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Corrò C, Novellasdemunt L, Li VSW. A brief history of organoids. Am J
Physiol Cell Physiol 319: C151–C165, 2020. First published May 27, 2020;
doi:10.1152/ajpcell.00120.2020.—In vitro cell cultures are crucial research tools
for modeling human development and diseases. Although the conventional mono-
layer cell cultures have been widely used in the past, the lack of tissue architecture
and complexity of such model fails to inform the true biological processes in vivo.
Recent advances in the organoid technology have revolutionized the in vitro culture
tools for biomedical research by creating powerful three-dimensional (3D) models
to recapitulate the cellular heterogeneity, structure, and functions of the primary
tissues. Such organoid technology enables researchers to recreate human organs
and diseases in a dish and thus holds great promises for many translational
applications such as regenerative medicine, drug discovery, and precision medicine.
In this review, we provide an overview of the organoid history and development.
We discuss the strengths and limitations of organoids as well as their potential
applications in the laboratory and the clinic.
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INTRODUCTION

The modern term organoid refers to cells growing in a
defined three-dimensional (3D) environment in vitro to form
mini-clusters of cells that self-organize and differentiate into
functional cell types, recapitulating the structure and function
of an organ in vivo (hence, also called “mini-organs”). Or-
ganoids can be derived from either embryonic stem cells
(ESCs), induced pluripotent stem cells (iPSCs), or neonatal or
adult stem cells (ASCs) (52, 70) through a process similar to
the way in which the organ acquires its distinctive organiza-
tion. Self-organization within the organoid occurs through
spatially restricted lineage commitment and cell sorting, which
requires activation of various signaling pathways mediated by
intrinsic cellular components or extrinsic environments such as
extracellular matrix (ECM) and media.

ASC-derived organoids are generated directly from post-
natal or adult tissues either from single ASC or ASC-
containing tissue units. This is supported by a cocktail of
growth factors in the culture media that recapitulate signal-
ing control under normal tissue homeostasis. Besides nor-
mal tissues, ASC-derived organoids can also be established
from patient-specific material for disease modeling and
precision medicine (see ORGANOID APPLICATIONS below). On
the other hand, ESC/iPSC-derived organoids involve step-
wise differentiation protocols using various growth factors
or inhibitors that resemble the developmental cues during
gastrulation and organogenesis. The pluripotent property of
ESCs and iPSCs enables the generation of organoids from

all three germ layers. This is particularly useful for studies
of early-stage embryonic development, where primary hu-
man material is limited. In this review, we will discuss the
history and development of 3D organoid culture and provide
the most recent update on organoid research that covers
whole range of systems. We will explore various applica-
tions of organoid technology in biomedicine and discuss its
promises and challenges. Finally, we will evaluate the pros
and cons of 3D organoid technology compared with other
conventional models.

3D CULTURE MODELS: FROM CELL AGGREGATES TO
ORGANOIDS

The 3D culture system is established by suspension culture
to avoid direct physical contact to the plastic dish. This can be
achieved using scaffold or scaffold-free techniques. Scaffolds
are biological or synthetic hydrogels that resemble the natural
ECM. The most commonly used one is Matrigel, which is a
heterogeneous and gelatinous protein mixture secreted by En-
gelbreth-Holm-Swarm (EHS) mouse sarcoma cells (99). It
comprises mainly adhesive proteins such as collagen, entactin,
laminin, and heparin sulfate proteoglycans, which resemble the
extracellular environment to provide structural support and
ECM signals to the cells. For scaffold-free techniques, cells are
cultured in droplets of a defined culture medium hanging from
a plate by gravity and surface tension (146). Alternatively, the
3D structure of the organoids can also be established via
“air-liquid-interface.” In this case, cells are cultured on a basal
layer of fibroblasts or Matrigel that are initially submerged in
medium, which gradually evaporates and exposes the upper
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cell layers to the air to allow polarization and differentiation
(61, 147).

Back in 1907, Henry Van Peters Wilson described the first
attempt of in vitro organism regeneration, where he demon-
strated that dissociated sponge cells can self-organize to regen-
erate a whole organism (159). A few decades later, several
groups performed dissociation-reaggregation experiments to
generate different types of organs from dissociated amphibian
pronephros (46a) and chick embryos (158). In 1964, Malcolm
Steinberg introduced the differential adhesion hypothesis, pro-
posing that cell sorting and rearrangement can be explained by
thermodynamics mediated by differential surface adhesion
(135). Stem cell research began to thrive when pluripotent stem
cells (PSCs) were first isolated and established from mouse
embryos in 1981 (34, 84). But it was not until 1998 that
scientists were able to isolate and culture embryonic stem cells
derived from human blastocysts for the first time (145). Later
on, iPSCs were subsequently established by the reprogram-
ming of mouse and human fibroblasts, which has brought
significant impact to stem cell and organoid research (139, 140,
164).

