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1 Additional simulation result
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(a) Scenario 1
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(b) Scenario 2
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(c) Scenario 3
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(d) Scenario 4

Figure 1: True optimal ITRs in simulation studies. For subjects in the shade area, the best

treatment is 1; for subjects in the white area, the best treatment is �1.

2



Table 1: Mean (std) of treatment matching factors evaluated on the training data for 5 simulation

scenarios with 5 covariates.

n = 100 n = 400

Scenario 0

`1-PLS 1.00 (0.04) 1.00 (0.01)

OWL-Linear 1.03 (0.07) 1.00 (0.01)

OWL-Gaussian 1.14 (0.24) 1.02 (0.06)

RWL-Linear 1.00 (0.04) 1.00 (0.01)

RWL-Gaussian 1.00 (0.06) 1.00 (0.03)

Scenario 1

`1-PLS 0.99 (0.10) 0.99 (0.05)

OWL-Linear 1.10 (0.08) 1.04 (0.04)

OWL-Gaussian 1.15 (0.13) 1.05 (0.05)

RWL-Linear 0.99 (0.09) 0.99 (0.04)

RWL-Gaussian 0.99 (0.08) 0.99 (0.04)

Scenario 2

`1-PLS 1.00 (0.09) 1.00 (0.04)

OWL-Linear 1.06 (0.09) 1.03 (0.04)

OWL-Gaussian 1.18 (0.20) 1.10 (0.07)

RWL-Linear 1.00 (0.08) 1.00 (0.04)

RWL-Gaussian 1.01 (0.07) 1.00 (0.04)

Scenario 3

`1-PLS 1.00 (0.05) 1.00 (0.01)

OWL-Linear 1.02 (0.06) 1.00 (0.02)

OWL-Gaussian 1.32 (0.17) 1.14 (0.05)

RWL-Linear 1.01 (0.06) 1.01 (0.04)

RWL-Gaussian 1.04 (0.06) 1.02 (0.04)

Scenario 4

`1-PLS 1.00 (0.08) 1.00 (0.03)

OWL-Linear 1.07 (0.10) 1.02 (0.04)

OWL-Gaussian 1.37 (0.34) 1.27 (0.24)

RWL-Linear 1.00 (0.06) 1.00 (0.03)

RWL-Gaussian 1.00 (0.08) 1.02 (0.04)
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2 Proofs

Proof of Lemma 2.1

Proof. Note that,

E

 
I
�
A 6= d(X)

�
�(A;X)

���X
!
= E

�
I
�
d(X) 6= 1

�jX; A = 1
�
+ E

�
I
�
d(X) 6= �1�jX; A = �1� = 1: (1)

The desired result follows easily.

Proof of Theorem 2.2

Proof. For any measurable function g,

V ar

�
R� g(X)

�(A;X)
I
�
A 6= d(X)

��
= V ar

�
R� ~g(X)

�(A;X)
I
�
A 6= d(X)

��
+ V ar

�
~g(X)� g(X)

�(A;X)
I
�
A 6= d(X)

��

+2Cov

�
R� ~g(X)

�(A;X)
I
�
A 6= d(X)

�
;
~g(X)� g(X)

�(A;X)
I
�
A 6= d(X)

��
:

It su�ces to show that the covariance term is zero. Applying (1), we have

E

�
R� ~g(X)

�(A;X)
I
�
A 6= d(X)

����X� = E

�
R

�(A;X)
I
�
A 6= d(X)

����X��~g(X)E

 
I
�
A 6= d(X)

�
�(A;X)

���X
!
= 0:

Note that

~g(X) = E

�
R

�(A;X)
I
�
A 6= d(X)

����X� = E(RjX; A = 1)I
�
d(X) 6= 1

�
+E(RjX; A = �1)I�d(X) 6= �1�:

(2)

Thus we have,

E

�
R� ~g(X)

�(A;X)2
I
�
A 6= d(X)

����X� = E (R� ~g(X)jX; A = 1) I
�
d(X) 6= 1

�
=�(1;X)

+E (R� ~g(X)jX; A = �1) I�d(X) 6= �1�=�(�1;X) = 0:

The desired result follows easily.

