabatic tem-
perature as reference for the viscosity calculation. This ensures that the laterally averaged viscosities
remain more or less constant over the model runtime. This behaviour might or might not be desired.
Possible values: A boolean value (true or false)

A.119 Parameters in section Material model/Visco Plastic
• Parameter name: Activation energies for diffusion creep

Value: 375e3
Default: 375e3
Description: List of activation energies, Ea, for background material and compositional fields, for a
total of N+1 values, where N is the number of compositional fields. If only one value is given, then all
use the same value. Units: J/mol
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Activation energies for dislocation creep

Value: 530e3
Default: 530e3

459

Description: List of activation energies, Ea, for background material and compositional fields, for a
total of N+1 values, where N is the number of compositional fields. If only one value is given, then all
use the same value. Units: J/mol
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Activation volumes for diffusion creep

Value: 6e-6
Default: 6e-6
Description: List of activation volumes, Va, for background material and compositional fields, for a
total of N+1 values, where N is the number of compositional fields. If only one value is given, then all
use the same value. Units: m3/mol

Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Activation volumes for dislocation creep

Value: 1.4e-5
Default: 1.4e-5
Description: List of activation volumes, Va, for background material and compositional fields, for a
total of N+1 values, where N is the number of compositional fields. If only one value is given, then all
use the same value. Units: m3/mol

Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Adiabat temperature gradient for viscosity

Value: 0.0
Default: 0.0
Description: Add an adiabatic temperature gradient to the temperature used in the flow law so that
the activation volume is consistent with what one would use in a earth-like (compressible) model.
Default is set so this is off. Note that this is a linear approximation of the real adiabatic gradient,
which is okay for the upper mantle, but is not really accurate for the lower mantle. Using a pressure
gradient of 32436 Pa/m, then a value of 0.3 K/km = 0.0003 K/m = 9.24e-09 K/Pa gives an earth-like
adiabat.Units: K/Pa
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Angles of internal friction

Value: 0.
Default: 0.
Description: List of angles of internal friction, φ, for background material and compositional fields, for
a total of N+1 values, where N is the number of compositional fields. For a value of zero, in 2D the
von Mises criterion is retrieved. Angles higher than 30 degrees are harder to solve numerically. Units:
degrees.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Cohesion strain weakening factors

Value: 1.

460

Default: 1.
Description: List of cohesion strain weakening factors for background material and compositional fields,
for a total of N+1 values, where N is the number of compositional fields. If only one value is given,
then all use the same value. Units: None
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Cohesions
Value: 1e20
Default: 1e20
Description: List of cohesions, C, for background material and compositional fields, for a total of N+1
values, where N is the number of compositional fields. The extremely large default cohesion value (1e20
Pa) prevents the viscous stress from exceeding the yield stress. Units: Pa.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Constant viscosity prefactors

Value: 1.0
Default: 1.0
Description: List of constant viscosity prefactors (i.e., multiplicative factors) for background material
and compositional fields, for a total of N+1 where N is the number of compositional fields. Units: none
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Define thermal conductivities

Value: false
Default: false
Description: Whether to directly define thermal conductivities for each compositional field instead of
calculating the values through the specified thermal diffusivities, densities, and heat capacities.
Possible values: A boolean value (true or false)

• Parameter name: Define transition by depth instead of pressure

Value: true
Default: true
Description: Whether to list phase transitions by depth or pressure. If this parameter is true, then the
input file will use Phase transitions depths and Phase transition widths to define the phase transition.
If it is false, the parameter file will read in phase transition data from Phase transition pressures and
Phase transition pressure widths.
Possible values: A boolean value (true or false)

• Parameter name: Densities
Value: 3300.
Default: 3300.
Description: List of densities for background mantle and compositional fields,for a total of N+M+1
values, where N is the number of compositional fields and M is the number of phases. If only one value
is given, then all use the same value. Units: kg/m3

Possible values: Any string

461

• Parameter name: Elastic shear moduli

Value: 75.0e9
Default: 75.0e9
Description: List of elastic shear moduli, G, for background material and compositional fields, for a
total of N+1 values, where N is the number of compositional fields. The default value of 75 GPa is
representative of mantle rocks. Units: Pa.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: End plasticity strain weakening intervals

Value: 1.
Default: 1.
Description: List of strain weakening interval final strains for the cohesion and friction angle parameters
of the background material and compositional fields, for a total of N+1 values, where N is the number
of compositional fields. If only one value is given, then all use the same value. Units: None
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: End prefactor strain weakening intervals

Value: 1.
Default: 1.
Description: List of strain weakening interval final strains for the diffusion and dislocation prefactor
parameters of the background material and compositional fields, for a total of N+1 values, where N
is the number of compositional fields. If only one value is given, then all use the same value. Units:
None
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Fixed elastic time step

Value: 1.e3
Default: 1.e3
Description: The fixed elastic time step dte. Units: years if the ’Use years in output instead of seconds’
parameter is set; seconds otherwise.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Friction strain weakening factors

Value: 1.
Default: 1.
Description: List of friction strain weakening factors for background material and compositional fields,
for a total of N+1 values, where N is the number of compositional fields. If only one value is given,
then all use the same value. Units: None
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

462

• Parameter name: Grain size

Value: 1e-3
Default: 1e-3
Description: Units: m
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Grain size exponents for diffusion creep

Value: 3.
Default: 3.
Description: List of grain size exponents, mdiffusion, for background material and compositional fields,
for a total of N+1 values, where N is the number of compositional fields. If only one value is given,
then all use the same value. Units: None
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Heat capacities

Value: 1250.
Default: 1250.
Description: List of specific heats Cp for background mantle and compositional fields,for a total of
N+M+1 values, where N is the number of compositional fields and M is the number of phases. If only
one value is given, then all use the same value. Units: J/kg/K
Possible values: Any string

• Parameter name: Include viscoelasticity

Value: false
Default: false
Description: Whether to include elastic effects in the rheological formulation.
Possible values: A boolean value (true or false)

• Parameter name: Maximum viscosity

Value: 1e28
Default: 1e28
Description: Upper cutoff for effective viscosity. Units: Pa s
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Maximum yield stress

Value: 1e12
Default: 1e12
Description: Limits the maximum value of the yield stress determined by the drucker-prager plasticity
parameters. Default value is chosen so this is not automatically used. Values of 100e6–1000e6 Pa have
been used in previous models. Units: Pa
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

463

• Parameter name: Minimum strain rate

Value: 1.0e-20
Default: 1.0e-20
Description: Stabilizes strain dependent viscosity. Units: 1/s
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Minimum viscosity

Value: 1e17
Default: 1e17
Description: Lower cutoff for effective viscosity. Units: Pa s
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Phase transition Clapeyron slopes

Value:
Default:
Description: A list of Clapeyron slopes for each phase transition. A positive Clapeyron slope indicates
that the phase transition will occur in a greater depth, if the temperature is higher than the one given
in Phase transition temperatures and in a smaller depth, if the temperature is smaller than the one
given in Phase transition temperatures. For negative slopes the other way round. List must have the
same number of entries as Phase transition depths. Units: Pa/K.
Possible values: Any string

• Parameter name: Phase transition depths

Value:
Default:
Description: A list of depths where phase transitions occur. Values must monotonically increase.
Units: m.
Possible values: Any string

• Parameter name: Phase transition pressure widths

Value:
Default:
Description: A list of widths for each phase transition, in terms of pressure. The phase functions are
scaled with these values, leading to a jump between phases for a value of zero and a gradual transition
for larger values. List must have the same number of entries as Phase transition pressures. Define
transition by depth instead of pressure must be set to false to use this parameter. Units: Pa.
Possible values: Any string

• Parameter name: Phase transition pressures

Value:
Default:
Description: A list of pressures where phase transitions occur. Values must monotonically increase.
Define transition by depth instead of pressure must be set to false to use this parameter. Units: Pa.
Possible values: Any string

464

• Parameter name: Phase transition temperatures

Value:
Default:
Description: A list of temperatures where phase transitions occur. Higher or lower temperatures
lead to phase transition occurring in smaller or greater depths than given in Phase transition depths,
depending on the Clapeyron slope given in Phase transition Clapeyron slopes. List must have the same
number of entries as Phase transition depths. Units: K.
Possible values: Any string

• Parameter name: Phase transition widths

Value:
Default:
Description: A list of widths for each phase transition, in terms of depth. The phase functions are
scaled with these values, leading to a jump between phases for a value of zero and a gradual transition
for larger values. List must have the same number of entries as Phase transition depths. Units: m.
Possible values: Any string

• Parameter name: Prefactor strain weakening factors

Value: 1.
Default: 1.
Description: List of viscous strain weakening factors for background material and compositional fields,
for a total of N+1 values, where N is the number of compositional fields. If only one value is given,
then all use the same value. Units: None
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ 1]

• Parameter name: Prefactors for diffusion creep

Value: 1.5e-15
Default: 1.5e-15
Description: List of viscosity prefactors, A, for background material and compositional fields, for a
total of N+1 values, where N is the number of compositional fields. If only one value is given, then all
use the same value. Units: Pa−1mmdiffusions−1

Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Prefactors for dislocation creep

Value: 1.1e-16
Default: 1.1e-16
Description: List of viscosity prefactors, A, for background material and compositional fields, for a
total of N+1 values, where N is the number of compositional fields. If only one value is given, then all
use the same value. Units: Pa−ndislocations−1

Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

465

• Parameter name: Reference strain rate

Value: 1.0e-15
Default: 1.0e-15
Description: Reference strain rate for first time step. Units: 1/s
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference temperature

Value: 293.
Default: 293.
Description: For calculating density by thermal expansivity. Units: K
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reference viscosity

Value: 1e22
Default: 1e22
Description: Reference viscosity for nondimensionalization. To understand how pressure scaling works,
take a look at [59]. In particular, the value of this parameter would not affect the solution computed
by ASPECT if we could do arithmetic exactly; however, computers do arithmetic in finite precision,
and consequently we need to scale quantities in ways so that their magnitudes are roughly the same.
As explained in [59], we scale the pressure during some computations (never visible by users) by a
factor that involves a reference viscosity. This parameter describes this reference viscosity.
For problems with a constant viscosity, you will generally want to choose the reference viscosity equal
to the actual viscosity. For problems with a variable viscosity, the reference viscosity should be a value
that adequately represents the order of magnitude of the viscosities that appear, such as an average
value or the value one would use to compute a Rayleigh number.
Units: Pa s
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Specific heats

This parameter is an alias for the parameter “Heat capacities”.

• Parameter name: Start plasticity strain weakening intervals

Value: 0.
Default: 0.
Description: List of strain weakening interval initial strains for the cohesion and friction angle param-
eters of the background material and compositional fields, for a total of N+1 values, where N is the
number of compositional fields. If only one value is given, then all use the same value. Units: None
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Start prefactor strain weakening intervals

Value: 0.
Default: 0.
Description: List of strain weakening interval initial strains for the diffusion and dislocation prefactor
parameters of the background material and compositional fields, for a total of N+1 values, where N

466

is the number of compositional fields. If only one value is given, then all use the same value. Units:
None
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Strain weakening mechanism

Value: default
Default: default
Description: Whether to apply strain weakening to viscosity, cohesion and internal angleof friction
based on accumulated finite strain, and if yes, which method to use. The following methods are
available:

• “none”: No strain weakening is applied.

• “finite strain tensor”: The full finite strain tensor is tracked, and its second invariant is used to weaken
both the plastic yield stress (specifically, the cohesion and friction angle) and the pre-yield viscosity
that arises from diffusion and/or dislocation creep.

• “total strain”: The finite strain is approximated as the product of the second invariant of the strain
rate in each time step and the time step size, and this quantity is integrated and tracked over time.
It is used to weaken both the plastic yield stress (specifically, the cohesion and friction angle) and the
pre-yield viscosity.

• “plastic weakening with plastic strain only”: The finite strain is approximated as the product of the
second invariant of the strain ratein each time step and the time step size in regions where material is
plastically yielding. This quantity is integrated and tracked over time, and used to weaken the cohesion
and friction angle. The pre-yield viscosity is not weakened.

• “plastic weakening with total strain only”: The finite strain is approximated as the product of the
second invariant of the strain rate in each time step and the time step size, and this quantity is
integrated and tracked over time. It is used to weaken the plastic yield stress (specifically, the cohesion
and internal friction angle). The pre-yield viscosity is not weakened.

• “plastic weakening with plastic strain and viscous weakening with viscous strain”: Both the finite
strain accumulated by plastic deformation and by viscous deformation are computed separately (each
approximated as the product of the second invariant of the corresponding strain rate in each time step
and the time step size). The plastic strain is used to weaken the plastic yield stress (specifically, the
cohesion and yield angle), and the viscous strain is used to weaken the pre-yield viscosity.

• “viscous weakening with viscous strain only”: The finite strain is approximated as the product of the
second invariant of the strain rate in each time step and the time step size in regions where material
is not plastically yielding. This quantity is integrated and tracked over time, and used to weaken the
the pre-yield viscosity. The cohesion and friction angle are not weakened.

• “default”: The default option has the same behavior as “none”, but is there to make sure that the
original parameters for specifying the strain weakening mechanism (“Use plastic/viscous strain weak-
ening”) are still allowed, but to guarantee that one uses either the old parameter names or the new
ones, never both.
If a compositional field named ’noninitial_plastic_strain’ is included in the parameter file, this field
will automatically be excluded from from volume fraction calculation and track the cumulative plastic
strain with the initial plastic strain values removed.
Possible values: Any one of none, finite strain tensor, total strain, plastic weakening with plastic
strain only, plastic weakening with total strain only, plastic weakening with plastic strain and viscous
weakening with viscous strain, viscous weakening with viscous strain only, default

467

• Parameter name: Stress exponents for dislocation creep

Value: 3.5
Default: 3.5
Description: List of stress exponents, ndislocation, for background material and compositional fields, for
a total of N+1 values, where N is the number of compositional fields. If only one value is given, then
all use the same value. Units: None
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Stress limiter exponents

Value: 1.0
Default: 1.0
Description: List of stress limiter exponents, nlim, for background material and compositional fields,
for a total of N+1 values, where N is the number of compositional fields. Units: none.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Thermal conductivities

Value: 3.0
Default: 3.0
Description: List of thermal conductivities, for background material and compositional fields, for a
total of N+1 values, where N is the number of compositional fields. If only one value is given, then all
use the same value. Units: W/(mK)
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Thermal diffusivities

Value: 0.8e-6
Default: 0.8e-6
Description: List of thermal diffusivities, for background material and compositional fields, for a total
of N+1 values, where N is the number of compositional fields. If only one value is given, then all use
the same value. Units: m2/s

Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Thermal expansivities

Value: 0.000035
Default: 0.000035
Description: List of thermal expansivities for background mantle and compositional fields,for a total
of N+M+1 values, where N is the number of compositional fields and M is the number of phases. If
only one value is given, then all use the same value. Units: 1/K
Possible values: Any string

• Parameter name: Use fixed elastic time step

Value: unspecified
Default: unspecified

468

Description: Select whether the material time scale in the viscoelastic constitutive relationship uses
the regular numerical time step or a separate fixed elastic time step throughout the model run. The
fixed elastic time step is always used during the initial time step. If a fixed elastic time step is used
throughout the model run, a stress averaging scheme can be applied to account for differences with
the numerical time step. An alternative approach is to limit the maximum time step size so that it is
equal to the elastic time step. The default value of this parameter is ’unspecified’, which throws an
exception during runtime. In order for the model to run the user must select ’true’ or ’false’.
Possible values: Any one of true, false, unspecified

• Parameter name: Use stress averaging

Value: false
Default: false
Description: Whether to apply a stress averaging scheme to account for differences between the fixed
elastic time step and numerical time step.
Possible values: A boolean value (true or false)

• Parameter name: Viscosity averaging scheme

Value: harmonic
Default: harmonic
Description: When more than one compositional field is present at a point with different viscosities,
we need to come up with an average viscosity at that point. Select a weighted harmonic, arithmetic,
geometric, or maximum composition.
Possible values: Any one of arithmetic, harmonic, geometric, maximum composition

• Parameter name: Viscous flow law

Value: composite
Default: composite
Description: Select what type of viscosity law to use between diffusion, dislocation and composite
options. Soon there will be an option to select a specific flow law for each assigned composition
Possible values: Any one of diffusion, dislocation, composite

• Parameter name: Yield mechanism

Value: drucker
Default: drucker
Description: Select what type of yield mechanism to use between Drucker Prager and stress limiter
options.
Possible values: Any one of drucker, limiter

A.120 Parameters in section Material model/Viscoelastic
• Parameter name: Densities
Value: 3300.
Default: 3300.
Description: List of densities for background mantle and compositional fields,for a total of N+M+1
values, where N is the number of compositional fields and M is the number of phases. If only one value
is given, then all use the same value. Units: kg/m3

Possible values: Any string

469

• Parameter name: Elastic shear moduli

Value: 75.0e9
Default: 75.0e9
Description: List of elastic shear moduli, G, for background material and compositional fields, for a
total of N+1 values, where N is the number of compositional fields. The default value of 75 GPa is
representative of mantle rocks. Units: Pa.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Fixed elastic time step

Value: 1.e3
Default: 1.e3
Description: The fixed elastic time step dte. Units: years if the ’Use years in output instead of seconds’
parameter is set; seconds otherwise.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Heat capacities

Value: 1250.
Default: 1250.
Description: List of specific heats Cp for background mantle and compositional fields,for a total of
N+M+1 values, where N is the number of compositional fields and M is the number of phases. If only
one value is given, then all use the same value. Units: J/kg/K
Possible values: Any string

• Parameter name: Reference temperature

Value: 293.
Default: 293.
Description: The reference temperature T0. Units: K.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Specific heats

This parameter is an alias for the parameter “Heat capacities”.

• Parameter name: Thermal conductivities

Value: 4.7
Default: 4.7
Description: List of thermal conductivities for background mantle and compositional fields, for a total
of N+1 values, where N is the number of compositional fields. If only one value is given, then all use
the same value. Units: W/m/K
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Thermal expansivities

Value: 0.000035
Default: 0.000035

470

Description: List of thermal expansivities for background mantle and compositional fields,for a total
of N+M+1 values, where N is the number of compositional fields and M is the number of phases. If
only one value is given, then all use the same value. Units: 1/K
Possible values: Any string

• Parameter name: Use fixed elastic time step

Value: unspecified
Default: unspecified
Description: Select whether the material time scale in the viscoelastic constitutive relationship uses
the regular numerical time step or a separate fixed elastic time step throughout the model run. The
fixed elastic time step is always used during the initial time step. If a fixed elastic time step is used
throughout the model run, a stress averaging scheme can be applied to account for differences with
the numerical time step. An alternative approach is to limit the maximum time step size so that it is
equal to the elastic time step. The default value of this parameter is ’unspecified’, which throws an
exception during runtime. In order for the model to run the user must select ’true’ or ’false’.
Possible values: Any one of true, false, unspecified

• Parameter name: Use stress averaging

Value: false
Default: false
Description: Whether to apply a stress averaging scheme to account for differences between the fixed
elastic time step and numerical time step.
Possible values: A boolean value (true or false)

• Parameter name: Viscosities
Value: 1.e21
Default: 1.e21
Description: List of viscosities for background mantle and compositional fields, for a total of N+1
values, where N is the number of compositional fields. If only one value is given, then all use the same
value. Units: Pas
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Viscosity averaging scheme

Value: harmonic
Default: harmonic
Description: When more than one compositional field is present at a point with different viscosities,
we need to come up with an average viscosity at that point. Select a weighted harmonic, arithmetic,
geometric, or maximum composition.
Possible values: Any one of arithmetic, harmonic, geometric, maximum composition

A.121 Parameters in section Melt settings
• Parameter name: Average melt velocity

Value: true
Default: true

471

Description: Whether to cell-wise average the material properties that are used to compute the melt
velocity or not. The melt velocity is computed as the sum of the solid velocity and the phase separation
flux −KD/φ(∇pf − ρfg). If this parameter is set to true, KD and φ will be averaged cell-wise in the
computation of the phase separation flux. This is useful because in some models the melt velocity can
have spikes close to the interface between regions of melt and no melt, as both KD and φ go to zero for
vanishing melt fraction. As the melt velocity is used for computing the time step size, and in models
that use heat transport by melt or shear heating of melt, setting this parameter to true can speed up
the model and make it mode stable. In computations where accuracy and convergence behavior of the
melt velocity is important (like in benchmark cases with an analytical solution), this parameter should
probably be set to ’false’.
Possible values: A boolean value (true or false)

• Parameter name: Heat advection by melt

Value: false
Default: false
Description: Whether to use a porosity weighted average of the melt and solid velocity to advect
heat in the temperature equation or not. If this is set to true, additional terms are assembled on the
left-hand side of the temperature advection equation. Only used if Include melt transport is true. If
this is set to false, only the solid velocity is used (as in models without melt migration).
Possible values: A boolean value (true or false)

• Parameter name: Include melt transport

Value: false
Default: false
Description: Whether to include the transport of melt into the model or not. If this is set to true,
two additional pressures (the fluid pressure and the compaction pressure) will be added to the finite
element. Including melt transport in the simulation also requires that there is one compositional field
that has the name ‘porosity’. This field will be used for computing the additional pressures and the
melt velocity, and has a different advection equation than other compositional fields, as it is effectively
advected with the melt velocity.
Possible values: A boolean value (true or false)

• Parameter name: Melt scaling factor threshold

Value: 1e-7
Default: 1e-7
Description: The factor by how much the Darcy coefficient K_D in a cell can be smaller than the
reference Darcy coefficient for this cell still to be considered a melt cell (for which the melt transport
equations are solved). For smaller Darcy coefficients, the Stokes equations (without melt) are solved
instead. Only used if “Include melt transport” is true.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Use discontinuous compaction pressure

Value: true
Default: true
Description: Whether to use a discontinuous element for the compaction pressure or not. From
our preliminary tests, continuous elements seem to work better in models where the porosity is > 0
everywhere in the domain, and discontinuous elements work better in models where in parts of the
domain the porosity = 0.
Possible values: A boolean value (true or false)

472

A.122 Parameters in section Mesh deformation
• Parameter name: Additional tangential mesh velocity boundary indicators

Value:
Default:
Description: A comma separated list of names denoting those boundaries where there the mesh is
allowed to move tangential to the boundary. All tangential mesh movements along those boundaries
that have tangential material velocity boundary conditions are allowed by default, this parameters
allows to generate mesh movements along other boundaries that are open, or have prescribed material
velocities or tractions.
The names of the boundaries listed here can either be numbers (in which case they correspond to the
numerical boundary indicators assigned by the geometry object), or they can correspond to any of the
symbolic names the geometry object may have provided for each part of the boundary. You may want
to compare this with the documentation of the geometry model you use in your model.
Possible values: A list of 0 to 4294967295 elements where each element is [Any string]

• Parameter name: Mesh deformation boundary indicators

Value:
Default:
Description: A comma separated list of names denoting those boundaries where there the mesh is
allowed to move according to the specified mesh deformation objects.
The names of the boundaries listed here can either be numbers (in which case they correspond to the
numerical boundary indicators assigned by the geometry object), or they can correspond to any of the
symbolic names the geometry object may have provided for each part of the boundary. You may want
to compare this with the documentation of the geometry model you use in your model.
The format is id1: object1 & object2, id2: object3 & object2, where objects are one of ‘boundary
function’: A plugin, which prescribes the surface mesh to deform according to an analytically prescribed
function. Note that the function prescribes a deformation velocity, i.e. the return value of this plugin
is later multiplied by the time step length to compute the displacement increment in this time step.
Although the function’s time variable is interpreted as years when Use years in output instead of
seconds is set to true, the boundary deformation velocity should still be given in m/s. The format of
the functions follows the syntax understood by the muparser library, see Section 4.7.3.
‘free surface’: A plugin that computes the deformation of surface vertices according to the solution of
the flow problem. In particular this means if the surface of the domain is left open to flow, this flow
will carry the mesh with it. The implementation was described in [73], with the stabilization of the
free surface originally described in [56].
Possible values: A list of 0 to 4294967295 elements where each element is [Any string]

A.123 Parameters in section Mesh deformation/Boundary function
• Parameter name: Function constants

Value:
Default:
Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘var1=value1, var2=value2, ...’.

473

A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: Any string

• Parameter name: Function expression

Value: 0; 0
Default: 0; 0
Description: The formula that denotes the function you want to evaluate for particular values of the
independent variables. This expression may contain any of the usual operations such as addition or
multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may contain
expressions like ‘if(x>0, 1, -1)’ where the expression evaluates to the second argument if the first
argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.
If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.
Possible values: Any string

• Parameter name: Variable names

Value: x,y,t
Default: x,y,t
Description: The names of the variables as they will be used in the function, separated by commas.
By default, the names of variables at which the function will be evaluated are ‘x’ (in 1d), ‘x,y’ (in 2d)
or ‘x,y,z’ (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’ and then use these variable names in your
function expression.
Possible values: Any string

A.124 Parameters in section Mesh deformation/Free surface
• Parameter name: Free surface stabilization theta

Value: 0.5
Default: 0.5
Description: Theta parameter described in [56]. An unstabilized free surface can overshoot its equi-
librium position quite easily and generate unphysical results. One solution is to use a quasi-implicit
correction term to the forces near the free surface. This parameter describes how much the free surface
is stabilized with this term, where zero is no stabilization, and one is fully implicit.
Possible values: A floating point number v such that 0 ≤ v ≤ 1

• Parameter name: Surface velocity projection

Value: normal
Default: normal
Description: After each time step the free surface must be advected in the direction of the velocity field.
Mass conservation requires that the mesh velocity is in the normal direction of the surface. However,

474

for steep topography or large curvature, advection in the normal direction can become ill-conditioned,
and instabilities in the mesh can form. Projection of the mesh velocity onto the local vertical direction
can preserve the mesh quality better, but at the cost of slightly poorer mass conservation of the domain.
Possible values: Any one of normal, vertical

A.125 Parameters in section Mesh refinement
• Parameter name: Adapt by fraction of cells

Value: false
Default: false
Description: Use fraction of the total number of cells instead of fraction of the total error as the limit
for refinement and coarsening.
Possible values: A boolean value (true or false)

• Parameter name: Additional refinement times

Value:
Default:
Description: A list of times so that if the end time of a time step is beyond this time, an additional
round of mesh refinement is triggered. This is mostly useful to make sure we can get through the
initial transient phase of a simulation on a relatively coarse mesh, and then refine again when we are
in a time range that we are interested in and where we would like to use a finer mesh. Units: Each
element of the list has units years if the ’Use years in output instead of seconds’ parameter is set;
seconds otherwise.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Coarsening fraction

Value: 0.05
Default: 0.05
Description: The fraction of cells with the smallest error that should be flagged for coarsening.
Possible values: A floating point number v such that 0 ≤ v ≤ 1

• Parameter name: Initial adaptive refinement

Value: 0
Default: 0
Description: The number of adaptive refinement steps performed after initial global refinement but
while still within the first time step.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Initial global refinement

Value: 2
Default: 2
Description: The number of global refinement steps performed on the initial coarse mesh, before the
problem is first solved there.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

475

• Parameter name: Minimum refinement level

Value: 0
Default: 0
Description: The minimum refinement level each cell should have, and that can not be exceeded by
coarsening. Should not be higher than the ’Initial global refinement’ parameter.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Normalize individual refinement criteria

Value: true
Default: true
Description: If multiple refinement criteria are specified in the “Strategy” parameter, then they need
to be combined somehow to form the final refinement indicators. This is done using the method
described by the “Refinement criteria merge operation” parameter which can either operate on the
raw refinement indicators returned by each strategy (i.e., dimensional quantities) or using normalized
values where the indicators of each strategy are first normalized to the interval [0, 1] (which also makes
them non-dimensional). This parameter determines whether this normalization will happen.
Possible values: A boolean value (true or false)

• Parameter name: Refinement criteria merge operation

Value: max
Default: max
Description: If multiple mesh refinement criteria are computed for each cell (by passing a list of
more than element to the Strategy parameter in this section of the input file) then one will have to
decide which one should win when deciding which cell to refine. The operation that selects from these
competing criteria is the one that is selected here. The options are:

– plus: Add the various error indicators together and refine those cells on which the sum of indi-
cators is largest.

– max: Take the maximum of the various error indicators and refine those cells on which the maximal
indicators is largest.

The refinement indicators computed by each strategy are modified by the “Normalize individual re-
finement criteria” and “Refinement criteria scale factors” parameters.
Possible values: Any one of plus, max

• Parameter name: Refinement criteria scaling factors

Value:
Default:
Description: A list of scaling factors by which every individual refinement criterion will be multiplied
by. If only a single refinement criterion is selected (using the “Strategy” parameter, then this parameter
has no particular meaning. On the other hand, if multiple criteria are chosen, then these factors are
used to weigh the various indicators relative to each other.
If “Normalize individual refinement criteria” is set to true, then the criteria will first be normalized to
the interval [0, 1] and then multiplied by the factors specified here. You will likely want to choose the
factors to be not too far from 1 in that case, say between 1 and 10, to avoid essentially disabling those
criteria with small weights. On the other hand, if the criteria are not normalized to [0, 1] using the
parameter mentioned above, then the factors you specify here need to take into account the relative
numerical size of refinement indicators (which in that case carry physical units).

476

You can experimentally play with these scaling factors by choosing to output the refinement indicators
into the graphical output of a run.
If the list of indicators given in this parameter is empty, then this indicates that they should all be
chosen equal to one. If the list is not empty then it needs to have as many entries as there are indicators
chosen in the “Strategy” parameter.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Refinement fraction

Value: 0.3
Default: 0.3
Description: The fraction of cells with the largest error that should be flagged for refinement.
Possible values: A floating point number v such that 0 ≤ v ≤ 1

• Parameter name: Run postprocessors on initial refinement

Value: false
Default: false
Description: Whether or not the postprocessors should be executed after each of the initial adaptive
refinement cycles that are run at the start of the simulation.
Possible values: A boolean value (true or false)

• Parameter name: Skip setup initial conditions on initial refinement

Value: false
Default: false
Description: Whether or not the initial conditions should be set up during the the adaptive refinement
cycles that are run at the start of the simulation.
Possible values: A boolean value (true or false)

• Parameter name: Skip solvers on initial refinement

Value: false
Default: false
Description: Whether or not solvers should be executed during the initial adaptive refinement cycles
that are run at the start of the simulation.
Possible values: A boolean value (true or false)

• Parameter name: Strategy
Value: thermal energy density
Default: thermal energy density
Description: A comma separated list of mesh refinement criteria that will be run whenever mesh
refinement is required. The results of each of these criteria, i.e., the refinement indicators they produce
for all the cells of the mesh will then be normalized to a range between zero and one and the results
of different criteria will then be merged through the operation selected in this section.
The following criteria are available:
‘artificial viscosity’: A mesh refinement criterion that computes refinement indicators from the artificial
viscosity of the temperature or compositional fields based on user specified weights.

