
A Local polynomial regression

Here we provide additional detail about the polynomial regression scheme described in Section 2.2.

We consider the quadratic case, as the linear case is a simple restriction thereof. For each component

fj of f , the quadratic regressor is of the form

f̃j(θ̂) := aj + bT
j θ̂ +

1

2
θ̂T Hj θ̂,

where aj ∈ R is a constant term, bj ∈ R
d is a linear term, and Hj ∈ R

d×d is a symmetric Hessian

matrix. Note that aj , bj , and Hj collectively contain M = (d + 2)(d + 1)/2 independent entries

for each j. The coordinates θ̂ ∈ R
d are obtained by shifting and scaling the original parameters

θ as follows. Recall that the local regression scheme uses N samples {θ1, . . . , θN} drawn from the

ball of radius R centered on the point of interest θ, along with the corresponding model evaluations

yi
j = fj(θi).11 We assume that the components of θ have already been scaled so that they are of

comparable magnitudes, then define θ̂i = (θi − θ)/R, so that the transformed samples are centered

at zero and have maximum radius one. Writing the error bounds as in (1) requires this rescaling

along with the 1/2 in the form of the regressor above (Conn et al., 2009).

Next, construct the diagonal weight matrix W = diag(w1, . . . , wN ) using the sample weights in

(2), where we have R = 1 because of the rescaling. Then compute the N -by-M basis matrix Φ:

Φ =












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2 · · · θ̂1
d−1θ̂1

d

...
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1 · · · θ̂N

d
1
2

(

θ̂N
1

)2

· · · 1
2

(

θ̂N
d

)2

θ̂N
1 θ̂N

2 · · · θ̂N
d−1θ̂N

d













where we ensure that N > M . Finally, solve the n least squares problems,

ΦT WΦZ = ΦT WY, (8)

where each column of the N -by-n matrix Y contains the samples
(

y1
j , . . . , yN

j

)T
, j = 1, . . . , n. Each

column zj of Z ∈ R
M×n contains the desired regression coefficients for output j,

zT
j =

(

aj bT
j (Hj)1,1 · · · (Hj)d,d (Hj)1,2 · · · (Hj)d−1,d

)

. (9)

11To avoid any ambiguities, this appendix departs from the rest of the narrative by using a superscript to index
samples and a subscript to index coordinates.
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The least squares problem may be solved in a numerically stable fashion using a QR factorization

of WΦZ, which may be computed once and reused for all n least squares problems. The cross-

validation fit omitting sample i simply removes row i from both sides of (8). These least squares

problems can be solved efficiently with a low-rank update of the QR factorization of the full least

squares problem, rather than recomputing the QR factors from scratch (Hammarling and Lucas,

2008).

B Detailed theoretical results and proofs of theorems

B.1 Auxiliary notation

We now define some useful auxillary objects. For a fixed finite set S ⊂ Θ, we consider the stochastic

process defined by Algorithm 4 with S1 = S and lines 11–20 and 22 removed. This process is

essentially the original algorithm with all approximations based on a single set of points S and no

refinements. Since there are no refinements, this process is in fact a Metropolis-Hastings Markov

chain, and we write KS for its transition kernel. For all measurable sets U ⊂ Θ, this kernel can be

written as KS(x, U) = rS(x)δx(U) + (1− rS(x))
∫

y∈U
pS(x, y)dy for some 0 ≤ rS(x) ≤ 1 and density

pS(x, y). We denote by αS(x, y) the acceptance probability of KS .

We introduce another important piece of notation before giving our results. Let {Zt}t∈N be a

(generally non-Markovian) stochastic process on some state space Ω. We say that a sequence of

(generally random, dependent) kernels {Qt}t∈N is adapted to {Zt}t∈N if there exists an auxillary

process {At}t∈N so that:

• {(Zt, At)}t∈N is a Markov chain,

• Qt is σ(At)-measurable, and

• P[Zt+1 ∈ ·|Zt, At] = Qt(Zt, ·).

Let {Xt,St}t∈N be a sequence evolving according to the stochastic process defined by Algorithm

4 and define the following associated sequence of kernels:

K̃t(x, A) ≡ P[Xt+1 ∈ A|{Xs}1≤s<t, Xt = x, {Ss}1≤s≤t].

The sequence of kernels {K̃t}t∈N is adapted to {Xt}t∈N, with {S}t∈N as the auxillary process. For

any fixed t, one can sample from K̃t(x, ·) by first drawing a proposal y from L(x, ·) and then accepting
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with probability

α̃t(x, y) ≡ c1αSt
(x, y) + c2αSt∪{(x,f(x))}(x, y) + c3αSt∪{(y,f(y))}(x, y), (10)

where c1, c2, c3 are some positive constants that depend on x, y, βt and γt and satisfy the identity

c1 + c2 + c3 = 1.

B.2 Book-keeping result

The following result will be used repeatedly in our ergodicity arguments.

Theorem B.1 (Approximate Ergodicity of Adaptive Chains). Fix a kernel K with stationary dis-

tribution π on state space X and let {Yt}t≥0 evolve according to K. Assume

‖Kt(x, ·)− π‖TV ≤ Cx(1− α)t (11)

for some 0 < α ≤ 1, {Cx}x∈X and all t ∈ N.