In 1987, scientists began to improve cell culture conditions
by simulating the in vivo microenvironment. Li et al. (75)
demonstrated that breast epithelia can form 3D ducts and
lumen when grown on EHS ECM extract, where they appeared
to be able to synthetize and secrete milk protein as opposed to
two-dimensional (2D) culture. Similarly, alveolar type II epi-
thelial cells were able to maintain their differentiation in the
presence of ECM matrix (128), highlighting the importance of
cell-matrix interactions in tissue maintenance and differentia-

tion. Organoid research began to shift from 2D to 3D when
Eiraku et al. (31) were able to generate cerebral cortex tissue
from ESCs using the 3D aggregation culture method. In 2009,
a landmark study from Sato et al. (119) showed that single
leucine-rich repeat containing G protein-coupled receptor 5
(Lgr5)-expressing adult intestinal stem cells can form 3D
intestinal organoids in Matrigel that self-organize and differ-
entiate into crypt-villus structures in the absence of a mesen-
chymal niche. This was the first report on establishing 3D
organoid culture derived from a single ASC, which set the
scene for many subsequent organoid works in other systems,
including mesendoderm (e.g., stomach, liver, pancreas, lung,
and kidney) and neuroectoderm (brain and retina) using either
ASCs or PSCs (Fig. 1). Below, we provide the most recent
updates on organoid technology in various systems.

PROGRESS IN ORGANOID RESEARCH

Gastrointestinal Organoids

The gastrointestinal (GI) tract arises from the endoderm
during development, which forms a tube that can be divided in
three different regions: the foregut, the midgut, and the hindgut
(17). The foregut gives rise to the oral cavity, pharynx, respi-
ratory tract, pancreas, stomach, and the liver, the midgut gives
rise to the small intestine and the ascending colon, and the
hindgut gives rise to the remaining colon and the rectum.
Understanding the molecular mechanism and signaling regu-
lation underlying the GI tract development and homeostasis is
crucial for establishment and maintenance of ASC/PSC-de-
rived organoids from these regions.
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Fig. 1. Timeline for the development of organoid cultures. A summary of key landmark studies and breakthroughs leading to the establishment of various
organoid technologies. 3D, 3-dimensional; ECM, extracellular matrix; ESCs, embryonic stem (ES) cells; hPSCs, human pluripotent stem cells; iPSCs, induced
pluripotent stem cells.
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Intestinal Organoids

In adult intestine, Wnt and Egf are known to play key roles
for stem cell maintenance in the crypt, whereas Bmp drives
differentiation in the villi (76, 87). In 2009, Sato et al. (119)
described the first establishment of long-term 3D culture of
intestine organoids from single Lgr5� stem cells. These or-
ganoids were grown in Matrigel in the presence of Wnt agonist
R-spondin, Egf, and Bmp inhibitor Noggin to form crypt-villus
structures and were able to differentiate into all intestinal cell
types, recapitulating the organization and function of the small
bowel in vivo. Similar protocols for long-term culture of human
colon, adenoma, and adenocarcinoma were subsequently estab-
lished (59, 118). Importantly, transplantation of these intestinal
organoids in mice showed long-term engraftment into the
damaged colonic epithelium in vivo, highlighting the regener-
ative potential of these 3D organoids (165). Building on these
adult-derived organoid cultures, a modified protocol of human
PSC-derived intestinal organoids was further established (133).
In particular, human PSCs were first treated with activin A to
drive mesendodermal identity, followed by Wnt3a and Fgf4 to
promote hindgut specification. The hindgut spheroids were
subsequently cultured in Matrigel following the adult-derived
organoid protocol to promote maturation. The major difference
of PSC-derived intestinal organoids from adult-derived ones is
the presence of surrounding mesenchymal cells in the culture,
which allows formation of both epithelium and mesenchyme
supported by mouse vasculature upon engraftment in vivo
(157).