477

‘boundary’: A class that implements a mesh refinement criterion which always flags all cells on specified
boundaries for refinement. This is useful to provide high accuracy for processes at or close to the edge
of the model domain.
To use this refinement criterion, you may want to combine it with other refinement criteria, setting
the ’Normalize individual refinement criteria’ flag and using the ‘max’ setting for ’Refinement criteria
merge operation’.
‘compaction length’: A mesh refinement criterion for models with melt transport that computes refine-
ment indicators based on the compaction length, defined as δ =

√
(ξ+4η/3)k

ηf
. ξ is the bulk viscosity,

η is the shear viscosity, k is the permeability and ηf is the melt viscosity. If the cell width or height
exceeds a multiple (which is specified as an input parameter) of this compaction length, the cell is
marked for refinement.
‘composition’: A mesh refinement criterion that computes refinement indicators from the compositional
fields. If there is more than one compositional field, then it simply takes the sum of the indicators
computed from each of the compositional field.
The way these indicators are computed is by evaluating the ‘Kelly error indicator’ on each compositional
field. This error indicator takes the finite element approximation of the compositional field and uses
it to compute an approximation of the second derivatives of the composition for each cell. This
approximation is then multiplied by an appropriate power of the cell’s diameter to yield an indicator
for how large the error is likely going to be on this cell. This construction rests on the observation
that for many partial differential equations, the error on each cell is proportional to some power of the
cell’s diameter times the second derivatives of the solution on that cell.
For complex equations such as those we solve here, this observation may not be strictly true in the
mathematical sense, but it often yields meshes that are surprisingly good.
‘composition approximate gradient’: A mesh refinement criterion that computes refinement indicators
from the gradients of compositional fields. If there is more than one compositional field, then it simply
takes the sum of the indicators times a user-specified weight for each field.
In contrast to the ‘composition gradient’ refinement criterion, the current criterion does not compute
the gradient at quadrature points on each cell, but by a finite difference approximation between the
centers of cells. Consequently, it also works if the compositional fields are computed using discontinuous
finite elements.
‘composition gradient’: A mesh refinement criterion that computes refinement indicators from the
gradients of compositional fields. If there is more than one compositional field, then it simply takes
the sum of the indicators times a user-specified weight for each field.
This refinement criterion computes the gradient of the compositional field at quadrature points on each
cell, and then averages them in some way to obtain a refinement indicator for each cell. This will give
a reasonable approximation of the true gradient of the compositional field if you are using a continuous
finite element.
On the other hand, for discontinuous finite elements (see the ‘Use discontinuous composition discretiza-
tion’ parameter in the ‘Discretization’ section), the gradient at quadrature points does not include the
contribution of jumps in the compositional field between cells, and consequently will not be an accu-
rate approximation of the true gradient. As an extreme example, consider the case of using piecewise
constant finite elements for compositional fields; in that case, the gradient of the solution at quadrature
points inside each cell will always be exactly zero, even if the finite element solution is different from
each cell to the next. Consequently, the current refinement criterion will likely not be useful in this
situation. That said, the ‘composition approximate gradient’ refinement criterion exists for exactly
this purpose.
‘composition threshold’: A mesh refinement criterion that computes refinement indicators from the
compositional fields. If any field exceeds the threshold given in the input file, the cell is marked for

478

refinement.
‘density’: A mesh refinement criterion that computes refinement indicators from a field that describes
the spatial variability of the density, ρ. Because this quantity may not be a continuous function (ρ
and Cp may be discontinuous functions along discontinuities in the medium, for example due to phase
changes), we approximate the gradient of this quantity to refine the mesh. The error indicator defined
here takes the magnitude of the approximate gradient and scales it by h1+d/2

K where hK is the diameter
of each cell and d is the dimension. This scaling ensures that the error indicators converge to zero
as hK → 0 even if the energy density is discontinuous, since the gradient of a discontinuous function
grows like 1/hK .
‘maximum refinement function’: A mesh refinement criterion that ensures a maximum refinement
level described by an explicit formula with the depth or position as argument. Which coordinate
representation is used is determined by an input parameter. Whatever the coordinate system chosen,
the function you provide in the input file will by default depend on variables ‘x’, ‘y’ and ‘z’ (if in
3d). However, the meaning of these symbols depends on the coordinate system. In the Cartesian
coordinate system, they simply refer to their natural meaning. If you have selected ‘depth’ for the
coordinate system, then ‘x’ refers to the depth variable and ‘y’ and ‘z’ will simply always be zero. If
you have selected a spherical coordinate system, then ‘x’ will refer to the radial distance of the point
to the origin, ‘y’ to the azimuth angle and ‘z’ to the polar angle measured positive from the north
pole. Note that the order of spherical coordinates is r,phi,theta and not r,theta,phi, since this allows
for dimension independent expressions. Each coordinate system also includes a final ‘t’ variable which
represents the model time, evaluated in years if the ’Use years in output instead of seconds’ parameter
is set, otherwise evaluated in seconds. After evaluating the function, its values are rounded to the
nearest integer.
The format of these functions follows the syntax understood by the muparser library, see Section 4.7.3.
‘minimum refinement function’: A mesh refinement criterion that ensures a minimum refinement level
described by an explicit formula with the depth or position as argument. Which coordinate representa-
tion is used is determined by an input parameter. Whatever the coordinate system chosen, the function
you provide in the input file will by default depend on variables ‘x’, ‘y’ and ‘z’ (if in 3d). However, the
meaning of these symbols depends on the coordinate system. In the Cartesian coordinate system, they
simply refer to their natural meaning. If you have selected ‘depth’ for the coordinate system, then ‘x’
refers to the depth variable and ‘y’ and ‘z’ will simply always be zero. If you have selected a spherical
coordinate system, then ‘x’ will refer to the radial distance of the point to the origin, ‘y’ to the azimuth
angle and ‘z’ to the polar angle measured positive from the north pole. Note that the order of spherical
coordinates is r,phi,theta and not r,theta,phi, since this allows for dimension independent expressions.
Each coordinate system also includes a final ‘t’ variable which represents the model time, evaluated in
years if the ’Use years in output instead of seconds’ parameter is set, otherwise evaluated in seconds.
After evaluating the function, its values are rounded to the nearest integer.
The format of these functions follows the syntax understood by the muparser library, see Section 4.7.3.
‘nonadiabatic temperature’: A mesh refinement criterion that computes refinement indicators from the
excess temperature(difference between temperature and adiabatic temperature.
‘particle density’: A mesh refinement criterion that computes refinement indicators based on the density
of particles. In practice this plugin equilibrates the number of particles per cell, leading to fine cells in
high particle density regions and coarse cells in low particle density regions. This plugin is mostly useful
for models with inhomogeneous particle density, e.g. when tracking an initial interface with a high
particle density, or when the spatial particle density denotes the region of interest. Additionally, this
plugin tends to balance the computational load between processes in parallel computations, because
the particle and mesh density is more aligned.
‘slope’: A class that implements a mesh refinement criterion intended for use with deforming mesh
boundaries, like the free surface. It calculates a local slope based on the angle between the surface

479

normal and the local gravity vector. Cells with larger angles are marked for refinement.
To use this refinement criterion, you may want to combine it with other refinement criteria, setting
the ’Normalize individual refinement criteria’ flag and using the ‘max’ setting for ’Refinement criteria
merge operation’.
‘strain rate’: A mesh refinement criterion that computes the refinement indicators equal to the strain
rate norm computed at the center of the elements.
‘temperature’: A mesh refinement criterion that computes refinement indicators from the temperature
field.
The way these indicators are computed is by evaluating the ‘Kelly error indicator’ on the temperature
field. This error indicator takes the finite element approximation of the temperature field and uses
it to compute an approximation of the second derivatives of the temperature for each cell. This
approximation is then multiplied by an appropriate power of the cell’s diameter to yield an indicator
for how large the error is likely going to be on this cell. This construction rests on the observation
that for many partial differential equations, the error on each cell is proportional to some power of the
cell’s diameter times the second derivatives of the solution on that cell.
For complex equations such as those we solve here, this observation may not be strictly true in the
mathematical sense, but it often yields meshes that are surprisingly good.
‘thermal energy density’: A mesh refinement criterion that computes refinement indicators from a field
that describes the spatial variability of the thermal energy density, ρCpT . Because this quantity may
not be a continuous function (ρ and Cp may be discontinuous functions along discontinuities in the
medium, for example due to phase changes), we approximate the gradient of this quantity to refine the
mesh. The error indicator defined here takes the magnitude of the approximate gradient and scales it
by h1.5

K where hK is the diameter of each cell. This scaling ensures that the error indicators converge
to zero as hK → 0 even if the energy density is discontinuous, since the gradient of a discontinuous
function grows like 1/hK .
‘topography’: A class that implements a mesh refinement criterion, which always flags all cells in the
uppermost layer for refinement. This is useful to provide high accuracy for processes at or close to the
surface.
To use this refinement criterion, you may want to combine it with other refinement criteria, setting
the ’Normalize individual refinement criteria’ flag and using the ‘max’ setting for ’Refinement criteria
merge operation’.
‘velocity’: A mesh refinement criterion that computes refinement indicators from the velocity field.
The way these indicators are computed is by evaluating the ‘Kelly error indicator’ on the velocity field.
This error indicator takes the finite element approximation of the velocity field and uses it to compute
an approximation of the second derivatives of the velocity for each cell. This approximation is then
multiplied by an appropriate power of the cell’s diameter to yield an indicator for how large the error
is likely going to be on this cell. This construction rests on the observation that for many partial
differential equations, the error on each cell is proportional to some power of the cell’s diameter times
the second derivatives of the solution on that cell.
For complex equations such as those we solve here, this observation may not be strictly true in the
mathematical sense, but it often yields meshes that are surprisingly good.
‘viscosity’: A mesh refinement criterion that computes refinement indicators from a field that describes
the spatial variability of the logarithm of the viscosity, log η. (We choose the logarithm of the viscosity
because it can vary by orders of magnitude.)Because this quantity may not be a continuous function
(η may be a discontinuous function along discontinuities in the medium, for example due to phase
changes), we approximate the gradient of this quantity to refine the mesh. The error indicator defined
here takes the magnitude of the approximate gradient and scales it by h1+d/2

K where hK is the diameter
of each cell and d is the dimension. This scaling ensures that the error indicators converge to zero

480

as hK → 0 even if the energy density is discontinuous, since the gradient of a discontinuous function
grows like 1/hK .
‘volume of fluid interface’: A class that implements a mesh refinement criterion, which ensures a
minimum level of refinement near the volume of fluid interface boundary.
Possible values: A comma-separated list of any of artificial viscosity, boundary, compaction length,
composition, composition approximate gradient, composition gradient, composition threshold, density,
maximum refinement function, minimum refinement function, nonadiabatic temperature, particle den-
sity, slope, strain rate, temperature, thermal energy density, topography, velocity, viscosity, volume of
fluid interface

• Parameter name: Time steps between mesh refinement

Value: 10
Default: 10
Description: The number of time steps after which the mesh is to be adapted again based on computed
error indicators. If 0 then the mesh will never be changed.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

A.126 Parameters in section Mesh refinement/Artificial viscosity
• Parameter name: Compositional field scaling factors

Value:
Default:
Description: A list of scaling factors by which every individual compositional field will be multiplied.
These factors are used to weigh the various indicators relative to each other and to the temperature.
If the list of scaling factors given in this parameter is empty, then this indicates that they should
all be chosen equal to 0. If the list is not empty then it needs to have as many entries as there are
compositional fields.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Temperature scaling factor

Value: 0.0
Default: 0.0
Description: A scaling factor for the artificial viscosity of the temperature equation. Use 0.0 to disable.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.127 Parameters in section Mesh refinement/Boundary
• Parameter name: Boundary refinement indicators

Value:
Default:
Description: A comma separated list of names denoting those boundaries where there should be mesh
refinement.
The names of the boundaries listed here can either be numbers (in which case they correspond to the
numerical boundary indicators assigned by the geometry object), or they can correspond to any of the
symbolic names the geometry object may have provided for each part of the boundary. You may want
to compare this with the documentation of the geometry model you use in your model.
Possible values: A list of 0 to 4294967295 elements where each element is [Any string]

481

A.128 Parameters in section Mesh refinement/Compaction length
• Parameter name: Mesh cells per compaction length

Value: 1.0
Default: 1.0
Description: The desired ratio between compaction length and size of the mesh cells, or, in other words,
how many cells the mesh should (at least) have per compaction length. Every cell where this ratio
is smaller than the value specified by this parameter (in places with fewer mesh cells per compaction
length) is marked for refinement.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.129 Parameters in section Mesh refinement/Composition
• Parameter name: Compositional field scaling factors

Value:
Default:
Description: A list of scaling factors by which every individual compositional field will be multiplied.
If only a single compositional field exists, then this parameter has no particular meaning. On the other
hand, if multiple criteria are chosen, then these factors are used to weigh the various indicators relative
to each other.
If the list of scaling factors given in this parameter is empty, then this indicates that they should all
be chosen equal to one. If the list is not empty then it needs to have as many entries as there are
compositional fields.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

A.130 Parameters in section Mesh refinement/Composition approximate gradient
• Parameter name: Compositional field scaling factors

Value:
Default:
Description: A list of scaling factors by which every individual compositional field gradient will be
multiplied. If only a single compositional field exists, then this parameter has no particular meaning.
On the other hand, if multiple criteria are chosen, then these factors are used to weigh the various
indicators relative to each other.
If the list of scaling factors given in this parameter is empty, then this indicates that they should all
be chosen equal to one. If the list is not empty then it needs to have as many entries as there are
compositional fields.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

A.131 Parameters in section Mesh refinement/Composition gradient
• Parameter name: Compositional field scaling factors

Value:
Default:

482

Description: A list of scaling factors by which every individual compositional field gradient will be
multiplied. If only a single compositional field exists, then this parameter has no particular meaning.
On the other hand, if multiple criteria are chosen, then these factors are used to weigh the various
indicators relative to each other.
If the list of scaling factors given in this parameter is empty, then this indicates that they should all
be chosen equal to one. If the list is not empty then it needs to have as many entries as there are
compositional fields.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

A.132 Parameters in section Mesh refinement/Composition threshold
• Parameter name: Compositional field thresholds

Value:
Default:
Description: A list of thresholds that every individual compositional field will be evaluated against.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE]

A.133 Parameters in section Mesh refinement/Maximum refinement function
• Parameter name: Coordinate system

Value: depth
Default: depth
Description: A selection that determines the assumed coordinate system for the function variables.
Allowed values are ‘depth’, ‘cartesian’ and ‘spherical’. ‘depth’ will create a function, in which only the
first variable is non-zero, which is interpreted to be the depth of the point. ‘spherical’ coordinates are
interpreted as r,phi or r,phi,theta in 2D/3D respectively with theta being the polar angle.
Possible values: Any one of depth, cartesian, spherical

• Parameter name: Function constants

Value:
Default:
Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘var1=value1, var2=value2, ...’.
A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: Any string

• Parameter name: Function expression

Value: 0
Default: 0
Description: The formula that denotes the function you want to evaluate for particular values of the
independent variables. This expression may contain any of the usual operations such as addition or
multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may contain

483

expressions like ‘if(x>0, 1, -1)’ where the expression evaluates to the second argument if the first
argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.
If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.
Possible values: Any string

• Parameter name: Variable names

Value: x,y,t
Default: x,y,t
Description: The names of the variables as they will be used in the function, separated by commas.
By default, the names of variables at which the function will be evaluated are ‘x’ (in 1d), ‘x,y’ (in 2d)
or ‘x,y,z’ (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’ and then use these variable names in your
function expression.
Possible values: Any string

A.134 Parameters in section Mesh refinement/Minimum refinement function
• Parameter name: Coordinate system

Value: depth
Default: depth
Description: A selection that determines the assumed coordinate system for the function variables.
Allowed values are ‘depth’, ‘cartesian’ and ‘spherical’. ‘depth’ will create a function, in which only the
first variable is non-zero, which is interpreted to be the depth of the point. ‘spherical’ coordinates are
interpreted as r,phi or r,phi,theta in 2D/3D respectively with theta being the polar angle.
Possible values: Any one of depth, cartesian, spherical

• Parameter name: Function constants

Value:
Default:
Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘var1=value1, var2=value2, ...’.
A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: Any string

• Parameter name: Function expression

Value: 0
Default: 0
Description: The formula that denotes the function you want to evaluate for particular values of the
independent variables. This expression may contain any of the usual operations such as addition or

484

multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may contain
expressions like ‘if(x>0, 1, -1)’ where the expression evaluates to the second argument if the first
argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.
If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.
Possible values: Any string

• Parameter name: Variable names

Value: x,y,t
Default: x,y,t
Description: The names of the variables as they will be used in the function, separated by commas.
By default, the names of variables at which the function will be evaluated are ‘x’ (in 1d), ‘x,y’ (in 2d)
or ‘x,y,z’ (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’ and then use these variable names in your
function expression.
Possible values: Any string

A.135 Parameters in section Mesh refinement/Volume of fluid interface
• Parameter name: Strict coarsening

Value: false
Default: false
Description: If true, then explicitly coarsen any cells not neighboring the VolumeOfFluid interface.
Possible values: A boolean value (true or false)

A.136 Parameters in section Nullspace removal
• Parameter name: Remove nullspace

Value:
Default:
Description: Choose none, one or several from

– net rotation
– angular momentum
– net translation
– linear momentum
– net x translation
– net y translation
– net z translation
– linear x momentum
– linear y momentum

485

– linear z momentum

These are a selection of operations to remove certain parts of the nullspace from the velocity after
solving. For some geometries and certain boundary conditions the velocity field is not uniquely de-
termined but contains free translations and/or rotations. Depending on what you specify here, these
non-determined modes will be removed from the velocity field at the end of the Stokes solve step.
The “angular momentum” option removes a rotation such that the net angular momentum is zero. The
“linear * momentum” options remove translations such that the net momentum in the relevant direction
is zero. The “net rotation” option removes the net rotation of the domain, and the “net * translation”
options remove the net translations in the relevant directions. For most problems there should not be
a significant difference between the momentum and rotation/translation versions of nullspace removal,
although the momentum versions are more physically motivated. They are equivalent for constant
density simulations, and approximately equivalent when the density variations are small.
Note that while more than one operation can be selected it only makes sense to pick one rotational
and one translational operation.
Possible values: A comma-separated list of any of net rotation, angular momentum, net translation,
linear momentum, net x translation, net y translation, net z translation, linear x momentum, linear y
momentum, linear z momentum

A.137 Parameters in section Postprocess
• Parameter name: List of postprocessors

Value:
Default:
Description: A comma separated list of postprocessor objects that should be run at the end of each
time step. Some of these postprocessors will declare their own parameters which may, for example,
include that they will actually do something only every so many time steps or years. Alternatively,
the text ‘all’ indicates that all available postprocessors should be run after each time step.
The following postprocessors are available:
‘Stokes residual’: A postprocessor that outputs the Stokes residuals during the iterative solver algorithm
into a file stokes_residuals.txt in the output directory.
‘basic statistics’: A postprocessor that outputs some simplified statistics like the Rayleigh number and
other quantities that only make sense in certain model setups. The output is written after completing
initial adaptive refinement steps. The postprocessor assumes a point at the surface at the adiabatic
surface temperature and pressure is a reasonable reference condition for computing these properties.
Furthermore, the Rayleigh number is computed using the model depth (i.e. not the radius of the
Earth), as we need a definition that is geometry independent. Take care when comparing these values
to published studies and make sure they use the same definitions.
‘boundary densities’: A postprocessor that computes the laterally averaged density at the top and
bottom of the domain.
‘boundary pressures’: A postprocessor that computes the laterally averaged pressure at the top and
bottom of the domain.
‘command’: A postprocessor that executes a command line process.
‘composition statistics’: A postprocessor that computes some statistics about the compositional fields,
if present in this simulation. In particular, it computes maximal and minimal values of each field, as
well as the total mass contained in this field as defined by the integral mi(t) =

∫
Ω ci(x, t) dx.

‘core statistics’: A postprocessor that computes some statistics about the core evolution. (Working
only with dynamic core boundary temperature plugin)

486

‘depth average’: A postprocessor that computes depth averaged quantities and writes them into a
file <depth_average.ext> in the output directory, where the extension of the file is determined by
the output format you select. In addition to the output format, a number of other parameters also
influence this postprocessor, and they can be set in the section Postprocess/Depth average in the
input file.
In the output files, the x-value of each data point corresponds to the depth, whereas the y-value
corresponds to the simulation time. The time is provided in seconds or, if the global “Use years in
output instead of seconds” parameter is set, in years.
‘dynamic topography’: A postprocessor that computes a measure of dynamic topography based on the
stress at the surface and bottom. The data is written into text files named ‘dynamic_topography.NNNNN’
in the output directory, where NNNNN is the number of the time step.
The exact approach works as follows: At the centers of all cells that sit along the top surface, we
evaluate the stress and evaluate the component of it in the direction in which gravity acts. In other
words, we compute σrr = ĝT (2ηε(u)− 1

3 (div u)I)ĝ−pd where ĝ = g/‖g‖ is the direction of the gravity
vector g and pd = p − pa is the dynamic pressure computed by subtracting the adiabatic pressure pa
from the total pressure p computed as part of the Stokes solve. From this, the dynamic topography
is computed using the formula h = σrr

(g·n)ρ where ρ is the density at the cell center. For the bottom
surface we chose the convection that positive values are up (out) and negative values are in (down),
analogous to the deformation of the upper surface. Note that this implementation takes the direction
of gravity into account, which means that reversing the flow in backward advection calculations will
not reverse the instantaneous topography because the reverse flow will be divided by the reverse surface
gravity. The file format then consists of lines with Euclidean coordinates followed by the corresponding
topography value.
(As a side note, the postprocessor chooses the cell center instead of the center of the cell face at the
surface, where we really are interested in the quantity, since this often gives better accuracy. The
results should in essence be the same, though.)
‘entropy viscosity statistics’: A postprocessor that computes the maximum and volume averageden-
tropy viscosity stabilization for the temperature field.
‘geoid’: A postprocessor that computes a representation of the geoid based on the density structure in
the mantle, as well as the dynamic topography at the surface and core mantle boundary (CMB). The
geoid is computed from a spherical harmonic expansion, so the geometry of the domain must be a 3D
spherical shell.
‘global statistics’: A postprocessor that outputs all the global statistics information, e.g. the time
of the simulation, the timestep number, number of degrees of freedom and solver iterations for each
timestep. The postprocessor can output different formats, the first printing one line in the statistics
file per nonlinear solver iteration (if a nonlinear solver scheme is selected). The second prints one
line per timestep, summing the information about all nonlinear iterations in this line. Note that this
postprocessor is always active independent on whether or not it is selected in the parameter file.
‘gravity calculation’: A postprocessor that computes gravity, gravity anomalies, gravity potential and
gravity gradients for a set of points (e.g. satellites) in or above the model surface for either a user-
defined range of latitudes, longitudes and radius or a list of point coordinates.Spherical coordinates in
the output file are radius, colatitude and colongitude. Gravity is here based on the density distribution
from the material model (and non adiabatic). This means that the density may come directly from an
ascii file. This postprocessor also computes theoretical gravity and its derivatives, which corresponds
to the analytical solution of gravity in the same geometry but filled with a reference density. The
reference density is also used to determine density anomalies for computing gravity anomalies. Thus
one must carefully evaluate the meaning of the gravity anomaly output, because the solution may not
reflect the actual gravity anomaly (due to differences in the assumed reference density). On way to
guarantee correct gravity anomalies is to subtract gravity of a certain point from the average gravity

487

on the map. Another way is to directly use density anomalies for this postprocessor.The average-
minimum- and maximum gravity acceleration and potential are written into the statistics file.
‘heat flux densities’: A postprocessor that computes some statistics about the heat flux density for each
boundary id. The heat flux density across each boundary is computed in outward direction, i.e., from
the domain to the outside. The heat flux is computed as sum of advective heat flux and conductive heat
flux through Neumann boundaries, both computed as integral over the boundary area, and conductive
heat flux through Dirichlet boundaries, which is computed using the consistent boundary flux method as
described in “Gresho, Lee, Sani, Maslanik, Eaton (1987). The consistent Galerkin FEM for computing
derived boundary quantities in thermal and or fluids problems. International Journal for Numerical
Methods in Fluids, 7(4), 371-394.”
Note that the “heat flux statistics” postprocessor computes the same quantity as the one here, but
not divided by the area of the surface. In other words, it computes the total heat flux through each
boundary.
‘heat flux map’: A postprocessor that computes the heat flux density across each boundary in out-
ward direction, i.e., from the domain to the outside. The heat flux is computed as sum of advective
heat flux and conductive heat flux through Neumann boundaries, both computed as integral over the
boundary area, and conductive heat flux through Dirichlet boundaries, which is computed using the
consistent boundary flux method as described in “Gresho, Lee, Sani, Maslanik, Eaton (1987). The con-
sistent Galerkin FEM for computing derived boundary quantities in thermal and or fluids problems.
International Journal for Numerical Methods in Fluids, 7(4), 371-394.”
‘heat flux statistics’: A postprocessor that computes some statistics about the heat flux density across
each boundary in outward direction, i.e., from the domain to the outside. The heat flux is computed
as sum of advective heat flux and conductive heat flux through Neumann boundaries, both computed
as integral over the boundary area, and conductive heat flux through Dirichlet boundaries, which is
computed using the consistent boundary flux method as described in “Gresho, Lee, Sani, Maslanik,
Eaton (1987). The consistent Galerkin FEM for computing derived boundary quantities in thermal and
or fluids problems. International Journal for Numerical Methods in Fluids, 7(4), 371-394.”The point-
wise heat flux can be obtained from the heat flux map postprocessor, which outputs the heat flux to
a file, or the heat flux map visualization postprocessor, which outputs the heat flux for visualization.
As stated, this postprocessor computes the outbound heat flux. If you are interested in the opposite
direction, for example from the core into the mantle when the domain describes the mantle, then you
need to multiply the result by -1.

Note: In geodynamics, the term “heat flux” is often understood to be the quantity −k∇T ,
which is really a heat flux density, i.e., a vector-valued field. In contrast to this, the current
postprocessor only computes the integrated flux over each part of the boundary. Conse-
quently, the units of the quantity computed here are W = J

s .

The “heat flux densities” postprocessor computes the same quantity as the one here, but divided by
the area of the surface.
‘heating statistics’: A postprocessor that computes some statistics about heating, averaged by volume.
‘load balance statistics’: A postprocessor that computes statistics about the distribution of cells, and if
present particles across subdomains. In particular, it computes maximal, average and minimal number
of cells across all ranks. If there are particles it also computes the maximal, average, and minimum
number of particles across all ranks, and maximal, average, and minimal ratio between local number
of particles and local number of cells across all processes. All of these numbers can be useful to assess
the load balance between different MPI ranks, as the difference between the mimimal and maximal
load should be as small as possible.

488

‘mass flux statistics’: A postprocessor that computes some statistics about the mass flux across bound-
aries. For each boundary indicator (see your geometry description for which boundary indicators are
used), the mass flux is computed in outward direction, i.e., from the domain to the outside, using the
formula

∫
Γi ρv · n where Γi is the part of the boundary with indicator i, ρ is the density as reported

by the material model, v is the velocity, and n is the outward normal.
As stated, this postprocessor computes the outbound mass flux. If you are interested in the opposite
direction, for example from the core into the mantle when the domain describes the mantle, then you
need to multiply the result by -1.

Note: In geodynamics, the term “mass flux” is often understood to be the quantity ρv,
which is really a mass flux density, i.e., a vector-valued field. In contrast to this, the current
postprocessor only computes the integrated flux over each part of the boundary. Conse-
quently, the units of the quantity computed here are kg

s .

‘material statistics’: A postprocessor that computes some statistics about the material properties. In
particular, it computes the volume-averages of the density and viscosity, and the total mass in the
model. Specifically, it implements the following formulas in each time step: 〈ρ〉 = 1

|Ω|
∫

Ω ρ(x)dx,
〈η〉 = 1

|Ω|
∫

Ω η(x)dx, M =
∫

Ω ρ(x)dx, where |Ω| is the volume of the domain.
‘matrix statistics’: A postprocessor that computes some statistics about the matrices. In particular,
it outputs total memory consumption, total non-zero elements, and non-zero elements per block, for
system matrix and system preconditioner matrix.
‘melt statistics’: A postprocessor that computes some statistics about the melt (volume) fraction. If
the material model does not implement a melt fraction function, the output is set to zero.
‘memory statistics’: A postprocessor that computes some statistics about the memory consumption.
In particular, it computes the memory usage of the system matrix, triangulation, p4est, DoFHandler,
current constraints, solution vector, and peak virtual memory usage, all in MB. It also outputs the
memory usage of the system matrix to the screen.
‘particle count statistics’: A postprocessor that computes some statistics about the particle distribution,
if present in this simulation. In particular, it computes minimal, average and maximal values of particles
per cell in the global domain.
‘particles’: A Postprocessor that creates particles that follow the velocity field of the simulation. The
particles can be generated and propagated in various ways and they can carry a number of constant or
time-varying properties. The postprocessor can write output positions and properties of all particles
at chosen intervals, although this is not mandatory. It also allows other parts of the code to query the
particles for information.
‘point values’: A postprocessor that evaluates the solution (i.e., velocity, pressure, temperature, and
compositional fields along with other fields that are treated as primary variables) at the end of every
time step or after a user-specified time interval at a given set of points and then writes this data into the
file <point_values.txt> in the output directory. The points at which the solution should be evaluated
are specified in the section Postprocess/Point values in the input file.
In the output file, data is organized as (i) time, (ii) the 2 or 3 coordinates of the evaluation points, and
(iii) followed by the values of the solution vector at this point. The time is provided in seconds or, if
the global “Use years in output instead of seconds” parameter is set, in years. In the latter case, the
velocity is also converted to meters/year, instead of meters/second.

489

Note: Evaluating the solution of a finite element field at arbitrarily chosen points is an
expensive process. Using this postprocessor will only be efficient if the number of evaluation
points or output times is relatively small. If you need a very large number of evaluation
points, you should consider extracting this information from the visualization program you
use to display the output of the ‘visualization’ postprocessor.

‘pressure statistics’: A postprocessor that computes some statistics about the pressure field.
‘rotation statistics’: A postprocessor that computes some statistics about the rotational velocity of
the model (i.e. integrated net rotation and angular momentum). In 2D we assume the model to be a
cross-section through an infinite domain in z direction, with a zero z-velocity. Thus, the z-axis is the
only possible rotation axis and both moment of inertia and angular momentum are scalar instead of
tensor quantities.
‘spherical velocity statistics’: A postprocessor that computes radial, tangential and total RMS velocity.
‘temperature statistics’: A postprocessor that computes some statistics about the temperature field.
‘topography’: A postprocessor intended for use with a deforming top surface. After every step it loops
over all the vertices on the top surface and determines the maximum and minimum topography relative
to a reference datum (initial box height for a box geometry model or initial radius for a sphere/spherical
shell geometry model). If ’Topography.Output to file’ is set to true, also outputs topography into text
files named ‘topography.NNNNN’ in the output directory, where NNNNN is the number of the time
step. The file format then consists of lines with Euclidean coordinates followed by the corresponding
topography value.Topography is printed/written in meters.
‘velocity boundary statistics’: A postprocessor that computes some statistics about the velocity along
the boundaries. For each boundary indicator (see your geometry description for which boundary
indicators are used), the min and max velocity magnitude is computed.
‘velocity statistics’: A postprocessor that computes some statistics about the velocity field.
‘visualization’: A postprocessor that takes the solution and writes it into files that can be read by a
graphical visualization program. Additional run time parameters are read from the parameter subsec-
tion ’Visualization’.
‘volume of fluid statistics’: A postprocessor that computes some statistics about the volume-of-fluid
fields.
Possible values: A comma-separated list of any of Stokes residual, basic statistics, boundary densities,
boundary pressures, command, composition statistics, core statistics, depth average, dynamic topog-
raphy, entropy viscosity statistics, geoid, global statistics, gravity calculation, heat flux densities, heat
flux map, heat flux statistics, heating statistics, load balance statistics, mass flux statistics, mate-
rial statistics, matrix statistics, melt statistics, memory statistics, particle count statistics, particles,
point values, pressure statistics, rotation statistics, spherical velocity statistics, temperature statistics,
topography, velocity boundary statistics, velocity statistics, visualization, volume of fluid statistics

• Parameter name: Run postprocessors on nonlinear iterations

Value: false
Default: false
Description: Whether or not the postprocessors should be executed after each of the nonlinear iterations
done within one time step. As this is mainly an option for the purposes of debugging, it is not supported
when the ’Time between graphical output’ is larger than zero, or when the postprocessor is not intended
to be run more than once per timestep.
Possible values: A boolean value (true or false)

490

A.138 Parameters in section Postprocess/Command
• Parameter name: Command
Value:
Default:
Description: Command to execute.
Possible values: Any string

• Parameter name: Run on all processes

Value: false
Default: false
Description: Whether to run command from all processes (true), or only on process 0 (false).
Possible values: A boolean value (true or false)

• Parameter name: Terminate on failure

Value: false
Default: false
Description: Select whether ASPECT should terminate if the command returns a non-zero exit status.
Possible values: A boolean value (true or false)

A.139 Parameters in section Postprocess/Depth average
• Parameter name: List of output variables

Value: all
Default: all
Description: A comma separated list which specifies which quantities to average in each depth slice.
It defaults to averaging all available quantities, but this can be an expensive operation, so you may
want to select only a few.
List of options: all|temperature|composition|adiabatic temperature|adiabatic pressure|adiabatic den-
sity|adiabatic density derivative|velocity magnitude|sinking velocity|Vs|Vp|viscosity|vertical heat flux|vertical
mass flux
Possible values: A comma-separated list of any of all, temperature, composition, adiabatic temperature,
adiabatic pressure, adiabatic density, adiabatic density derivative, velocity magnitude, sinking velocity,
Vs, Vp, viscosity, vertical heat flux, vertical mass flux

• Parameter name: Number of zones

Value: 10
Default: 10
Description: The number of zones in depth direction within which we are to compute averages. By
default, we subdivide the entire domain into 10 depth zones and compute temperature and other
averages within each of these zones. However, if you have a very coarse mesh, it may not make much
sense to subdivide the domain into so many zones and you may wish to choose less than this default.
It may also make computations slightly faster. On the other hand, if you have an extremely highly
resolved mesh, choosing more zones might also make sense.
Possible values: An integer n such that 1 ≤ n ≤ 2147483647

491

• Parameter name: Output format

Value: gnuplot, txt
Default: gnuplot, txt
Description: A list of formats in which the output shall be produced. The format in which the output
is generated also determines the extension of the file into which data is written. The list of possible
output formats that can be given here is documented in the appendix of the manual where the current
parameter is described. By default the output is written as gnuplot file (for plotting), and as a simple
text file.
Possible values: A comma-separated list of any of none, dx, ucd, gnuplot, povray, eps, gmv, tecplot,
tecplot_binary, vtk, vtu, hdf5, svg, deal.II intermediate, txt

• Parameter name: Time between graphical output

Value: 1e8
Default: 1e8
Description: The time interval between each generation of graphical output files. A value of zero
indicates that output should be generated in each time step. Units: years if the ’Use years in output
instead of seconds’ parameter is set; seconds otherwise.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.140 Parameters in section Postprocess/Dynamic core statistics
• Parameter name: Excess entropy only

Value: false
Default: false
Description: Output the excess entropy only instead the each entropy terms.
Possible values: A boolean value (true or false)

A.141 Parameters in section Postprocess/Dynamic topography
• Parameter name: Density above

Value: 0.
Default: 0.
Description: Dynamic topography is calculated as the excess or lack of mass that is supported by
mantle flow. This value depends on the density of material that is moved up or down, i.e. crustal rock,
and the density of the material that is displaced (generally water or air). While the density of crustal
rock is part of the material model, this parameter ‘Density above’ allows the user to specify the density
value of material that is displaced above the solid surface. By default this material is assumed to be
air, with a density of 0. Units: kg/m3.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Density below

Value: 9900.
Default: 9900.
Description: Dynamic topography is calculated as the excess or lack of mass that is supported by
mantle flow. This value depends on the density of material that is moved up or down, i.e. mantle
above CMB, and the density of the material that is displaced (generally outer core material). While

492

the density of mantle rock is part of the material model, this parameter ‘Density below’ allows the
user to specify the density value of material that is displaced below the solid surface. By default this
material is assumed to be outer core material with a density of 9900. Units: kg/m3.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Output bottom