Let {Kt}t∈N be a sequence of kernels adapted to some stochastic process {Xt}t∈N, with auxillary

process {At}t∈N. Also fix a Lyapunov function V and constants 0 < a, δ, ǫ < 1, 0 ≤ b < ∞ and

0 ≤ B < 2b
aǫ

. Assume that there exists a non-random time T = Tǫ,δ and a σ
(

{(Xs, As)}T
s∈N

)

-

measurable event F so that P[F ] > 1− ǫ,

E[V (XT )1F ] <∞, (12)

sup
t>T

sup
x : V (x)<B

‖Kt(x, ·)−K(x, ·)‖TV < δ + 1Fc , (13)

and the following inequalities are satisfied for all t > T :

E[V (Xt+1)1F |Xt = x, At] ≤ (1− a)V (x) + b (14)

E[V (Yt+1)|Yt = y] ≤ (1− a)V (y) + b.

Then

lim sup
T →∞

‖L(XT )− π‖TV ≤ 3ǫ + δ
log
(

eδ
C log(1−α)

)

log(1− α)
+

4b

aB
⌈

log
(

δ
C log(1−α)

)

log(1− α)
+ 1⌉,
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where C = C(ǫ) ≡ sup{Cx : V (x) ≤ 2b
ǫa
}.

Proof. Assume WLOG that T = 0, fix γ > 0 and fix
log b

a(max(E[V (X0)1F ],π(V ))+1)

log(1−a) ≤ S < T . Let

{Yt}t≥S , {Zt}t≥S be Markov chains evolving according to the kernel K and starting at time S, with

YS = XS and ZS distributed according to π . By inequality (11), it is possible to couple {Yt}S≤t≤T ,

{Zt}S≤t≤T so that

P[YT 6= ZT |XS ] ≤ CXS
(1− α)T −S + γ. (15)

By inequality (13) and a union bound over S ≤ t < T , it is possible to couple {Xt}S≤t≤T , {Yt}S≤t≤T

so that

P[XT 6= YT ] ≤ δ(T − S) + P[Fc] + P[ max
S≤t≤T

(max(V (Xt), V (Yt))) > B] + γ. (16)

By inequalities (12) and (14),

E[V (XS)1F |X0, A0] ≤ E[V (X0)1F ](1− a)S +
b

a
≤

2b

a
,

and so by Markov’s inequality,

P
[

{V (XS) >
2b

aǫ
} ∩ F

]

≤ ǫ. (17)

By the same calculations,

P[{ max
S≤t≤T

(max(V (Xt), V (Yt))) > B} ∩ F ] ≤ (T − S + 1)
4b

aB
. (18)

Couple {Yt}S≤t≤T to {Xt}S≤t≤T so as to satisfy inequality (16), and then couple {Zt}S≤t≤T to

{Yt}S≤t≤T so as to satisfy inequality (15). It is possible to combine these two couplings of pairs of

processes into a coupling of all three processes by the standard ‘gluing lemma’ (see e.g., Chapter 1

of Villani (2009)). Combining inequalities (15), (16), (17), and (18), we have

‖L(XT )− π‖TV ≤ P[XT 6= YT ] + P[YT 6= ZT ]

≤ P[XT 6= YT ] + E[1YT 6=ZT
1V (XS)>B1F ] + E[1YT 6=ZT

1V (XS)≤B ] + P[Fc]

≤ δ(T − S) + 3ǫ + (T − S + 1)
4b

aB
+ 2γ + C(1− α)T −S .
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Approximately optimizing over S < T by choosing S′ = T −⌈
log
(

δ
C log(1−α)

)

log(1−α) ⌉ for T large, we conclude

lim sup
T →∞

‖L(XT )− π‖TV ≤ lim sup
T →∞

(

δ(T − S′) + 3ǫ + (T − S + 1)
4b

aB
+ 2γ + C(1− α)T −S′

)

≤ 3ǫ + 2γ + δ
log
(

δ
C log(1−α)

)

log(1− α)
+

δ

log(1− α)
+

4b

aB
⌈

log
(

δ
C log(1−α)

)

log(1− α)
+ 1⌉.

Since this holds for all γ > 0, the proof is finished.

Remark B.2. In the adaptive MCMC literature, similar results are often stated in terms of a

diminishing adaptation condition (this roughly corresponds to inequality (13)) and a containment

condition (this roughly corresponds to inequalities (12) and (14)). These phrases were introduced in

Roberts and Rosenthal (2007), and there is now a large literature with many sophisticated variants;

see, e.g., Fort et al. (2012) for related results that also give LLNs and CLTs under similar conditions.

We included our result because its proof is very short, and because checking these simple conditions

is easier than checking the more general conditions in the existing literature.

B.3 Good sets and monotonicity

We give some notation that will be used in the proofs of Theorems 3.4 and 3.3. Fix 0 ≤ c, r, R ≤ ∞.

For 0 < ℓ < ∞ and x ∈ R
d, denote by Bℓ(x) the ball of radius ℓ around x. Say that a finite set

S ⊂ Θ ⊂ R
d is (c, r, R)-good with respect to a set A ⊂ Θ if it satisfies:

1. supx∈A,‖x‖≤r miny∈S ‖x− y‖ ≤ c.

2. For all x ∈ A with ‖x‖ > R, we have that |S ∩ B 1
2 ‖x‖(x)| ≥ N .

We say that it is (c, r, R)-good if it is (c, r, R)-good with respect to Θ itself. The first condition will

imply that the approximation pS(x) is quite good for x close to the origin. The second condition gives

an extremely weak notion of ‘locality’; it implies the points we use to construct a ‘local’ polynomial

approximation around x do not remain near the origin when ‖x‖ itself is very far from the origin.

We observe that our definition is monotone in various parameters:

• If S is (c, r, R)-good, then it is also (c′, r′, R′)-good for all c′ ≥ c, r′ ≤ r and R′ ≥ R.

• If S is (c, r, R)-good, then S ∪ S ′ is also (c, r, R)-good for any finite set S ′ ⊂ Θ.