Gastric Organoids

Stomach and intestinal epithelia share many molecular and
physiological similarities, including the presence of proliferat-
ing Lgr5� stem cells at the base of the glands/crypts. With
minor modification of the intestinal culture system, gastric
organoids were established from adult mouse pyloric Lgr5�
stem cells or Troy� chief cells in corpus gland with the
addition of Wnt3a and Fgf10 (6, 134). A similar method was
adopted for the establishment of long-term culture of human
adult gastric organoids (7). Subsequently, human PSC-derived
gastric organoids were generated by adding Wnt3a, Fgf4,
Noggin, and retinoic acid (RA) to drive posterior foregut fate,
followed by 3D culture in Matrigel for maturation (86). These
PSC-derived organoids are believed to adopt predominantly
pyloric lineage.

Tongue and Salivary Gland Organoids

Apart from intestine and stomach, organoids derived from
tongue in the upper GI tract have also been explored. The
initial approach was to derive lingual organoids from Bmi-
expressing stem cells from adult tongue epithelium, which
formed stratified squamous epithelia without salivary acinar
cells or taste bud cells (46). Later on, taste bud organoids were
established using LGR5�, LGR6�, or CD44� stem/progen-
itor cells derived from taste buds in circumvallate papilla tissue
with taste receptor expression (3, 109). Moreover, long-term
expansion of mouse salivary gland organoids driven by Wnt
signals has also been reported (83). More recently, it has been
shown that transcription factors Sox9 and Foxc1 can drive
differentiation of mouse ESC-derived oral ectoderm to salivary

gland organoids, which can mature to functional salary gland
following orthotopic transplantation (144).

Liver and Pancreatic Organoids

The liver derives mainly from the foregut endoderm epithe-
lium during development that gives rise to the hepatic bud
structure, which generates hepatoblasts and subsequently hepa-
tocytes and biliary epithelium (167). An early study showed
that dissociated chick embryonic hepatic tissue can reaggregate
and form secretory units with functional bile ducts (158). Adult
liver and pancreas are slow cycling under homeostasis. It has
been shown that cycling Lgr5� cells were found near the bile
ducts after damage in mice (50). These cells were able to
generate organoids (budding cysts) when grown in 3D culture
conditions with Matrigel and can be differentiated to form
mature, functional hepatocytes (50). These liver organoids
consist mostly of progenitor cells expressing bile duct and
hepatocyte markers but can differentiate into functional hepa-
tocytes when transplanted into a mouse model of liver disease
(50). In a follow-up study, long-term expansion of adult bile
duct-derived bipotent progenitors was established from human
liver (51). In 2018, two studies further reported the successful
long-term expansion of human and mouse hepatocyte as 3D
organoid culture with high engraftment efficiency (47, 103).
An alternative method has also been described to generate
vascularized human liver from human iPSCs (143). This pro-
tocol involves differentiation of human PSCs into hepatic
endodermal cells in 2D together with human mesenchymal
stem cells and human endothelial cells. When grown in Matri-
gel, these cells spontaneously form vascularized 3D aggregates
that can further engraft in vivo to form functional liver with the
vascular network.

Pancreatic organoids can also be generated by plating mouse
embryonic pancreatic progenitor cells in Matrigel (42). Simi-
larly, mouse and human pancreatic organoids were subse-
quently established from adult pancreas, which can further
differentiate to ductal and endocrine lineages after transplan-
tation (14, 49).

Brain Organoids

Vertebrate central nervous system is derived from the neu-
roectoderm during development (106). The human brain is a
highly complex system that can be broadly divided into three
regions, forebrain, midbrain, and hindbrain, that are composed
primarily of neurons and glia cells. Previous dissociation-
reaggregation experiments using chick neural progenitors de-
rived from early developing brain formed clusters of neuroep-
ithelial cells in a radial manner around a lumen similar to the
neural tube, suggesting a self-organizing capacity of these
brain cells (54). Similarly, neural progenitor cells (NPCs) also
have the ability to aggregate and form neurospheres in suspen-
sion culture with the capacity to differentiate into neurons and
astrocytes (110). Neural aggregates can also be generated from
PSC-derived embryoid body (EB) (168). More recently, neural
rosettes were further established from PSCs, which contained
NPCs surrounding a central lumen resembling the neural tube
(32). Remarkably, they can be further specified into various
mature cell types with characteristics of different brain regions
(35, 66, 79, 80, 125, 163). However, these models are still
largely based on 2D culture or simple aggregates, which lack
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the complexity for the study of brain development and func-
tion.