Proof of Theorem 3.1

Proof. Given X = x, for any measurable function f , similar reasoning to that used in the proof of

Lemma 2.1 yields,

E

 
T
�
Af(X)

�
�(A;X)

���X = x

!
= 2:
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Then the conditional T -risk is

E

�
R� g(X)

�(A;X)
T (Af(X))

��X = x

�
= E(RjX = x; A = 1)T (f(x)) + E(RjX = x; A = �1)T (�f(x))� 2g(x)

= (E(RjX = x; A = 1)� E(RjX = x; A = �1))T (f(x))

+2E(RjX = x; A = �1)� 2g(x): (3)

If E [RjX = x; A = 1] � E [RjX = x; A = �1] > 0, any function f(x) � 1 minimizes the condi-

tional T -risk; similarly, if E [RjX = x; A = 1]�E [RjX = x; A = �1] < 0, any function f(x) � �1
minimizes the conditional T -risk. For either case, sign(f�T;g) = d�.

For the second part, by applying (3),

E

�
R� g(X)

�(A;X)
T (Ad�(X))jX = x

�
� E

�
R� g(X)

�(A;X)
T (Af�T;g(X))jX = x

�
= (E(RjX = x; A = 1)� E(RjX = x; A = �1)) �T (d�(x))� T (f�T;g(x))

�
= 0:

The desired result follows by taking expectations on both sides.

Proof of Theorem 3.2

Proof. Given X = x. By applying (3), for any measurable function f , we have

E

�
R� g(X)

�(A;X)
T (Af(X))jX = x

�
� E

�
R� g(X)

�(A;X)
T (Af�T;g(X))jX = x

�
= (E(RjX = x; A = 1)� E(RjX = x; A = �1)) �T (f(x))� T (f�T;g(x))

�
:

Similarly,

E

�
R

�(A;X)
I(A 6= sign(f(X)))jX = x

�
� E

�
R

�(A;X)
I(A 6= d�(X))jX = x

�
= (E(RjX = x; A = 1)� E(RjX = x; A = �1)) (I(sign(f(x)) 6= 1)� I(d�(x) 6= 1)) :

From the proof of Theorem 3.1, when E(RjX = x; A = 1) > E(RjX = x; A = �1), f�T;g(x) � 1

and d�(x) = 1, so T (f�T;g(x)) = 0 and I(d�(x) 6= 1) = 0; when E(RjX = x; A = 1) < E(RjX =

x; A = �1), f�T;g(x) � �1 and d�(x) = �1, so T (f�T;g(x)) = 2 and I(d�(x) 6= 1) = 1. Note that,

for any measurable function f , 1 � T (f(x))� I(sign(f(x)) 6= 1) � 0. Thus it is easy to check that

when E(RjX = x; A = 1) > E(RjX = x; A = �1),

T (f(x))� T (f�T;g(x)) � I(sign(f(x)) 6= 1)� I(d�(x) 6= 1);
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and when E(RjX = x; A = 1) < E(RjX = x; A = �1),

T (f(x))� T (f�T;g(x)) � I(sign(f(x)) 6= 1)� I(d�(x) 6= 1):

So, for either case, we have

E

�
R

�(A;X)
I(A 6= sign(f(X)))jX = x

�
� E

�
R

�(A;X)
I(A 6= d�(X))jX = x

�

� E

�
R� g(X)

�(A;X)
T (Af(X))jX = x

�
� E

�
R� g(X)

�(A;X)
T (Af�T;g(X))jX = x

�
:

The desired result follows by taking expectations on both sides.

Proof of Theorem 3.3

Proof. Let L(h; b) = (R�g(X))T (A(h(X)+b))=�(A;X). For simplicity, we denote fDn;�n , hDn;�n

and bDn;�n by fn, hn and bn, respectively. By the de�nition of hDn;�n and bDn;�n , we have, for any

h 2 HK and b 2 R,

Pn(L(hn; bn)) � Pn(L(hn; bn)) +
�n
2
jjhnjj2K � Pn(L(h; b)) +

�n
2
jjhjj2K ;

where Pn denotes the empirical measure of the observed data. Then, lim supn Pn(L(hn; bn)) �
P(L(h; b)) = RT;g(h+b) with probability 1. This implies lim supn Pn(L(hn; bn)) � infh2HK ;b2RRT;g(h+

b) � P(L(hn; bn)) with probability 1. It su�ces to show Pn(L(hn; bn))� P(L(hn; bn))! 0 in prob-

ability.