• If S is (∞, 0, R)-good and (c, r,∞)-good, it is also (c, r, R)-good.
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Our arguments will involve showing that, for any finite (c, r, R), the sets {St}t≥0 are eventually

(c, r, R)-good.

B.4 Proof of Theorem 3.4, ergodicity in the compact case

In this section we give the proof of Theorem 3.4. Note that some statements are made in slightly

greater generality than necessary, as they will be reused in the proof of Theorem 3.3.

Lemma B.3 (Convergence of Kernels). Let the assumptions stated in the statement of Theorem 3.4

hold. For all δ > 0, there exists a stopping time τ = τ(δ) with respect to {St}t∈N
12so that

sup
t>τ

sup
x∈Θ
‖K∞(x, ·)− K̃t(x, ·)‖TV < δ (19)

and so that P[τ <∞] = 1.

Proof. Fix R ∈ R so that Θ ⊂ BR(0). By results in (Conn et al., 2009),13 for any λ, α > 0, there

exists a constant c = c(α, λ) > 0 so that supθ∈Θ |pS(θ)− p(θ|d)| < α if S is λ-poised and (c, R, R)-

good. Set c = c(δ, λ) and define τ = inf{t : St is (c, R, R)− good}. By definition, this is a stopping

time with respect to {St}t∈N that satisfies inequality (19); we now check that P[τ <∞] = 1.

By the assumption that ℓ(x, y) is bounded away from 0, there exist ǫ > 0 and measures µ,

{rx}x∈Θ so that

L(x, ·) = ǫµ(·) + (1− ǫ)rx(·). (20)

Let {Ai}i∈N and {Bi}i∈N be two sequences of i.i.d. Bernoulli random variables, with success

probabilities ǫ and β respectively. Let τ0 = inf{t : Xt ∈ Θ} and define inductively τi+1 = inf{t >

τi + 1 : Xt ∈ Θ}. By equality (20), it is possible to couple the sequences {Xt}t∈N, {Ai}i∈N so that

P[Lτi
∈ ·|τi, Xτi

, Ai = 1] = µ(·) (21)

P[Lτi
∈ ·|τi, Xτi

, Ai = 0] = rXτi
(·).

We can further couple {Bi}i∈N to these sequences by using Bi for the random variable in step

12 of Algorithm 4 at time τi. That is, when running Algorithm 4, we would run the subroutine

12Throughout the note, for any stochastic process {Zt}t≥0, we use the phrase “τ is a stopping time with respect to
{Zt}t≥0” as shorthand for “τ is a stopping time with respect to the filtration Ft given by Ft = σ({Zs}0≤s≤t).”

13The required result is a combination of Theorems 3.14 and 3.16, as discussed in the text after the proof of Theorem
3.16 of (Conn et al., 2009).
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RefineNear in step 13 of the algorithm at time t = τi if Bi = 1, and we would not run that

subroutine in that step at that time if Bi = 0. Define I = {i ∈ N : Ai = Bi = 1}. Under this

coupling of {Ai}i∈N, {Bi}i∈N, and {Xt}t∈N,

{Lτi
}i∈I, τi<t ⊂ St.

Furthermore, {Lτi
}i∈I, i≤N is an i.i.d sequence of N draws from µ and P[τi < ∞] = 1 for all i. Let

Ej be the event that {Lτi
}i≤j is (c, R, R)-good. We have τ ≤ τinf{j : Ej holds}. By independence of

the sequence {Lτi
}i∈N, we obtain

P[τ <∞] ≥ lim inf
j→∞

P[Ej ] = 1.

This completes the proof of the Lemma.

Remark B.4. We mention briefly that this lemma can also be used to obtain a quantitative bound

on the asymptotic rate of convergence of the bias of our algorithm.

Observe that τ as defined in the proof of Lemma B.3 is stochastically dominated by an exponential

distribution with mean O(−dc−d log(c)) as long as both ℓ(x, ·) and p(·|d) are bounded below. This

gives a rather poor bound on the amount of time it takes for inequality (29) to hold. Inequality (29),

together with standard ‘perturbation’ bounds relating the distance between transition kernels and the

distance between their stationary distributions, imply a quantitative bound on the asymptotic rate of

convergence of the bias of our algorithm. An example of such a perturbation bound may be found by

applying Theorem 1 of (Korattikara et al., 2013), which does not in fact rely on time-homogeneity,

to a subsequence of the stochastic process generated by our algorithm. Unfortunately, the resulting

bound is rather poor, and does not seem to reflect our algorithm’s actual performance.

We now prove Theorem 3.4:

Proof. It is sufficient to show that, for all ǫ, δ > 0 sufficiently small, the conditions of Theorem B.1

can be satisfied. We now set the constants and functions associated with Theorem B.1; we begin by

choosing Cx ≡ V (x) ≡ b = a = 1, setting α =
infx,y∈Θ ℓ(x,y) infθ∈Θ p(θ|d)

supθ∈Θ p(θ|d) , and setting B =∞.

By the minorization condition, inequality (11) is satisfied for this value of α; by the assumption

that ℓ(x, y), p(θ|d) are bounded away from 0 and infinity, we also have α > 0. Next, for all δ > 0,

Lemma B.3 implies that implies that supx ‖K(x, ·) − K̃(x, ·)‖TV < δ for all times t greater than
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some a.s. finite random time τ = τ(δ) that is a stopping time with respect to {St}t∈N. Choosing

T = Tǫ,δ to be the smallest integer so that P[τ(δ) > T ] ≤ 1− ǫ and setting F = {τ ≤ T }, this means

that inequality (13) is satisfied. Inequalities (14) and (12) are trivially satisfied given our choice of

V, a, b. Applying Theorem B.1 with this choice of V, α, a, b, T , we have for all ǫ, δ > 0 that

lim sup
T →∞

‖L(XT )− π‖TV ≤ 3ǫ + δ
log
(

eδ
C log(1−α)

)

log(1− α)
.