Value: true
Default: true
Description: Whether to output a file containing the bottom (i.e., CMB) dynamic topography.
Possible values: A boolean value (true or false)

• Parameter name: Output surface

Value: true
Default: true
Description: Whether to output a file containing the surface dynamic topography.
Possible values: A boolean value (true or false)

A.142 Parameters in section Postprocess/Geoid
• Parameter name: Also output the gravity anomaly

Value: false
Default: false
Description: Option to also output the free-air gravity anomaly up to the maximum degree. The unit
of the output is in SI, hence m/s2 (1mgal = 10−5m/s2). The default is false.
Possible values: A boolean value (true or false)

• Parameter name: Also output the spherical harmonic coefficients of CMB dynamic topography
contribution

Value: false
Default: false
Description: Option to also output the spherical harmonic coefficients of the CMB dynamic topography
contribution to the maximum degree. The default is false.
Possible values: A boolean value (true or false)

• Parameter name: Also output the spherical harmonic coefficients of density anomaly contribution

Value: false
Default: false
Description: Option to also output the spherical harmonic coefficients of the density anomaly contri-
bution to the maximum degree. The default is false.
Possible values: A boolean value (true or false)

• Parameter name: Also output the spherical harmonic coefficients of geoid anomaly

Value: false
Default: false

493

Description: Option to also output the spherical harmonic coefficients of the geoid anomaly up to
the maximum degree. The default is false, so postprocess will only output the geoid anomaly in grid
format.
Possible values: A boolean value (true or false)

• Parameter name: Also output the spherical harmonic coefficients of surface dynamic topography
contribution

Value: false
Default: false
Description: Option to also output the spherical harmonic coefficients of the surface dynamic topog-
raphy contribution to the maximum degree. The default is false.
Possible values: A boolean value (true or false)

• Parameter name: Density above

Value: 0.
Default: 0.
Description: The density value above the surface boundary.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Density below

Value: 9900.
Default: 9900.
Description: The density value below the CMB boundary.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Include the contributon from dynamic topography

Value: true
Default: true
Description: Option to include the contribution from dynamic topography on geoid. The default is
true.
Possible values: A boolean value (true or false)

• Parameter name: Maximum degree

Value: 20
Default: 20
Description: This parameter can be a random positive integer. However, the value normally should
not exceed the maximum degree of the initial perturbed temperature field. For example, if the initial
temperature uses S40RTS, the maximum degree should not be larger than 40.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Minimum degree

Value: 2
Default: 2
Description: This parameter normally is set to 2 since the perturbed gravitational potential at degree
1 always vanishes in a reference frame with the planetary center of mass same as the center of figure.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

494

• Parameter name: Output data in geographical coordinates

Value: false
Default: false
Description: Option to output the geoid anomaly in geographical coordinates (latitude and longitude).
The default is false, so postprocess will output the data in geocentric coordinates (x,y,z) as normally.
Possible values: A boolean value (true or false)

A.143 Parameters in section Postprocess/Global statistics
• Parameter name: Write statistics for each nonlinear iteration

Value: false
Default: false
Description: Whether to put every nonlinear iteration into a separate line in the statistics file (if true),
or to output only one line per time step that contains the total number of iterations of the Stokes and
advection linear system solver.
Possible values: A boolean value (true or false)

A.144 Parameters in section Postprocess/Gravity calculation
• Parameter name: List of latitude

Value:
Default:
Description: Parameter for the list of points sampling scheme: List of satellite latitude coordinates.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that −90 ≤ v ≤ 90]

• Parameter name: List of longitude

Value:
Default:
Description: Parameter for the list of points sampling scheme: List of satellite longitude coordinates.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that −180 ≤ v ≤ 180]

• Parameter name: List of radius

Value:
Default:
Description: Parameter for the list of points sampling scheme: List of satellite radius coordinates. Just
specify one radius if all points values have the same radius. If not, make sure there are as many radius
as longitude and latitude
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

• Parameter name: Maximum latitude

Value: 90
Default: 90

495

Description: Parameter for the uniform distribution sampling scheme: Gravity may be calculated for
a sets of points along the latitude between a minimum and maximum latitude.
Possible values: A floating point number v such that −90 ≤ v ≤ 90

• Parameter name: Maximum longitude

Value: 180.
Default: 180.
Description: Parameter for the uniform distribution sampling scheme: Gravity may be calculated for
a sets of points along the longitude between a minimum and maximum longitude.
Possible values: A floating point number v such that −180 ≤ v ≤ 180

• Parameter name: Maximum radius

Value: 0.
Default: 0.
Description: Parameter for the map sampling scheme: Maximum radius can be defined in or outside
the model.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Minimum latitude

Value: -90.
Default: -90.
Description: Parameter for the uniform distribution sampling scheme: Gravity may be calculated for
a sets of points along the latitude between a minimum and maximum latitude.
Possible values: A floating point number v such that −90 ≤ v ≤ 90

• Parameter name: Minimum longitude

Value: -180.
Default: -180.
Description: Parameter for the uniform distribution sampling scheme: Gravity may be calculated for
a sets of points along the longitude between a minimum and maximum longitude.
Possible values: A floating point number v such that −180 ≤ v ≤ 180

• Parameter name: Minimum radius

Value: 0.
Default: 0.
Description: Parameter for the map sampling scheme: Minimum radius may be defined in or outside
the model. Prescribe a minimum radius for a sampling coverage at a specific height.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Number points fibonacci spiral

Value: 200
Default: 200
Description: Parameter for the fibonacci spiral sampling scheme: This specifies the desired number of
satellites per radius layer. The default value is 200. Note that sampling becomes more uniform with
increasing number of satellites
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

496

• Parameter name: Number points latitude

Value: 1
Default: 1
Description: Parameter for the map sampling scheme: This specifies the number of points along the
latitude (e.g. gravity map) between a minimum and maximum latitude.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Number points longitude

Value: 1
Default: 1
Description: Parameter for the map sampling scheme: This specifies the number of points along the
longitude (e.g. gravity map) between a minimum and maximum longitude.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Number points radius

Value: 1
Default: 1
Description: Parameter for the map sampling scheme: This specifies the number of points along the
radius (e.g. depth profile) between a minimum and maximum radius.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Precision in gravity output

Value: 12
Default: 12
Description: Set the precision of gravity acceleration, potential and gradients in the gravity output
and statistics file.
Possible values: An integer n such that 1 ≤ n ≤ 2147483647

• Parameter name: Quadrature degree increase

Value: 0
Default: 0
Description: Quadrature degree increase over the velocity element degree may be required when gravity
is calculated near the surface or inside the model. An increase in the quadrature element adds accuracy
to the gravity solution from noise due to the model grid.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Reference density

Value: 3300.
Default: 3300.
Description: Gravity anomalies may be computed using density anomalies relative to a reference
density.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

497

• Parameter name: Sampling scheme

Value: map
Default: map
Description: Choose the sampling scheme. By default, the map produces a grid of equally angled
points between a minimum and maximum radius, longitude, and latitude. A list of points contains
the specific coordinates of the satellites. The fibonacci spiral sampling scheme produces a uniformly
distributed map on the surface of sphere defined by a minimum and/or maximum radius.
Possible values: Any one of map, list, list of points, fibonacci spiral

• Parameter name: Time between gravity output

Value: 1e8
Default: 1e8
Description: The time interval between each generation of gravity output files. A value of 0 indicates
that output should be generated in each time step. Units: years if the ’Use years in output instead of
seconds’ parameter is set; seconds otherwise.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Time steps between gravity output

Value: 2147483647
Default: 2147483647
Description: The maximum number of time steps between each generation of gravity output files.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

A.145 Parameters in section Postprocess/Memory statistics
• Parameter name: Output peak virtual memory (VmPeak)

Value: true
Default: true
Description: If set to ’true’, also output the peak virtual memory usage (computed as the maximum
over all processors).
Possible values: A boolean value (true or false)

A.146 Parameters in section Postprocess/Particles
• Parameter name: Allow cells without particles

Value: false
Default: false
Description: By default, every cell needs to contain particles to use this interpolator plugin. If this
parameter is set to true, cells are allowed to have no particles, in which case the interpolator will return
0 for the cell’s properties.
Possible values: A boolean value (true or false)

• Parameter name: Data output format

Value: vtu
Default: vtu

498

Description: A comma separated list of file formats to be used for graphical output. The list of possible
output formats that can be given here is documented in the appendix of the manual where the current
parameter is described.
Possible values: A comma-separated list of any of none, dx, ucd, gnuplot, povray, eps, gmv, tecplot,
tecplot_binary, vtk, vtu, hdf5, svg, deal.II intermediate, ascii

• Parameter name: Exclude output properties

Value:
Default:
Description: A comma seperated list of strings which exclude all particleproperty fields which contain
these strings. If one of the entries is ’all’, only a id will be provided for every point.
Possible values: Any string

• Parameter name: Integration scheme

Value: rk2
Default: rk2
Description: This parameter is used to decide which method to use to solve the equation that describes
the position of particles, i.e., d

dtxk(t) = u(xk(t), t), where k is an index that runs over all particles, and
u(x, t) is the velocity field that results from the Stokes equations.
In practice, the exact velocity u(x, t) is of course not available, but only a numerical approximation
uh(x, t). Furthermore, this approximation is only available at discrete time steps, un(x) = u(x, tn),
and these need to be interpolated between time steps if the integrator for the equation above requires
an evaluation at time points between the discrete time steps. If we denote this interpolation in time
by ũh(x, t) where ũh(x, tn) = un(x), then the equation the differential equation solver really tries to
solve is d

dt x̃k(t) = ũh(xk(t), t).
As a consequence of these considerations, if you try to assess convergence properties of an ODE
integrator – for example to verify that the RK4 integrator converges with fourth order –, it is important
to recall that the integrator may not solve the equation you think it solves. If, for example, we call the
numerical solution of the ODE x̃k,h(t), then the error will typically satisfy a relationship like

‖x̃k(T)− x̃k,h(T)‖ ≤ C(T)∆tp

where ∆t is the time step and p the convergence order of the method, and C(T) is a (generally unknown)
constant that depends on the end time T at which one compares the solutions. On the other hand,
an analytically computed trajectory would likely use the exact velocity, and one may be tempted to
compute ‖xk(T) − x̃k,h(T)‖, but this quantity will, in the best case, only satisfy an estimate of the
form

‖xk(T)− x̃k,h(T)‖ ≤ C1(T)∆tp + C2(T)‖u− uh‖+ C3(T)‖uh − ũh‖
with appropriately chosen norms for the second and third term. These second and third terms typically
converge to zero at relatively low rates (compared to the order p of the integrator, which can often be
chosen relatively high) in the mesh size h and the time step size
Deltat, limiting the overall accuracy of the ODE integrator.
Select one of the following models:
‘euler’: Explicit Euler scheme integrator, where yn+1 = yn+∆t v(yn). This requires only one integration
substep per timestep.
‘rk2’: Second Order Runge Kutta integrator yn+1 = yn+∆t v(tn+1/2, yn+ 1

2k1) where k1 = ∆t v(tn, yn)
‘rk4’: Runge Kutta fourth order integrator, where yn+1 = yn + 1

6k1 + 1
3k2 + 1

3k3 + 1
6k4 and k1, k2, k3,

k4 are defined as usual.
Possible values: Any one of euler, rk2, rk4

499

• Parameter name: Interpolation scheme

Value: cell average
Default: cell average
Description: Select one of the following models:
‘bilinear least squares’: Interpolates particle properties onto a vector of points using a bilinear least
squares method. Currently only 2D models are supported. Note that deal.II must be configured with
BLAS/LAPACK.
‘cell average’: Return the average of all particle properties in the given cell.
‘harmonic average’: Return the harmonic average of all particle properties in the given cell. If the cell
contains no particles, return the harmonic average of the properties in the neighboring cells.
‘nearest neighbor’: Return the properties of the nearest neighboring particle in the current cell, or
nearest particle in nearest neighboring cell if current cell is empty.
Possible values: Any one of bilinear least squares, cell average, harmonic average, nearest neighbor

• Parameter name: List of particle properties

Value:
Default:
Description: A comma separated list of particle properties that should be tracked. By default none is
selected, which means only position, velocity and id of the particles are output.
The following properties are available:
‘composition’: Implementation of a plugin in which the particle property is defined by the compositional
fields in the model. This can be used to track solid compositionevolution over time.
‘function’: Implementation of a model in which the particle property is set by evaluating an explicit
function at the initial position of each particle. The function is defined in the parameters in section
“Particles|Function”. The format of these functions follows the syntax understood by the muparser
library, see Section 4.7.3.
‘initial composition’: Implementation of a plugin in which the particle property is given as the ini-
tial composition at the particle’s initial position. The particle gets as many properties as there are
compositional fields.
‘initial position’: Implementation of a plugin in which the particle property is given as the initial
position of the particle. This property is vector-valued with as many components as there are space
dimensions. In practice, it is often most useful to only visualize one of the components of this vector,
or the magnitude of the vector. For example, in a spherical mantle simulation, the magnitude of this
property equals the starting radius of a particle, and is thereby indicative of which part of the mantle
a particle comes from.
‘integrated strain’: A plugin in which the particle property tensor is defined as the deformation gradient
tensor F this particle has experienced. F can be polar-decomposed into the left stretching tensor L
(the finite strain we are interested in), and the rotation tensor Q. See the corresponding cookbook in
the manual for more detailed information.
‘integrated strain invariant’: A plugin in which the particle property is defined as the finite strain
invariant (εii). This property is calculated with the timestep (dt) and the second invariant of the
deviatoric strain rate tensor (ε̇ii), where the value at time step n is εnii = εn−1

ii + dtε̇ii.
‘melt particle’: Implementation of a plugin in which the particle property is defined as presence of melt
above a threshold, which can be set as an input parameter. This property is set to 0 if melt is not
present and set to 1 if melt is present.

500

‘pT path’: Implementation of a plugin in which the particle property is defined as the current pressure
and temperature at this position. This can be used to generate pressure-temperature paths of material
points over time.
‘position’: Implementation of a plugin in which the particle property is defined as the current position.
‘velocity’: Implementation of a plugin in which the particle property is defined as the recent velocity
at this position.
‘viscoplastic strain invariants’: A plugin that calculates the finite strain invariant a particle has expe-
rienced and assigns it to either the plastic and/or viscous strain field based on whether the material is
plastically yielding, or the total strain field used in the visco plastic material model. The implemen-
tation of this property is equivalent to the implementation for compositional fields that is located in
the plugin in benchmarks/buiter_et_al_2008_jgr/plugin/,and is effectively the same as what the
visco plastic material model uses for compositional fields.
Possible values: A comma-separated list of any of composition, function, initial composition, initial
position, integrated strain, integrated strain invariant, melt particle, pT path, position, velocity, vis-
coplastic strain invariants

• Parameter name: Load balancing strategy

Value: repartition
Default: repartition
Description: Strategy that is used to balance the computational load across processors for adaptive
meshes.
Possible values: A comma-separated list of any of none, remove particles, add particles, remove and
add particles, repartition

• Parameter name: Maximum particles per cell

Value: 100
Default: 100
Description: Upper limit for particle number per cell. This limit is useful for adaptive meshes to prevent
coarse cells from slowing down the whole model. It will be checked and enforced after mesh refinement,
after MPI transfer of particles and after particle movement. If there are n_number_of_particles >
max_particles_per_cell particles in one cell then n_number_of_particles - max_particles_per_cell
particles in this cell are randomly chosen and destroyed.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Minimum particles per cell

Value: 0
Default: 0
Description: Lower limit for particle number per cell. This limit is useful for adaptive meshes to prevent
fine cells from being empty of particles. It will be checked and enforced after mesh refinement and after
particle movement. If there are n_number_of_particles < min_particles_per_cell particles in one
cell then min_particles_per_cell - n_number_of_particles particles are generated and randomly
placed in this cell. If the particles carry properties the individual property plugins control how the
properties of the new particles are initialized.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Number of grouped files

Value: 16

501

Default: 16
Description: VTU file output supports grouping files from several CPUs into a given number of files
using MPI I/O when writing on a parallel filesystem. Select 0 for no grouping. This will disable parallel
file output and instead write one file per processor. A value of 1 will generate one big file containing
the whole solution, while a larger value will create that many files (at most as many as there are MPI
ranks).
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Number of particles

Value: 1000
Default: 1000
Description: Total number of particles to create (not per processor or per element). The number
is parsed as a floating point number (so that one can specify, for example, ’1e4’ particles) but it is
interpreted as an integer, of course.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Particle generator name

Value: random uniform
Default: random uniform
Description: Select one of the following models:
‘ascii file’: Generates a distribution of particles from coordinates specified in an Ascii data file. The file
format is a simple text file, with as many columns as spatial dimensions and as many lines as particles
to be generated. Initial comment lines starting with ‘#’ will be discarded. Note that this plugin always
generates as many particles as there are coordinates in the data file, the “Postprocess/Particles/Number
of particles” parameter has no effect on this plugin. All of the values that define this generator are
read from a section “Postprocess/Particles/Generator/Ascii file” in the input file, see Section A.149.
‘probability density function’: Generate a random distribution of particles over the entire simulation
domain. The probability density is prescribed in the form of a user-prescribed function. The format
of this function follows the syntax understood by the muparser library, see Section 4.7.3. The return
value of the function is always checked to be a non-negative probability density but it can be zero in
parts of the domain.
‘quadrature points’: Generates particles at the quadrature points of each active cell of the triangulation.
Here, Gauss quadrature of degree (velocity_degree + 1), is used similarly to the assembly of Stokes
matrix.
‘random uniform’: Generates a random uniform distribution of particles over the entire simulation
domain.
‘reference cell’: Generates a uniform distribution of particles per cell and spatial direction in the unit
cell and transforms each of the particles back to real region in the model domain. Uniform here means
the particles will be generated with an equal spacing in each spatial dimension
‘uniform box’: Generate a uniform distribution of particles over a rectangular domain in 2D or 3D.
Uniform here means the particles will be generated with an equal spacing in each spatial dimension.
Note that in order to produce a regular distribution the number of generated particles might not exactly
match the one specified in the input file.
‘uniform radial’: Generate a uniform distribution of particles over a spherical domain in 2D or 3D.
Uniform here means the particles will be generated with an equal spacing in each spherical spatial
dimension, i.e., the particles are created at positions that increase linearly with equal spacing in
radius, colatitude and longitude around a certain center point. Note that in order to produce a regular

502

distribution the number of generated particles might not exactly match the one specified in the input
file.
Possible values: Any one of ascii file, probability density function, quadrature points, random uniform,
reference cell, uniform box, uniform radial

• Parameter name: Particle weight

Value: 10
Default: 10
Description: Weight that is associated with the computational load of a single particle. The sum of
particle weights will be added to the sum of cell weights to determine the partitioning of the mesh
if the ‘repartition’ particle load balancing strategy is selected. The optimal weight depends on the
used integrator and particle properties. In general for a more expensive integrator and more expensive
properties a larger particle weight is recommended. Before adding the weights of particles, each cell
already carries a weight of 1000 to account for the cost of field-based computations.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Temporary output location

Value:
Default:
Description: On large clusters it can be advantageous to first write the output to a temporary file on a
local file system and later move this file to a network file system. If this variable is set to a non-empty
string it will be interpreted as a temporary storage location.
Possible values: Any string

• Parameter name: Time between data output

Value: 1e8
Default: 1e8
Description: The time interval between each generation of output files. A value of zero indicates that
output should be generated every time step.
Units: years if the ’Use years in output instead of seconds’ parameter is set; seconds otherwise.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Update ghost particles

Value: false
Default: false
Description: Some particle interpolation algorithms require knowledge about particles in neighboring
cells. To allow this, particles in ghost cells need to be exchanged between the processes neighboring
this cell. This parameter determines whether this transport is happening.
Possible values: A boolean value (true or false)

• Parameter name: Write in background thread

Value: false
Default: false
Description: File operations can potentially take a long time, blocking the progress of the rest of the
model run. Setting this variable to ‘true’ moves this process into a background thread, while the rest
of the model continues.
Possible values: A boolean value (true or false)

503

A.147 Parameters in section Postprocess/Particles/Function
• Parameter name: Function constants

Value:
Default:
Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘var1=value1, var2=value2, ...’.
A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: Any string

• Parameter name: Function expression

Value: 0
Default: 0
Description: The formula that denotes the function you want to evaluate for particular values of the
independent variables. This expression may contain any of the usual operations such as addition or
multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may contain
expressions like ‘if(x>0, 1, -1)’ where the expression evaluates to the second argument if the first
argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.
If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.
Possible values: Any string

• Parameter name: Number of components

Value: 1
Default: 1
Description: The number of function components where each component is described by a function
expression delimited by a ’;’.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Variable names

Value: x,y,t
Default: x,y,t
Description: The names of the variables as they will be used in the function, separated by commas.
By default, the names of variables at which the function will be evaluated are ‘x’ (in 1d), ‘x,y’ (in 2d)
or ‘x,y,z’ (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’ and then use these variable names in your
function expression.
Possible values: Any string

504

A.148 Parameters in section Postprocess/Particles/Generator

A.149 Parameters in section Postprocess/Particles/Generator/Ascii file
• Parameter name: Data directory

Value: $ASPECT_SOURCE_DIR/data/particle/generator/ascii/
Default: $ASPECT_SOURCE_DIR/data/particle/generator/ascii/
Description: The name of a directory that contains the particle data. This path may either be absolute
(if starting with a ’/’) or relative to the current directory. The path may also include the special text
’$ASPECT_SOURCE_DIR’ which will be interpreted as the path in which the ASPECT source files
were located when ASPECT was compiled. This interpretation allows, for example, to reference files
located in the ‘data/’ subdirectory of ASPECT.
Possible values: A directory name

• Parameter name: Data file name

Value: particle.dat
Default: particle.dat
Description: The name of the particle file.
Possible values: Any string

A.150 Parameters in section Postprocess/Particles/Generator/Probability density
function

• Parameter name: Function constants

Value:
Default:
Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘var1=value1, var2=value2, ...’.
A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: Any string

• Parameter name: Function expression

Value: 0
Default: 0
Description: The formula that denotes the function you want to evaluate for particular values of the
independent variables. This expression may contain any of the usual operations such as addition or
multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may contain
expressions like ‘if(x>0, 1, -1)’ where the expression evaluates to the second argument if the first
argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.
If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.
Possible values: Any string

505

• Parameter name: Random cell selection

Value: true
Default: true
Description: If true, particle numbers per cell are calculated randomly according to their respective
probability density. This means particle numbers per cell can deviate statistically from the integral of
the probability density. If false, first determine how many particles each cell should have based on the
integral of the density over each of the cells, and then once we know how many particles we want on
each cell, choose their locations randomly within each cell.
Possible values: A boolean value (true or false)

• Parameter name: Random number seed

Value: 5432
Default: 5432
Description: The seed for the random number generator that controls the particle generation. Keep
constant to generate identical particle distributions in subsequent model runs. Change to get a different
distribution. In parallel computations the seed is further modified on each process to ensure different
particle patterns on different processes. Note that the number of particles per processor is not affected
by the seed.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Variable names

Value: x,y,t
Default: x,y,t
Description: The names of the variables as they will be used in the function, separated by commas.
By default, the names of variables at which the function will be evaluated are ‘x’ (in 1d), ‘x,y’ (in 2d)
or ‘x,y,z’ (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’ and then use these variable names in your
function expression.
Possible values: Any string

A.151 Parameters in section Postprocess/Particles/Generator/Reference cell
• Parameter name: Number of particles per cell per direction

Value: 2
Default: 2
Description: List of number of particles to create per cell and spatial dimension. The size of the list
is the number of spatial dimensions. If only one value is given, then each spatial dimension is set to
the same value. The list of numbers are parsed as a floating point number (so that one can specify, for
example, ’1e4’ particles) but it is interpreted as an integer, of course.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that 0 ≤ v ≤ MAX_DOUBLE]

506

A.152 Parameters in section Postprocess/Particles/Generator/Uniform box
• Parameter name: Maximum x

Value: 1.
Default: 1.
Description: Maximum x coordinate for the region of particles.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Maximum y

Value: 1.
Default: 1.
Description: Maximum y coordinate for the region of particles.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Maximum z

Value: 1.
Default: 1.
Description: Maximum z coordinate for the region of particles.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Minimum x

Value: 0.
Default: 0.
Description: Minimum x coordinate for the region of particles.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Minimum y

Value: 0.
Default: 0.
Description: Minimum y coordinate for the region of particles.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Minimum z

Value: 0.
Default: 0.
Description: Minimum z coordinate for the region of particles.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

A.153 Parameters in section Postprocess/Particles/Generator/Uniform radial
• Parameter name: Center x

Value: 0.
Default: 0.
Description: x coordinate for the center of the spherical region, where particles are generated.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

507

• Parameter name: Center y

Value: 0.
Default: 0.
Description: y coordinate for the center of the spherical region, where particles are generated.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Center z

Value: 0.
Default: 0.
Description: z coordinate for the center of the spherical region, where particles are generated.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Maximum latitude

Value: 180.
Default: 180.
Description: Maximum latitude coordinate for the region of particles in degrees. Measured from the
center position, and from the north pole.
Possible values: A floating point number v such that 0 ≤ v ≤ 180

• Parameter name: Maximum longitude

Value: 360.
Default: 360.
Description: Maximum longitude coordinate for the region of particles in degrees. Measured from the
center position.
Possible values: A floating point number v such that −180 ≤ v ≤ 360

• Parameter name: Maximum radius

Value: 1.
Default: 1.
Description: Maximum radial coordinate for the region of particles. Measured from the center position.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Minimum latitude

Value: 0.
Default: 0.
Description: Minimum latitude coordinate for the region of particles in degrees. Measured from the
center position, and from the north pole.
Possible values: A floating point number v such that 0 ≤ v ≤ 180

• Parameter name: Minimum longitude

Value: 0.
Default: 0.
Description: Minimum longitude coordinate for the region of particles in degrees. Measured from the
center position.
Possible values: A floating point number v such that −180 ≤ v ≤ 360

508

• Parameter name: Minimum radius

Value: 0.
Default: 0.
Description: Minimum radial coordinate for the region of particles. Measured from the center position.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Radial layers

Value: 1
Default: 1
Description: The number of radial shells of particles that will be generated around the central point.
Possible values: An integer n such that 1 ≤ n ≤ 2147483647

A.154 Parameters in section Postprocess/Particles/Interpolator

A.155 Parameters in section Postprocess/Particles/Interpolator/Bilinear least
squares

• Parameter name: Global particle property maximum

Value: 1.7976931348623157e+308
Default: 1.7976931348623157e+308
Description: The maximum global particle property values that will be used as a limiter for the
bilinear least squares interpolation. The number of the input ’Global particle property maximum’
values separated by ’,’ has to be the same as the number of particle properties.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE]

• Parameter name: Global particle property minimum

Value: -1.7976931348623157e+308
Default: -1.7976931348623157e+308
Description: The minimum global particle property that will be used as a limiter for the bilinear least
squares interpolation. The number of the input ’Global particle property minimum’ values separated
by ’,’ has to be the same as the number of particle properties.
Possible values: A list of 0 to 4294967295 elements where each element is [A floating point number v
such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE]

• Parameter name: Use limiter

Value: false
Default: false
Description: Whether to apply a global particle property limiting scheme to the interpolated particle
properties.
Possible values: A boolean value (true or false)

509

A.156 Parameters in section Postprocess/Particles/Melt particle
• Parameter name: Threshold for melt presence

Value: 1e-3
Default: 1e-3
Description: The minimum porosity that has to be present at the position of a particle for it to be
considered a melt particle (in the sense that the melt presence property is set to 1).
Possible values: A floating point number v such that 0 ≤ v ≤ 1

A.157 Parameters in section Postprocess/Point values
• Parameter name: Evaluation points

Value:
Default:
Description: The list of points at which the solution should be evaluated. Points need to be separated
by semicolons, and coordinates of each point need to be separated by commas.
Possible values: A list of 0 to 4294967295 elements separated by <;> where each element is [A list of
2 to 2 elements where each element is [A floating point number v such that −MAX_DOUBLE ≤ v ≤
MAX_DOUBLE]]

• Parameter name: Time between point values output

Value: 0.
Default: 0.
Description: The time interval between each generation of point values output. A value of zero indicates
that output should be generated in each time step. Units: years if the ’Use years in output instead of
seconds’ parameter is set; seconds otherwise.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Use natural coordinates

Value: false
Default: false
Description: Whether or not the Evaluation points are specified in the natural coordinates of the
geometry model, e.g. radius, lon, lat for the chunk model. Currently, natural coordinates for the
spherical shell and sphere geometries are not supported.
Possible values: A boolean value (true or false)

A.158 Parameters in section Postprocess/Rotation statistics
• Parameter name: Output full moment of inertia tensor

Value: false
Default: false
Description: Whether to write the full moment of inertia tensor into the statistics output instead of
its norm for the current rotation axis. This is a second-order symmetric tensor with 6 components in
3D. In 2D this option has no effect, because the rotation axis is fixed and thus the moment of inertia
is always a scalar.
Possible values: A boolean value (true or false)

510

• Parameter name: Use constant density of one

Value: false
Default: false
Description: Whether to use a constant density of one for the computation of the angular momentum
and moment of inertia. This is an approximation that assumes that the ’volumetric’ rotation is equal
to the ’mass’ rotation. If this parameter is true this postprocessor computes ’net rotation’ instead of
’angular momentum’.
Possible values: A boolean value (true or false)

A.159 Parameters in section Postprocess/Topography
• Parameter name: Output to file

Value: false
Default: false
Description: Whether or not to write topography to a text file named named ’topography.NNNNN’ in
the output directory
Possible values: A list of 0 to 4294967295 elements where each element is [A boolean value (true or
false)]

• Parameter name: Time between text output

Value: 0.
Default: 0.
Description: The time interval between each generation of text output files. A value of zero indicates
that output should be generated in each time step. Units: years if the ’Use years in output instead of
seconds’ parameter is set; seconds otherwise.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.160 Parameters in section Postprocess/Visualization
• Parameter name: Filter output

Value: false
Default: false
Description: deal.II offers the possibility to filter duplicate vertices for HDF5 output files. This merges
the vertices of adjacent cells and therefore saves disk space, but misrepresents discontinuous output
properties. Activating this function reduces the disk space by about a factor of 2dim for HDF5 output,
and currently has no effect on other output formats.

Note: Warning: Setting this flag to true will result in visualization output that does not
accurately represent discontinuous fields. This may be because you are using a discontinuous
finite element for the pressure, temperature, or compositional variables, or because you use
a visualization postprocessor that outputs quantities as discontinuous fields (e.g., the strain
rate, viscosity, etc.). These will then all be visualized as continuous quantities even though,
internally, ASPECT considers them as discontinuous fields.