Watanabe and colleagues (155, 156) have pioneered in
developing 3D culture of different brain regions from mouse or
human PSCs to recapitulate the complex brain tissue organi-
zation. They first generated forebrain tissues by plating mouse
(155) or human (156) EBs in 2D. When transferred to 3D
aggregation culture, these neuroepithelium formed more com-
plex structures recapitulating the dorsal forebrain (31). This 3D
protocol was further optimized later on to allow self-organiza-
tion of neuronal layers similar to early cortical development
that can be cultured up to 112 days (60). Different brain
regional identities can also be developed from ESCs by ma-
nipulating growth factors such as Hedgehog, Fgf, Bmp, and
Wnt (23, 89, 136).

In 2013, Lancaster et al. (71) further established the 3D
cerebral organoids that contain different brain regions within
single organoids. This is an improved method from Watanabe
and colleagues (155, 156) by embedding EBs in Matrigel,
which allows polarization and outgrowth of large neuroepithe-
lial buds. These mini-brains can further grow up to a few
millimeters when transferred to spinning bioreactor and de-
velop into different brain regions, including retina, dorsal
cortex, ventral forebrain, midbrain-hindbrain boundary, cho-
roid plexus, and hippocampus. Subsequent studies further
generated other organoid protocols to model specific brain
regions, such as midbrain-specific organoids (58), hippocampal
organoids (115), and cerebellar organoids (88). Using 3D
printing technology, a miniaturized spinning bioreactor was
further generated to allow cost-effective generation of fore-
brain-specific organoids from human iPSCs (107).

Retinal Organoids

The neuroectoderm-derived retina originates from optic ves-
icle during development, where the front of the vesicle invagi-
nates to form two adjacent epithelial layers: the outer retinal
pigmented epithelium and the inner neural retina (44).
Reaggregation experiments in chick retina showed self-orga-
nization of retina in vitro (87a, 134a). These reaggregates can
further organize into a correctly laminated structure when
cultured in the presence of Wnt2b (91). Later on, 3D culture of
mouse EB aggregates further allowed the establishment of
optic cup organoids resembling early retina with retinal strat-
ification and apical-basal polarity (30). Optic cup organoids
can also be generated from human PSCs (92). These human
retinal organoids are larger than mouse organoids and have the
capacity to grow into multilayered tissue containing both rods
and cones.

Kidney Organoids

The kidney arises from the intermediate mesoderm through
Wnt and Fgf signaling, which develops into the ureteric bud
and the metanephric mesenchyme to form early renal tubes
(82). Similar to other tissues, dissociation-reaggregation exper-
iments in chick and mouse embryonic kidney demonstrated the
ability to self-organize and form organotypic renal structures
(148, 158). In 2013, ureteric bud organoids were established
from human PSCs that were first cultured in Bmp4 and Fgf2
for mesodermal specification, followed by exposure to RA,
activin A, and Bmp2 to generate ureteric bud-committed renal

progenitors (160). These human progenitor cells were further
cocultured with disaggregated mouse embryonic kidney cells
to self-organize and form 3D ureteric bud structures. In addi-
tion, metanephric mesenchyme identity can also be generated
from mouse EB and human PSCs by sequential exposure to
activin, Bmp4, and the Wnt activator CHIR99021, followed by
RA and Fgf9 (138). Coculture of the metanephric mesenchyme
with spinal cord tissue forms 3D structures with organized
nephric tubules and glomeruli. Similarly, hESCs can also be
differentiated to ureteric and metanephric progenitors through
primitive streak and intermediate mesoderm, which further
form 3D structures similar to ureteric epithelium and proximal
tubules when cocultured with dissociated mouse embryonic
kidney (141). In 2015, a simplified and improved protocol was
established by direct differentiation of human PSCs to complex
multicellular kidney organoids that contain nephrons associ-
ated with a collecting duct network surrounded by endothelial
cells and renal interstitium (142). More recently, long-term
culture of kidney tubular organoids was further established
from adult human or mouse kidney tissues or from human
urine, which form proximal and distal nephron segments (120).