Letting δ go to 0 and then ǫ go to 0 completes the proof.

B.5 Proof of Theorem 3.3, ergodicity in the non-compact case

In this section, we prove Theorem 3.3. The argument is similar to that of Theorem 3.4, but we must

show the following to ensure that the sampler does not behave too badly when it is far from the

posterior mode:

1. St is (∞, 0, R)-good after some almost-surely finite random time τ ; see Lemma B.6.

2. The kernel K̃t satisfies a drift condition if St is (∞, 0, R)-good; see Lemmas B.8 and B.9.

3. This drift condition implies that the chain Xt spends most of its time in a compact subset of

Θ; see Lemma B.10.

Remark B.5. The Gaussian envelope condition (see Assumption 3.1) is used only to show the

second step in the above proof strategy, which in turn is used to satisfy condition (14) of Theorem

B.1. It can be replaced by any assumption on the target density for which S being (∞, 0, R)-good for

some R <∞ implies that K̃S satisfies a drift condition of the form given by inequality (14).

We begin by showing, roughly, that for any R > 0, St is eventually (∞, 0, R)-good:

Lemma B.6 (Approximations At Infinity Ignore Compact Sets). Fix any X > 0 and any k ≥ 2

and define

τ
(k)
X = sup

{

t : ‖Lt‖ > kX , ‖Lt‖ −Rt < X
}

.

Then

P[{There exists k <∞, s.t. τ
(k)
X <∞}] = 1.
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Proof. Fix N ∈ N, δ > 0 and 0 < r1 < r2 < ∞. For 0 < ℓ < ∞, denote by ∂Bℓ(0) the sphere of

radius ℓ. Fix a finite covering {Pi} of ∂B r1+r2
2

(0) with the property that, for any x ∈ ∂B r1+r2
2

(0),

there exists at least one i so that Pi ⊂ Bδ(x). For k ∈ N, define a thickening of Pi by:

P
(k)
i =

{

x :
r1 + r2

2

x

‖x‖
∈ Pi,

r1 + r2

2
+ (k − 1)

r2 − r1

2
≤ ‖x‖ ≤

r1 + r2

2
+ k

r2 − r1

2

}

.

We will show that, almost surely, for every thickening P
(k)
i of an element Pi of the cover, either

|P
(k)
i ∩St| is eventually greater than N or |P

(k)
i ∩{Lt}t∈N| is finite. Note that it is trivial that either

|P
(k)
i ∩ {Lt}t∈N| is eventually greater than N or |P

(k)
i ∩ {Lt}t∈N| is finite; the goal is to check that

if {Lt}t∈N visits Pi infinitely often, |P
(k)
i ∩ St| must eventually be greater than N .

To see this, we introduce a representation of the random variables used in step 12 of Algorithm

4. Recall that in this step, Lt is added to St with probability β, independently of the rest of the

history of the walk. We will split up the sequence Bt of Bernoulli(β) random variables according to

the covering as follows: for each element P
(k)
i of the covering, let {B

(i,k)
t }t∈N be an i.i.d. sequence of

Bernoulli random variables with success probability β. At the mth time Lt is in P
(k)
i , we use B

(i,k)
m

as the indicator function in step 12 of Algorithm 4. This does not affect the distribution of the steps

that the algorithm takes.

By the Borel-Cantelli lemma, we have for each i, k that P[B
(i,k)
t = 1, infinitely often] = 1. If

B
(i,k)
t = 1 infinitely often, then |P

(k)
i ∩{Lt}t∈N| =∞ implies that for all M <∞, we have |P

(k)
i ∩St| >

M eventually. Let Ci,k be the event that |P
(k)
i ∩ St| > N eventually and let Di,k be the event that

|P
(k)
i ∩ {Lt}t∈N| =∞. Then this argument implies that

P[Ci,k|Di,k] = 1.

Since there are only countably many sets P
(k)
i , we have

P[∩i,k

(

Ci,k ∪ D
c
i,k

)

] = 1. (22)

Thus, conditioned on the almost sure event ∩i,k

(

Ci,k ∪ D
c
i,k

)

, all sets P
(k)
i that Lt visits infinitely

often will also contribute points to St infinitely often.

Let k(i) = min{k : |P
(k)
i ∩ {Lt}t∈N| = ∞} when that set is non-empty, and set k(i) = ∞
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otherwise. Let I = {i : k(i) <∞}. Finally, set

τr1,r2 = inf{t : ∀i ∈ I, |P
(k(i))
i ∩ St| ≥ N}. (23)

Since |I| is finite, we have shown that, for all N, δ > 0 and 0 < r2 < r1 < ∞, P[τr1,r2
< ∞] = 1.

Finally, we observe that for all δ = δ(X , d) sufficiently small, all N ≥ Ndef and all k ≥ maxi∈I k(i),

τ
(k)
X ≤ τ 2

3 X , 4
3 X . (24)

This completes the proof.

Remark B.7. We will eventually see that, in the notation of the proof of Lemma B.6, k(i) = 1 for

all i.

Next, we show that the approximation pSt
(x) of the posterior used at time t is close to p∞(Xt)

when St is (∞, 0, R)-good and ‖Xt‖ is sufficiently large:

Lemma B.8 (Approximation at Infinity). For all ǫ > 0 and k ≥ 2, there exists a constant X =

X (ǫ) > 0 so that, if Rt < (‖Lt‖ − (k − 1)X )1‖Lt‖>kX and the set {q
(1)
t , . . . , q

(N)
t } is λ-poised, then

| log(pSt
(Lt))− log(p∞(Lt))| < ǫ + λ(N + 1)G.