We �rst obtain a bound for jjhnjjK . Since Pn(L(hn; bn))+�njjhnjj2K=2 � Pn(L(h; b))+�njjhjj2K=2,
for any h 2 HK and b 2 R, we can choose h = 0 and b = 0 to obtain, Pn(L(hn; bn))+�njjhnjj2K=2 �
Pn((R� g(X))=�(A;X)). Note that 0 � T (u) � 2. We thus have,

�njjhnjj2K � 2Pn(jR� g(X)j=�(A;X)) � 2M0:

Let M1 =
p
2M0. Then the HK norm of

p
�nhn is bounded by M1.

Next we obtain a bound for bn. We claim that there is a global solution (hn; bn) such that

hn(xi)+bn 2 [�1; 1] for some i. Suppose there is a global solution (h0n; b0n) such that jh0n(xi)+b0nj > 1

for all i. Let � = jh0n(xi0) + b0nj = min1�i�n jh0n(xi) + b0nj > 1. Then let hn = h0n and bn =

b0n � (� � 1)sign(h0n(xi0) + b0n). It is easy to check that hn(xi0) + bn = 1 if h0n(xi0) + b0n > 1, and

hn(xi0)+bn = �1 if h0n(xi0)+b0n < �1; furthermore when i 6= i0, hn(xi)+bn � 1 if h0n(xi)+b0n > 1,

and hn(xi) + bn � �1 if h0n(xi) + b0n < �1. So T (hn(xi) + bn) = T (h0n(xi) + b0n) for all i. Hence
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(hn; bn) is a global solution and satis�es our claim. Now if a solution (hn; bn) satis�es our claim,

we then have,

jbnj � 1 + jhn(xi0)j � 1 + jjhnjj1:

Note that jjhjj1 � CK jjhjjK . We have,

j
p
�nbnj �

p
�n + CK

p
�njjhnjjK :

Since �n ! 0, and CK and
p
�njjhnjjK are both bounded, we have jp�nbnj is bounded too. Let

the bound be M2, i.e. j
p
�nbnj �M2.

Note that the class fp�nh : jjp�nhjjK �M1g is a Donsker class. So f
p
�n(h+b) : jjp�nhjjK �

M1; j
p
�nbj �M2g is also P-Donsker. Consider the function

T�(u) =

8>>>>>>>>><
>>>>>>>>>:

2
p
� if u < �p�;

2
p
�� 1p

�
(
p
�+ u)2 if �p� � u < 0;

1p
�
(
p
�� u)2 if 0 � u <

p
�;

0 if u � p�:

We have T�(
p
�u) =

p
�T (u). Since T�(u) is a Lipschitz continuous function with Lipschitz constant

equal to 2, and R�g(X)
�(A;X) is bounded, the class fp�nL(h; b) : jj

p
�nhjjK �M1; j

p
�nbj �M2g is also

P-Donsker. Therefore, p
n�n(Pn � P)L(hn; bn) = Op(1):

Consequently, from n�n !1, Pn(L(hn; bn))� P(L(hn; bn))! 0 in probability.

Proof of Lemma 3.4

Proof. Fix any 0 < � < 1. d�(x) = sign(E(RjX = x; A = 1) � E(RjX = x; A = �1)) is

measurable. Since � is regular, using Lusin's theorem in measure theory, we know that d�(x) can

be approximated by a continuous function f 0(x) 2 C(X ) such that �(f 0(x) 6= d�(x)) � �
4M . Thus

E

�
R� g(X)

�(A;X)
T (Af 0(X))jX = x

�
� E

�
R� g(X)

�(A;X)
T (Ad�(X))jX = x

�
= (E(RjX = x; A = 1)� E(RjX = x; A = �1)) �T (f 0(x))� T (d�(x))