Possible values: A boolean value (true or false)

511

• Parameter name: Interpolate output

Value: true
Default: true
Description: deal.II offers the possibility to linearly interpolate output fields of higher order elements
to a finer resolution. This somewhat compensates the fact that most visualization software only offers
linear interpolation between grid points and therefore the output file is a very coarse representation of
the actual solution field. Activating this option increases the spatial resolution in each dimension by a
factor equal to the polynomial degree used for the velocity finite element (usually 2). In other words,
instead of showing one quadrilateral or hexahedron in the visualization per cell on which ASPECT
computes, it shows multiple (for quadratic elements, it will describe each cell of the mesh on which we
compute as 2 × 2 or 2 × 2 × 2 cells in 2d and 3d, respectively; correspondingly more subdivisions are
used if you use cubic, quartic, or even higher order elements for the velocity).
The effect of using this option can be seen in the following picture showing a variation of the output
produced with the input files from Section 5.3.1:

Here, the left picture shows one visualization cell per computational cell (i.e., the option is switched off),
and the right picture shows the same simulation with the option switched on (which is the default).
The images show the same data, demonstrating that interpolating the solution onto bilinear shape
functions as is commonly done in visualizing data loses information.
Of course, activating this option also greatly increases the amount of data ASPECT will write to disk:
approximately by a factor of 4 in 2d, and a factor of 8 in 3d, when using quadratic elements for the
velocity, and correspondingly more for even higher order elements.
Possible values: A boolean value (true or false)

• Parameter name: List of output variables

Value:
Default:
Description: A comma separated list of visualization objects that should be run whenever writing
graphical output. By default, the graphical output files will always contain the primary variables
velocity, pressure, and temperature. However, one frequently wants to also visualize derived quantities,
such as the thermodynamic phase that corresponds to a given temperature-pressure value, or the
corresponding seismic wave speeds. The visualization objects do exactly this: they compute such
derived quantities and place them into the output file. The current parameter is the place where you
decide which of these additional output variables you want to have in your output file.
The following postprocessors are available:

512

‘ISA rotation timescale’: A visualization output object that generates output showing the timescale
for the rotation of grains toward the infinite strain axis. Kaminski and Ribe (2002, Gcubed) call this
quantity τISA and define it as τISA ≈ 1

ε̇ where ε̇ is the largest eigenvalue of the strain rate tensor. It
can be used, along with the grain lag angle Θ, to calculate the grain orientation lag parameter.
‘Vp anomaly’: A visualization output object that generates output showing the percentage anomaly in
the seismic compressional wave speed Vp as a spatially variable function with one value per cell. This
anomaly is either shown as a percentage anomaly relative to the reference profile given by adiabatic
conditions (with the compositions given by the current composition, such that the reference could
potentially change through time), or as a percentage change relative to the laterally averaged velocity
at the depth of the cell. This velocity is calculated by linear interpolation between average values
calculated within equally thick depth slices. The number of depth slices in the domain is user-defined.
Typically, the best results will be obtained if the number of depth slices is balanced between being
large enough to capture step changes in velocities, but small enough to maintain a reasonable number
of evaluation points per slice. Bear in mind that lateral averaging subsamples the finite element mesh.
Note that this plugin requires a material model that provides seismic velocities.
‘Vs anomaly’: A visualization output object that generates output showing the percentage anomaly in
the seismic shear wave speed Vs as a spatially variable function with one value per cell. This anomaly
is either shown as a percentage anomaly relative to the reference profile given by adiabatic conditions
(with the compositions given by the current composition, such that the reference could potentially
change through time), or as a percentage change relative to the laterally averaged velocity at the depth
of the cell. This velocity is calculated by linear interpolation between average values calculated within
equally thick depth slices. The number of depth slices in the domain is user-defined. Typically, the
best results will be obtained if the number of depth slices is balanced between being large enough to
capture step changes in velocities, but small enough to maintain a reasonable number of evaluation
points per slice. Bear in mind that lateral averaging subsamples the finite element mesh. Note that
this plugin requires a material model that provides seismic velocities.
‘adiabat’: A visualization output object that generates adiabatic temperature, pressure, density, and
density derivative as produced by AdiabaticConditions.
‘artificial viscosity’: A visualization output object that generates output showing the value of the
artificial viscosity on each cell.
‘artificial viscosity composition’: A visualization output object that generates output showing the value
of the artificial viscosity for a compositional field on each cell.
‘boundary indicators’: A visualization output object that generates output about the used boundary
indicators. In a loop over the active cells, if a cell lies at a domain boundary, the boundary indicator
of the face along the boundary is requested. In case the cell does not lie along any domain boundary,
the cell is assigned the value of the largest used boundary indicator plus one. When a cell is situated
in one of the corners of the domain, multiple faces will have a boundary indicator. This postprocessor
returns the value of the first face along a boundary that is encountered in a loop over all the faces.
‘compositional vector’: A visualization output object that outputs vectors whose components are
derived from compositional fields. Input parameters for this postprocessor are defined in section Post-
process/Visualization/Compositional fields as vectors
‘depth’: A visualization output postprocessor that outputs the depth for all points inside the domain,
as determined by the geometry model.
‘dynamic topography’: A visualization output object that generates output for the dynamic topography
at the top and bottom of the model space. The approach to determine the dynamic topography requires
us to compute the stress tensor and evaluate the component of it in the direction in which gravity acts.
In other words, we compute σrr = ĝT (2ηε(u) − 1

3 (div u)I)ĝ − pd where ĝ = g/‖g‖ is the direction of
the gravity vector g and pd = p − pa is the dynamic pressure computed by subtracting the adiabatic
pressure pa from the total pressure p computed as part of the Stokes solve. From this, the dynamic

513

topography is computed using the formula h = σrr
(g·n)ρ where ρ is the density at the cell center. For

the bottom surface we chose the convection that positive values are up (out) and negative values
are in (down), analogous to the deformation of the upper surface. Note that this implementation
takes the direction of gravity into account, which means that reversing the flow in backward advection
calculations will not reverse the instantaneous topography because the reverse flow will be divided by
the reverse surface gravity.
Strictly speaking, the dynamic topography is of course a quantity that is only of interest at the surface.
However, we compute it everywhere to make things fit into the framework within which we produce
data for visualization. You probably only want to visualize whatever data this postprocessor generates
at the surface of your domain and simply ignore the rest of the data generated.
‘error indicator’: A visualization output object that generates output showing the estimated error or
other mesh refinement indicator as a spatially variable function with one value per cell.
‘geoid’: Visualization for the geoid solution. The geoid is given by the equivalent water column height
due to a gravity perturbation. Units: m.
‘grain lag angle’: A visualization output object that generates output showing the angle between the
infinite strain axis and the flow velocity. Kaminski and Ribe (2002, Gcubed) call this quantity Θ and
define it as Θ = cos−1(û · ê) where û = ~u/|u|, ~u is the local flow velocity, and ê is the local infinite
strain axis, which we calculate as the first eigenvector of the ’left stretch’ tensor. Θ can be used to
calculate the grain orientation lag parameter.
‘gravity’: A visualization output object that outputs the gravity vector.
‘heat flux map’: A visualization output object that generates output for the heat flux density across
the top and bottom boundary in outward direction. The heat flux is computed as sum of advective
heat flux and conductive heat flux through Neumann boundaries, both computed as integral over
the boundary area, and conductive heat flux through Dirichlet boundaries, which is computed using
the consistent boundary flux method as described in “Gresho, Lee, Sani, Maslanik, Eaton (1987). The
consistent Galerkin FEM for computing derived boundary quantities in thermal and or fluids problems.
International Journal for Numerical Methods in Fluids, 7(4), 371-394.” If only conductive heat flux
through Dirichlet boundaries is of interest, the postprocessor can produce output of higher resolution
by evaluating the CBF solution vector point-wise instead of computing cell-wise averaged values.
‘heating’: A visualization output object that generates output for all the heating terms used in the
energy equation.
‘material properties’: A visualization output object that generates output for the material properties
given by the material model.There are a number of other visualization postprocessors that offer to
write individual material properties. However, they all individually have to evaluate the material
model. This is inefficient if one wants to output more than just one or two of the fields provided by
the material model. The current postprocessor allows to output a (potentially large) subset of all of
the information provided by material models at once, with just a single material model evaluation per
output point.
‘maximum horizontal compressive stress’: A plugin that computes the direction and magnitude of the
maximum horizontal component of the compressive stress as a vector field. The direction of this vector
can often be used to visualize the principal mode of deformation (e.g., at normal faults or extensional
margins) and can be correlated with seismic anisotropy. Recall that the compressive stress is simply
the negative stress, σc = −σ = −

[
2η(ε(u)− 1

3 (∇ · u)I) + pI
]
.

Following [60], we define the maximum horizontal stress direction as that horizontal direction n that
maximizes nTσcn. We call a vector horizontal if it is perpendicular to the gravity vector g.
In two space dimensions, n is simply a vector that is horizontal (we choose one of the two possible
choices). This direction is then scaled by the size of the horizontal stress in this direction, i.e., the
plugin outputs the vector w = (nTσcn) n.

514

In three space dimensions, given two horizontal, perpendicular, unit length, but otherwise arbitrarily
chosen vectors u,v, we can express n = (cosα)u + (sinα)v where α maximizes the expression

f(α) = nTσcn = (uTσcu)(cosα)2 + 2(uTσcv)(cosα)(sinα) + (vTσcv)(sinα)2.

The maximum of f(α) is attained where f ′(α) = 0. Evaluating the derivative and using trigonometric
identities, one finds that α has to satisfy the equation

tan(2α) = 2.0uTσcv
uTσcu− vTσcv

.

Since the transform α 7→ α+π flips the direction of n, we only need to seek a solution to this equation
in the interval α ∈ [0, π). These are given by α1 = 1

2 arctan uTσcv
uTσcu−vTσcv and α2 = α1 + π

2 , one of
which will correspond to a minimum and the other to a maximum of f(α). One checks the sign of
f ′′(α) = −2(uTσcu − vTσcv) cos(2α) − 2(uTσcv) sin(2α) for each of these to determine the α that
maximizes f(α), and from this immediately arrives at the correct form for the maximum horizontal
stress n.
The description above computes a 3d direction vector n. If one were to scale this vector the same way as
done in 2d, i.e., with the magnitude of the stress in this direction, one will typically get vectors whose
length is principally determined by the hydrostatic pressure at a given location simply because the
hydrostatic pressure is the largest component of the overall stress. On the other hand, the hydrostatic
pressure does not determine any principal direction because it is an isotropic, anti-compressive force.
As a consequence, there are often points in simulations (e.g., at the center of convection rolls) where
the stress has no dominant horizontal direction, and the algorithm above will then in essence choose a
random direction because the stress is approximately equal in all horizontal directions. If one scaled
the output by the magnitude of the stress in this direction (i.e., approximately equal to the hydrostatic
pressure at this point), one would get randomly oriented vectors at these locations with significant
lengths.
To avoid this problem, we scale the maximal horizontal compressive stress direction n by the difference
between the stress in the maximal and minimal horizontal stress directions. In other words, let n⊥ =
(sinα)u− (cosα)v be the horizontal direction perpendicular to n, then this plugin outputs the vector
quantity w = (nTσcn − nT⊥σcn⊥) n. In other words, the length of the vector produced indicates how
dominant the direction of maximal horizontal compressive strength is.
Fig. 123 shows a simple example for this kind of visualization in 3d.
‘melt fraction’: A visualization output object that generates output for the melt fraction at the tem-
perature and pressure of the current point. If the material model computes a melt fraction, this is the
quantity that will be visualized. Otherwise, a specific parametrization for batch melting (as described
in the following) will be used. It does not take into account latent heat. If there are no compositional
fields, this postprocessor will visualize the melt fraction of peridotite (calculated using the anhydrous
model of Katz, 2003). If there is at least one compositional field, the postprocessor assumes that the
first compositional field is the content of pyroxenite, and will visualize the melt fraction for a mixture
of peridotite and pyroxenite (using the melting model of Sobolev, 2011 for pyroxenite). All the param-
eters that were used in these calculations can be changed in the input file, the most relevant maybe
being the mass fraction of Cpx in peridotite in the Katz melting model (Mass fraction cpx), which
right now has a default of 15%. The corresponding p-T-diagrams can be generated by running the
tests melt_postprocessor_peridotite and melt_postprocessor_pyroxenite.
‘melt material properties’: A visualization output object that generates output for melt related prop-
erties of the material model. Note that this postprocessor always outputs the compaction pressure,
but can output a large range of additional properties, as selected in the “List of properties” parameter.
‘named additional outputs’: Some material models can compute quantities other than those that
typically appear in the equations that ASPECT solves (such as the viscosity, density, etc). Examples

515

Figure 123: Illustration of the ‘maximum horizontal compressive stress’ visualization plugin. The left figure
shows a ridge-like temperature anomaly. Together with no-slip boundary along all six boundaries, this results
in two convection rolls (center). The maximal horizontal compressive strength at the bottom center of the
domain is perpendicular to the ridge because the flow comes together there from the left and right, yielding
a compressive force in left-right direction. At the top of the model, the flow separates outward, leading
to a negative compressive stress in left-right direction; because there is no flow in front-back direction, the
compressive strength in front-back direction is zero, making the along-ridge direction the dominant one. At
the center of the convection rolls, both horizontal directions yield the same stress; the plugin therefore chooses
an essentially arbitrary horizontal vector, but then uses a zero magnitude given that the difference between
the maximal and minimal horizontal stress is zero at these points.

of quantities material models may be able to compute are seismic velocities, or other quantities that can
be derived from the state variables and the material coefficients such as the stress or stress anisotropies.
These quantities are generically referred to as ‘named outputs’ because they are given an explicit name
different from the usual outputs of material models.
This visualization postprocessor outputs whatever quantities the material model can compute. What
quantities these are is specific to the material model in use for a simulation, and for many models in
fact does not contain any named outputs at all.
‘nonadiabatic pressure’: A visualization output object that generates output for the non-adiabatic
component of the pressure.
The variable that is outputted this way is computed by taking the pressure at each point and subtracting
from it the adiabatic pressure computed at the beginning of the simulation. Because the adiabatic
pressure is one way of defining a static pressure background field, what this visualization postprocessor
therefore produces is one way to compute a dynamic pressure. There are, however, other ways as well,
depending on the choice of the “background pressure”.
‘nonadiabatic temperature’: A visualization output object that generates output for the non-adiabatic
component of the temperature.
‘particle count’: A visualization output object that generates output about the number of particles per
cell.
‘partition’: A visualization output object that generates output for the parallel partition that every
cell of the mesh is associated with.
‘shear stress’: A visualization output object that generates output for the 3 (in 2d) or 6 (in 3d)
components of the shear stress tensor, i.e., for the components of the tensor 2ηε(u) in the incompressible
case and 2η

[
ε(u)− 1

3 (tr ε(u))I
]
in the compressible case. The shear stress differs from the full stress

tensor by the absence of the pressure.
‘spd factor’: A visualization output object that generates output for the spd factor. The spd factor is

516

a factor which scales a part of the Jacobian used for the Newton solver to make sure that the Jacobian
remains positive definite.
‘spherical velocity components’: A visualization output object that outputs the polar coordinates
components vr and vφ of the velocity field in 2D and the spherical coordinates components vr, vφ and
vθ of the velocity field in 3D.
‘strain rate’: A visualization output object that generates output for the norm of the strain rate, i.e., for
the quantity

√
ε(u) : ε(u) in the incompressible case and

√
[ε(u)− 1

3 (tr ε(u))I] : [ε(u)− 1
3 (tr ε(u))I]

in the compressible case.
‘strain rate tensor’: A visualization output object that generates output for the 4 (in 2d) or 9 (in 3d)
components of the strain rate tensor, i.e., for the components of the tensor ε(u) in the incompressible
case and ε(u)− 1

3 (tr ε(u))I in the compressible case.
‘stress’: A visualization output object that generates output for the 3 (in 2d) or 6 (in 3d) components
of the stress tensor, i.e., for the components of the tensor 2ηε(u) + pI in the incompressible case and
2η
[
ε(u)− 1

3 (tr ε(u))I
]

+ pI in the compressible case.
‘temperature anomaly’: A visualization output postprocessor that outputs the temperature minus the
depth-average of the temperature.The average temperature is calculated using the lateral averaging
function from the “depth average” postprocessor and interpolated linearly between the layers specified
through “Number of depth slices”
‘vertical heat flux’: A visualization output object that generates output for the heat flux in the vertical
direction, which is the sum of the advective and the conductive heat flux, with the sign convention of
positive flux upwards.
‘volume of fluid values’: A visualization output object that outputs the volume fraction and optionally
a level set field and the interface normal vectors of volume of fluid fields.
‘volumetric strain rate’: A visualization output object that generates output for the volumetric strain
rate, i.e., for the quantity ∇ · u = div u = trace ε(u). This should be zero (in some average sense) in
incompressible convection models, but can be non-zero in compressible models and models with melt
transport.
Possible values: A comma-separated list of any of ISA rotation timescale, Vp anomaly, Vs anomaly,
adiabat, artificial viscosity, artificial viscosity composition, boundary indicators, compositional vector,
depth, dynamic topography, error indicator, geoid, grain lag angle, gravity, heat flux map, heating,
material properties, maximum horizontal compressive stress, melt fraction, melt material properties,
named additional outputs, nonadiabatic pressure, nonadiabatic temperature, particle count, partition,
shear stress, spd factor, spherical velocity components, strain rate, strain rate tensor, stress, temper-
ature anomaly, vertical heat flux, volume of fluid values, volumetric strain rate, density, specific heat,
thermal conductivity, thermal diffusivity, thermal expansivity, viscosity

• Parameter name: Number of grouped files

Value: 16
Default: 16
Description: VTU file output supports grouping files from several CPUs into a given number of files
using MPI I/O when writing on a parallel filesystem. Select 0 for no grouping. This will disable parallel
file output and instead write one file per processor. A value of 1 will generate one big file containing
the whole solution, while a larger value will create that many files (at most as many as there are MPI
ranks).
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Output format

517

Value: vtu
Default: vtu
Description: The file format to be used for graphical output. The list of possible output formats
that can be given here is documented in the appendix of the manual where the current parameter is
described.
Possible values: Any one of none, dx, ucd, gnuplot, povray, eps, gmv, tecplot, tecplot_binary, vtk,
vtu, hdf5, svg, deal.II intermediate

• Parameter name: Output mesh velocity

Value: false
Default: false
Description: For computations with deforming meshes, ASPECT uses an Arbitrary-Lagrangian-Eulerian
formulation to handle deforming the domain, so the mesh has its own velocity field. This may be written
as an output field by setting this parameter to true.
Possible values: A boolean value (true or false)

• Parameter name: Point-wise stress and strain

Value: false
Default: false
Description: If set to true, quantities related to stress and strain are computed in each vertex. Other-
wise, an average per cell is computed.
Possible values: A boolean value (true or false)

• Parameter name: Temporary output location

Value:
Default:
Description: On large clusters it can be advantageous to first write the output to a temporary file on a
local file system and later move this file to a network file system. If this variable is set to a non-empty
string it will be interpreted as a temporary storage location.
Possible values: Any string

• Parameter name: Time between graphical output

Value: 1e8
Default: 1e8
Description: The time interval between each generation of graphical output files. A value of zero
indicates that output should be generated in each time step. Units: years if the ’Use years in output
instead of seconds’ parameter is set; seconds otherwise.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Time steps between graphical output

Value: 2147483647
Default: 2147483647
Description: The maximum number of time steps between each generation of graphical output files.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

518

• Parameter name: Write higher order output

Value: false
Default: false
Description: deal.II offers the possibility to write vtu files with higher order representations of the
output data. This means each cell will correctly show the higher order representation of the output
data instead of the linear interpolation between vertices that ParaView and Visit usually show. Note
that activating this option is safe and recommended, but requires that (i) “Output format” is set to
“vtu”, (ii) “Interpolate output” is set to true, (iii) you use a sufficiently new version of Paraview or
Visit to read the files (Paraview version 5.5 or newer, and Visit version to be determined), and (iv) you
use deal.II version 9.1.0 or newer. The effect of using this option can be seen in the following picture:

The top figure shows the plain output without interpolation or higher order output. The middle figure
shows output that was interpolated as discussed for the “Interpolate output” option. The bottom
panel shows higher order output that achieves better accuracy than the interpolated output at a lower
memory cost.
Possible values: A boolean value (true or false)

• Parameter name: Write in background thread

Value: false
Default: false
Description: File operations can potentially take a long time, blocking the progress of the rest of the
model run. Setting this variable to ‘true’ moves this process into a background thread, while the rest
of the model continues.
Possible values: A boolean value (true or false)

A.161 Parameters in section Postprocess/Visualization/Artificial viscosity
composition

• Parameter name: Name of compositional field

519

Value:
Default:
Description: The name of the compositional field whose output should be visualized.
Possible values: Any string

A.162 Parameters in section Postprocess/Visualization/Compositional fields
as vectors

• Parameter name: Names of fields

Value:
Default:
Description: A list of sets of compositional fields which should be output as vectors. Sets are separated
from each other by semicolons and vector components within each set are separated by commas (e.g.
vec1x, vec1y ; vec2x, vec2y) where each name must be a defined named compositional field. If only
one name is given in a set, it is interpreted as the first in a sequence of dim consecutive compositional
fields.
Possible values: Any string

• Parameter name: Names of vectors

Value:
Default:
Description: Names of vectors as they will appear in the output.
Possible values: A list of 0 to 4294967295 elements where each element is [Any string]

A.163 Parameters in section Postprocess/Visualization/Heat flux map
• Parameter name: Output point wise heat flux

Value: false
Default: false
Description: A boolean flag that controls whether to output the heat flux map as a point wise value, or
as a cell-wise averaged value. The point wise output is more accurate, but it currently omits prescribed
heat flux values at boundaries and advective heat flux that is caused by velocities non-tangential to
boundaries. If you do not use these two features it is recommended to switch this setting on to benefit
from the increased output resolution.
Possible values: A boolean value (true or false)

A.164 Parameters in section Postprocess/Visualization/Material properties
• Parameter name: List of material properties

Value: density,thermal expansivity,specific heat,viscosity
Default: density,thermal expansivity,specific heat,viscosity
Description: A comma separated list of material properties that should be written whenever writ-
ing graphical output. By default, the material properties will always contain the density, thermal
expansivity, specific heat and viscosity. The following material properties are available:
viscosity|density|thermal expansivity|specific heat|thermal conductivity|thermal diffusivity|compressibility|entropy
derivative temperature|entropy derivative pressure|reaction terms|melt fraction

520

Possible values: A comma-separated list of any of viscosity, density, thermal expansivity, specific
heat, thermal conductivity, thermal diffusivity, compressibility, entropy derivative temperature, entropy
derivative pressure, reaction terms, melt fraction

A.165 Parameters in section Postprocess/Visualization/Melt fraction
• Parameter name: A1
Value: 1085.7
Default: 1085.7
Description: Constant parameter in the quadratic function that approximates the solidus of peridotite.
Units: ◦C.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: A2
Value: 1.329e-7
Default: 1.329e-7
Description: Prefactor of the linear pressure term in the quadratic function that approximates the
solidus of peridotite. Units: ◦C/Pa.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: A3
Value: -5.1e-18
Default: -5.1e-18
Description: Prefactor of the quadratic pressure term in the quadratic function that approximates the
solidus of peridotite. Units: ◦C/(Pa2).
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: B1
Value: 1475.0
Default: 1475.0
Description: Constant parameter in the quadratic function that approximates the lherzolite liquidus
used for calculating the fraction of peridotite-derived melt. Units: ◦C.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: B2
Value: 8.0e-8
Default: 8.0e-8
Description: Prefactor of the linear pressure term in the quadratic function that approximates the
lherzolite liquidus used for calculating the fraction of peridotite-derived melt. Units: ◦C/Pa.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: B3
Value: -3.2e-18
Default: -3.2e-18
Description: Prefactor of the quadratic pressure term in the quadratic function that approximates the
lherzolite liquidus used for calculating the fraction of peridotite-derived melt. Units: ◦C/(Pa2).
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

521

• Parameter name: C1
Value: 1780.0
Default: 1780.0
Description: Constant parameter in the quadratic function that approximates the liquidus of peridotite.
Units: ◦C.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: C2
Value: 4.50e-8
Default: 4.50e-8
Description: Prefactor of the linear pressure term in the quadratic function that approximates the
liquidus of peridotite. Units: ◦C/Pa.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: C3
Value: -2.0e-18
Default: -2.0e-18
Description: Prefactor of the quadratic pressure term in the quadratic function that approximates the
liquidus of peridotite. Units: ◦C/(Pa2).
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: D1
Value: 976.0
Default: 976.0
Description: Constant parameter in the quadratic function that approximates the solidus of pyroxenite.
Units: ◦C.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: D2
Value: 1.329e-7
Default: 1.329e-7
Description: Prefactor of the linear pressure term in the quadratic function that approximates the
solidus of pyroxenite. Note that this factor is different from the value given in Sobolev, 2011, because
they use the potential temperature whereas we use the absolute temperature. Units: ◦C/Pa.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: D3
Value: -5.1e-18
Default: -5.1e-18
Description: Prefactor of the quadratic pressure term in the quadratic function that approximates the
solidus of pyroxenite. Units: ◦C/(Pa2).
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

522

• Parameter name: E1
Value: 663.8
Default: 663.8
Description: Prefactor of the linear depletion term in the quadratic function that approximates the
melt fraction of pyroxenite. Units: ◦C/Pa.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: E2
Value: -611.4
Default: -611.4
Description: Prefactor of the quadratic depletion term in the quadratic function that approximates
the melt fraction of pyroxenite. Units: ◦C/(Pa2).
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: Mass fraction cpx

Value: 0.15
Default: 0.15
Description: Mass fraction of clinopyroxene in the peridotite to be molten. Units: non-dimensional.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: beta
Value: 1.5
Default: 1.5
Description: Exponent of the melting temperature in the melt fraction calculation. Units: non-
dimensional.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: r1
Value: 0.5
Default: 0.5
Description: Constant in the linear function that approximates the clinopyroxene reaction coefficient.
Units: non-dimensional.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

• Parameter name: r2
Value: 8e-11
Default: 8e-11
Description: Prefactor of the linear pressure term in the linear function that approximates the clinopy-
roxene reaction coefficient. Units: 1/Pa.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

523

A.166 Parameters in section Postprocess/Visualization/Melt material properties
• Parameter name: List of properties

Value: compaction viscosity,permeability
Default: compaction viscosity,permeability
Description: A comma separated list of melt properties that should be written whenever writing
graphical output. The following material properties are available:
compaction viscosity|fluid viscosity|permeability|fluid density|fluid density gradient|is melt cell|darcy
coefficient|darcy coefficient no cutoff|compaction length
Possible values: A comma-separated list of any of compaction viscosity, fluid viscosity, permeability,
fluid density, fluid density gradient, is melt cell, darcy coefficient, darcy coefficient no cutoff, compaction
length

A.167 Parameters in section Postprocess/Visualization/Temperature anomaly
• Parameter name: Number of depth slices

Value: 20
Default: 20
Description: Number of depth slices used to define average temperature.
Possible values: An integer n such that 1 ≤ n ≤ 2147483647

• Parameter name: Use maximal temperature for bottom

Value: true
Default: true
Description: If true, use the specified boundary temepratures as average temperatures at the surface.
If false, extrapolate the temperature gradient between the first and second cells to the surface. This
option will only work for models with a fixed surface temperature.
Possible values: A boolean value (true or false)

• Parameter name: Use minimal temperature for surface

Value: true
Default: true
Description: Whether to use the minimal speficied boundary temperature as the bottom boundary
temperature. This option will only work for models with a fixed bottom boundary temperature.
Possible values: A boolean value (true or false)

A.168 Parameters in section Postprocess/Visualization/Volume of Fluid
• Parameter name: Output interface normals

Value: false
Default: false
Description: Include the internal data for the interface normal on the unit cells
Possible values: A boolean value (true or false)

524

• Parameter name: Output interface reconstruction contour

Value: false
Default: false
Description: Include fields defined such that the 0 contour is the fluid interface
Possible values: A boolean value (true or false)

A.169 Parameters in section Postprocess/Visualization/Vp anomaly
• Parameter name: Average velocity scheme

Value: reference profile
Default: reference profile
Description: Scheme to compute the average velocity-depth profile. The reference profile option eval-
uates the conditions along the reference adiabat according to the material model. The lateral average
option instead calculates a lateral average from subdivision of the mesh. The lateral average option
may produce spurious results where there are sharp velocity changes.
Possible values: Any one of reference profile, lateral average

• Parameter name: Number of depth slices

Value: 50
Default: 50
Description: Number of depth slices used to define average seismic compressional wave velocities from
which anomalies are calculated. Units: non-dimensional.
Possible values: An integer n such that 1 ≤ n ≤ 2147483647

A.170 Parameters in section Postprocess/Visualization/Vs anomaly
• Parameter name: Average velocity scheme

Value: reference profile
Default: reference profile
Description: Scheme to compute the average velocity-depth profile. The reference profile option eval-
uates the conditions along the reference adiabat according to the material model. The lateral average
option instead calculates a lateral average from subdivision of the mesh. The lateral average option
may produce spurious results where there are sharp velocity changes.
Possible values: Any one of reference profile, lateral average

• Parameter name: Number of depth slices

Value: 50
Default: 50
Description: Number of depth slices used to define average seismic shear wave velocities from which
anomalies are calculated. Units: non-dimensional.
Possible values: An integer n such that 1 ≤ n ≤ 2147483647

525

A.171 Parameters in section Prescribed Stokes solution
• Parameter name: Model name

Value: unspecified
Default: unspecified
Description: Select one of the following models:
‘ascii data’: Implementation of a model in which the velocity is derived from files containing data in
ascii format. Note the required format of the input data: The first lines may contain any number of
comments if they begin with ‘#’, but one of these lines needs to contain the number of grid points in
each dimension as for example ‘# POINTS: 3 3’. The order of the data columns has to be ‘x’, ‘y’, ‘vx’
, ‘vy’ in a 2d model and ‘x’, ‘y’, ‘z’, ‘vx’ , ‘vy’ , ‘vz’ in a 3d model. Note that the data in the input files
need to be sorted in a specific order: the first coordinate needs to ascend first, followed by the second
and the third at last in order to assign the correct data to the prescribed coordinates. If you use a
spherical model, then the data will still be handled as Cartesian, however the assumed grid changes.
‘x’ will be replaced by the radial distance of the point to the bottom of the model, ‘y’ by the azimuth
angle and ‘z’ by the polar angle measured positive from the north pole. The grid will be assumed to
be a latitude-longitude grid. Note that the order of spherical coordinates is ‘r’, ‘phi’, ‘theta’ and not
‘r’, ‘theta’, ‘phi’, since this allows for dimension independent expressions.
‘circle’: This value describes a vector field that rotates around the z-axis with constant angular velocity
(i.e., with a velocity that increases with distance from the axis). The pressure is set to zero.
‘function’: This plugin allows to prescribe the Stokes solution for the velocity and pressure field in
terms of an explicit formula. The format of these functions follows the syntax understood by the
muparser library, see Section 4.7.3.
Possible values: Any one of ascii data, circle, function, unspecified

A.172 Parameters in section Prescribed Stokes solution/Ascii data model
• Parameter name: Data directory

Value: $ASPECT_SOURCE_DIR/data/prescribed-stokes-solution/
Default: $ASPECT_SOURCE_DIR/data/prescribed-stokes-solution/
Description: The name of a directory that contains the model data. This path may either be absolute
(if starting with a ‘/’) or relative to the current directory. The path may also include the special text
‘$ASPECT_SOURCE_DIR’ which will be interpreted as the path in which the ASPECT source files
were located when ASPECT was compiled. This interpretation allows, for example, to reference files
located in the ‘data/’ subdirectory of ASPECT.
Possible values: A directory name

• Parameter name: Data file name

Value: box_2d.txt
Default: box_2d.txt
Description: The file name of the model data. Provide file in format: (Velocity file name).%s%d where
%s is a string specifying the boundary of the model according to the names of the boundary indicators
(of the chosen geometry model).%d is any sprintf integer qualifier, specifying the format of the current
file number.
Possible values: Any string

526

• Parameter name: Scale factor

Value: 1.
Default: 1.
Description: Scalar factor, which is applied to the model data. You might want to use this to scale
the input to a reference model. Another way to use this factor is to convert units of the input files.
For instance, if you provide velocities in cm/yr set this factor to 0.01.
Possible values: A floating point number v such that −MAX_DOUBLE ≤ v ≤ MAX_DOUBLE

A.173 Parameters in section Prescribed Stokes solution/Compaction pressure
function

• Parameter name: Function constants

Value:
Default:
Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘var1=value1, var2=value2, ...’.
A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: Any string

• Parameter name: Function expression

Value: 0
Default: 0
Description: The formula that denotes the function you want to evaluate for particular values of the
independent variables. This expression may contain any of the usual operations such as addition or
multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may contain
expressions like ‘if(x>0, 1, -1)’ where the expression evaluates to the second argument if the first
argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.
If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.
Possible values: Any string

• Parameter name: Variable names

Value: x,y,t
Default: x,y,t
Description: The names of the variables as they will be used in the function, separated by commas.
By default, the names of variables at which the function will be evaluated are ‘x’ (in 1d), ‘x,y’ (in 2d)
or ‘x,y,z’ (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’ and then use these variable names in your
function expression.
Possible values: Any string

527

A.174 Parameters in section Prescribed Stokes solution/Fluid pressure function
• Parameter name: Function constants

Value:
Default:
Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘var1=value1, var2=value2, ...’.
A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: Any string

• Parameter name: Function expression

Value: 0
Default: 0
Description: The formula that denotes the function you want to evaluate for particular values of the
independent variables. This expression may contain any of the usual operations such as addition or
multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may contain
expressions like ‘if(x>0, 1, -1)’ where the expression evaluates to the second argument if the first
argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.
If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.
Possible values: Any string

• Parameter name: Variable names

Value: x,y,t
Default: x,y,t
Description: The names of the variables as they will be used in the function, separated by commas.
By default, the names of variables at which the function will be evaluated are ‘x’ (in 1d), ‘x,y’ (in 2d)
or ‘x,y,z’ (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’ and then use these variable names in your
function expression.
Possible values: Any string

A.175 Parameters in section Prescribed Stokes solution/Fluid velocity function
• Parameter name: Function constants

Value:
Default:
Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘var1=value1, var2=value2, ...’.