Proof. Fix ǫ > 0. By (6) in Assumption 3.1, there exists some X = X (ǫ) so that ‖x‖ > X implies

| log(p(x|d))− log(p∞(x))| < G +
ǫ

(N + 1)λ
. (25)

We fix this constant X in the remainder of the proof.

Denote by {fi}
N+1
i=1 the Lagrange polynomials associated with the set {q

(1)
t , . . . , q

(N)
t }. By Lemma

3.5 of (Conn et al., 2009),

|log(pSt
(Lt))− log(p∞(Lt))| = |

∑

i

fi(Lt) log(p(q
(i)
t |d))− log(p∞(Lt))|

≤ |
∑

i

log(p∞(q
(i)
t ))fi(Lt)− log(p∞(Lt))|

+
∑

i

| log(p(q
(i)
t |d))− log(p∞(q

(i)
t ))| |fi(Lt)|

≤ 0 + (N + 1)λ sup
i

| log(p(q
(i)
t |d))− log(p∞(q

(i)
t ))|
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where the last line follows from the definition of Lagrange polynomials and Definition 4.7 of (Conn

et al., 2009). Under the assumption ‖q
(i)
t ‖ > X for ‖Lt‖ − Rt > (k − 1)X , the conclusion follows

from inequality (25).

For ǫ > 0, define Vǫ(x) = V (x)
1

1+ǫ , where V is defined in Equation (7). Denote by α∞(x, y) the

acceptance function of a Metropolis-Hastings chain with proposal kernel L and target distribution

p∞, and recall that α̃t(x, y) as given in Equation (10) is the acceptance function for K̃t. We show

that K̃t inherits a drift condition from K∞:

Lemma B.9 (Drift Condition). For 0 < δ < 1
10 and Y, T <∞, let F be the event that

|α̃t(Xt, Lt)− α∞(Xt, Lt)| < δ + 21|Xt|<Y + 21|Lt|<Y (26)

for all t > T . Then, for ǫ = ǫ0 as given in item 1 of Assumption 3.2, and all δ < δ0(ǫ, a, b, V ) < 1
10

sufficiently small and Y sufficiently large, Xt satisfies a drift condition of the form:

E[Vǫ(Xt+1)1F |Xt,St] ≤ a1Vǫ(Xt) + b1 (27)

for some 0 ≤ a1 < 1, 0 ≤ b1 <∞ and for all t > T .

Proof. Assume WLOG that T = 0. Let Zt be a Metropolis-Hastings Markov chain with proposal

kernel L and target distribution p∞. By Jensen’s inequality and Assumption 3.2

E[Vǫ(Zt+1)|Zt = x] ≤ aǫVǫ(x) + bǫ

for some 0 < aǫ < 1 and some 0 ≤ bǫ <∞.

Assume Xt = x and fix δ so that δ < δ0 and (1 + 3δ)aǫ < aǫ + 1
2 (1− αǫ). Then

E[Vǫ(Xt+1)1F |Xt = x,St] ≤

∫

y∈Rd

(α̃t(x, y)Vǫ(y) + (1− α̃t(x, y))Vǫ(x)) ℓ(x, y)dy

≤

∫

Rd\[−Y,Y]d

(

e2δα∞(x, y)Vǫ(y) +
(

1− e−2δα∞(x, y)
)

Vǫ(x)
)

ℓ(x, y)dy

+

∫

y∈[−Y,Y]d

(

Vǫ(x) + sup
‖z‖≤Y

Vǫ(z)

)

ℓ(x, y)dy

≤ (1 + 3δ)

∫

Rd

(α∞(x, y)Vǫ(y) + (1− α∞(x, y)) Vǫ(x)) ℓ(x, y)dy

+

(

Vǫ(x) + sup
‖z‖≤Y

Vǫ(z)

)

L
(

x, [−Y,Y]d
)
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≤ (1 + 3δ)aǫVǫ(x) + (1 + 3δ)bǫ +

(

Vǫ(x) + sup
‖z‖≤Y

Vǫ(z)

)

L
(

x, [−Y,Y]d
)

.

Since δ < 1
10 and (1 + 3δ)aǫ < aǫ + 1

2 (1− αǫ), we have

E[Vǫ(Xt+1)1F |Xt = x,St] ≤ (aǫ +
1

2
(1− αǫ))V (x) + (1 + 3δ)bǫ +

(

Vǫ(x) + sup
‖z‖≤Y

Vǫ(z)

)

L
(

x, [−Y,Y]d
)

.

Since Vǫ(x)L
(

x, [−Y,Y]d
)

is uniformly bounded in x for all fixed Y by item 2 of Assumption 3.2,

the claim follows with

a1 = aǫ +
1

2
(1− αǫ) < 1,

b1 = 2bǫ + sup
x

Vǫ(x)L
(

x, [−Y,Y]d
)

+ sup
‖z‖≤Y

Vǫ(z),

finishing the proof.

We use these bounds to show that some compact set is returned to infinitely often:

Lemma B.10 (Infinitely Many Returns). For G < G(L, p∞, λ, N) sufficiently small, there exists a

compact set A that satisfies P[
∑

t∈N
1Xt∈A =∞] = 1.

Proof. Combining Lemmas B.6, B.8 and B.9, there exists some number X > 0 and almost surely

finite random time τX so that Xt satisfies a drift condition of the form

E[V (Xt+1)1t>τX
|Xt = x,St] ≤ aV (x) + b

for some function V and constants 0 ≤ a < 1, b < ∞. The existence of a recurrent compact set

follows immediately from this drift condition and Lemma 4 of (Rosenthal, 1995).