�
:
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Then,

RT;g(f
0)�R�

T;g = jRT;g(f
0)�RT;g(d

�)j

=
��� Z (E(RjX = x; A = 1)� E(RjX = x; A = �1)) �T (f 0(x))� T (d�(x))

�
�(dx)

���
�

Z ��� (E(RjX = x; A = 1)� E(RjX = x; A = �1))
������T (f 0(x))� T (d�(x))

���I(f 0(x) 6= d�(x))�(dx):

Since jRj �M and 0 � T (u) � 2,

RT;g(f
0)�R�

T;g < �

Since K is universal, there exist a function f 00 2 HK such that jjf 00 � f 0jj1 < �
4M . Note that T (�)

is Lipschitz continuous with Lipschitz constant 2. Similarly,

jRT;g(f
00)�RT;g(f

0)j

=
��� Z (E(RjX = x; A = 1)� E(RjX = x; A = �1)) �T (f 00(x))� T (f 0(x))

�
�(dx)

���
� 2

Z ��� (E(RjX = x; A = 1)� E(RjX = x; A = �1))
������f 0(x)� f 0(x)

����(dx) < �:

By combining the two inequalities, we have

RT;g(f
00)�R�

T;g < 2�:

Noting that f 00 2 HK and letting �! 0, we obtain the desired result.

Proof of Theorem 3.6

Proof. The proof follows the idea in Devroye et al. (1996, Theorem 7.2). Since the proof is very

similar, we only provide a sketch to save space.

Let b = 0:b1b2b3 � � � be a real number on [0; 1] with the given binary expansion, and let B be a

random variable uniformly distributed on [0; 1] with expansion B = 0:B1B2B3 � � � . Let us restrict
ourselves to a random variable X with the support fx1;x2; � � � g where xi 2 X . For simplicity, we

recode the support of X as f1; 2; � � � g. Let

P (X = i) = pi; i � 1; (4)

where p1 � p2 � � � � > 0, and
P1

i=n+1 pi � max(8cn; 32npn+1) for every n. Such pi's exist by

Devroye et al. (1996, Lemma 7.1). Let A 2 f1;�1g be a binomial variable with �(A;X) = 0:5.

For a given b, set R = AM if bX = 1, and R = �AM if bX = 0. Then the Bayes rule is

d�(X) = (2� bX �1). Thus each b 2 [0; 1] describes a di�erent distribution of (X; A;R). Introduce
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the shortened notation Dn = f(X1; A1; R1); � � � ; (Xn; An; Rn)g. Let dn be a rule generated by

data Dn. De�ne din = dn(i) for i = 1; � � � ; n. Let �Rn(b) be the excess risk of the rule dn for

the distribution parametrized by b, and �Rn(B) be the excess risk of the rule dn for the random

distribution.

�Rn(B) = E

�
R

�(A;X)
I(A 6= dn(X))

���B�� E

�
R

�(A;X)
I(A 6= d�(X))

���B�

= E

h�
E(RjB;X; A = 1)� E(RjB;X; A = �1)��I(dn(X) 6= 1)� I(d�(X) 6= 1)

���Bi
= 2ME

�
I(dn(X) 6= d�(X))

��B�
= 2ME

�
I(dn(X) 6= 2BX � 1)

�
:

Let Ln(B) = E
�
I(dn(X) 6= 2BX � 1)

�
. Then we have,

Ln(B) =
1X
i=1

piI(d
i
n 6= 2Bi � 1):

Following the same arguments used in Devroye et al. (1996, Theorem 7.2), we have

P (Ln(B) < 2cnjDn) � P (
1X

i=n+1

piBi < 2cn) � e�2n:

Hence we have

sup
b
inf
n
E

�
Ln(b)

2cn

�
� E

�
E

�
inf
n

�
Ln(b)

2cn

���X1;X2; � � �
���

� E

 
1�

1X
i=1

E(P (Ln(B) < 2cnjDn)jX1;X2; � � � )
!

� 1�
1X
i=1

e�2n =
e2 � 2

e2 � 1
>

1

2
:

Here we are omitting many steps. Refer to Devroye et al. (1996, Theorem 7.2) for details. The

conclusion is that there exists a b for which �Rn(b) � 2Mcn, n = 1; 2; � � � .