528

A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: Any string

• Parameter name: Function expression

Value: 0; 0
Default: 0; 0
Description: The formula that denotes the function you want to evaluate for particular values of the
independent variables. This expression may contain any of the usual operations such as addition or
multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may contain
expressions like ‘if(x>0, 1, -1)’ where the expression evaluates to the second argument if the first
argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.
If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.
Possible values: Any string

• Parameter name: Variable names

Value: x,y,t
Default: x,y,t
Description: The names of the variables as they will be used in the function, separated by commas.
By default, the names of variables at which the function will be evaluated are ‘x’ (in 1d), ‘x,y’ (in 2d)
or ‘x,y,z’ (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’ and then use these variable names in your
function expression.
Possible values: Any string

A.176 Parameters in section Prescribed Stokes solution/Pressure function
• Parameter name: Function constants

Value:
Default:
Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘var1=value1, var2=value2, ...’.
A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: Any string

• Parameter name: Function expression

Value: 0
Default: 0

529

Description: The formula that denotes the function you want to evaluate for particular values of the
independent variables. This expression may contain any of the usual operations such as addition or
multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may contain
expressions like ‘if(x>0, 1, -1)’ where the expression evaluates to the second argument if the first
argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.
If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.
Possible values: Any string

• Parameter name: Variable names

Value: x,y,t
Default: x,y,t
Description: The names of the variables as they will be used in the function, separated by commas.
By default, the names of variables at which the function will be evaluated are ‘x’ (in 1d), ‘x,y’ (in 2d)
or ‘x,y,z’ (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’ and then use these variable names in your
function expression.
Possible values: Any string

A.177 Parameters in section Prescribed Stokes solution/Velocity function
• Parameter name: Function constants

Value:
Default:
Description: Sometimes it is convenient to use symbolic constants in the expression that describes the
function, rather than having to use its numeric value everywhere the constant appears. These values
can be defined using this parameter, in the form ‘var1=value1, var2=value2, ...’.
A typical example would be to set this runtime parameter to ‘pi=3.1415926536’ and then use ‘pi’ in
the expression of the actual formula. (That said, for convenience this class actually defines both ‘pi’
and ‘Pi’ by default, but you get the idea.)
Possible values: Any string

• Parameter name: Function expression

Value: 0; 0
Default: 0; 0
Description: The formula that denotes the function you want to evaluate for particular values of the
independent variables. This expression may contain any of the usual operations such as addition or
multiplication, as well as all of the common functions such as ‘sin’ or ‘cos’. In addition, it may contain
expressions like ‘if(x>0, 1, -1)’ where the expression evaluates to the second argument if the first
argument is true, and to the third argument otherwise. For a full overview of possible expressions
accepted see the documentation of the muparser library at http://muparser.beltoforion.de/.
If the function you are describing represents a vector-valued function with multiple components, then
separate the expressions for individual components by a semicolon.
Possible values: Any string

530

• Parameter name: Variable names

Value: x,y,t
Default: x,y,t
Description: The names of the variables as they will be used in the function, separated by commas.
By default, the names of variables at which the function will be evaluated are ‘x’ (in 1d), ‘x,y’ (in 2d)
or ‘x,y,z’ (in 3d) for spatial coordinates and ‘t’ for time. You can then use these variable names in your
function expression and they will be replaced by the values of these variables at which the function is
currently evaluated. However, you can also choose a different set of names for the independent variables
at which to evaluate your function expression. For example, if you work in spherical coordinates, you
may wish to set this input parameter to ‘r,phi,theta,t’ and then use these variable names in your
function expression.
Possible values: Any string

A.178 Parameters in section Solver parameters
• Parameter name: Composition solver tolerance

Value: 1e-12
Default: 1e-12
Description: The relative tolerance up to which the linear system for the composition system gets
solved. See ‘Stokes solver parameters/Linear solver tolerance’ for more details.
Possible values: A floating point number v such that 0 ≤ v ≤ 1

• Parameter name: Temperature solver tolerance

Value: 1e-12
Default: 1e-12
Description: The relative tolerance up to which the linear system for the temperature system gets
solved. See ‘Stokes solver parameters/Linear solver tolerance’ for more details.
Possible values: A floating point number v such that 0 ≤ v ≤ 1

A.179 Parameters in section Solver parameters/AMG parameters
• Parameter name: AMG aggregation threshold

Value: 0.001
Default: 0.001
Description: This threshold tells the AMG setup how the coarsening should be performed. In the AMG
used by ML, all points that strongly couple with the tentative coarse-level point form one aggregate.
The term strong coupling is controlled by the variable aggregation_threshold, meaning that all elements
that are not smaller than aggregation_threshold times the diagonal element do couple strongly. The
default is strongly recommended. There are indications that for the Newton solver a different value
might be better. For extensive benchmarking of various settings of the AMG parameters in this section
for the Stokes problem and others, see https://github.com/geodynamics/aspect/pull/234.
Possible values: A floating point number v such that 0 ≤ v ≤ 1

• Parameter name: AMG output details

Value: false
Default: false

531

Description: Turns on extra information on the AMG solver. Note that this will generate much more
output.
Possible values: A boolean value (true or false)

• Parameter name: AMG smoother sweeps

Value: 2
Default: 2
Description: Determines how many sweeps of the smoother should be performed. When the flag el-
liptic is set to true, (which is true for ASPECT), the polynomial degree of the Chebyshev smoother
is set to this value. The term sweeps refers to the number of matrix-vector products performed in
the Chebyshev case. In the non-elliptic case, this parameter sets the number of SSOR relaxation
sweeps for post-smoothing to be performed. The default is strongly recommended. There are indi-
cations that for the Newton solver a different value might be better. For extensive benchmarking
of various settings of the AMG parameters in this section for the Stokes problem and others, see
https://github.com/geodynamics/aspect/pull/234.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: AMG smoother type

Value: Chebyshev
Default: Chebyshev
Description: This parameter sets the type of smoother for the AMG. The default is strongly recom-
mended for any normal runs with ASPECT. There are some indications that the symmetric Gauss-
Seidel might be better and more stable for the Newton solver. For extensive benchmarking of various
settings of the AMG parameters in this section for the Stokes problem and others, see https://github.com/geodynamics/aspect/pull/234.
Possible values: Any one of Chebyshev, symmetric Gauss-Seidel

A.180 Parameters in section Solver parameters/Advection solver parameters
• Parameter name: GMRES solver restart length

Value: 50
Default: 50
Description: This is the number of iterations that define the GMRES solver restart length. Increasing
this parameter makes the solver more robust and decreases the number of iterations. Be aware that
increasing this number increases the memory usage of the advection solver, and makes individual
iterations more expensive.
Possible values: An integer n such that 1 ≤ n ≤ 2147483647

A.181 Parameters in section Solver parameters/Diffusion solver parameters
• Parameter name: Diffusion length scale

Value: 1.e4
Default: 1.e4
Description: Set a length scale for the diffusion of compositional fields if the “prescribed field with
diffusion” method is selected for a field. More precisely, this length scale represents the square root
of the product of diffusivity and time in the diffusion equation, and controls the distance over which
features are diffused. Units: m.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

532

A.182 Parameters in section Solver parameters/Newton solver parameters
• Parameter name: Max Newton line search iterations

Value: 5
Default: 5
Description: The maximum number of line search iterations allowed. If the criterion is not reached
after this number of iterations, we apply the scaled increment even though it does not satisfy the
necessary criteria and simply continue with the next Newton iteration.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Max pre-Newton nonlinear iterations

Value: 10
Default: 10
Description: If the ’Nonlinear Newton solver switch tolerance’ is reached before the maximal number
of Picard iterations, then the solver switches to Newton solves anyway.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Maximum linear Stokes solver tolerance

Value: 0.9
Default: 0.9
Description: The linear Stokes solver tolerance is dynamically chosen for the Newton solver, based on
the Eisenstat walker 1994 paper (https://doi.org/10.1137/0917003), equation 2.2. Because this value
can become larger then one, we limit this value by this parameter.
Possible values: A floating point number v such that 0 ≤ v ≤ 1

• Parameter name: Nonlinear Newton solver switch tolerance

Value: 1e-5
Default: 1e-5
Description: A relative tolerance with respect to the residual of the first iteration, up to which the
nonlinear Picard solver will iterate, before changing to the Newton solver.
Possible values: A floating point number v such that 0 ≤ v ≤ 1

• Parameter name: SPD safety factor

Value: 0.9
Default: 0.9
Description: When stabilizing the Newton matrix, we can encounter situations where the coefficient
inside the elliptic (top-left) block becomes negative or zero. This coefficient has the form 1 + x where
x can sometimes be smaller than −1. In this case, the top-left block of the matrix is no longer positive
definite, and both preconditioners and iterative solvers may fail. To prevent this, the stabilization
computes an α so that 1 + αx is never negative. This α is chosen as 1 if x ≥ −1, and α = − 1

x
otherwise. (Note that this always leads to 0 ≤ α ≤ 1.) On the other hand, we also want to stay away
from 1 + αx = 0, and so modify the choice of α to be 1 if x ≥ −c, and α = − c

x with a c between zero
and one. This way, if c < 1, we are assured that 1− αx > c, i.e., bounded away from zero.
Possible values: A floating point number v such that 0 ≤ v ≤ 1

533

• Parameter name: Stabilization preconditioner

Value: SPD
Default: SPD
Description: This parameters allows for the stabilization of the preconditioner. If one derives the
Newton method without any modifications, the matrix created for the preconditioning is not necessarily
Symmetric Positive Definite. This is problematic (see [35]). When ‘none’ is chosen, the preconditioner
is not stabilized. The ‘symmetric’ parameters symmetrizes the matrix, and ‘PD’ makes the matrix
Positive Definite. ‘SPD’ is the full stabilization, where the matrix is guaranteed Symmetric Positive
Definite.
Possible values: Any one of SPD, PD, symmetric, none

• Parameter name: Stabilization velocity block

Value: SPD
Default: SPD
Description: This parameters allows for the stabilization of the velocity block. If one derives the
Newton method without any modifications, the matrix created for the velocity block is not necessarily
Symmetric Positive Definite. This is problematic (see [35]). When ‘none’ is chosen, the velocity block
is not stabilized. The ‘symmetric’ parameters symmetrizes the matrix, and ‘PD’ makes the matrix
Positive Definite. ‘SPD’ is the full stabilization, where the matrix is guaranteed Symmetric Positive
Definite.
Possible values: Any one of SPD, PD, symmetric, none

• Parameter name: Use Eisenstat Walker method for Picard iterations

Value: false
Default: false
Description: If set to true, the Picard iteration uses the Eisenstat Walker method to determine how
accurately linear systems need to be solved. The Picard iteration is used, for example, in the first few
iterations of the Newton method before the matrix is built including derivatives of the model, since
the Picard iteration generally converges even from points where Newton’s method does not.
Once derivatives are used in a Newton method, ASPECT always uses the Eisenstat Walker method.
Possible values: A boolean value (true or false)

• Parameter name: Use Newton failsafe

Value: false
Default: false
Description: When this parameter is true and the linear solver fails, we try again, but now with SPD
stabilization for both the preconditioner and the velocity block. The SPD stabilization will remain
active until the next timestep, when the default values are restored.
Possible values: A boolean value (true or false)

• Parameter name: Use Newton residual scaling method

Value: false
Default: false
Description: This method allows to slowly introduce the derivatives based on the improvement of
the residual. If set to false, the scaling factor for the Newton derivatives is set to one immedi-
ately when switching on the Newton solver. When this is set to true, the derivatives are slowly

534

introduced by the following equation: max(0.0, (1.0 − (residual/switch_initial_residual))), where
switch_initial_residual is the residual at the time when the Newton solver is switched on.
Possible values: A boolean value (true or false)

A.183 Parameters in section Solver parameters/Operator splitting parameters
• Parameter name: Reaction time step

Value: 1000.0
Default: 1000.0
Description: Set a time step size for computing reactions of compositional fields and the temperature
field in case operator splitting is used. This is only used when the nonlinear solver scheme “operator
splitting” is selected. The reaction time step must be greater than 0. If you want to prescribe the
reaction time step only as a relative value compared to the advection time step as opposed to as an
absolute value, you should use the parameter “Reaction time steps per advection step” and set this
parameter to the same (or larger) value as the “Maximum time step” (which is 5.69e+300 by default).
Units: Years or seconds, depending on the “Use years in output instead of seconds” parameter.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Reaction time steps per advection step

Value: 0
Default: 0
Description: The number of reaction time steps done within one advection time step in case operator
splitting is used. This is only used if the nonlinear solver scheme “operator splitting” is selected. If set
to zero, this parameter is ignored. Otherwise, the reaction time step size is chosen according to this
criterion and the “Reaction time step”, whichever yields the smaller time step. Units: none.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

A.184 Parameters in section Solver parameters/Stokes solver parameters
• Parameter name: GMRES solver restart length

Value: 50
Default: 50
Description: This is the number of iterations that define the GMRES solver restart length. Increasing
this parameter helps with convergence issues arising from high localized viscosity jumps in the domain.
Be aware that increasing this number increases the memory usage of the Stokes solver, and makes
individual Stokes iterations more expensive.
Possible values: An integer n such that 1 ≤ n ≤ 2147483647

• Parameter name: IDR(s) parameter

Value: 2
Default: 2
Description: This is the sole parameter for the IDR(s) Krylov solver and will dictate the number of
matrix-vector products and preconditioner applications per iteration (s+1) and the total number of
temporary vectors required (5+3*s). For s=1, this method is analogous to BiCGStab. As s is increased
this method is expected to converge to GMRES in terms of matrix-vector/preconditioner applications
to solution.
Possible values: An integer n such that 1 ≤ n ≤ 2147483647

535

• Parameter name: Krylov method for cheap solver steps

Value: GMRES
Default: GMRES
Description: This is the Krylov method used to solve the Stokes system. Both options, GMRES and
IDR(s), solve non-symmetric, indefinite systems. GMRES guarantees the residual will be reduced in
each iteration while IDR(s) has no such property. On the other hand, the vector storage requirement
for GMRES is dependent on the restart length and can be quite restrictive (since, for the matrix-free
GMG solver, memory is dominated by these vectors) whereas IDR(s) has a short term recurrence.
Note that the IDR(s) Krylov method is not available for the AMG solver since it is not a flexible
method, i.e., it cannot handle a preconditioner which may change in each iteration (the AMG-based
preconditioner contains a CG solve in the pressure space which may have different number of iterations
each step).
Possible values: Any one of GMRES, IDR(s)

• Parameter name: Linear solver A block tolerance

Value: 1e-2
Default: 1e-2
Description: A relative tolerance up to which the approximate inverse of the A block of the Stokes
system is computed. This approximate A is used in the preconditioning used in the GMRES solver.
The exact definition of this block preconditioner for the Stokes equation can be found in [59].
Possible values: A floating point number v such that 0 ≤ v ≤ 1

• Parameter name: Linear solver S block tolerance

Value: 1e-6
Default: 1e-6
Description: A relative tolerance up to which the approximate inverse of the S block (i.e., the Schur
complement matrix S = BA−1BT) of the Stokes system is computed. This approximate inverse of the
S block is used in the preconditioning used in the GMRES solver. The exact definition of this block
preconditioner for the Stokes equation can be found in [59].
Possible values: A floating point number v such that 0 ≤ v ≤ 1

• Parameter name: Linear solver tolerance

Value: 1e-7
Default: 1e-7
Description: A relative tolerance up to which the linear Stokes systems in each time or nonlinear step
should be solved. The absolute tolerance will then be ‖Mx0 −F‖ · tol, where x0 = (0, p0) is the initial
guess of the pressure, M is the system matrix, F is the right-hand side, and tol is the parameter
specified here. We include the initial guess of the pressure to remove the dependency of the tolerance
on the static pressure. A given tolerance value of 1 would mean that a zero solution vector is an
acceptable solution since in that case the norm of the residual of the linear system equals the norm of
the right hand side. A given tolerance of 0 would mean that the linear system has to be solved exactly,
since this is the only way to obtain a zero residual.
In practice, you should choose the value of this parameter to be so that if you make it smaller the
results of your simulation do not change any more (qualitatively) whereas if you make it larger, they
do. For most cases, the default value should be sufficient. In fact, a tolerance of 1e-4 might be accurate
enough.
Possible values: A floating point number v such that 0 ≤ v ≤ 1

536

• Parameter name: Maximum number of expensive Stokes solver steps

Value: 1000
Default: 1000
Description: This sets the maximum number of iterations used in the expensive Stokes solver. If this
value is set too low for the size of the problem, the Stokes solver will not converge and return an error
message pointing out that the user didn’t allow a sufficiently large number of iterations for the iterative
solver to converge.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Number of cheap Stokes solver steps

Value: 200
Default: 200
Description: As explained in the paper that describes ASPECT (Kronbichler, Heister, and Bangerth,
2012, see [59]) we first try to solve the Stokes system in every time step using a GMRES iteration
with a poor but cheap preconditioner. By default, we try whether we can converge the GMRES solver
in 200 such iterations before deciding that we need a better preconditioner. This is sufficient for
simple problems with variable viscosity and we never need the second phase with the more expensive
preconditioner. On the other hand, for more complex problems, and in particular for problems with
strongly nonlinear viscosity, the 200 cheap iterations don’t actually do very much good and one might
skip this part right away. In that case, this parameter can be set to zero, i.e., we immediately start
with the better but more expensive preconditioner.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Stokes solver type

Value: block AMG
Default: block AMG
Description: This is the type of solver used on the Stokes system. The block geometric multigrid solver
currently has a limited implementation and therefore may trigger Asserts in the code when used. If this
is the case, please switch to ’block AMG’. Additionally, the block GMG solver requires using material
model averaging.
Possible values: Any one of block AMG, direct solver, block GMG

• Parameter name: Use direct solver for Stokes system

Value: true
Default: false
Description: If set to true the linear system for the Stokes equation will be solved using Trilinos klu,
otherwise an iterative Schur complement solver is used. The direct solver is only efficient for small
problems.
Possible values: A boolean value (true or false)

• Parameter name: Use full A block as preconditioner

Value: false
Default: false
Description: This parameter determines whether we use an simplified approximation of the A block as
preconditioner for the Stokes solver, or the full A block. The simplified approximation only contains
the terms that describe the coupling of identical components (plus boundary conditions) as described
in [59]. The full block is closer to the description in [74].

537

There is no clear way to determine which preconditioner performs better. The default value (simplified
approximation) requires more outer GMRES iterations, but is faster to apply in each iteration. The
full block needs less assembly time (because the block is available anyway), converges in less GMRES
iterations, but requires more time per iteration. There are also differences in the amount of memory
consumption between the two approaches.
The default value should be good for relatively simple models, but in particular for very strong viscosity
contrasts the full A block can be advantageous.
Possible values: A boolean value (true or false)

A.185 Parameters in section Temperature field
• Parameter name: Temperature method

Value: field
Default: field
Description: A comma separated list denoting the solution method of the temperature field. Each
entry of the list must be one of the currently implemented field types.
These choices correspond to the following methods by which the temperature field gains its values:

– “field”: If the temperature is marked with this method, then its values are computed in each time
step by solving the temperature advection-diffusion equation. In other words, this corresponds to
the usual notion of a temperature.

– “prescribed field”: The value of the temperature is determined in each time step from the ma-
terial model. If a compositional field is marked with this method, then the value of a specific
additional material model output, called the ‘PrescribedTemperatureOutputs’ is interpolated onto
the temperature. This field does not change otherwise, it is not advected with the flow.

Possible values: Any one of field, prescribed field

A.186 Parameters in section Termination criteria
• Parameter name: Checkpoint on termination

Value: false
Default: false
Description: Whether to checkpoint the simulation right before termination.
Possible values: A boolean value (true or false)

• Parameter name: End step

Value: 100
Default: 100
Description: Terminate the simulation once the specified timestep has been reached.
Possible values: An integer n such that 0 ≤ n ≤ 2147483647

• Parameter name: Termination criteria

Value: end time
Default: end time
Description: A comma separated list of termination criteria that will determine when the simulation
should end. Whether explicitly stated or not, the “end time” termination criterion will always be
used.The following termination criteria are available:

538

‘end step’: Terminate the simulation once the specified timestep has been reached.
‘end time’: Terminate the simulation once the end time specified in the input file has been reached.
Unlike all other termination criteria, this criterion is always active, whether it has been explicitly
selected or not in the input file (this is done to preserve historical behavior of ASPECT, but it also
likely does not inconvenience anyone since it is what would be selected in most cases anyway).
‘steady state temperature’: A criterion that terminates the simulation when the global integral of the
temperature field stays within a certain range for a specified period of time.
‘steady state velocity’: A criterion that terminates the simulation when the RMS of the velocity field
stays within a certain range for a specified period of time.
‘user request’: Terminate the simulation gracefully when a file with a specified name appears in the
output directory. This allows the user to gracefully exit the simulation at any time by simply creating
such a file using, for example, touch output/terminate. The file’s location is chosen to be in the
output directory, rather than in a generic location such as the ASPECT directory, so that one can run
multiple simulations at the same time (which presumably write to different output directories) and can
selectively terminate a particular one.
‘wall time’: Terminate the simulation once the wall time limit has reached.
Possible values: A comma-separated list of any of end step, end time, steady state temperature, steady
state velocity, user request, wall time

• Parameter name: Wall time

Value: 24.
Default: 24.
Description: The wall time of the simulation. Unit: hours.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.187 Parameters in section Termination criteria/Steady state temperature
• Parameter name: Maximum relative deviation

Value: 0.05
Default: 0.05
Description: The maximum relative deviation of the temperature in recent simulation time for the
system to be considered in steady state. If the actual deviation is smaller than this number, then the
simulation will be terminated.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Time in steady state

Value: 1e7
Default: 1e7
Description: The minimum length of simulation time that the system should be in steady state before
termination.Units: years if the ’Use years in output instead of seconds’ parameter is set; seconds
otherwise.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

539

A.188 Parameters in section Termination criteria/Steady state velocity
• Parameter name: Maximum relative deviation

Value: 0.05
Default: 0.05
Description: The maximum relative deviation of the RMS in recent simulation time for the system to
be considered in steady state. If the actual deviation is smaller than this number, then the simulation
will be terminated.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

• Parameter name: Time in steady state

Value: 1e7
Default: 1e7
Description: The minimum length of simulation time that the system should be in steady state before
termination.Units: years if the ’Use years in output instead of seconds’ parameter is set; seconds
otherwise.
Possible values: A floating point number v such that 0 ≤ v ≤ MAX_DOUBLE

A.189 Parameters in section Termination criteria/User request
• Parameter name: File name

Value: terminate-aspect
Default: terminate-aspect
Description: The name of a file that, if it exists in the output directory (whose name is also specified
in the input file) will lead to termination of the simulation. The file’s location is chosen to be in the
output directory, rather than in a generic location such as the ASPECT directory, so that one can run
multiple simulations at the same time (which presumably write to different output directories) and can
selectively terminate a particular one.
Possible values: an input filename

A.190 Parameters in section Volume of Fluid
• Parameter name: Enable interface tracking

Value: false
Default: false
Description: When set to true, Volume of Fluid interface tracking will be used
Possible values: A boolean value (true or false)

• Parameter name: Number initialization samples

Value: 3
Default: 3
Description: Number of divisions per dimension when computing the initial volume fractions.If set to
the default of 3 for a 2D model, then initialization will be based on the initialization criterion at 32 = 9
points within each cell. If the initialization based on a composition style initial condition, a larger
value may be desired for better approximation of the initial fluid fractions. Smaller values will suffice
in the case of level set initializations due to the presence of more information to better approximate
the initial fluid fractions.
Possible values: An integer n such that 1 ≤ n ≤ 2147483647

540

• Parameter name: Volume fraction threshold

Value: 1e-6
Default: 1e-6
Description: Minimum significant volume. Fluid fractions below this value are considered to be zero.
Possible values: A floating point number v such that 0 ≤ v ≤ 1

• Parameter name: Volume of Fluid solver tolerance

Value: 1e-12
Default: 1e-12
Description: The relative tolerance up to which the linear system for the Volume of Fluid system gets
solved. See ’Solver parameters/Composition solver tolerance’ for more details.
Possible values: A floating point number v such that 0 ≤ v ≤ 1

541

References
[1] V. Allken, R. Huismans, H. Fossen, and C. Thieulot. 3D numerical modelling of graben interaction and

linkage: a case study of the Canyonlands grabens, Utah. Basin Research, 25:1–14, 2013.

[2] V. Allken, R. Huismans, and C. Thieulot. Three dimensional numerical modelling of upper crustal
extensional systems. J. Geophys. Res., 116:B10409, 2011.

[3] V. Allken, R. Huismans, and C. Thieulot. Factors controlling the mode of rift interaction in brittle-
ductile coupled systems: a 3D numerical study. Geochem. Geophys. Geosyst., 13(5):Q05010, 2012.

[4] J. Badro, J.-P. Rueff, G. Vankó, G. Monaco, G. Fiquet, and F. Guyot. Electronic transitions in per-
ovskite: Possible nonconvecting layers in the lower mantle. Science, 305:383–386, 2004.

[5] W. Bangerth, J. Dannberg, R. Gassmoeller, T. Heister, et al. ASPECT v1.5.0 [software], mar 2017.
doi:10.5281/zenodo.344623. URL: https://doi.org/10.5281/zenodo.344623, doi:10.5281/zenodo.
344623.

[6] W. Bangerth, J. Dannberg, R. Gassmoeller, T. Heister, et al. ASPECT v2.0.0 [software], May 2018.
URL: https://doi.org/10.5281/zenodo.1244587, doi:10.5281/zenodo.1244587.

[7] W. Bangerth, J. Dannberg, R. Gassmoeller, T. Heister, et al. ASPECT v2.0.1 [software], June 2018.
URL: https://doi.org/10.5281/zenodo.1297145, doi:10.5281/zenodo.1297145.

[8] W. Bangerth, J. Dannberg, R. Gassmöller, T. Heister, et al. ASPECT: Advanced Solver for Problems
in Earth’s ConvecTion, User Manual. April 2019. doi:10.6084/m9.figshare.4865333. URL: https:
//doi.org/10.6084/m9.figshare.4865333, doi:10.6084/m9.figshare.4865333.

[9] W. Bangerth, R. Hartmann, and G. Kanschat. deal.II – a general purpose object oriented finite element
library. ACM Trans. Math. Softw., 33(4):24, 2007.

[10] W. Bangerth, T. Heister, and G. Kanschat. deal.II Differential Equations Analysis Library, Technical
Reference, 2012. http://www.dealii.org/.

[11] V. Barcilon and F. M. Richter. Nonlinear waves in compacting media. Journal of Fluid mechanics,
164:429–448, 1986.

[12] A. Bauville and T. Baumann. geomio: an open-source matlab toolbox to create the initial configu-
ration of 2d/3d thermo-mechanical simulations from 2d vector drawings. Geochemistry, Geophysics,
Geosystems, 2019. doi:10.1029/2018GC008057.

[13] T. W. Becker, J. B. Kellogg, G. Ekström, and R. J. O’Connell. Comparison of azimuthal seismic
anisotropy from surface waves and finite strain from global mantle-circulation models. Geophysical Jour-
nal International, 155(2):696–714, nov 2003. URL: http://doi.wiley.com/10.1046/j.1365-246X.
2003.02085.x, doi:10.1046/j.1365-246X.2003.02085.x.

[14] B. Blankenbach, F. Busse, U. Christensen, L. Cserepes, D. Gunkel, U. Hansen, H. Harder, G. Jarvis,
M. Koch, G. Marquart, D. Moore, P. Olson, H. Schmeling, and T. Schnaubelt. A benchmark comparison
for mantle convection codes. Geophys. J. Int., 98:23–38, 1989.

[15] S. Brune, C. Heine, M. Pẽrez Gussinyẽ, and S. V. Sobolev. Rift migration explains continental margin
asymmetry and crustal hyperextension. Nat. Comm., 5(4014), 2014.

[16] S. Buiter, G. Schreurs, M. Albertz, T. Gerya, B. Kaus, W. Landry, L. le Pourhiet, Y. Mishin, D. Egholm,
M. Cooke, B. Maillot, C. Thieulot, T. Crook, D. May, P. Souloumiac, and C. Beaumont. Benchmarking
numerical models of brittle thrust wedges. Journal of Structural Geology, 92:140–177, 2016. doi:
10.1016/j.jsg.2016.03.003.

542

https://doi.org/10.5281/zenodo.344623
http://dx.doi.org/10.5281/zenodo.344623
http://dx.doi.org/10.5281/zenodo.344623
https://doi.org/10.5281/zenodo.1244587
http://dx.doi.org/10.5281/zenodo.1244587
https://doi.org/10.5281/zenodo.1297145
http://dx.doi.org/10.5281/zenodo.1297145
https://doi.org/10.6084/m9.figshare.4865333
https://doi.org/10.6084/m9.figshare.4865333
http://dx.doi.org/10.6084/m9.figshare.4865333
http://dx.doi.org/10.1029/2018GC008057
http://doi.wiley.com/10.1046/j.1365-246X.2003.02085.x
http://doi.wiley.com/10.1046/j.1365-246X.2003.02085.x
http://dx.doi.org/10.1046/j.1365-246X.2003.02085.x
http://dx.doi.org/10.1016/j.jsg.2016.03.003
http://dx.doi.org/10.1016/j.jsg.2016.03.003

[17] S. J. H. Buiter. A review of brittle compressional wedge models. Tectonophysics, 530:1–17, 2012.

[18] C. Burstedde, G. Stadler, L. Alisic, L. C. Wilcox, E. Tan, M. Gurnis, and O. Ghattas. Large-scale
adaptive mantle convection simulation. Geophysical Journal International, 192.3:889–906, 2013.

[19] C. Burstedde, L. C. Wilcox, and O. Ghattas. p4est: Scalable algorithms for parallel adaptive mesh re-
finement on forests of octrees. SIAM J. Sci. Comput., 33(3):1103–1133, 2011. doi:10.1137/100791634.

[20] D. S. Chapman. Thermal gradients in the continental crust. Geol. Soc. London Spec. Publ., 24:63–70,
1986.

[21] R. Christensen. An Eulerian technique for thermomechanical modeling of lithospheric extension. J. Geo-
phys. Res., 97(B2):2015–2036, 1992.

[22] H. Čížková and C. Bina. Effects of mantle and subduction-interface rheologies on slab stagnation and
trench rollback. Earth Planet. Sci. Lett., 379:95–103, 2013. doi:10.1016/j.epsl.2013.08.011.

[23] H. Čížková and C. Bina. Geodynamics of trench advance: Insights from a Philippine-Sea-style geometry.
Earth Planet. Sci. Lett., 430:408–415, 2015. doi:10.1016/j.epsl.2015.07.004.

[24] T. C. Clevenger and T. Heister. deal.II tutorial program step-63, http://www.dealii.org/developer/
doxygen/deal.II/step_63.html, 2019.

[25] F. Crameri, H. Schmeling, G. J. Golabek, T. Duretz, R. Orendt, S. J. H. Buiter, D. A. May, B. J. P.
Kaus, T. V. Gerya, and P. J. Tackley. A comparison of numerical surface topography calculations in
geodynamic modelling: An evaluation of the ‘sticky air’ method. Geophysical Journal International,
189(1):38–54, 2012.

[26] F. Dahlen and J. Tromp. Theoretical global seismology. Princeton University Press, 1998.

[27] J. Dannberg and T. Heister. Compressible magma/mantle dynamics: 3D, adaptive simulations in
ASPECT. Geophysical Journal International, 207(3):1343–1366, 2016. URL: https://dx.doi.org/
10.1093/gji/ggw329, doi:10.1093/gji/ggw329.

[28] R. Deguen, T. Alboussière, and P. Cardin. Thermal convection in Earth’s inner core with phase change
at its boundary. Geophysical Journal International, 194(3):1310–1334, 2013. doi:10.1093/gji/ggt202.

[29] Y. Deubelbeiss and B. J. P. Kaus. Comparison of Eulerian and Lagrangian numerical techniques for
the Stokes equations in the presence of strongly varying viscosity. Physics of the Earth and Planetary
Interiors, 171:92–111, 2008.

[30] C. R. Dohrmann and P. B. Bochev. A stabilized finite element method for the Stokes problem based on
polynomial pressure projections. International Journal for Numerical Methods in Fluids, 46:183–201,
20014.

[31] C. R. Dohrmann and P. B. Bochev. A stabilized finite element method for the stokes problem based on
polynomial pressure projections. International Journal for Numerical Methods in Fluids, 46(2):183–201,
Aug. 2004. URL: https://doi.org/10.1002/fld.752, doi:10.1002/fld.752.

[32] J. Donea and A. Huerta. Finite Element Methods for Flow Problems. John Wiley & Sons, Ltd, 2003.

[33] J. Donea, A. Huerta, J.-P. Ponthot, and A. Rodríguez-Ferran. Arbitrary Lagrangian-Eulerian Methods.
John Wiley & Sons, Ltd, 2004. URL: http://dx.doi.org/10.1002/0470091355.ecm009, doi:10.
1002/0470091355.ecm009.

[34] T. Duretz, D. A. May, T. V. Garya, and P. J. Tackley. Discretization errors and free surface stabilization
in the finite difference and marker-in-cell method for applied geodynamics: A numerical study. Geoch.
Geoph. Geosystems, 12:Q07004/1–26, 2011.

543

http://dx.doi.org/10.1137/100791634
http://dx.doi.org/10.1016/j.epsl.2013.08.011
http://dx.doi.org/10.1016/j.epsl.2015.07.004
http://www.dealii.org/developer/doxygen/deal.II/step_63.html
http://www.dealii.org/developer/doxygen/deal.II/step_63.html
https://dx.doi.org/10.1093/gji/ggw329
https://dx.doi.org/10.1093/gji/ggw329
http://dx.doi.org/10.1093/gji/ggw329
http://dx.doi.org/10.1093/gji/ggt202
https://doi.org/10.1002/fld.752
http://dx.doi.org/10.1002/fld.752
http://dx.doi.org/10.1002/0470091355.ecm009
http://dx.doi.org/10.1002/0470091355.ecm009
http://dx.doi.org/10.1002/0470091355.ecm009

[35] M. R. T. Fraters, W. Bangerth, C. Thieulot, A. C. Glerum, and W. Spakman. Efficient and practical
Newton solvers for nonlinear Stokes systems in geodynamics problems. Geophysics Journal Interna-
tional, 218(2):873–894, 04 2019. URL: https://doi.org/10.1093/gji/ggz183, arXiv:http://oup.
prod.sis.lan/gji/article-pdf/218/2/873/28693654/ggz183.pdf, doi:10.1093/gji/ggz183.

[36] E. Garzanti, G. Radeff, and M. MalusÃă. Slab breakoff: A critical appraisal of a geological theory
as applied in space and time. Earth-Science Reviews, 177:303–319, 2018. doi:10.1016/j.earscirev.
2017.11.012.

[37] R. Gassmöller, H. Lokavarapu, E. Heien, E. G. Puckett, and W. Bangerth. Flexible and scalable particle-
in-cell methods with adaptive mesh refinement for geodynamic computations. Geochemistry, Geophysics,
Geosystems, 19(9):3596–3604, 2018. URL: https://doi.org/10.1029/2018GC007508, doi:10.1029/
2018GC007508.

[38] T. Gerya. Introduction to Numerical Geodynamic Modelling. Cambridge University Press, 2010.

[39] T. Gerya. Numerical Geodynamic Modelling. Cambridge University Press, 2010.

[40] A. Glerum, C. Thieulot, M. Fraters, C. Blom, and W. Spakman. Nonlinear viscoplasticity in
ASPECT: benchmarking and applications to subduction. Solid Earth, 9(2):267–294, 2018. doi:
10.5194/se-9-267-2018.

[41] J.-L. Guermond, R. Pasquetti, and B. Popov. Entropy viscosity method for nonlinear conservation laws.
J. Comput. Phys., 230:4248–4267, 2011.