This allows us to slightly strengthen Lemma B.9:

Lemma B.11. All times τX ,2X of the form given in Equation (23) satisfy P[τX ,2X < ∞] = 1 and

are stopping times with respect to {St}. Furthermore, for G < G(L, p∞, λ, N) sufficiently small,

there exists a random time τ of the form given in Equation (23) so that

E[Vǫ(Xt+1)1τ<t|Xt,St] ≤ a1Vǫ(Xt) + b1 (28)

for some 0 ≤ a1 < 1, 0 ≤ b1 <∞.
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Proof. By inequality (24), there exists a random time τ ≡ τX ,2X of the form (23) that is at least as

large as the random time τX constructed in the proof of Lemma B.10 and that satisfies P[τ <∞] = 1.

As shown in Lemma B.10, an inequality of the form (28) holds for τX , and so the same inequality

must also hold with τX replaced by the larger time τ ≥ τX .

The only detail to check is that all random times τX ,2X of the form (23) are stopping times

with respect to {St}t∈N. Let {Pi} be the partition associated with τX ,2X , as constructed in Lemma

B.6. By Lemma B.10 and part 3 of Assumption 3.2, we have P[|{Lt}t∈N ∩ P
(1)
i | =∞] = 1 for all i.

Thus, in the notation of Lemma B.6, Ic = ∅ and k(i) = 1 for all i ∈ I. Thus, we have shown that

τX ,2X = inf{t : ∀i, |P
(1)
i ∩ St| ≥ N}, which is clearly a stopping time with respect to {St}t∈N, and

the proof is finished.

We now finish our proof of Theorem 3.3 analogously to our proof of Theorem 3.4.

The following bound is almost identical to Lemma B.3, but now proved under the Gaussian

envelope assumption for the target density.

Lemma B.12 (Convergence of Kernels). Let the assumptions stated in the statement of Theorem

3.3 hold and fix a compact set A ⊂ Θ. For all δ > 0, there exists a stopping time τ = τ(δ) with

respect to {St}t∈N so that

sup
t>τ

sup
x∈A
‖K∞(x, ·)− K̃t(x, ·)‖TV < δ (29)

and so that P[τ <∞] = 1.

Proof. Fix a constant 0 < R < ∞ so that A ⊂ BR(0). By results in (Conn et al., 2009), for any

λ, α > 0, there exists a constant c = c(α, λ) > 0 so that supθ∈A |pS(θ)− p(θ|d)| < α if S is λ-poised

and (c, R, R)-good. Set c = c(ǫ, λ) and define τ ′ = inf{t : St is (c, R, R) − good}. By definition,

τ ′ is a stopping time with respect to {St}t∈N that satisfies inequality (29). We now check that

P[τ ′ < ∞] = 1. By the assumption that ℓ(x, y) is bounded away from 0, there exist ǫ > 0 and

measures µ, {rx}x∈Θ so that

L(x, ·) = ǫµ(·) + (1− ǫ)rx(·). (30)

Let {Ai}i∈N and {Bi}i∈N be two sequences of i.i.d. Bernoulli random variables, with success

probabilities ǫ and β respectively. Let τ0 = inf{t : Xt ∈ A} and define inductively τi+1 = inf{t >
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τi + 1 : Xt ∈ A}. By equality (30), it is possible to couple the sequences {Xt}t∈N, {Ai}i∈N so that

P[Lτi
∈ ·|τi, Xτi

, Ai = 1] = µ(·) (31)

P[Lτi
∈ ·|τi, Xτi

, Ai = 0] = rXτi
(·).

We can further couple {Bi}i∈N to these sequences by using Bi for the random variable in step

12 of Algorithm 4 at time τi. That is, when running Algorithm 4, we would run the subroutine

RefineNear in step 13 of the algorithm at time t = τi if Bi = 1, and we would not run that

subroutine in that step at that time if Bi = 0. Define I = {i ∈ N : Ai = Bi = 1}. Under this

coupling of {Ai}i∈N, {Bi}i∈N, and {Xt}t∈N,

{Lτi
}i∈I, τi<t ⊂ St.

Furthermore, {Lτi
}i∈I, i≤N is an i.i.d sequence of N draws from µ, and by Lemma B.10, P[τi <∞] =

1 for all i. Let Ej be the event that {Lτi
}i≤j is (c, R, R)-good. We have τ ′ ≤ inf{τj : Ej holds}. By

independence of the sequence {Lτi
}i∈N, we obtain

P[τ ′ <∞] ≥ lim inf
j→∞

P[Ej ] = 1.

This argument shows that, for any compact set A, there exists a stopping time τ ′ with respect

to {St}t∈N so that P[τ ′ <∞] = 1 and so that

sup
t>τ ′

sup
x∈A
‖K̃t(x, ·)−K∞(x, ·)‖TV < δ. (32)

This completes the proof of the Lemma.

We are finally ready to prove Theorem 3.3:

Proof of Theorem 3.3. As with the proof of Theorem 3.4, it is sufficient to show that, for all ǫ, δ, G >

0 sufficiently small and all B ≫ ǫ−1 sufficiently large, the conditions of Theorem B.1 can be satisfied

for some time T = Tǫ,δ with the same drift function V and constants α, a, b.

By Assumption 3.2 and Theorem 12 of Rosenthal (1995), inequality (11) holds for some α > 0

and {Cx}x∈Θ. For any fixed 0 < B < ∞ and all 0 < G, δ sufficiently small, Lemma B.12 implies
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that there exists some almost surely finite stopping time τ1 = τ1(δ) so that inequality (13) holds

for the set F1 = {τ1 > t}. Lemma B.11 implies that, for all G > 0 sufficiently small, there exists

some almost surely finite stopping time τ2 so that inequality (14) holds for the set F2 = {τ2 > t}.