Proof of Theorem 3.7

Proof. De�ne the random variable S = R�g(X)
�(A;X) . We consider a probability measure on the triplet

(X; A; S) instead of on (X; A;R). Let Dn = fXi; Ai; Signi=1 be independent random variables with

the same distribution as (X; A; S). Let Pn be the empirical measure on Dn. For simplicity, we

denote fDn;�n , hDn;�n and bDn;�n by fn, hn and bn, respectively. Let (~h�n ;
~b�n) be a solution of the

following optimization problem:

min
h2HK ;b2R

�n
2
jjhjj2K +RT;g(h+ b):
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Let L(h; b) = ST (A(h(X) + b)). Then

RT;g(fn)�RT;g(f
�
T;g)

� (P� Pn)L(hn; bn) + (
�n
2
jjhnjj2 + PnL(hn; bn))� (

�n
2
jj~h�n jj2 + PnL(~h�n ;

~b�n))

+(Pn � P)L(~h�n ;
~b�n) +A(�n)

� (P� Pn)L(hn; bn) + (Pn � P)L(~h�n ;
~b�n)) +A(�n):

We �rst estimate the second term by the Hoe�ding inequality (Steinwart and Christmann 2008,

Theorem 6.10). Since jL(h; b)j � 2M0, we thus have, with probability at least 1� �=2,

(Pn � P)L(~h�n ;
~b�n) �M0

s
2 log 2

�

n
: (5)

By the arguments used in the proof of Theorem 3.3, we have jjhnjjK �
q

2M0
�n

and jbnj �
1 + CK

q
2M0
�n

. Then let F = f(h; b) 2 HK � R : jjhjjK �
q

2M0
�n

; jbj � 1 + CK

q
2M0
�n
g. Let

~L(h; b) = S
h
T (A(h(X) + b))� 1

i
. For the �rst term, (P� Pn)L(hn; bn),

(P� Pn)L(hn; bn) � sup
(h;b)2F

(P� Pn)L(h; b)

= sup
(h;b)2F

(P� Pn)~L(h; b) + (P� Pn)L(0; 0):

When an (xi; ai; si) triplet changes, the random variable sup(h;b)2F (P�Pn)~L(h; b) can change by no

more than 2M0
n . McDiarmid's inequality (Bartlett and Mendelson 2002, Theorem 9) then implies

that with probability at least 1� �=4,

sup
(h;b)2F

(P� Pn)~L(h; b) � E sup
(h;b)2F

(P� Pn)~L(h; b) +M0

r
2 log(4=�)

n
:

A similar argument, together with the fact that EPnL(0; 0) = PL(0; 0), shows that with probability

at least 1� �=2,

(P� Pn)L(hn; bn) � E sup
(h;b)2F

(P� Pn)~L(h; b) + 2M0

r
2 log(4=�)

n
:

Let D0
n = fX 0

i; A
0
i; S

0
igni=1 be an independent sample with the same distribution as (X; A; S). Let

P
0
n denote the empirical measure on D0

n. Let � be a uniform f�1g-valued random variable, and

10



�1; : : : ; �n be n independent copies of �. Then we have

E sup
(h;b)2F

(P� Pn)~L(h; b) = E sup
(h;b)2F

E

�
P
0
n
~L(h; b)� Pn

~L(h; b)
���Dn

�
� 2E sup

(h;b)2F
Pn� ~L(h; b)

� 2EE
�

sup
(h;b)2F

jPn� ~L(h; b)j
���Si; Ai; i = 1; : : : ; n

�

� 16M0

n
E sup
(h;b)2F

��� nX
i=1

�i
�
h(Xi) + b

����:
The last inequality is due to the contraction inequality (Ledoux and Talagrand 1991, Corollary

3.17). The preceding can be further majorized by using Lemma 22 in Bartlett and Mendelson

(2002),

E sup
(h;b)2F

(P� Pn)~L(h; b) � 16M0

n
E sup
(h;b)2F

��� nX
i=1

�ih(Xi)
���+ 16M0

n
(1 + CK

r
2M0

�n
)E
��� nX
i=1

�i

���
� 16M0p

n

r
2M0

�n
CK +

16M0p
n

(1 + CK

r
2M0

�n
)