[42] M. Gurnis, M. Turner, S. Zahirovic, L. DiCaprio, S. Spasojevic, R. D. Müller, J. Boyden, M. Seton, V. C.
Manea, and D. J. Bower. Plate tectonic reconstructions with continuously closing plates. Computers &
Geosciences, 38:35–42, 2012.

[43] T. Heister, J. Dannberg, R. Gassmöller, and W. Bangerth. High accuracy mantle convection simu-
lation through modern numerical methods. II: Realistic models and problems. Geophysical Journal
International, 210(2):833–851, 2017. URL: https://doi.org/10.1093/gji/ggx195, doi:10.1093/
gji/ggx195.

[44] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq,
K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M.
Willenbring, A. Williams, and K. S. Stanley. An overview of the Trilinos project. ACM Trans. Math.
Softw., 31:397–423, 2005.

[45] M. A. Heroux et al. Trilinos web page, 2011. http://trilinos.sandia.gov.

[46] B. Hillebrand, C. Thieulot, T. Geenen, A. P. van den Berg, and W. Spakman. Using the level set method
in geodynamical modeling of multi-material flows and Earth’s free surface. Solid Earth, 5(2):1087–1098,
2014. URL: https://www.solid-earth.net/5/1087/2014/, doi:10.5194/se-5-1087-2014.

[47] M. M. Hirschmann. Mantle solidus: Experimental constraints and the effects of peridotite composition.
Geochemistry, Geophysics, Geosystems, 1(10), 2000.

[48] G. Hirth and D. Kohlstedt. Rheology of the upper mantle and the mantle wedge:a view from the
experimentalists. In J. M. Eiler, editor, Inside the Subduction Factory, Geophys. Monogr. Ser. 138,
pages 83–105. American Geophysical Union, Washington, DC, 2004.

[49] T. Holland and R. Powell. An improved and extended internally consistent thermodynamic dataset for
phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic
Geology, 29(3):333–383, 2011.

544

https://doi.org/10.1093/gji/ggz183
http://arxiv.org/abs/http://oup.prod.sis.lan/gji/article-pdf/218/2/873/28693654/ggz183.pdf
http://arxiv.org/abs/http://oup.prod.sis.lan/gji/article-pdf/218/2/873/28693654/ggz183.pdf
http://dx.doi.org/10.1093/gji/ggz183
http://dx.doi.org/10.1016/j.earscirev.2017.11.012
http://dx.doi.org/10.1016/j.earscirev.2017.11.012
https://doi.org/10.1029/2018GC007508
http://dx.doi.org/10.1029/2018GC007508
http://dx.doi.org/10.1029/2018GC007508
http://dx.doi.org/10.5194/se-9-267-2018
http://dx.doi.org/10.5194/se-9-267-2018
https://doi.org/10.1093/gji/ggx195
http://dx.doi.org/10.1093/gji/ggx195
http://dx.doi.org/10.1093/gji/ggx195
https://www.solid-earth.net/5/1087/2014/
http://dx.doi.org/10.5194/se-5-1087-2014

[50] R. Huismans and C. Beaumont. Depth-dependent extension, two-stage breakup and cratonic under-
plating at rifted margins. Nature, 473(71–75), 2011.

[51] M. Jackson and M. Hudec. Salt Tectonics: Principles and Practice. Cambridge: Cambridge University
Press, 2017. doi:10.1017/9781139003988.

[52] Jean-Luc Guermond and Richard Pasquetti and Bojan Popov. Entropy viscosity method for nonlinear
conservation laws. Journal of Computational Physics, 230:4248–4267, 2011.

[53] V. John and P. Knobloch. On discontinuity—capturing methods for convection—diffusion equations. In
Numerical Mathematics and Advanced Applications, pages 336–344. Springer Berlin Heidelberg, 2006.
doi:10.1007/978-3-540-34288-5_27.

[54] R. F. Katz, M. Spiegelman, and C. H. Langmuir. A new parameterization of hydrous mantle melting.
Geochemistry, Geophysics, Geosystems, 4(9):n/a–n/a, 2003. doi:10.1029/2002GC000433.

[55] B. Kaus. Factors that control the angle of shear bands in geodynamic numerical models of brittle
deformation. Tectonophysics, 484:36–47, 2010.

[56] B. J. P. Kaus, H. Mühlhaus, and D. A. May. A stabilization algorithm for geodynamic numerical
simulations with a free surface. Physics of the Earth and Planetary Interiors, 181(1):12–20, 2010.

[57] T. Keller, D. A. May, and B. J. P. Kaus. Numerical modelling of magma dynamics coupled
to tectonic deformation of lithosphere and crust. Geophysical Journal International, 195(3):1406–
1442, 2013. URL: http://gji.oxfordjournals.org/content/195/3/1406.abstract, arXiv:http:
//gji.oxfordjournals.org/content/195/3/1406.full.pdf+html, doi:10.1093/gji/ggt306.

[58] S. D. King, C. Lee, P. E. Van Keken, W. Leng, S. Zhong, E. Tan, N. Tosi, and M. C. Kameyama. A
community benchmark for 2-D Cartesian compressible convection in the Earth’s mantle. Geophysical
Journal International, 180(1):73–87, 2010.

[59] M. Kronbichler, T. Heister, and W. Bangerth. High accuracy mantle convection simulation through
modern numerical methods. Geophysical Journal International, 191:12–29, 2012. URL: http://dx.
doi.org/10.1111/j.1365-246X.2012.05609.x, doi:10.1111/j.1365-246X.2012.05609.x.

[60] B. Lund and J. Townend. Calculating horizontal stress orientations with full or partial knowledge of
the tectonic stress tensor. Geophys. J. Int., 170:1328–1335, 2007.

[61] D. McKenzie and J. Jackson. The relationship between strain rates, crustal thickening, palaeomag-
netism, finite strain and fault movements within a deforming zone. Earth and Planetary Science Letters,
65(1):182–202, 1983. doi:10.1016/0012-821X(83)90198-X.

[62] D. McKenzie, J. Jackson, and K. Priestley. Thermal structure of oceanic and continental lithosphere.
Earth & Planetary Science Letters, 233(3-4):337–349, 2005.

[63] C. Morency and M.-P. Doin. Numerical simulations of the mantle lithosphere delamination. Journal of
Geophysical Research: Solid Earth (1978–2012), 109(B3), 2004.

[64] L. Moresi, S. Quenette, V. Lemiale, C. Meriaux, B. Appelbe, and H. B. Mühlhaus. Computational
approaches to studying non-linear dynamics of the crust and mantle. Phys. Earth Planet. Interiors,
163:69–82, 2007.

[65] J. Naliboff and S. Buiter. Rift reactivation and migration during multiphase extension. Earth Planet.
Sci. Lett., 421(58–67), 2015.

[66] F. Nimmo, G. Price, J. Brodholt, and D. Gubbins. The influence of potassium on core and geodynamo
evolution. Geophysical Journal International, 156:363–376, 2004.

545

http://dx.doi.org/10.1017/9781139003988
http://dx.doi.org/10.1007/978-3-540-34288-5_27
http://dx.doi.org/10.1029/2002GC000433
http://gji.oxfordjournals.org/content/195/3/1406.abstract
http://arxiv.org/abs/http://gji.oxfordjournals.org/content/195/3/1406.full.pdf+html
http://arxiv.org/abs/http://gji.oxfordjournals.org/content/195/3/1406.full.pdf+html
http://dx.doi.org/10.1093/gji/ggt306
http://dx.doi.org/10.1111/j.1365-246X.2012.05609.x
http://dx.doi.org/10.1111/j.1365-246X.2012.05609.x
http://dx.doi.org/10.1111/j.1365-246X.2012.05609.x
http://dx.doi.org/10.1016/0012-821X(83)90198-X

[67] K. Priestley, D. McKenzie, J. Barron, M. Tatar, and E. Debayle. The zagros core: Deformation of the
continental lithospheric mantle. Geochemistry, Geophysics, Geosystems, 13(11):Q11014, 2012.

[68] H. Ramberg. Instability of layered systems in the field of gravity. Phys. Earth Planet. Interiors, 1:427–
447, 1968.

[69] H. Ramberg. Gravity, Deformation, and the EarthâĂŹs Crust: In Theory, Experiments and Geological
Application. Academic Press, London, 214pp., 1981.

[70] N. M. Ribe. On the relation between seismic anisotropy and finite strain. Journal of Geophysi-
cal Research, 97(B6):8737, 1992. URL: http://doi.wiley.com/10.1029/92JB00551, doi:10.1029/
92JB00551.

[71] J. Ritsema, A. Deuss, H. J. van Heijst, and J. H. Woodhouse. S40rts: a degree-40 shear-velocity model
for the mantle from new rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting
function measurements. Geophysical Journal International, 184:1223–1236, 2011.

[72] J. Ritsema and H. J. van Heijst. Seismic imaging of structural heterogeneity in earth’s mantle: Evidence
for large-scale mantle flow. Sci. Progr., 83:243–259, 2000.

[73] I. Rose, B. Buffett, and T. Heister. Stability and accuracy of free surface time integration in viscous
flows. Physics of the Earth and Planetary Interiors, 262:90 – 100, 2017. URL: http://dx.doi.org/
10.1016/j.pepi.2016.11.007, doi:10.1016/j.pepi.2016.11.007.

[74] J. Rudi, G. Stadler, and O. Ghattas. Weighted bfbt preconditioner for stokes flow problems with highly
heterogeneous viscosity. SIAM Journal on Scientific Computing, 39(5):S272–S297, 2017.

[75] E. H. Rutter and K. H. Brodie. Experimental grain size-sensitive flow of hot-pressed brazilian quartz
aggregates. J. Struct. Geol., 26:2011–2023, 2004.

[76] E. Rybacki, M. Gottschalk, R. Wirth, and G. Dresen. Influence of water fugacity and activation volume
on the flow properties of fine-grained anorthite aggregates. J. Geophys. Res., 111(B3), 2006.

[77] S. M. Schmalholz. A simple analytical solution for slab detachment. Earth Planet. Sci. Lett., 304:45–54,
2011.

[78] H. Schmeling. Partial melting and melt segregation in a convecting mantle. In Physics and Chemistry
of Partially Molten Rocks, pages 141–178. Springer, 2000.

[79] H. Schmeling. A model of episodic melt extraction for plumes. Journal of Geophysical Research: Solid
Earth, 111(B3), 2006.

[80] H. Schmeling, A. Y. Babeyko, A. Enns, C. Faccenna, F. Funiciello, T. Gerya, G. J. Golabek, S. Grigull,
B. J. P. Kaus, G. Morra, S. M. Schmalholz, and J. van Hunen. A benchmark comparison of spontaneous
subduction models—towards a free surface. Physics of the Earth and Planetary Interiors, 171:198–223,
2008.

[81] D. W. Schmid and Y. Y. Podladchikov. Analytical solutions for deformable elliptical inclusions in
general shear. Geophysical Journal International, 155(1):269–288, 2003.

[82] G. Schubert, D. L. Turcotte, and P. Olson. Mantle Convection in the Earth and Planets, Part 1.
Cambridge, 2001.

[83] G. Simpson and M. Spiegelman. Solitary wave benchmarks in magma dynamics. Journal of Scientific
Computing, 49(3):268–290, 2011.

[84] M. Thielmann, D. A. May, and B. J. P. Kaus. Discretization errors in the hybrid finite element particle-
in-cell method. Pure and Applied Geophysics, 171:2165–2184, 2014.

546

http://doi.wiley.com/10.1029/92JB00551
http://dx.doi.org/10.1029/92JB00551
http://dx.doi.org/10.1029/92JB00551
http://dx.doi.org/10.1016/j.pepi.2016.11.007
http://dx.doi.org/10.1016/j.pepi.2016.11.007
http://dx.doi.org/10.1016/j.pepi.2016.11.007

[85] C. Thieulot. FANTOM: two- and three-dimensional numerical modelling of creeping flows for the
solution of geological problems. Phys. Earth. Planet. Inter., 188:47–68, 2011.

[86] C. Thieulot. ELEFANT: a user-friendly multipurpose geodynamics code. Technical report, Utrecht
University, 2015.

[87] C. Thieulot. Analytical solution for viscous incompressible stokes flow in a spherical shell. Solid
Earth, 8(6):1181–1191, 2017. URL: https://www.solid-earth.net/8/1181/2017/, doi:10.5194/
se-8-1181-2017.

[88] C. Thieulot. The finite element method in geodynamics, 2019. URL: https://github.com/cedrict/
fieldstone/blob/master/manual.pdf.

[89] N. Tosi, C. Stein, L. Noack, C. Hüttig, P. Maierova, H. Samual, D. R. Davies, C. R. Wilson, S. C. Kramer,
C. Thieulot, A. Glerum, M. Fraters, W. Spakman, A. Rozel, and P. J. Tackley. A community benchmark
for viscoplastic thermal convection in a 2-d square box. Geochem. Geophys. Geosyst., 16:2175–2196,
2015.

[90] D. L. Turcotte and G. Schubert. Geodynamics. Cambridge, 3rd edition, 2014.

[91] J. van Hunen and M. Allen. Continental collision and slab break-off: A comparison of 3-D numerical
models with observations. Earth Planet. Sci. Lett., 302:27–37, 2011.

[92] J. van Hunen, A. van den Berg, and N. Vlaar. On the role of subducting oceanic plateaus in
the development of shallow flat subduction. Tectonophysics, 352(3-4):317–333, 2002. doi:10.1016/
S0040-1951(02)00263-9.

[93] P. E. van Keken, S. D. King, H. Schmeling, U. R. Christensen, D. Neumeister, and M.-P. Doin. A
comparison of methods for the modeling of thermochemical convection. J. Geoph. Res., 102:22477–
22495, 1997.

[94] R. Weinberg and H. Schmeling. Polydiapirs: multiwavelength gravity structures. Journal of Structural
Geology, 14(4):425–436, 1992.

[95] S. D. Willett. Rheological dependence of extension in wedge models of convergent orogens. Tectono-
physics, 305:419–435, 1999.

[96] M. Wortel and W. Spakman. Subduction and slab detachment in the Mediterranean-Carpathian region.
Science, 290:1910–1917, 2000.

[97] H. Yamauchi and Y. Takei. Polycrystal anelasticity at near-solidus temperatures. Journal of Geophysical
Research: Solid Earth, 121(11):7790–7820, 2016.

[98] S. Zhong. Analytic solution for Stokes’ flow with lateral variations in viscosity. Geophys. J. Int.,
124:18–28, 1996.

[99] S. Zhong, M. Gurnis, and G. Hulbert. Accurate determination of surface normal stress in viscous flow
from a consistent boundary flux method. Physics of the Earth and Planetary Interiors, 78(1-2):1–8,
jun 1993. URL: https://doi.org/10.1016/0031-9201(93)90078-n, doi:10.1016/0031-9201(93)
90078-n.

547

https://www.solid-earth.net/8/1181/2017/
http://dx.doi.org/10.5194/se-8-1181-2017
http://dx.doi.org/10.5194/se-8-1181-2017
https://github.com/cedrict/fieldstone/blob/master/manual.pdf
https://github.com/cedrict/fieldstone/blob/master/manual.pdf
http://dx.doi.org/10.1016/S0040-1951(02)00263-9
http://dx.doi.org/10.1016/S0040-1951(02)00263-9
https://doi.org/10.1016/0031-9201(93)90078-n
http://dx.doi.org/10.1016/0031-9201(93)90078-n
http://dx.doi.org/10.1016/0031-9201(93)90078-n

Index of run-time parameter entries
The following is a listing of all run-time parameters that can be set in the input parameter file. They

are all described in Section A and the listed page numbers are where their detailed documentation can be
found. A listing of all parameters sorted by the section name in which they are declared is given in the index
on page 556 below.

A1, 430, 439, 521
A2, 430, 439, 521
A3, 430, 439, 521
Activation energies, 155
Activation energies for diffusion creep, 410, 459
Activation energies for dislocation creep, 410, 459
Activation volume, 155
Activation volumes for diffusion creep, 410, 460
Activation volumes for dislocation creep, 410, 460
Adapt by fraction of cells, 475
Additional refinement times, 78, 82, 238, 475
Additional shared libraries, 103, 115, 118, 203,

205, 209, 233, 235, 239, 243, 264, 291
Additional tangential mesh velocity boundary

indicators, 473
Adiabat temperature gradient for viscosity, 460
Adiabatic surface temperature, 23, 172, 291
Adiabatic temperature gradient, 376
Advect logarithm of grain size, 418
Age bottom boundary layer, 173, 374
Age top boundary layer, 173, 374
Allow cells without particles, 498
Allow fixed composition on outflow boundaries,

300
Allow fixed temperature on outflow boundaries,

310
Alpha, 317
alpha, 338
Also output the gravity anomaly, 493
Also output the spherical harmonic coefficients of

CMB dynamic topography contribution,
493

Also output the spherical harmonic coefficients of
density anomaly contribution, 493

Also output the spherical harmonic coefficients of
geoid anomaly, 493

Also output the spherical harmonic coefficients of
surface dynamic topography
contribution, 494

Ambient temperature, 381
AMG aggregation threshold, 531
AMG output details, 531
AMG smoother sweeps, 532
AMG smoother type, 532

Amplitude, 235, 240, 374, 389
Angle, 389
Angle internal friction, 156
Angle of internal friction, 415
Angles of internal friction, 460
Angular mode, 230, 390
Average melt velocity, 471
Average specific grain boundary energy, 418
Average velocity scheme, 525
Averaging operation, 403

B1, 430, 439, 521
B2, 431, 439, 521
B3, 431, 440, 521
Background porosity, 240
Background Viscosities, 417
Base model, 403, 408, 452
Bell shape limit, 403
beta, 173, 241, 338, 434, 445, 523
Beta composition, 317
Bilinear interpolation, 418, 457
Bottom composition, 304, 305
Bottom temperature, 71, 81, 88, 125, 162, 315
Boundary indicator to temperature mappings,

316
Boundary refinement indicators, 481
Box origin X coordinate, 342, 344
Box origin Y coordinate, 343, 344
Box origin Z coordinate, 343, 344

C1, 431, 440, 522
C2, 431, 440, 522
C3, 431, 440, 522
Cells along circumference, 352
Center X, 381
Center x, 507
Center Y, 381
Center y, 508
Center Z, 381
Center z, 508
CFL number, 62, 101, 232, 235, 236, 291
Checkpoint on termination, 538
Chunk inner radius, 347
Chunk maximum latitude, 347

548

Chunk maximum longitude, 347
Chunk minimum latitude, 347
Chunk minimum longitude, 347
Chunk outer radius, 347
CMB pressure, 317
Coarsening fraction, 78, 123, 157, 179, 184, 185,

238, 475
Coefficient of yield stress increase with depth, 155
Coefficients of dynamic friction, 417
Coefficients of static friction, 417
Cohesion, 156, 415
Cohesion strain weakening factors, 460
Cohesions, 417, 461
Cohesive strength of rocks at the surface, 155
Command, 491
Composition dependency, 319
Composition polynomial degree, 61, 334
Composition reference profile, 297
Composition solver tolerance, 60, 531
Composition viscosity prefactor, 105, 228, 426,

431, 454
Composition viscosity prefactor 1, 406
Composition viscosity prefactor 2, 406
Compositional field methods, 99, 332
Compositional field scaling factors, 481, 482
Compositional field thresholds, 179, 184, 483
Compositional heating values, 359
Compressibility, 228, 404, 426, 431
Constant viscosity prefactors, 461
Coordinate system, 126, 179, 184, 185, 306, 309,

321, 325, 329, 351, 365, 379, 483, 484
Core conductivity, 317
Core density, 317
Core heat capacity, 317
Corresponding phase for density jump, 227, 427
cR, 173, 339
Crust composition number, 360
Crust defined by composition, 360
Crust depth, 361
Custom mesh subdivision, 353

D1, 432, 522
D2, 432, 522
D3, 432, 522
Data directory, 123, 142, 147, 151, 296, 303, 313,

323, 328, 330, 350, 355, 364, 376–378,
382–384, 386, 387, 389, 402, 408, 419,
453, 457, 505, 526

Data file name, 123, 150, 151, 297, 303, 314, 324,
328, 350, 355, 365, 376–378, 384, 386,
389, 403, 505, 526

Data file names, 365, 377

Data file time step, 147, 303, 314, 324, 328, 331
Data output format, 96, 99, 498
Decreasing file order, 303, 314, 324, 328, 331
Define thermal conductivities, 461
Define transition by depth instead of pressure,

427, 461
Delta, 317
Densities, 155, 236, 410, 416, 447, 461, 469
Density, 404
Density above, 492, 494
Density below, 492, 494
Density differential for compositional field 1, 93,

94, 105, 190, 221, 406, 427, 432, 454
Density differential for compositional field 2, 94,

406
Density formulation, 177, 308
Depletion density change, 179, 435, 440
Depletion solidus change, 179, 435, 440
Depth, 348
Depth dependence method, 408
Depth list, 408
Depth specification method, 382, 453
Depth subdivisions, 348
Derivatives file names, 419
Di, 450
Diffusion activation energy, 419
Diffusion activation volume, 419
Diffusion creep exponent, 419
Diffusion creep grain size exponent, 419
Diffusion creep prefactor, 420
Diffusion length scale, 532
Dimension, 13, 48, 51, 62, 68, 70, 81, 87, 105,

127, 129, 135, 172, 203, 206, 209, 219,
243, 291

Discontinuous penalty, 336
Dislocation activation energy, 420
Dislocation activation volume, 420
Dislocation creep exponent, 420
Dislocation creep prefactor, 420
Dislocation viscosity iteration number, 420
Dislocation viscosity iteration threshold, 421
dR over dt, 319
dT over dt, 319
dX over dt, 319

E1, 432, 523
E2, 432, 523
East-West subdivisions, 348
Eccentricity, 348
Effective viscosity coefficient, 411
Einstein temperature, 445
Elastic shear moduli, 462, 470

549

Enable additional Stokes RHS, 339
Enable elasticity, 339
Enable interface tracking, 540
Enable prescribed dilation, 339
End plasticity strain weakening intervals, 462
End prefactor strain weakening intervals, 462
End step, 538
End time, 48, 62, 70, 87, 105, 127, 129, 135, 172,

203, 206, 209, 219, 232, 239, 243, 292
Entropy derivative pressure, 404
Entropy derivative temperature, 404
Evaluation points, 510
Excess entropy only, 492
Exclude output properties, 499
Exponential depletion strengthening factor, 435
Exponential melt weakening factor, 178, 435, 441

File name, 320, 540
Filename for initial geotherm table, 390
Filter output, 511
First data file model time, 304, 314, 324, 328, 331
First data file number, 304, 314, 324, 329, 331
Fixed composition boundary indicators, 162, 241,

300
Fixed elastic time step, 462, 470
Fixed heat flux boundary indicators, 308
Fixed temperature boundary indicators, 68, 71,

81, 88, 101, 125, 130, 137, 147, 162, 173,
231, 276, 310

Formulation, 72, 151, 152, 340
Free surface boundary indicators, 162
Free surface stabilization theta, 101, 474
Freezing rate, 183, 441
Friction strain weakening factors, 462
Function constants, 64, 71, 81, 86, 88, 125, 126,

155–157, 162, 173, 183, 190, 192, 221,
297–299, 306, 309, 321, 325, 329, 351,
356, 359, 365, 375, 379, 409, 446, 473,
483, 484, 504, 505, 527–530

Function expression, 64, 71, 81, 86, 88, 90, 94, 97,
101, 105, 106, 115, 117, 125, 126, 137,
154, 155, 157, 162, 163, 169, 171, 173,
177, 179, 183–185, 190, 192, 220, 221,
241, 243, 297, 299, 306, 309, 321, 325,
330, 351, 356, 360, 366, 375, 379, 409,
447, 474, 483, 484, 504, 505, 527–530

gamma, 339, 451
Geometric constant, 421
Global composition maximum, 336
Global composition minimum, 337
Global particle property maximum, 509

Global particle property minimum, 509
Global temperature maximum, 337
Global temperature minimum, 337
GMRES solver restart length, 532, 535
Grain growth activation energy, 421
Grain growth activation volume, 421
Grain growth exponent, 421
Grain growth rate constant, 421
Grain size, 411, 463
Grain size exponents for diffusion creep, 411, 463
Gravity acceleration, 318

Half decay times, 361
Half life, 244
Half life times, 320
Heat advection by melt, 472
Heat capacities, 416, 447, 463, 470
Heat capacity, 155, 411
Heating rates, 321, 361

IDR(s) parameter, 535
Include melt transport, 176, 240, 472
Include melting and freezing, 436
Include the contributon from dynamic

topography, 494
Include viscoelasticity, 463
Inclusion gradient, 382
Inclusion shape, 382
Inclusion temperature, 382
Initial adaptive refinement, 48, 62, 72, 78, 82, 89,

106, 123, 126, 130, 137, 157, 162, 171,
174, 179, 184, 185, 204, 207, 210, 221,
238, 475

Initial concentrations, 321
Initial concentrations crust, 361
Initial concentrations mantle, 361
Initial condition file name, 142, 384, 387
Initial global refinement, 48, 63, 72, 78, 82, 89,

106, 123, 126, 130, 137, 157, 162, 171,
174, 179, 184, 185, 204, 207, 210, 221,
238, 475

Initial lateral refinement, 353
Initial light composition, 318
Initial viscosity , 246
Inner composition, 307
Inner radius, 129, 136, 230, 353
Inner temperature, 130, 137, 318, 323
Integration scheme, 499
Interpolate output, 175, 512
Interpolation scheme, 99, 365, 377, 500
Isochoric specific heats, 448
Isotherm temperature, 376

550

Isothermal bulk modulus pressure derivatives, 449

Jump height, 103

K0, 318
Krylov method for cheap solver steps, 536

LAB depth filename, 382, 453
Latent heat, 457
Lateral viscosity file name, 457
Lateral wave number one, 380
Lateral wave number two, 380
Latitude repetitions, 348
Layer thicknesses, 378
Left composition, 304, 305
Left composition lithosphere, 305
Left temperature, 71, 315, 316
Left temperature lithosphere, 316
Lh, 318
Linear solver A block tolerance, 61, 536
Linear solver S block tolerance, 61, 536
Linear solver tolerance, 60, 127, 172, 176, 211,

241, 536
List of latitude, 495
List of longitude, 495
List of material properties, 175, 180, 520
List of model names, 71, 81, 88, 105, 125, 130,

133, 135, 137, 162, 173, 175, 177, 203,
206, 209, 220, 241, 244, 301, 311, 357,
362, 366

List of model operators, 302, 312, 363, 370
List of normalized fields, 333
List of output variables, 93, 106, 139, 175, 180,

222, 279, 491, 512
List of particle properties, 97, 99, 500
List of postprocessors, 48, 61, 73, 82, 89, 92, 93,

95, 101, 106, 130, 138, 139, 175, 180,
191, 204, 207, 210, 212, 222, 241, 276,
486

List of properties, 180, 524
List of radial values, 353
List of radius, 495
Lithosphere temperature, 383
Lithosphere thickness, 147, 331
Lithosphere viscosity, 453
Lithosphere-Asthenosphere boundary isotherm,

379
Lithospheric thickness, 345
Load balancing strategy, 501
Longitude repetitions, 348
Lower mantle grain size scaling, 422
Lower viscosity, 103

Magnitude, 72, 78, 82, 105, 174, 220, 231, 356,
357, 380

Magnitude at bottom, 169, 357
Magnitude at surface, 169, 357
Mapped particle properties, 99, 333
Mass conservation, 340
Mass fraction cpx, 433, 441, 523
Material averaging, 62, 105, 106, 151, 391
Material file format, 422
Material file names, 422, 458
Max iteration, 318
Max Newton line search iterations, 533
Max nonlinear iterations, 176, 239, 292
Max nonlinear iterations in pre-refinement, 292
Max pre-Newton nonlinear iterations, 533
Maximal composition, 307
Maximal temperature, 173, 322
Maximum degree, 494
Maximum Depletion viscosity change, 436
Maximum first time step, 292
Maximum grid depth, 383
Maximum latent heat substeps, 422
Maximum lateral viscosity variation, 458
Maximum latitude, 495, 508
Maximum linear Stokes solver tolerance, 533
Maximum lithosphere depth, 383, 453
Maximum longitude, 496, 508
Maximum material pressure, 451
Maximum material temperature, 451
Maximum number of expensive Stokes solver

steps, 537
Maximum order, 384, 387
Maximum particles per cell, 501
Maximum pyroxenite melt fraction, 433
Maximum radius, 496, 508
Maximum relative deviation, 539, 540
Maximum relative increase in time step, 292
Maximum specific heat, 422
Maximum strain rate ratio iterations, 411
Maximum temperature dependence of viscosity,

422
Maximum thermal expansivity, 423
Maximum thermal prefactor, 455
Maximum time step, 172, 243, 293
Maximum topography value, 351
Maximum viscosity, 156, 411, 415, 418, 423, 427,

458, 463
Maximum x, 507
Maximum y, 507
Maximum yield stress, 463
Maximum z, 507

551

Melt bulk modulus derivative, 179, 436, 441
Melt compressibility, 179, 436, 441
Melt extraction depth, 183, 442
Melt scaling factor threshold, 472
Melting entropy change, 360
Melting time scale for operator splitting, 179,

183, 436, 442
Mesh cells per compaction length, 186, 482
Mesh deformation boundary indicators, 101, 473
Mesh refinement, 281
Minimal composition, 307
Minimal temperature, 173, 322
Minimum degree, 494
Minimum grain size, 423
Minimum latitude, 496, 508
Minimum longitude, 496, 508
Minimum material pressure, 452
Minimum material temperature, 452
Minimum particles per cell, 501
Minimum radius, 496, 509
Minimum refinement level, 126, 476
Minimum specific heat, 423
Minimum strain rate, 155, 411, 464
Minimum thermal expansivity, 423
Minimum thermal prefactor, 455
Minimum viscosity, 156, 412, 415, 418, 423, 427,

458, 464
Minimum x, 507
Minimum y, 507
Minimum z, 507
Model name, 48, 63, 64, 68, 71, 72, 81, 82, 87, 88,

90, 92, 94, 101, 103, 105, 106, 117, 118,
122, 123, 125, 126, 129, 130, 135–137,
142, 150, 151, 154, 155, 160, 163, 168,
169, 173, 174, 177, 178, 182, 190, 192,
203, 204, 206, 209–211, 220, 221, 227,
230, 231, 233, 235, 236, 240, 241, 243,
244, 267, 268, 270, 273, 274, 296, 302,
309, 312, 341, 350, 354, 363, 370, 391,
526

Name of compositional field, 519
Names of fields, 99, 154, 162, 177, 240, 334, 520
Names of vectors, 520
NE corner, 349
Non-dimensional depth, 390
Nonlinear Newton solver switch tolerance, 533
Nonlinear solver scheme, 176, 239, 243, 293
Nonlinear solver tolerance, 176, 239, 294
Nonlinear viscosity constant, 246
Normalize individual refinement criteria, 476
North-South subdivisions, 349

Number initialization samples, 540
Number lateral average bands, 458
Number of cheap Stokes solver steps, 172, 176,

537
Number of components, 504
Number of depth slices, 524, 525
Number of elements, 361
Number of fields, 90, 99, 106, 116, 123, 154, 162,

177, 221, 239, 334
Number of grouped files, 58, 130, 138, 139, 175,

501, 517
Number of integration points, 326
Number of particles, 95–97, 99, 502
Number of particles per cell per direction, 506
Number of points, 298
Number of radioactive heating elements, 321
Number of slices, 354
Number of zones, 175, 491
Number points fibonacci spiral, 496
Number points latitude, 497
Number points longitude, 497
Number points radius, 497
NW corner, 349

Offset, 240
Opening angle, 129, 230, 354
Order, 235
Outer composition, 307
Outer radius, 129, 136, 230, 354
Outer temperature, 130, 137, 318, 323
Output bottom, 493
Output data in geographical coordinates, 495
Output directory, 48, 59, 62, 70, 87, 96, 105, 129,

135, 172, 203, 206, 209, 219, 232, 294
Output format, 53, 106, 130, 138, 139, 175, 492,

517
Output full moment of inertia tensor, 510
Output interface normals, 524
Output interface reconstruction contour, 525
Output mesh velocity, 518
Output peak virtual memory (VmPeak), 498
Output point wise heat flux, 520
Output surface, 493
Output to file, 511

Particle generator name, 99, 502
Particle weight, 503
Peridotite melting entropy change, 433, 442
PerpleX input file name, 452
Phase transition Clapeyron slopes, 227, 423, 427,

464
Phase transition density jumps, 227, 428

552

Phase transition depths, 227, 424, 428, 464
Phase transition pressure widths, 428, 464
Phase transition pressures, 428, 464
Phase transition temperatures, 227, 424, 428, 465
Phase transition widths, 227, 424, 429, 465
Plugin name, 177, 308
Point one, 147, 331
Point two, 147, 332
Point-wise stress and strain, 518
Position, 374
Precision in gravity output, 497
Preexponential constant for viscous rheology law,

155
Prefactor strain weakening factors, 465
Prefactors for diffusion creep, 412, 465
Prefactors for dislocation creep, 412, 465
Prescribe internal velocities, 115
Prescribed traction boundary indicators, 183, 323
Prescribed velocity boundary indicators, 86, 88,

147, 162, 183, 209, 211, 241, 275, 326
Pressure normalization, 22, 61, 70, 105, 203, 204,

206, 209, 294
Pressure solidus change, 437
Pressure viscosity parameter, 246
Pyroxenite melting entropy change, 433