Choose T to be the smallest integer so that P[max(τ1, τ2) > T ] < ǫ and set F = {min(τ1, τ2) > T }.

We then have that inequalities (13) and (14) are satisfied. Finally, inequality (12) holds by part 2

of Assumption 3.2. We have shown that there exist fixed values of C and α so that the conditions

of Theorem B.1 hold for all ǫ, δ > 0 sufficiently small. We conclude that, for all ǫ, δ > 0 sufficiently

small,

lim sup
T →∞

‖L(XT )− π‖TV ≤ 3ǫ + δ
log
(

eδ
C log(1−α)

)

log(1− α)
+

4b

aB
⌈

log
(

δ
C log(1−α)

)

log(1− α)
+ 1⌉.

Letting B go to infinity, then δ go to 0 and finally ǫ go to 0 completes the proof.

B.6 Alternative assumptions

In this section, we briefly give other sufficient conditions for ergodicity. We do not give detailed

proofs but highlight the instances at which our current arguments should be modified.

The central difficulty in proving convergence of our algorithm is that, in general, the local poly-

nomial fits we use may be very poor when Rt is large. This difficulty manifests in the fact that,

for most target distributions, making the set S a (c, r, R)-good set does not guarantee that K̃S

inherits a drift condition of the form (14) from K∞, for any value of c, r, R. Indeed, no property

that is monotone in the set S can guarantee that K̃S satisfies a drift condition. In a forthcoming

project focused on theoretical issues, we plan to show convergence based on drift conditions that

only hold ‘on average’ and over long time intervals. There are several other situations under which

it is possible to guarantee the eventual existence of a drift condition, and thus ergodicity:

1. Fix a function δ0 : Θ→ R
+ and add the step “If Rt > δ0(θ+), S ← {(θ+, f(θ+)}∪S)” between

steps 7 and 8 of Algorithm 4. If limr→∞ sup‖x‖≥r δ0(x) = 0 and

lim
r→∞

sup
‖x‖≥r

max(‖p′(θ|d)‖, ‖p′′(θ|d)‖) = 0,

then the main condition of Lemma B.9, inequality (26) (with α∞ replaced by the acceptance

function of K), holds by a combination of Theorems 3.14 and 3.16 of (Conn et al., 2009). If

p(θ|d) has sub-Gaussian tails, the proof of Lemma B.9 can then continue largely as written
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if we replace p∞(x) with p(x|d) wherever it appears. Since the Gaussian envelope condition

is only used to prove that the condition in Lemma B.9 holds, Theorem 3.3 holds with the

Gaussian envelope condition replaced by these requirements.

2. Similar results sometimes hold if we only require that δ0(x) ≡ δ0 be a sufficiently small constant.

Theorem 1 of Ferré et al. (2013), combined with Theorems 3.14 and 3.16 of (Conn et al., 2009),

can be used to obtain weaker sufficient conditions under which the condition in Lemma B.9

holds.

3. If d = 1, Ndef = 2, and the approximations in Algorithm 4 are made using linear rather than

quadratic models, we state without proof that a drift condition at infinity proved in Lemma

B.9 can be verified directly. For d ≥ 2, more work needs to be done.

4. Finally, we discuss analogous results that hold for other forms of local approximation, such as

Gaussian processes. When the target distribution is compact, we expect Theorem 3.4 to hold

as stated whenever local approximations to a function based on (c, R, R)-good sets converge to

the true function value as c goes to 0. In our proof of Theorem 3.4, we cite (Conn et al., 2009)

for this fact. The proof of Theorem 3.4 will hold as stated for other local approximations

if all references to (Conn et al., 2009) are replaced by references to appropriate analogous

results. Such results typically hold for reasonably constructed local approximation strategies

(Cleveland and Loader, 1996; Atkeson et al., 1997).

When the target distribution is not compact, modifying our arguments can be more difficult,

though we expect similar conclusions to often hold.

B.7 Examples for parameter choices

Example B.13 (Decay Rate for β). We note that if βt decays too quickly, our sampler may not

converge, even if γt → 0 at any rate. Consider the proposal distribution L that draws i.i.d. uniform

samples from [0, 1]d and let λ(·) denote the Lebesgue measure. Consider a target distribution of

the form p(θ|d) ∝ 1θ∈G for set G with Lebesgue measure 0 < λ(G) < 1. If
∑

t βt < ∞, then by

Bo+rel-Cantelli, the probability p = p ({βt}t∈N) that no points are added to S except during the

initial choice of reference points or failed cross-validation checks is strictly greater than 0. With

probability λ(G)k > 0, the first k reference points are all in G. But if both these events happen, all

cross-validation checks are passed for any γ > 0, and so the walk never converges; it samples from

the measure λ forever.
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Example B.14 (Decay Rate for γ). We note that we have not used the assumption that γ < ∞

anywhere. As pointed out in Example B.13, in a way this is justified—we can certainly find sequences

{βt}t∈N and walks that are not ergodic for any sequence γt > 0 converging to zero at any rate.