=
16M0p

n
(1 + 2CK

r
2M0

�n
):

Then we have that with probability at least 1� �=2,

(P� Pn)L(hn; bn) � 16M0p
n

(1 + 2CK

r
2M0

�n
) + 2M0

r
2 log(4=�)

n
: (6)

By the assumption, (5), and (6), we obtain that with probability at least 1� �,

RT;g(fn)�R�
T;g �M0

r
2 log(2=�)

n
+

16M0p
n

(1 + 2CK

r
2M0

�n
) + 2M0

r
2 log(4=�)

n
+ c��n:

Let �n = n
� 1

2�+1 . By Theorem 3.2, we obtain the �nal result that with probability at least 1� �,

R(sign(fn))�R� � ~c
p
log(4=�)n

� �
2�+1 :

Here ~c =M0

�
16 + 3

p
2 + 32CK

p
2M0

�
+ c. This completes the proof.

Proof of Lemma 3.9

Proof. We �rst introduce a lemma. It is revised from Lemma 4.1 in Steinwart and Scovel (2007)

to adapt to our settings for individualized treatment rules.
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Lemma 2.1. Let X be the closed unit ball of the Euclidean space Rp, and P be a distribution on

X �A�M with regular marginal distribution on X. Recall �(x) = E(RjX = x; A = 1)�E(RjX =

x; A = �1) for x 2 X . On �X := 3X we de�ne

��(x) =

8><
>:

�(x) if jjxjj � 1;

�

�
x

jjxjj
�

otherwise;

where jj � jj is the Euclidean norm. We also write �X+ = fx 2 �X : ��(x) > 0g, and �X� = fx 2 �X :

��(x) < 0g. Finally let B(x; r) denote the open ball of radius r about x in R
p. Then for x 2 X+,

we have B(x; �x) � �X+, and for x 2 X�, we have B(x; �x) � �X�.

The proof is simple, and is the same as that of Lemma 4.1 in Steinwart and Scovel (2007). We

omit the proof here. In the lemma, the support is enlarged to ensure that all balls of the form

B(x; �x) are contained in the enlarged support. We return to the proof of Lemma 3.9.

Let L2(R
p) be the L2-space on R

p with respect to Lebesque measure, and H�(R
p) be the RKHS

of the Gaussian RBF kernel K�. The linear operator V� : L2(R
p)! H�(R

p) de�ned by

V�`(x) =
(2�)d=2

�d=4

Z
Rp

e�2�
2jjx�yjj2`(y)dy; ` 2 L2(R

p); x 2 R
p;

is an isometric isomorphism (Steinwart et al. 2006). Thus we have,

A(�) � inf
`2L2(Rp)

�

2
jj`jj2L2(Rp) +RT;g(V�`)�R�

T;g: (7)

With the notation of Lemma 2.1 we �x a measurable �fP : �X ! [�1; 1] that satis�es �fP = 1 on �X+,

�fP = �1 on �X�, and �fP = 0 otherwise. For ` := (�2=�)p=4 �fP , we immediately obtain,

jj`jjL2(Rp) �
�
81�2

�

�p=4
�(p); (8)

where �(p) denotes the volume of X . As shown in the proof of Theorem 3.2, we have

RT;g(V�`)�R�
T;g = E(j�(x)j � jT (V�`(x))� T (d�(x))j) � 2E(j�(x)j � jV�`(x)� d�(x)j):

Following the same derivations as in the proof of Theorem 2.7 of Steinwart and Scovel (2007), we

also obtain

jV�`(x)� d�(x)j � 8e��
2�2
x
=(2p):

The geometric noise assumption yields

RT;g(V�`)�R�
T;g � 16E(j�(x)je��2�2x=(2p)) � 16C(2p)qp=2��qp: (9)

12



Combining (7), (8) and (9) yields

A(�) �
�
81�2

�

�p=2
�2(p)�=2 + 16C(2p)qp=2��qp:

The desired result now follows by taking � = �
� 1

(q+1)p .
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