Quadrature degree increase, 497

r1, 435, 445, 523
r2, 435, 445, 523
Ra, 450
Radial layers, 509
Radial viscosity file name, 458
Radiogenic heating rate, 359
Radius, 352, 375
Radius repetitions, 348
Random cell selection, 506
Random number seed, 506
Reaction depth, 94, 407
Reaction terms, 405
Reaction time step, 176, 182, 243, 535
Reaction time steps per advection step, 176, 182,

535
Read solution from file, 240
Reciprocal required strain, 424
Recrystallized grain size, 424
Reference bulk modulus derivative, 445
Reference bulk viscosity, 178, 437, 442
Reference compressibility, 425, 453
Reference densities, 449
Reference density, 63, 72, 93, 103, 105, 119, 156,

220, 227, 230, 233, 407, 414, 425, 429,

433, 445, 450, 453, 455, 456, 497
Reference isothermal bulk modulus, 446
Reference isothermal compressibilities, 449
Reference melt density, 178, 437, 442
Reference melt viscosity, 179, 437, 442
Reference permeability, 178, 183, 437, 443
Reference pressure, 446
Reference shear viscosity, 174, 178, 437, 443
Reference solid density, 174, 178, 437, 443
Reference specific heat, 72, 103, 227, 230, 233,

407, 414, 425, 429, 433, 438, 443, 451,
454–456

Reference strain rate, 155, 156, 415, 418, 466
Reference temperature, 63, 72, 93, 103, 119, 142,

155, 174, 178, 227, 230, 233, 381, 385,
387, 407, 412, 414, 416, 425, 429, 433,
438, 443, 446, 447, 455, 456, 466, 470

Reference temperatures, 449
Reference thermal expansivities, 449
Reference thermal expansivity, 446
Reference viscosity, 412, 414, 459, 466
Refinement criteria merge operation, 238, 476
Refinement criteria scaling factors, 476
Refinement fraction, 78, 123, 157, 179, 184, 185,

221, 238, 477
Relative density of melt, 434
Remove degree 0 from perturbation, 142, 385, 387
Remove nullspace, 231, 485
Remove temperature heterogeneity down to

specified depth, 383, 385, 387
Representative point, 183, 326
Resume computation, 59, 62, 82, 232, 294
Rh, 319
Rho0, 319
Right composition, 304, 305
Right composition lithosphere, 306
Right temperature, 71, 315, 316
Right temperature lithosphere, 316
Rotation offset, 230, 390
Run on all processes, 491
Run postprocessors on initial refinement, 157, 477
Run postprocessors on nonlinear iterations, 490

Sampling scheme, 498
Scale factor, 297, 304, 315, 324, 329, 332, 351,

355, 365, 377, 378, 384, 386, 389, 403,
527

SE corner, 349
Semi-major axis, 349
Shape radius, 382
Sigma, 390
Sign, 390

553

Skip setup initial conditions on initial refinement,
477

Skip solvers on initial refinement, 477
Smoothing length scale, 383
Solid compressibility, 174, 178, 438, 443
SPD safety factor, 533
Specific heat, 405
Specific heats, 416, 448, 466, 470
Specify a lower maximum order, 385, 388
Spline knots depth file name, 142, 385, 388
Stabilization method, 337
Stabilization preconditioner, 534
Stabilization velocity block, 534
Start plasticity strain weakening intervals, 466
Start prefactor strain weakening intervals, 466
Start time, 87, 105, 127, 203, 206, 209, 219, 243,

294
Steps between checkpoint, 82, 138, 332
Stokes solver type, 537
Stokes velocity polynomial degree, 80, 204, 206,

210, 334
Strain rate residual tolerance, 413
Strain weakening mechanism, 467
Strategy, 123, 126, 130, 137, 157, 171, 179, 184,

185, 221, 238, 281, 477
Stress exponents for diffusion creep, 413
Stress exponents for dislocation creep, 413, 468
Stress exponents for plastic rheology, 155
Stress exponents for viscous rheology, 155
Stress limiter exponents, 468
Strict coarsening, 485
Subadiabaticity, 375
Surface pressure, 22, 70, 295
Surface solidus, 438
Surface temperature, 377, 379
Surface velocity projection, 157, 474
SW corner, 349

Tangential velocity boundary indicators, 68, 72,
81, 86, 88, 101, 130, 137, 147, 172, 183,
203, 206, 220, 231, 241, 327

Temperature equation, 340
Temperature method, 538
Temperature polynomial degree, 61, 80, 116, 335
Temperature scaling factor, 481
Temperature solver tolerance, 60, 73, 531
Temporary output location, 503, 518
Terminate on failure, 491
Termination criteria, 282, 538
Thermal bulk viscosity exponent, 178, 438, 443
Thermal conductivities, 416, 448, 450, 468, 470

Thermal conductivity, 72, 88, 92, 94, 103, 118,
174, 178, 227, 230, 233, 401, 405, 407,
414, 425, 429, 434, 438, 444, 446, 452,
454–456, 459

Thermal diffusivities, 468
Thermal diffusivity, 155, 413
Thermal expansion coefficient, 72, 88, 92, 94,

103, 105, 119, 129, 136, 174, 178, 190,
228, 230, 233, 405, 407, 415, 425, 429,
434, 438, 444, 454, 455, 457

Thermal expansion coefficient in initial
temperature scaling, 142, 385, 388

Thermal expansion coefficient of melt, 434
Thermal expansivities, 155, 413, 416, 448, 468,

470
Thermal viscosity exponent, 119, 151, 174, 178,

228, 401, 407, 429, 434, 439, 444, 456
Theta, 319
Threshold for melt presence, 510
Time between checkpoint, 175, 332
Time between data output, 96, 99, 503
Time between graphical output, 73, 82, 89, 93,

95, 101, 106, 130, 138, 175, 492, 518
Time between gravity output, 498
Time between point values output, 510
Time between text output, 511
Time in steady state, 539, 540
Time steps between graphical output, 518
Time steps between gravity output, 498
Time steps between mesh refinement, 72, 78, 82,

89, 123, 126, 130, 137, 157, 162, 171,
174, 179, 184, 185, 238, 481

Timing output frequency, 295
Tm0, 320
Tm1, 320
Tm2, 320
Top composition, 305, 306
Top temperature, 71, 81, 88, 125, 162, 315, 316
Topography parameters, 352
Transition depths, 402

Update ghost particles, 503
Upper viscosity, 103
Use artificial viscosity smoothing, 116, 337
Use BW11, 320
Use compositional field for heat production

averaging, 359
Use conduction timestep, 295
Use constant density of one, 511
Use direct solver for Stokes system, 537
Use discontinuous compaction pressure, 472
Use discontinuous composition discretization, 335

554

Use discontinuous temperature discretization, 335
Use Eisenstat Walker method for Picard

iterations, 534
Use enthalpy for material properties, 425
Use equal order interpolation for Stokes, 335
Use fixed elastic time step, 468, 471
Use fractional melting, 444
Use full A block as preconditioner, 537
Use full compressibility, 444
Use lateral average temperature for viscosity, 459
Use limiter, 509
Use limiter for discontinuous composition

solution, 338
Use limiter for discontinuous temperature

solution, 338
Use locally conservative discretization, 108, 204,

207, 210, 336
Use maximal temperature for bottom, 524
Use minimal temperature for surface, 524
Use natural coordinates, 510
Use Newton failsafe, 534
Use Newton residual scaling method, 534
Use operator splitting, 176, 182, 243, 295
Use paleowattmeter, 426
Use simplified adiabatic heating, 12, 358
Use spherical unit vectors, 329, 330
Use stress averaging, 469, 471
Use surface condition function, 298
Use table properties, 426
Use TALA, 152, 402, 451
Use thermal expansion coefficient from material

model, 386, 388
Use years in output instead of seconds, 70, 87,

127, 129, 135, 172, 219, 295

Variable names, 64, 71, 81, 86, 88, 90, 94, 97,
101, 106, 115, 117, 125, 126, 154–157,
162, 163, 169, 171, 177, 179, 183–185,
190, 192, 221, 243, 298–300, 307, 310,
322, 325, 330, 352, 356, 360, 366, 376,
380, 409, 447, 474, 484, 485, 504, 506,
527–531

Velocity file name, 147, 332
Vertical wave number, 381
Viscosities, 236, 448, 450, 471
Viscosity, 63, 72, 88, 93, 94, 105, 119, 129, 136,

190, 220, 228, 230, 233, 402, 406, 408,

426, 430, 434, 446, 452, 454, 456, 457
Viscosity averaging scheme, 236, 413, 417, 448,

450, 469, 471
Viscosity depth file, 409
Viscosity depth prefactor, 451
Viscosity jump, 203, 209
Viscosity list, 409
Viscosity parameter, 211
Viscosity prefactors, 151, 228, 402, 430
Viscosity temperature prefactor, 451
Viscous flow law, 469
Volume fraction threshold, 541
Volume of fluid intialization type, 364
Volume of Fluid solver tolerance, 541
Vs to density scaling, 142, 386, 388
Vs to density scaling method, 386, 388

Wall time, 539
Work fraction for boundary area change, 426
World builder file, 296
Write higher order output, 519
Write in background thread, 503, 519
Write statistics for each nonlinear iteration, 495

X extent, 68, 71, 81, 87, 105, 122, 126, 154, 162,
174, 203, 206, 209, 220, 235, 241, 343,
345

X periodic, 343, 345
X periodic lithosphere, 345
X repetitions, 126, 154, 162, 174, 235, 343, 345

Y extent, 68, 71, 81, 87, 105, 122, 126, 154, 162,
174, 203, 206, 209, 220, 235, 241, 343,
345

Y periodic, 343, 345
Y periodic lithosphere, 346
Y repetitions, 126, 162, 235, 241, 344, 346
Y repetitions lithosphere, 346
Yield mechanism, 469
Yield stress , 246

Z extent, 81, 220, 344, 346
Z periodic, 344, 346
Z repetitions, 344, 346
Z repetitions lithosphere, 346
Zero velocity boundary indicators, 105, 130, 137,

327

555

Index of run-time parameters with section names
The following is a listing of all run-time parameters, sorted by the section in which they appear. To find

entries sorted by their name, rather than their section, see the index on page 548 above.

Additional shared libraries, 103, 115, 118, 203,
205, 209, 233, 235, 239, 243, 264, 291

Adiabatic conditions model
Ascii data model
Data directory, 151, 296
Data file name, 151, 297
Scale factor, 297

Compute profile
Composition reference profile, 297
Function constants, 297
Function expression, 297
Number of points, 298
Surface condition function/Function
constants, 298

Surface condition function/Function
expression, 299

Surface condition function/Variable
names, 299

Use surface condition function, 298
Variable names, 298

Function
Function constants, 299
Function expression, 299
Variable names, 300

Model name, 151, 296
Adiabatic surface temperature, 23, 172, 291

Boundary composition model
Allow fixed composition on outflow

boundaries, 300
Ascii data model
Data directory, 303
Data file name, 303
Data file time step, 303
Decreasing file order, 303
First data file model time, 304
First data file number, 304
Scale factor, 304

Box
Bottom composition, 304
Left composition, 304
Right composition, 304
Top composition, 305

Box with lithosphere boundary indicators
Bottom composition, 305
Left composition, 305

Left composition lithosphere, 305
Right composition, 305
Right composition lithosphere, 306
Top composition, 306

Fixed composition boundary indicators, 162,
241, 300

Function
Coordinate system, 306
Function constants, 306
Function expression, 306
Variable names, 307

Initial composition
Maximal composition, 307
Minimal composition, 307

List of model names, 177, 241, 301
List of model operators, 302
Model name, 302
Spherical constant

Inner composition, 307
Outer composition, 307

Boundary fluid pressure model
Density

Density formulation, 177, 308
Plugin name, 177, 308

Boundary heat flux model
Fixed heat flux boundary indicators, 308
Function

Coordinate system, 309
Function constants, 309
Function expression, 309
Variable names, 310

Model name, 309
Boundary temperature model

Allow fixed temperature on outflow
boundaries, 310

Ascii data model
Data directory, 313
Data file name, 314
Data file time step, 314
Decreasing file order, 314
First data file model time, 314
First data file number, 314
Scale factor, 315

Box
Bottom temperature, 71, 81, 88, 125, 162,
315

556

Left temperature, 71, 315
Right temperature, 71, 315
Top temperature, 71, 81, 88, 125, 162, 315

Box with lithosphere boundary indicators
Bottom temperature, 315
Left temperature, 316
Left temperature lithosphere, 316
Right temperature, 316
Right temperature lithosphere, 316
Top temperature, 316

Constant
Boundary indicator to temperature
mappings, 316

Dynamic core
Alpha, 317
Beta composition, 317
CMB pressure, 317
Core conductivity, 317
Core density, 317
Core heat capacity, 317
Delta, 317
dR over dt, 319
dT over dt, 319
dX over dt, 319
Geotherm parameters/Composition
dependency, 319

Geotherm parameters/Theta, 319
Geotherm parameters/Tm0, 320
Geotherm parameters/Tm1, 320
Geotherm parameters/Tm2, 320
Geotherm parameters/Use BW11, 320
Gravity acceleration, 318
Initial light composition, 318
Inner temperature, 318
K0, 318
Lh, 318
Max iteration, 318
Other energy source/File name, 320
Outer temperature, 318
Radioactive heat source/Half life times,
320

Radioactive heat source/Heating rates,
321

Radioactive heat source/Initial
concentrations, 321

Radioactive heat source/Number of
radioactive heating elements, 321

Rh, 319
Rho0, 319

Fixed temperature boundary indicators, 68,
71, 81, 88, 101, 125, 130, 137, 147, 162,

173, 231, 276, 310
Function

Coordinate system, 321
Function constants, 321
Function expression, 321
Maximal temperature, 322
Minimal temperature, 322
Variable names, 322

Initial temperature
Maximal temperature, 173, 322
Minimal temperature, 173, 322

List of model names, 71, 81, 88, 105, 125,
130, 137, 162, 173, 203, 206, 209, 220,
311

List of model operators, 312
Model name, 312
Spherical constant

Inner temperature, 130, 137, 323
Outer temperature, 130, 137, 323

Boundary traction model
Ascii data model

Data directory, 323
Data file name, 324
Data file time step, 324
Decreasing file order, 324
First data file model time, 324
First data file number, 324
Scale factor, 324

Function
Coordinate system, 325
Function constants, 325
Function expression, 325
Variable names, 325

Initial lithostatic pressure
Number of integration points, 326
Representative point, 183, 326

Prescribed traction boundary indicators,
183, 323

Boundary velocity model
Ascii data model

Data directory, 328
Data file name, 328
Data file time step, 328
Decreasing file order, 328
First data file model time, 328
First data file number, 329
Scale factor, 329
Use spherical unit vectors, 329

Function
Coordinate system, 329
Function constants, 86, 88, 156, 157, 162,

557

183, 329
Function expression, 86, 88, 157, 162, 183,
241, 330

Use spherical unit vectors, 330
Variable names, 86, 88, 156, 157, 162, 183,
330

GPlates model
Data directory, 147, 330
Data file time step, 147, 331
Decreasing file order, 331
First data file model time, 331
First data file number, 331
Lithosphere thickness, 147, 331
Point one, 147, 331
Point two, 147, 332
Scale factor, 332
Velocity file name, 147, 332

Prescribed velocity boundary indicators, 86,
88, 147, 162, 183, 209, 211, 241, 275, 326

Tangential velocity boundary indicators, 68,
72, 81, 86, 88, 101, 130, 137, 147, 172,
183, 203, 206, 220, 231, 241, 327

Zero velocity boundary indicators, 105, 130,
137, 327

Burstedde benchmark
Viscosity parameter, 211

CFL number, 62, 101, 232, 235, 236, 291
Checkpointing

Steps between checkpoint, 82, 138, 332
Time between checkpoint, 175, 332

Composition solver tolerance, 60
Compositional fields

Compositional field methods, 99, 332
List of normalized fields, 333
Mapped particle properties, 99, 333
Names of fields, 99, 154, 162, 177, 240, 334
Number of fields, 90, 99, 106, 116, 123, 154,

162, 177, 221, 239, 334

Dimension, 13, 48, 51, 62, 68, 70, 81, 87, 105,
127, 129, 135, 172, 203, 206, 209, 219,
243, 291

Discretization
Composition polynomial degree, 61, 334
Stabilization parameters
alpha, 338
beta, 173, 241, 338
cR, 173, 339
Discontinuous penalty, 336
gamma, 339
Global composition maximum, 336

Global composition minimum, 337
Global temperature maximum, 337
Global temperature minimum, 337
Stabilization method, 337
Use artificial viscosity smoothing, 116, 337
Use limiter for discontinuous composition
solution, 338

Use limiter for discontinuous temperature
solution, 338

Stokes velocity polynomial degree, 80, 204,
206, 210, 334

Temperature polynomial degree, 61, 80, 116,
335

Use discontinuous composition
discretization, 335

Use discontinuous temperature
discretization, 335

Use equal order interpolation for Stokes, 335
Use locally conservative discretization, 108,

204, 207, 210, 336

End time, 48, 62, 70, 87, 105, 127, 129, 135, 172,
203, 206, 209, 219, 232, 239, 243, 292

Formulation
Enable additional Stokes RHS, 339
Enable elasticity, 339
Enable prescribed dilation, 339
Formulation, 72, 151, 152, 340
Mass conservation, 340
Temperature equation, 340

Free surface
Free surface boundary indicators, 162
Surface velocity projection, 157

Geometry model
Box

Box origin X coordinate, 342
Box origin Y coordinate, 343
Box origin Z coordinate, 343
X extent, 68, 71, 81, 87, 105, 122, 126,
154, 162, 174, 203, 206, 209, 220, 235,
241, 343

X periodic, 343
X repetitions, 126, 154, 162, 174, 235, 343
Y extent, 68, 71, 81, 87, 105, 122, 126,
154, 162, 174, 203, 206, 209, 220, 235,
241, 343

Y periodic, 343
Y repetitions, 126, 162, 235, 241, 344
Z extent, 81, 220, 344
Z periodic, 344

558

Z repetitions, 344
Box with lithosphere boundary indicators
Box origin X coordinate, 344
Box origin Y coordinate, 344
Box origin Z coordinate, 344
Lithospheric thickness, 345
X extent, 345
X periodic, 345
X periodic lithosphere, 345
X repetitions, 345
Y extent, 345
Y periodic, 345
Y periodic lithosphere, 346
Y repetitions, 346
Y repetitions lithosphere, 346
Z extent, 346
Z periodic, 346
Z repetitions, 346
Z repetitions lithosphere, 346

Chunk
Chunk inner radius, 347
Chunk maximum latitude, 347
Chunk maximum longitude, 347
Chunk minimum latitude, 347
Chunk minimum longitude, 347
Chunk outer radius, 347
Latitude repetitions, 348
Longitude repetitions, 348
Radius repetitions, 348

Ellipsoidal chunk
Depth, 348
Depth subdivisions, 348
East-West subdivisions, 348
Eccentricity, 348
NE corner, 349
North-South subdivisions, 349
NW corner, 349
SE corner, 349
Semi-major axis, 349
SW corner, 349

Initial topography model
Ascii data model/Data directory, 350
Ascii data model/Data file name, 350
Ascii data model/Scale factor, 351
Function/Coordinate system, 351
Function/Function constants, 351
Function/Function expression, 351
Function/Maximum topography value, 351
Function/Variable names, 352
Model name, 350
Prm polygon/Topography parameters, 352

Model name, 48, 68, 71, 81, 87, 105, 122,
126, 129, 136, 154, 160, 173, 203, 204,
206, 209, 220, 230, 235, 241, 270, 341

Rebound Box
Amplitude, 235
Order, 235

Sphere
Radius, 352

Spherical shell
Cells along circumference, 352
Custom mesh subdivision, 353
Initial lateral refinement, 353
Inner radius, 129, 136, 230, 353
List of radial values, 353
Number of slices, 354
Opening angle, 129, 230, 354
Outer radius, 129, 136, 230, 354

Gravity model
Ascii data model

Data directory, 355
Data file name, 355
Scale factor, 355

Function
Function constants, 356
Function expression, 356
Variable names, 356

Model name, 72, 82, 88, 105, 130, 137, 151,
168, 174, 203, 204, 206, 209, 211, 220,
231, 273, 354

Radial constant
Magnitude, 231, 356

Radial linear
Magnitude at bottom, 169, 357
Magnitude at surface, 169, 357

Vertical
Magnitude, 72, 78, 82, 105, 174, 220, 357

Heating model
Adiabatic heating

Use simplified adiabatic heating, 12, 358
Adiabatic heating of melt

Use simplified adiabatic heating, 358
Compositional heating

Compositional heating values, 359
Use compositional field for heat
production averaging, 359

Constant heating
Radiogenic heating rate, 359

Exponential decay heating
Half life, 244

Function
Function constants, 359

559

Function expression, 360
Variable names, 360

Latent heat melt
Melting entropy change, 360

List of model names, 130, 133, 135, 175, 244,
357

Model name, 268
Radioactive decay
Crust composition number, 360
Crust defined by composition, 360
Crust depth, 361
Half decay times, 361
Heating rates, 361
Initial concentrations crust, 361
Initial concentrations mantle, 361
Number of elements, 361

Initial composition model
Ascii data model
Data directory, 123, 364
Data file name, 123, 365
Data file names, 365
Interpolation scheme, 365
Scale factor, 365

Function
Coordinate system, 365
Function constants, 190, 192, 221, 365
Function expression, 90, 94, 106, 117, 154,
163, 177, 190, 192, 221, 243, 366

Variable names, 90, 94, 106, 117, 154, 163,
177, 190, 192, 221, 243, 366

List of model names, 362
List of model operators, 363
Model name, 90, 94, 106, 117, 123, 154, 163,

177, 190, 192, 221, 240, 243, 363
Solitary wave initial condition
Amplitude, 240
Background porosity, 240
Offset, 240
Read solution from file, 240

Volume of fluid intialization type, 364
Initial conditions

Model name, 274
Initial temperature model

Adiabatic
Age bottom boundary layer, 173, 374
Age top boundary layer, 173, 374
Amplitude, 374
Function/Function constants, 375
Function/Function expression, 173, 375
Function/Variable names, 376
Position, 374

Radius, 375
Subadiabaticity, 375

Adiabatic boundary
Adiabatic temperature gradient, 376
Data directory, 376
Data file name, 376
Isotherm temperature, 376
Scale factor, 377
Surface temperature, 377

Ascii data model
Data directory, 377
Data file name, 377
Data file names, 377
Interpolation scheme, 377
Scale factor, 378

Ascii profile
Data directory, 378
Data file name, 378
Scale factor, 378

Continental geotherm
Layer thicknesses, 378
Lithosphere-Asthenosphere boundary
isotherm, 379

Surface temperature, 379
Function

Coordinate system, 379
Function constants, 64, 71, 81, 125, 155,
173, 379

Function expression, 64, 71, 81, 88, 101,
105, 125, 137, 155, 173, 220, 243, 379

Variable names, 64, 71, 81, 88, 101, 125,
155, 243, 380

Harmonic perturbation
Lateral wave number one, 380
Lateral wave number two, 380
Magnitude, 380
Reference temperature, 381
Vertical wave number, 381

Inclusion shape perturbation
Ambient temperature, 381
Center X, 381
Center Y, 381
Center Z, 381
Inclusion gradient, 382
Inclusion shape, 382
Inclusion temperature, 382
Shape radius, 382

List of model names, 173, 366
List of model operators, 370
Lithosphere Mask

Data directory, 382

560

Depth specification method, 382
LAB depth filename, 382
Lithosphere temperature, 383
Maximum lithosphere depth, 383

Model name, 64, 71, 81, 88, 101, 105, 125,
130, 137, 142, 155, 204, 206, 210, 220,
230, 243, 370

Patch on S40RTS
Ascii data model/Data directory, 383
Ascii data model/Data file name, 384
Ascii data model/Scale factor, 384
Maximum grid depth, 383
Remove temperature heterogeneity down
to specified depth, 383

Smoothing length scale, 383
S40RTS perturbation
Ascii data vs to density model/Data
directory, 386

Ascii data vs to density model/Data file
name, 386

Ascii data vs to density model/Scale
factor, 386

Data directory, 142, 384
Initial condition file name, 142, 384
Maximum order, 384
Reference temperature, 142, 385
Remove degree 0 from perturbation, 142,
385

Remove temperature heterogeneity down
to specified depth, 385

Specify a lower maximum order, 385
Spline knots depth file name, 142, 385
Thermal expansion coefficient in initial
temperature scaling, 142, 385

Use thermal expansion coefficient from
material model, 386

Vs to density scaling, 142, 386
Vs to density scaling method, 386

SAVANI perturbation
Ascii data vs to density model/Data
directory, 389

Ascii data vs to density model/Data file
name, 389

Ascii data vs to density model/Scale
factor, 389

Data directory, 387
Initial condition file name, 387
Maximum order, 387
Reference temperature, 387
Remove degree 0 from perturbation, 387
Remove temperature heterogeneity down

to specified depth, 387
Specify a lower maximum order, 388
Spline knots depth file name, 388
Thermal expansion coefficient in initial
temperature scaling, 388

Use thermal expansion coefficient from
material model, 388

Vs to density scaling, 388
Vs to density scaling method, 388

Spherical gaussian perturbation
Amplitude, 389
Angle, 389
Filename for initial geotherm table, 390
Non-dimensional depth, 390
Sigma, 390
Sign, 390

Spherical hexagonal perturbation
Angular mode, 230, 390
Rotation offset, 230, 390

Linear solver A block tolerance, 61
Linear solver S block tolerance, 61
Linear solver tolerance, 60

Material model
Ascii data model

Data directory, 151
Data file name, 150

Ascii reference profile
Ascii data model/Data directory, 402
Ascii data model/Data file name, 403
Ascii data model/Scale factor, 403
Thermal conductivity, 401
Thermal viscosity exponent, 151, 401
Transition depths, 402
Use TALA, 152, 402
Viscosity, 402
Viscosity prefactors, 151, 402

Averaging
Averaging operation, 403
Base model, 403
Bell shape limit, 403

Compositing
Compressibility, 404
Density, 404
Entropy derivative pressure, 404
Entropy derivative temperature, 404
Reaction terms, 405
Specific heat, 405
Thermal conductivity, 405
Thermal expansion coefficient, 405
Viscosity, 406

561

Composition reaction model
Composition viscosity prefactor 1, 406
Composition viscosity prefactor 2, 406
Density differential for compositional field
1, 94, 406

Density differential for compositional field
2, 94, 406

Reaction depth, 94, 407
Reference density, 407
Reference specific heat, 407
Reference temperature, 407
Thermal conductivity, 94, 407
Thermal expansion coefficient, 94, 407
Thermal viscosity exponent, 407
Viscosity, 94, 408

Depth dependent model
Base model, 408
Data directory, 408
Depth dependence method, 408
Depth list, 408
Viscosity depth file, 409
Viscosity depth function/Function
constants, 409

Viscosity depth function/Function
expression, 409

Viscosity depth function/Variable names,
409

Viscosity list, 409
Diffusion dislocation
Activation energies for diffusion creep, 410
Activation energies for dislocation creep,
410

Activation volumes for diffusion creep, 410
Activation volumes for dislocation creep,
410

Densities, 410
Effective viscosity coefficient, 411
Grain size, 411
Grain size exponents for diffusion creep,
411

Heat capacity, 411
Maximum strain rate ratio iterations, 411
Maximum viscosity, 411
Minimum strain rate, 411
Minimum viscosity, 412
Prefactors for diffusion creep, 412
Prefactors for dislocation creep, 412
Reference temperature, 412
Reference viscosity, 412
Strain rate residual tolerance, 413
Stress exponents for diffusion creep, 413

Stress exponents for dislocation creep, 413
Thermal diffusivity, 413
Thermal expansivities, 413
Viscosity averaging scheme, 413

Drucker Prager
Reference density, 156, 414
Reference specific heat, 414
Reference temperature, 414
Reference viscosity, 414
Thermal conductivity, 414
Thermal expansion coefficient, 415
Viscosity/Angle internal friction, 156
Viscosity/Angle of internal friction, 415
Viscosity/Cohesion, 156, 415
Viscosity/Maximum viscosity, 156, 415
Viscosity/Minimum viscosity, 156, 415
Viscosity/Reference strain rate, 156, 415

Dynamic Friction
Densities, 416
Heat capacities, 416
Reference temperature, 416
Specific heats, 416
Thermal conductivities, 416
Thermal expansivities, 416
Viscosities/Background Viscosities, 417
Viscosities/Coefficients of dynamic
friction, 417

Viscosities/Coefficients of static friction,
417

Viscosities/Cohesions, 417
Viscosities/Maximum viscosity, 418
Viscosities/Minimum viscosity, 418
Viscosities/Reference strain rate, 418
Viscosity averaging scheme, 417

Exponential decay
Half life, 244

Grain size model
Advect logarithm of grain size, 418
Average specific grain boundary energy,
418

Bilinear interpolation, 418
Data directory, 419
Derivatives file names, 419
Diffusion activation energy, 419
Diffusion activation volume, 419
Diffusion creep exponent, 419
Diffusion creep grain size exponent, 419
Diffusion creep prefactor, 420
Dislocation activation energy, 420
Dislocation activation volume, 420
Dislocation creep exponent, 420

562

Dislocation creep prefactor, 420
Dislocation viscosity iteration number, 420
Dislocation viscosity iteration threshold,
421

Geometric constant, 421
Grain growth activation energy, 421
Grain growth activation volume, 421
Grain growth exponent, 421
Grain growth rate constant, 421
Lower mantle grain size scaling, 422
Material file format, 422
Material file names, 422
Maximum latent heat substeps, 422
Maximum specific heat, 422
Maximum temperature dependence of
viscosity, 422

Maximum thermal expansivity, 423
Maximum viscosity, 423
Minimum grain size, 423
Minimum specific heat, 423
Minimum thermal expansivity, 423
Minimum viscosity, 423
Phase transition Clapeyron slopes, 423
Phase transition depths, 424
Phase transition temperatures, 424
Phase transition widths, 424
Reciprocal required strain, 424
Recrystallized grain size, 424
Reference compressibility, 425
Reference density, 425
Reference specific heat, 425
Reference temperature, 425
Thermal conductivity, 425
Thermal expansion coefficient, 425
Use enthalpy for material properties, 425
Use paleowattmeter, 426
Use table properties, 426
Viscosity, 426
Work fraction for boundary area change,
426

Inclusion
Viscosity jump, 209

Inner core
Phase change resistance function/Function
expression, 169

Phase change resistance function/Variable
names, 169

Latent heat
Composition viscosity prefactor, 228, 426
Compressibility, 228, 426
Corresponding phase for density jump,

227, 427
Define transition by depth instead of
pressure, 427

Density differential for compositional field
1, 427

Maximum viscosity, 427
Minimum viscosity, 427
Phase transition Clapeyron slopes, 227,
427

Phase transition density jumps, 227, 428
Phase transition depths, 227, 428
Phase transition pressure widths, 428
Phase transition pressures, 428
Phase transition temperatures, 227, 428
Phase transition widths, 227, 429
Reference density, 227, 429
Reference specific heat, 227, 429
Reference temperature, 227, 429
Thermal conductivity, 227, 429
Thermal expansion coefficient, 228, 429
Thermal viscosity exponent, 228, 429
Viscosity, 228, 430
Viscosity prefactors, 228, 430

Latent heat melt
A1, 430
A2, 430
A3, 430
B1, 430
B2, 431
B3, 431
beta, 434
C1, 431
C2, 431
C3, 431
Composition viscosity prefactor, 431
Compressibility, 431
D1, 432
D2, 432
D3, 432
Density differential for compositional field
1, 432

E1, 432
E2, 432
Mass fraction cpx, 433
Maximum pyroxenite melt fraction, 433
Peridotite melting entropy change, 433
Pyroxenite melting entropy change, 433
r1, 435
r2, 435
Reference density, 433
Reference specific heat, 433

563

Reference temperature, 433
Relative density of melt, 434
Thermal conductivity, 434
Thermal expansion coefficient, 434
Thermal expansion coefficient of melt, 434
Thermal viscosity exponent, 434
Viscosity, 434

Material averaging, 62, 105, 106, 151, 391
Melt global
Depletion density change, 179, 435
Depletion solidus change, 179, 435
Exponential depletion strengthening
factor, 435

Exponential melt weakening factor, 178,
435

Include melting and freezing, 436
Maximum Depletion viscosity change, 436
Melt bulk modulus derivative, 179, 436
Melt compressibility, 179, 436
Melting time scale for operator splitting,
179, 436

Pressure solidus change, 437
Reference bulk viscosity, 178, 437
Reference melt density, 178, 437
Reference melt viscosity, 179, 437
Reference permeability, 178, 437
Reference shear viscosity, 174, 178, 437
Reference solid density, 174, 178, 437
Reference specific heat, 438
Reference temperature, 174, 178, 438
Solid compressibility, 174, 178, 438
Surface solidus, 438
Thermal bulk viscosity exponent, 178, 438
Thermal conductivity, 174, 178, 438
Thermal expansion coefficient, 174, 178,
438

Thermal viscosity exponent, 174, 178, 439
Melt simple
A1, 439
A2, 439
A3, 439
B1, 439
B2, 439
B3, 440
beta, 445
C1, 440
C2, 440
C3, 440
Depletion density change, 440
Depletion solidus change, 440
Exponential melt weakening factor, 441

Freezing rate, 183, 441
Mass fraction cpx, 441
Melt bulk modulus derivative, 441
Melt compressibility, 441
Melt extraction depth, 183, 442
Melting time scale for operator splitting,
183, 442