In the other direction, there exist examples for which having any reasonable fixed value of γ gives

convergence, even with β = 0. We point out that this depends on the initially selected points; one

could be unlucky and choose points with log-likelihoods that happen to lie exactly on some quadratic

that does not match the true distribution. Consider a target density π(x) ∝ 1 + C1x> 1
2

on [0, 1]

with independent proposal moves from the uniform measure on [0, 1]. To simplify the discussion,

we assume that our approximation of the density at each point is linear and based exactly on the

three nearest sampled points. Denote by St the points which have been evaluated by time t, and let

S0 = { 1
8 , 2

8 , 3
8 , 5

8 , 6
8 , 7

8}. Write x1, . . . , xm(t) = St ∩ [0, 1
2 ] and xm(t)+1, . . . , xn(t) = St ∩ [ 1

2 , 1]. It is

easy to check that

‖L(Xt+1)− π‖TV ≤ xm(t)+3 − xm(t)−2. (33)

It is also easy to see that with probability one, for any γ < 1
2 , there will always be a subinterval of

[xm(t)−2, xm(t)+3] with strictly positive measure for which a cross-validation check will fail. Com-

bining this with inequality (33) implies that the algorithm will converge in this situation, even with

β = 0. Furthermore, in this situation choosing β ≡ 0 results in a set St that grows extremely slowly

in t, without substantially increasing bias.

C Genetic toggle switch inference problem

Here we provide additional details about the setup of the genetic toggle switch inference problem from

Section 4.2. This genetic circuit has a bistable response to the concentration of an input chemical,

[IPTG]. Figure 13 illustrates these high and low responses, where the vertical axis corresponds to

the expression level of a particular gene. (Gardner et al., 2000) proposed the following differential-

algebraic model for the switch:

du

dt
=

α1

1 + vβ
− u, (34)

dv

dt
=

α2

1 + wγ
− v,

w =
u

(1 + [IPTG]/K)η
.
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The model contains six unknown parameters Zθ = {α1, α2, β, γ, K, η} ∈ R
6, while the data cor-

respond to observations of the steady-state values v(t = ∞) for six different input concentrations

of [IPTG], averaged over several trials each. As in (Marzouk and Xiu, 2009), the parameters are

centered and scaled around their nominal values so that they can be endowed with uniform priors

over the hypercube [−1, 1]6. Specifically, the six parameters of interest are normalized around their

nominal values to have the form

Zi = θ̄i(1 + ζiθi), i = 1, . . . , 6,

so that each θi has prior Uniform[−1, 1]. The values of θ̄i and ζi are given in Table 1. The data are

observed at six different values of [IPTG]; the first corresponds to the “low” state of the switch while

the rest are in the “high” state. Multiple experimental observations are averaged without affecting

the posterior by correspondingly lowering the noise; hence, the data comprise one observation of

v/vref at each concentration, where vref = 15.5990. The data are modeled as having independent

Gaussian errors, i.e., as draws from N (di, σ2
i ), where the high- and low-state observations have dif-

ferent standard deviations, specified in Table 2. The forward model may be computed by integrating

the ODE system (35), or more simply by iterating until a fixed point for v is found.
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Figure 13: Response of the pTAK117 genetic toggle switch to the input concentration of IPTG
(Gardner et al., 2000). The plot shows the mean and standard deviation of the experimentally-
observed gene expression levels over a range of input concentrations. Expression levels are normalized
by the mean response at the largest IPTG concentration.
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Table 1: Normalization of the parameters in the genetic toggle switch example.

α1 α2 β γ K η

θ̄i 156.25 15.6 2.5 1 2.0015 2.9618e-5

ζi 0.20 0.15 0.15 0.15 0.30 0.2

Table 2: Data and obervation error variances for the likelihood of the genetic toggle switch example.

[IPTG] 156.25 15.6 2.5 1 2.0015 2.9618e-5

di 0.00798491 1.07691684 1.05514201 0.95429837 1.02147051 1.0

σi 4.0e-5 0.005 0.005 0.005 0.005 0.005

D Elliptic PDE inverse problem

Here we provide details about the elliptic PDE inference problem. The forward model is given by

the solution of an elliptic PDE in two spatial dimensions

∇s · (k(s, θ)∇su(s, θ)) = 0, (35)

where s = (s1, s2) ∈ [0, 1]2 is the spatial coordinate. The boundary conditions are

u(s, θ)|s2=0 = s1,

u(s, θ)|s2=1 = 1− s1,

∂u(s, θ)

∂s1

∣

∣

∣

∣

s1=0

= 0,

∂u(s, θ)

∂s1

∣

∣

∣

∣

s1=1

= 0.

This PDE serves as a simple model of steady-state flow in aquifers and other subsurface systems;

k can represent the permeability of a porous medium while u represents the hydraulic head. Our

numerical solution of (35) uses the standard continuous Galerkin finite element method with bilinear

basis functions on a uniform 30-by-30 quadrilateral mesh.

The log-diffusivity field log k(s) is endowed with a Gaussian process prior, with mean zero and

an isotropic squared-exponential covariance kernel:

C(s1, s2) = σ2 exp

(

−
‖s1 − s2‖

2

2ℓ2

)

,

54



for which we choose variance σ2 = 1 and a length scale ℓ = 0.2. This prior allows the field to be

easily parameterized with a Karhunen-Loève (K-L) expansion (Adler, 1981):

k(s, θ) ≈ exp

(

d
∑

i=1

θi

√

λiki(s)

)

,

where λi and ki(s) are the eigenvalues and eigenfunctions, respectively, of the integral operator

on [0, 1]2 defined by the kernel C, and the parameters θi are endowed with independent standard

normal priors, θi ∼ N (0, 1). These parameters then become the targets of inference. In particular,

we truncate the Karhunen-Loève expansion at d = 6 modes and condition the corresponding mode

weights (θ1, . . . , θ6) on data. Data arise from observations of the solution field on a uniform 11× 11

grid covering the unit square. The observational errors are taken to be additive and Gaussian:

dj = u(sj , θ) + ǫj ,

with ǫj ∼ N (0, 0.12).
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