Peridotite melting entropy change, 442
r1, 445
r2, 445
Reference bulk viscosity, 442
Reference melt density, 442
Reference melt viscosity, 442
Reference permeability, 183, 443
Reference shear viscosity, 443
Reference solid density, 443
Reference specific heat, 443
Reference temperature, 443
Solid compressibility, 443
Thermal bulk viscosity exponent, 443
Thermal conductivity, 444
Thermal expansion coefficient, 444
Thermal viscosity exponent, 444
Use fractional melting, 444
Use full compressibility, 444

Model name, 63, 72, 88, 92, 94, 103, 105,
118, 129, 135, 150, 155, 160, 169, 174,
178, 182, 190, 203, 206, 209, 211, 220,
227, 230, 233, 236, 240, 244, 267, 391

Modified Tait model
Einstein temperature, 445
Reference bulk modulus derivative, 445
Reference density, 445
Reference heat capacity function/Function
constants, 446

Reference heat capacity function/Function
expression, 447

Reference heat capacity function/Variable
names, 447

Reference isothermal bulk modulus, 446
Reference pressure, 446
Reference temperature, 446
Reference thermal expansivity, 446
Thermal conductivity, 446
Viscosity, 446

Morency and Doin
Activation energies, 155
Activation volume, 155
Coefficient of yield stress increase with
depth, 155

Cohesive strength of rocks at the surface,

564

155
Densities, 155
Heat capacity, 155
Minimum strain rate, 155
Preexponential constant for viscous
rheology law, 155

Reference strain rate, 155
Reference temperature, 155
Stress exponents for plastic rheology, 155
Stress exponents for viscous rheology, 155
Thermal diffusivity, 155
Thermal expansivities, 155

Multicomponent
Densities, 236, 447
Heat capacities, 447
Reference temperature, 447
Specific heats, 448
Thermal conductivities, 448
Thermal expansivities, 448
Viscosities, 236, 448
Viscosity averaging scheme, 236, 448

Multicomponent compressible
Isochoric specific heats, 448
Isothermal bulk modulus pressure
derivatives, 449

Reference densities, 449
Reference isothermal compressibilities, 449
Reference temperatures, 449
Reference thermal expansivities, 449
Thermal conductivities, 450
Viscosities, 450
Viscosity averaging scheme, 450

Nondimensional model
Di, 450
gamma, 451
Ra, 450
Reference density, 450
Reference specific heat, 451
Use TALA, 451
Viscosity depth prefactor, 451
Viscosity temperature prefactor, 451

PerpleX lookup model
Maximum material pressure, 451
Maximum material temperature, 451
Minimum material pressure, 452
Minimum material temperature, 452
PerpleX input file name, 452
Thermal conductivity, 452
Viscosity, 452

Replace lithosphere viscosity
Base model, 452

Data directory, 453
Depth specification method, 453
LAB depth filename, 453
Lithosphere viscosity, 453
Maximum lithosphere depth, 453

Simple compressible model
Reference compressibility, 453
Reference density, 453
Reference specific heat, 454
Thermal conductivity, 454
Thermal expansion coefficient, 454
Viscosity, 454

Simple model
Composition viscosity prefactor, 105, 454
Density differential for compositional field
1, 93, 105, 190, 221, 454

Maximum thermal prefactor, 455
Minimum thermal prefactor, 455
Reference density, 63, 72, 93, 105, 119,
220, 230, 455

Reference specific heat, 72, 230, 455
Reference temperature, 63, 72, 93, 119,
230, 455

Thermal conductivity, 72, 88, 92, 118, 230,
455

Thermal expansion coefficient, 72, 88, 92,
105, 119, 129, 136, 190, 230, 455

Thermal viscosity exponent, 119, 456
Viscosity, 63, 72, 88, 93, 105, 119, 129,
136, 190, 220, 230, 456

Simpler model
Reference density, 456
Reference specific heat, 456
Reference temperature, 456
Thermal conductivity, 456
Thermal expansion coefficient, 457
Viscosity, 457

Simpler with crust model
Jump height, 103
Lower viscosity, 103
Reference density, 103
Reference specific heat, 103
Reference temperature, 103
Thermal conductivity, 103
Thermal expansion coefficient, 103
Upper viscosity, 103

SolCx
Viscosity jump, 203

Steinberger model
Bilinear interpolation, 457
Data directory, 457

565

Latent heat, 457
Lateral viscosity file name, 457
Material file names, 458
Maximum lateral viscosity variation, 458
Maximum viscosity, 458
Minimum viscosity, 458
Number lateral average bands, 458
Radial viscosity file name, 458
Reference viscosity, 459
Thermal conductivity, 459
Use lateral average temperature for
viscosity, 459

Tosi benchmark
Initial viscosity , 246
Nonlinear viscosity constant, 246
Pressure viscosity parameter, 246
Yield stress , 246

Visco Plastic
Activation energies for diffusion creep, 459
Activation energies for dislocation creep,
459

Activation volumes for diffusion creep, 460
Activation volumes for dislocation creep,
460

Adiabat temperature gradient for
viscosity, 460

Angles of internal friction, 460
Cohesion strain weakening factors, 460
Cohesions, 461
Constant viscosity prefactors, 461
Define thermal conductivities, 461
Define transition by depth instead of
pressure, 461

Densities, 461
Elastic shear moduli, 462
End plasticity strain weakening intervals,
462

End prefactor strain weakening intervals,
462

Fixed elastic time step, 462
Friction strain weakening factors, 462
Grain size, 463
Grain size exponents for diffusion creep,
463

Heat capacities, 463
Include viscoelasticity, 463
Maximum viscosity, 463
Maximum yield stress, 463
Minimum strain rate, 464
Minimum viscosity, 464
Phase transition Clapeyron slopes, 464

Phase transition depths, 464
Phase transition pressure widths, 464
Phase transition pressures, 464
Phase transition temperatures, 465
Phase transition widths, 465
Prefactor strain weakening factors, 465
Prefactors for diffusion creep, 465
Prefactors for dislocation creep, 465
Reference strain rate, 466
Reference temperature, 466
Reference viscosity, 466
Specific heats, 466
Start plasticity strain weakening intervals,
466

Start prefactor strain weakening intervals,
466

Strain weakening mechanism, 467
Stress exponents for dislocation creep, 468
Stress limiter exponents, 468
Thermal conductivities, 468
Thermal diffusivities, 468
Thermal expansivities, 468
Use fixed elastic time step, 468
Use stress averaging, 469
Viscosity averaging scheme, 469
Viscous flow law, 469
Yield mechanism, 469

Viscoelastic
Densities, 469
Elastic shear moduli, 470
Fixed elastic time step, 470
Heat capacities, 470
Reference temperature, 470
Specific heats, 470
Thermal conductivities, 470
Thermal expansivities, 470
Use fixed elastic time step, 471
Use stress averaging, 471
Viscosities, 471
Viscosity averaging scheme, 471

VoT model
Reference density, 233
Reference specific heat, 233
Reference temperature, 233
Thermal conductivity, 233
Thermal expansion coefficient, 233
Viscosity, 233

Max nonlinear iterations, 176, 239, 292
Max nonlinear iterations in pre-refinement, 292
Maximum first time step, 292
Maximum relative increase in time step, 292

566

Maximum time step, 172, 243, 293
Melt settings

Average melt velocity, 471
Heat advection by melt, 472
Include melt transport, 176, 240, 472
Melt scaling factor threshold, 472
Use discontinuous compaction pressure, 472

Mesh deformation
Additional tangential mesh velocity

boundary indicators, 473
Boundary function
Function constants, 473
Function expression, 474
Variable names, 474

Free surface
Free surface stabilization theta, 101, 474
Surface velocity projection, 474

Mesh deformation boundary indicators, 101,
473

Mesh refinement, 281
Adapt by fraction of cells, 475
Additional refinement times, 78, 82, 238, 475
Artificial viscosity
Compositional field scaling factors, 481
Temperature scaling factor, 481

Boundary
Boundary refinement indicators, 481

Coarsening fraction, 78, 123, 157, 179, 184,
185, 238, 475

Compaction length
Mesh cells per compaction length, 186, 482

Composition
Compositional field scaling factors, 482

Composition approximate gradient
Compositional field scaling factors, 482

Composition gradient
Compositional field scaling factors, 482

Composition threshold
Compositional field thresholds, 179, 184,
483

Initial adaptive refinement, 48, 62, 72, 78,
82, 89, 106, 123, 126, 130, 137, 157, 162,
171, 174, 179, 184, 185, 204, 207, 210,
221, 238, 475

Initial global refinement, 48, 63, 72, 78, 82,
89, 106, 123, 126, 130, 137, 157, 162,
171, 174, 179, 184, 185, 204, 207, 210,
221, 238, 475

Maximum refinement function
Coordinate system, 483
Function constants, 483

Function expression, 483
Variable names, 484

Minimum refinement function
Coordinate system, 126, 179, 184, 185, 484
Function constants, 126, 484
Function expression, 126, 171, 179, 184,
185, 484

Variable names, 126, 171, 179, 184, 185,
485

Minimum refinement level, 126, 476
Normalize individual refinement criteria, 476
Refinement criteria merge operation, 238,

476
Refinement criteria scaling factors, 476
Refinement fraction, 78, 123, 157, 179, 184,

185, 221, 238, 477
Run postprocessors on initial refinement,

157, 477
Skip setup initial conditions on initial

refinement, 477
Skip solvers on initial refinement, 477
Strategy, 123, 126, 130, 137, 157, 171, 179,

184, 185, 221, 238, 281, 477
Time steps between mesh refinement, 72, 78,

82, 89, 123, 126, 130, 137, 157, 162, 171,
174, 179, 184, 185, 238, 481

Volume of fluid interface
Strict coarsening, 485

Nonlinear solver scheme, 176, 239, 243, 293
Nonlinear solver tolerance, 176, 239, 294
Nullspace removal

Remove nullspace, 231, 485

Output directory, 48, 59, 62, 70, 87, 96, 105, 129,
135, 172, 203, 206, 209, 219, 232, 294

Point one, 147
Point two, 147
Postprocess

Command
Command, 491
Run on all processes, 491
Terminate on failure, 491

Depth average
List of output variables, 491
Number of zones, 175, 491
Output format, 138, 492
Time between graphical output, 130, 138,
175, 492

Dynamic core statistics
Excess entropy only, 492

567

Dynamic topography
Density above, 492
Density below, 492
Output bottom, 493
Output surface, 493

Geoid
Also output the gravity anomaly, 493
Also output the spherical harmonic
coefficients of CMB dynamic
topography contribution, 493

Also output the spherical harmonic
coefficients of density anomaly
contribution, 493

Also output the spherical harmonic
coefficients of geoid anomaly, 493

Also output the spherical harmonic
coefficients of surface dynamic
topography contribution, 494

Density above, 494
Density below, 494
Include the contributon from dynamic
topography, 494

Maximum degree, 494
Minimum degree, 494
Output data in geographical coordinates,
495

Global statistics
Write statistics for each nonlinear
iteration, 495

Gravity calculation
List of latitude, 495
List of longitude, 495
List of radius, 495
Maximum latitude, 495
Maximum longitude, 496
Maximum radius, 496
Minimum latitude, 496
Minimum longitude, 496
Minimum radius, 496
Number points fibonacci spiral, 496
Number points latitude, 497
Number points longitude, 497
Number points radius, 497
Precision in gravity output, 497
Quadrature degree increase, 497
Reference density, 497
Sampling scheme, 498
Time between gravity output, 498
Time steps between gravity output, 498

List of postprocessors, 48, 61, 73, 82, 89, 92,
93, 95, 101, 106, 130, 138, 139, 175, 180,

191, 204, 207, 210, 212, 222, 241, 276,
486

Memory statistics
Output peak virtual memory (VmPeak),
498

Particles
Allow cells without particles, 498
Data output format, 96, 99, 498
Exclude output properties, 499
Function/Function constants, 504
Function/Function expression, 97, 504
Function/Number of components, 504
Function/Variable names, 97, 504
Generator/Ascii file/Data directory, 505
Generator/Ascii file/Data file name, 505
Generator/Probability density
function/Function constants, 505

Generator/Probability density
function/Function expression, 505

Generator/Probability density
function/Random cell selection, 506

Generator/Probability density
function/Random number seed, 506

Generator/Probability density
function/Variable names, 506

Generator/Reference cell/Number of
particles per cell per direction, 506

Generator/Uniform box/Maximum x, 507
Generator/Uniform box/Maximum y, 507
Generator/Uniform box/Maximum z, 507
Generator/Uniform box/Minimum x, 507
Generator/Uniform box/Minimum y, 507
Generator/Uniform box/Minimum z, 507
Generator/Uniform radial/Center x, 507
Generator/Uniform radial/Center y, 508
Generator/Uniform radial/Center z, 508
Generator/Uniform radial/Maximum
latitude, 508

Generator/Uniform radial/Maximum
longitude, 508

Generator/Uniform radial/Maximum
radius, 508

Generator/Uniform radial/Minimum
latitude, 508

Generator/Uniform radial/Minimum
longitude, 508

Generator/Uniform radial/Minimum
radius, 509

Generator/Uniform radial/Radial layers,
509

Integration scheme, 499

568

Interpolation scheme, 99, 500
Interpolator/Bilinear least squares/Global
particle property maximum, 509

Interpolator/Bilinear least squares/Global
particle property minimum, 509

Interpolator/Bilinear least squares/Use
limiter, 509

List of particle properties, 97, 99, 500
Load balancing strategy, 501
Maximum particles per cell, 501
Melt particle/Threshold for melt presence,
510

Minimum particles per cell, 501
Number of grouped files, 501
Number of particles, 95–97, 99, 502
Particle generator name, 99, 502
Particle weight, 503
Temporary output location, 503
Time between data output, 96, 99, 503
Update ghost particles, 503
Write in background thread, 503

Point values
Evaluation points, 510
Time between point values output, 510
Use natural coordinates, 510

Rotation statistics
Output full moment of inertia tensor, 510
Use constant density of one, 511

Run postprocessors on nonlinear iterations,
490

Topography
Output to file, 511
Time between text output, 511

Visualization
Artificial viscosity composition/Name of
compositional field, 519

Compositional fields as vectors/Names of
fields, 520

Compositional fields as vectors/Names of
vectors, 520

Filter output, 511
Heat flux map/Output point wise heat
flux, 520

Interpolate output, 175, 512
List of output variables, 93, 106, 139, 175,
180, 222, 279, 512

Material properties/List of material
properties, 175, 180, 520

Melt fraction/A1, 521
Melt fraction/A2, 521
Melt fraction/A3, 521

Melt fraction/B1, 521
Melt fraction/B2, 521
Melt fraction/B3, 521
Melt fraction/beta, 523
Melt fraction/C1, 522
Melt fraction/C2, 522
Melt fraction/C3, 522
Melt fraction/D1, 522
Melt fraction/D2, 522
Melt fraction/D3, 522
Melt fraction/E1, 523
Melt fraction/E2, 523
Melt fraction/Mass fraction cpx, 523
Melt fraction/r1, 523
Melt fraction/r2, 523
Melt material properties/List of
properties, 180, 524

Number of grouped files, 58, 130, 138, 139,
175, 517

Output format, 53, 106, 130, 138, 139,
175, 517

Output mesh velocity, 518
Point-wise stress and strain, 518
Temperature anomaly/Number of depth
slices, 524

Temperature anomaly/Use maximal
temperature for bottom, 524

Temperature anomaly/Use minimal
temperature for surface, 524

Temporary output location, 518
Time between graphical output, 73, 82,
89, 93, 95, 101, 106, 130, 138, 175, 518

Time steps between graphical output, 518
Volume of Fluid/Output interface
normals, 524

Volume of Fluid/Output interface
reconstruction contour, 525

Vp anomaly/Average velocity scheme, 525
Vp anomaly/Number of depth slices, 525
Vs anomaly/Average velocity scheme, 525
Vs anomaly/Number of depth slices, 525
Write higher order output, 519
Write in background thread, 519

Prescribe internal velocities, 115
Prescribed Stokes solution

Ascii data model
Data directory, 526
Data file name, 526
Scale factor, 527

Compaction pressure function
Function constants, 527

569

Function expression, 527
Variable names, 527

Fluid pressure function
Function constants, 528
Function expression, 528
Variable names, 528

Fluid velocity function
Function constants, 528
Function expression, 529
Variable names, 529

Model name, 526
Pressure function
Function constants, 529
Function expression, 529
Variable names, 530

Velocity function
Function constants, 530
Function expression, 530
Variable names, 531

Prescribed velocities
Indicator function
Function expression, 115
Variable names, 115

Velocity function
Function expression, 115
Variable names, 115

Pressure normalization, 22, 61, 70, 105, 203, 204,
206, 209, 294

Resume computation, 59, 62, 82, 232, 294

Solver parameters
Advection solver parameters
GMRES solver restart length, 532

AMG parameters
AMG aggregation threshold, 531
AMG output details, 531
AMG smoother sweeps, 532
AMG smoother type, 532

Composition solver tolerance, 531
Diffusion solver parameters
Diffusion length scale, 532

Newton solver parameters
Max Newton line search iterations, 533
Max pre-Newton nonlinear iterations, 533
Maximum linear Stokes solver tolerance,
533

Nonlinear Newton solver switch tolerance,
533

SPD safety factor, 533
Stabilization preconditioner, 534
Stabilization velocity block, 534

Use Eisenstat Walker method for Picard
iterations, 534

Use Newton failsafe, 534
Use Newton residual scaling method, 534

Operator splitting parameters
Reaction time step, 176, 182, 243, 535
Reaction time steps per advection step,
176, 182, 535

Stokes solver parameters
GMRES solver restart length, 535
IDR(s) parameter, 535
Krylov method for cheap solver steps, 536
Linear solver A block tolerance, 536
Linear solver S block tolerance, 536
Linear solver tolerance, 127, 172, 176, 211,
241, 536

Maximum number of expensive Stokes
solver steps, 537

Number of cheap Stokes solver steps, 172,
176, 537

Stokes solver type, 537
Use direct solver for Stokes system, 537
Use full A block as preconditioner, 537

Temperature solver tolerance, 73, 531
Start time, 87, 105, 127, 203, 206, 209, 219, 243,

294
Surface pressure, 22, 70, 295

Temperature field
Temperature method, 538

Temperature solver tolerance, 60
Termination criteria, 282

Checkpoint on termination, 538
End step, 538
Steady state temperature

Maximum relative deviation, 539
Time in steady state, 539

Steady state velocity
Maximum relative deviation, 540
Time in steady state, 540

Termination criteria, 538
User request

File name, 540
Wall time, 539

Timing output frequency, 295

Use conduction timestep, 295
Use operator splitting, 176, 182, 243, 295
Use years in output instead of seconds, 70, 87,

127, 129, 135, 172, 219, 295

Volume of Fluid

570

Enable interface tracking, 540
Number initialization samples, 540
Volume fraction threshold, 541

Volume of Fluid solver tolerance, 541

World builder file, 296

571

	Introduction
	Referencing ASPECT
	Acknowledgments

	Geodynamic modeling assumptions and numerical methods in ASPECT
	Basic equations
	A comment on adiabatic heating
	Boundary conditions
	Two-dimensional models
	Comments on the final set of equations

	Coefficients
	Coefficient self-consistency
	Coefficient averaging

	Dimensional or non-dimensionalized equations?
	Years or seconds?

	Static or dynamic pressure?
	Pressure normalization
	Initial conditions and the adiabatic pressure/temperature
	Compositional fields
	Constitutive laws
	Numerical methods
	Approximate equations
	The anelastic liquid approximation (ALA)
	The truncated anelastic liquid approximation (TALA)
	The Boussinesq approximation (BA)
	The isothermal/isentropic compression approximation (ICA)

	Choosing a formulation in ASPECT
	Mass conservation approximation
	Temperature equation approximation
	Approximation of the buoyancy term
	Reference state: The adiabatic profile
	Combined formulations

	Advection Stabilization
	SUPG Stabilization
	Entropy viscosity

	Free surface calculations
	Arbitrary Lagrangian-Eulerian implementation
	Free surface stabilization

	Calculations with melt transport
	Nullspace removal
	Particles

	Installation
	Docker Container
	Installing Docker and downloading the ASPECT image
	Running ASPECT models
	Developing ASPECT within a container

	Virtual Machine
	Installing VM software and setting up the virtual machine
	Running ASPECT models

	Local installation
	System prerequisites
	Using candi to compile dependencies
	Obtaining ASPECT and initial configuration
	Compiling ASPECT and generating documentation

	Running ASPECT
	Overview
	Selecting between 2d and 3d runs
	Debug or optimized mode
	Visualizing results
	Visualization the graphical output using Visit
	Visualizing statistical data
	Large data issues for parallel computations

	Checkpoint/restart support
	Making ASPECT run faster
	Debug vs. optimized mode
	Adjusting solver tolerances
	Adjusting solver preconditioner tolerances
	Using lower order elements for the temperature/compositional discretization
	Limiting postprocessing
	Switching off pressure normalization
	Regularizing models with large coefficient variation
	Using multithreading

	Input parameter files
	The structure of parameter files
	Categories of parameters
	A note on the syntax of formulas in input files
	Compatibility of input files with newer ASPECT versions

	A graphical user interface for editing ASPECT parameter files
	Installing parameter-GUI
	Using ASPECT-GUI

	Cookbooks
	How to set up computations
	Simple setups
	Convection in a 2d box
	Convection in a 3d box
	Convection in a box with prescribed, variable velocity boundary conditions
	Using passive and active compositional fields
	Using particles
	Using a free surface
	Using a free surface in a model with a crust
	Averaging material properties
	Prescribed internal velocity constraints
	Artificial viscosity smoothing
	Tracking finite strain
	Reading in compositional initial composition files generated with geomIO
	Using lazy expression syntax for if-else-statements in function expressions

	Geophysical setups
	Simple convection in a quarter of a 2d annulus
	Simple convection in a spherical 3d shell
	Postprocessing spherical 3D convection
	3D convection with an Earth-like initial condition
	Using reconstructed surface velocities by GPlates
	2D compressible convection with a reference profile and material properties from BurnMan
	Reproducing rheology of Morency and Doin, 2004
	Crustal deformation
	Continental extension
	Inner core convection
	Melt migration in a 2D mantle convection model
	Melt migration in a 2D mid-ocean ridge model

	Benchmarks
	Running benchmarks that require code
	Onset of convection benchmark
	The van Keken thermochemical composition benchmark
	The Rayleigh-Taylor instability
	Polydiapirism
	The sinking block benchmark
	The SolCx Stokes benchmark
	The SolKz Stokes benchmark
	The ``inclusion'' Stokes benchmark
	The Burstedde variable viscosity benchmark
	The slab detachment benchmark
	The hollow sphere benchmark
	The 2D annulus benchmark
	The ``Stokes' law'' benchmark
	Viscosity grooves benchmark
	Latent heat benchmark
	The 2D cylindrical shell benchmarks by Davies et al.
	The Crameri et al. benchmarks
	The solitary wave benchmark
	Benchmarks for operator splitting
	The Tosi et al. benchmarks
	Layered flow with viscosity contrast
	Donea & Huerta 2D box geometry benchmark
	Advection stabilization benchmarks
	Yamauchi & Takei anelastic shear wave velocity-temperature conversion benchmark
	Brittle thrust wedges benchmark

	Extending and contributing to ASPECT
	The idea of plugins and the SimulatorAccess and Introspection classes
	How to write a plugin
	How to write a cookbook
	Parameter file
	Plugins and other additional file
	Section in the manual

	Available plugin types
	Material models
	Heating models
	Geometry models
	Gravity models
	Initial conditions
	Prescribed velocity boundary conditions
	Temperature boundary conditions
	Postprocessors: Evaluating the solution after each time step
	Visualization postprocessors
	Mesh refinement criteria
	Criteria for terminating a simulation

	Compatibility of plugins with newer ASPECT versions
	Extending ASPECT through the signals mechanism
	Extending the basic solver
	Testing ASPECT
	Running tests
	Writing tests

	Contributing to ASPECT's development
	Future plans for ASPECT

	Finding answers to more questions
	Run-time input parameters
	Global parameters
	Parameters in section Adiabatic conditions model
	Parameters in section Adiabatic conditions model/Ascii data model
	Parameters in section Adiabatic conditions model/Compute profile
	Parameters in section Adiabatic conditions model/Compute profile/Surface condition function
	Parameters in section Adiabatic conditions model/Function
	Parameters in section Boundary composition model
	Parameters in section Boundary composition model/Ascii data model
	Parameters in section Boundary composition model/Box
	Parameters in section Boundary composition model/Box with lithosphere boundary indicators
	Parameters in section Boundary composition model/Function
	Parameters in section Boundary composition model/Initial composition
	Parameters in section Boundary composition model/Spherical constant
	Parameters in section Boundary fluid pressure model
	Parameters in section Boundary fluid pressure model/Density
	Parameters in section Boundary heat flux model
	Parameters in section Boundary heat flux model/Function
	Parameters in section Boundary temperature model
	Parameters in section Boundary temperature model/Ascii data model
	Parameters in section Boundary temperature model/Box
	Parameters in section Boundary temperature model/Box with lithosphere boundary indicators
	Parameters in section Boundary temperature model/Constant
	Parameters in section Boundary temperature model/Dynamic core
	Parameters in section Boundary temperature model/Dynamic core/Geotherm parameters
	Parameters in section Boundary temperature model/Dynamic core/Other energy source
	Parameters in section Boundary temperature model/Dynamic core/Radioactive heat source
	Parameters in section Boundary temperature model/Function
	Parameters in section Boundary temperature model/Initial temperature
	Parameters in section Boundary temperature model/Spherical constant
	Parameters in section Boundary traction model
	Parameters in section Boundary traction model/Ascii data model
	Parameters in section Boundary traction model/Function
	Parameters in section Boundary traction model/Initial lithostatic pressure
	Parameters in section Boundary velocity model
	Parameters in section Boundary velocity model/Ascii data model
	Parameters in section Boundary velocity model/Function
	Parameters in section Boundary velocity model/GPlates model
	Parameters in section Checkpointing
	Parameters in section Compositional fields
	Parameters in section Discretization
	Parameters in section Discretization/Stabilization parameters
	Parameters in section Formulation
	Parameters in section Geometry model
	Parameters in section Geometry model/Box
	Parameters in section Geometry model/Box with lithosphere boundary indicators
	Parameters in section Geometry model/Chunk
	Parameters in section Geometry model/Ellipsoidal chunk
	Parameters in section Geometry model/Initial topography model
	Parameters in section Geometry model/Initial topography model/Ascii data model
	Parameters in section Geometry model/Initial topography model/Function
	Parameters in section Geometry model/Initial topography model/Prm polygon
	Parameters in section Geometry model/Sphere
	Parameters in section Geometry model/Spherical shell
	Parameters in section Gravity model
	Parameters in section Gravity model/Ascii data model
	Parameters in section Gravity model/Function
	Parameters in section Gravity model/Radial constant
	Parameters in section Gravity model/Radial linear
	Parameters in section Gravity model/Vertical
	Parameters in section Heating model
	Parameters in section Heating model/Adiabatic heating
	Parameters in section Heating model/Adiabatic heating of melt
	Parameters in section Heating model/Compositional heating
	Parameters in section Heating model/Constant heating
	Parameters in section Heating model/Function
	Parameters in section Heating model/Latent heat melt
	Parameters in section Heating model/Radioactive decay
	Parameters in section Initial composition model
	Parameters in section Initial composition model/Ascii data model
	Parameters in section Initial composition model/Function
	Parameters in section Initial temperature model
	Parameters in section Initial temperature model/Adiabatic
	Parameters in section Initial temperature model/Adiabatic/Function
	Parameters in section Initial temperature model/Adiabatic boundary
	Parameters in section Initial temperature model/Ascii data model
	Parameters in section Initial temperature model/Ascii profile
	Parameters in section Initial temperature model/Continental geotherm
	Parameters in section Initial temperature model/Function
	Parameters in section Initial temperature model/Harmonic perturbation
	Parameters in section Initial temperature model/Inclusion shape perturbation
	Parameters in section Initial temperature model/Lithosphere Mask
	Parameters in section Initial temperature model/Patch on S40RTS
	Parameters in section Initial temperature model/Patch on S40RTS/Ascii data model
	Parameters in section Initial temperature model/S40RTS perturbation
	Parameters in section Initial temperature model/S40RTS perturbation/Ascii data vs to density model
	Parameters in section Initial temperature model/SAVANI perturbation
	Parameters in section Initial temperature model/SAVANI perturbation/Ascii data vs to density model
	Parameters in section Initial temperature model/Spherical gaussian perturbation
	Parameters in section Initial temperature model/Spherical hexagonal perturbation
	Parameters in section Material model
	Parameters in section Material model/Ascii reference profile
	Parameters in section Material model/Ascii reference profile/Ascii data model
	Parameters in section Material model/Averaging
	Parameters in section Material model/Compositing
	Parameters in section Material model/Composition reaction model
	Parameters in section Material model/Depth dependent model
	Parameters in section Material model/Depth dependent model/Viscosity depth function
	Parameters in section Material model/Diffusion dislocation
	Parameters in section Material model/Drucker Prager
	Parameters in section Material model/Drucker Prager/Viscosity
	Parameters in section Material model/Dynamic Friction
	Parameters in section Material model/Dynamic Friction/Viscosities
	Parameters in section Material model/Grain size model
	Parameters in section Material model/Latent heat
	Parameters in section Material model/Latent heat melt
	Parameters in section Material model/Melt global
	Parameters in section Material model/Melt simple
	Parameters in section Material model/Modified Tait model
	Parameters in section Material model/Modified Tait model/Reference heat capacity function
	Parameters in section Material model/Multicomponent
	Parameters in section Material model/Multicomponent compressible
	Parameters in section Material model/Nondimensional model
	Parameters in section Material model/PerpleX lookup model
	Parameters in section Material model/Replace lithosphere viscosity
	Parameters in section Material model/Simple compressible model
	Parameters in section Material model/Simple model
	Parameters in section Material model/Simpler model
	Parameters in section Material model/Steinberger model
	Parameters in section Material model/Visco Plastic
	Parameters in section Material model/Viscoelastic
	Parameters in section Melt settings
	Parameters in section Mesh deformation
	Parameters in section Mesh deformation/Boundary function
	Parameters in section Mesh deformation/Free surface
	Parameters in section Mesh refinement
	Parameters in section Mesh refinement/Artificial viscosity
	Parameters in section Mesh refinement/Boundary
	Parameters in section Mesh refinement/Compaction length
	Parameters in section Mesh refinement/Composition
	Parameters in section Mesh refinement/Composition approximate gradient
	Parameters in section Mesh refinement/Composition gradient
	Parameters in section Mesh refinement/Composition threshold
	Parameters in section Mesh refinement/Maximum refinement function
	Parameters in section Mesh refinement/Minimum refinement function
	Parameters in section Mesh refinement/Volume of fluid interface
	Parameters in section Nullspace removal
	Parameters in section Postprocess
	Parameters in section Postprocess/Command
	Parameters in section Postprocess/Depth average
	Parameters in section Postprocess/Dynamic core statistics
	Parameters in section Postprocess/Dynamic topography
	Parameters in section Postprocess/Geoid
	Parameters in section Postprocess/Global statistics
	Parameters in section Postprocess/Gravity calculation
	Parameters in section Postprocess/Memory statistics
	Parameters in section Postprocess/Particles
	Parameters in section Postprocess/Particles/Function
	Parameters in section Postprocess/Particles/Generator
	Parameters in section Postprocess/Particles/Generator/Ascii file
	Parameters in section Postprocess/Particles/Generator/Probability density function
	Parameters in section Postprocess/Particles/Generator/Reference cell
	Parameters in section Postprocess/Particles/Generator/Uniform box
	Parameters in section Postprocess/Particles/Generator/Uniform radial
	Parameters in section Postprocess/Particles/Interpolator
	Parameters in section Postprocess/Particles/Interpolator/Bilinear least squares
	Parameters in section Postprocess/Particles/Melt particle
	Parameters in section Postprocess/Point values
	Parameters in section Postprocess/Rotation statistics
	Parameters in section Postprocess/Topography
	Parameters in section Postprocess/Visualization
	Parameters in section Postprocess/Visualization/Artificial viscosity composition
	Parameters in section Postprocess/Visualization/Compositional fields as vectors
	Parameters in section Postprocess/Visualization/Heat flux map
	Parameters in section Postprocess/Visualization/Material properties
	Parameters in section Postprocess/Visualization/Melt fraction
	Parameters in section Postprocess/Visualization/Melt material properties
	Parameters in section Postprocess/Visualization/Temperature anomaly
	Parameters in section Postprocess/Visualization/Volume of Fluid
	Parameters in section Postprocess/Visualization/Vp anomaly
	Parameters in section Postprocess/Visualization/Vs anomaly
	Parameters in section Prescribed Stokes solution
	Parameters in section Prescribed Stokes solution/Ascii data model
	Parameters in section Prescribed Stokes solution/Compaction pressure function
	Parameters in section Prescribed Stokes solution/Fluid pressure function
	Parameters in section Prescribed Stokes solution/Fluid velocity function
	Parameters in section Prescribed Stokes solution/Pressure function
	Parameters in section Prescribed Stokes solution/Velocity function
	Parameters in section Solver parameters
	Parameters in section Solver parameters/AMG parameters
	Parameters in section Solver parameters/Advection solver parameters
	Parameters in section Solver parameters/Diffusion solver parameters
	Parameters in section Solver parameters/Newton solver parameters
	Parameters in section Solver parameters/Operator splitting parameters
	Parameters in section Solver parameters/Stokes solver parameters
	Parameters in section Temperature field
	Parameters in section Termination criteria
	Parameters in section Termination criteria/Steady state temperature
	Parameters in section Termination criteria/Steady state velocity
	Parameters in section Termination criteria/User request
	Parameters in section Volume of Fluid

	References
	Index of run-time parameter entries
	Index of run-time parameters with section names