Other Organoid Types

Organoids can be generated from a broad range of tissues in
addition to the ones mentioned above. For example, Jamieson
et al. (57) have recently established mammary organoids from
single adult mammary epithelial cells containing polarized
secretory epithelium surrounded by myoepithelial cells. Pros-
tate organoids can also be derived from adult mouse and
human prostate epithelia to form both luminal and basal cells
(19, 62). Thyroid organoids were generated by transient ex-
pression of the transcription factors NKX2–1 and PAX8 to
direct mouse ESC differentiation into thyroid follicular cells
and form 3D follicular structures when treated with thyrotropin
(4). Cardiovascular organoids can be generated from EBs by
modulating substrate stiffness (129). Lung organoids can be
generated by coculturing adult bronchioalveolar stem cells and
lung endothelial cells in Matrigel (72). Similarly, human air-
way organoids were established from bronchoalveolar resec-
tions that comprise basal cells, functional ciliated cells, mucus-
producing cells, and CC10-secreting club cells (114). Stable
fallopian tube organoids were also established from human
fallopian tubes containing both ciliated and secretory cells
(63). In addition, pituitary organoids have also been generated
from EBs when grown under ectoderm-promoting conditions,
which can further mature and synthesize pituitary hormones
(137). A similar protocol has been used to generate inner ear
organoids from EBs, which consist of functional inner ear
sensory epithelia with stereocilia and kinocilia (68).

Besides modeling individual organs, organoids have also
been recently used to explore early mammalian embryonic
development. Embryonic organoids or gastruloids were estab-
lished by 3D aggregation of mouse ESCs in suspension that
developed into embryo-like structures with polarized gene
expression in the absence of external asymmetry clues (152).
These embryonic organoids self-organize and exhibit behav-
iors reminiscent of mammalian gastrulation, giving rise to cell
types that correspond to the three germ layers with axial
organization in a time scale similar to mouse embryos. Com-
parison of mouse gastruloids and embryos further reveals
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somitogenesis dynamics, highlighting the power of these gas-
truloids as a model for exploring early embryonic development
in vitro (151). It will be important to further develop equivalent
gastruloid systems in primates to model human embryo devel-
opment in vitro.

In fact, organoid technology has also been extended to other
animal models in addition to mouse and human. Methods of
generating intestinal, mammary, keratinocyte, and liver or-
ganoids have been reported in different species such as bovine,
porcine, ovine, chicken, feline, and canine (5, 29). A recent
study has further reported the generation of snake venom gland
organoids that express high levels of toxin transcripts, which
can potentially be used for toxicology studies (105).

Despite the diversity of organoid systems and their corre-
sponding culture protocols, there are some core growth factors
and chemical modulators shared between systems. In particu-
lar, vast majority of the ASC-derived organoids are cultured in
Matrigel suspension, which requires serum-free basal media
supplemented with Wnt agonists and/or ligands (R-spondin,
Wnt3a), Egf, and BMP inhibitor (Noggin). Depending on the
signaling or hormonal requirements of their tissues of origin,
additional growth factors or inhibitors [such as FGF in liver
(47, 50, 51), gastric (6, 7, 134) and pancreatic (14, 49)
organoids, gastrin in gastric organoids (6, 7, 134), and dihy-
drotestosterone in prostate organoids (19, 62)] are added to the
cultures. On the other hand, stepwise differentiation protocols
are required for ESC/PSC-derived organoids. Notably, activin
A is required to drive differentiation of ESCs/PSCs to defini-
tive endoderm, whereas Fgf and Wnt can promote neurome-
soderm differentiation (21, 41). In essence, the similarities and
differences of the culture protocols between systems reflect the
growth signal requirement during development and tissue ho-
meostasis.

ORGANOID APPLICATIONS

Organoids are becoming one of the mainstream cell culture
tools in many biomedical studies. The wide range of tissue
types, the long-term expansion capacity, and the physiological
3D architecture of organoids make them a powerful new
technology for many biological and clinical applications. No-
tably, organoids have been widely used for development and
disease modeling, precision medicine, toxicology studies, and
regenerative medicine (Fig. 2). Below, we focus on the appli-
cations of organoids in disease modeling, biobanking, preci-
sion medicine, and regenerative medicine.

Disease Modeling

Genetic diseases. Cystic fibrosis (CF) is an autosomal re-
cessive genetic disease caused by mutations in the cystic
fibrosis transmembrane conductance regulator (CFTR) chlo-
ride channel. In 2013, Dekkers et al. (24) generated the first
human CF-patient derived intestinal organoids carrying
F508del CFTR mutation to recapitulate the disease in vitro.
They developed a swelling assay where healthy organoids
respond to Forskolin treatment by rapid swelling, whereas such
an effect is strongly reduced in CF organoids. This organoid
swelling assay has proven to be very reliable to predict re-
sponders to CFTR modulators and has become the first or-
ganoid-based personalized medicine application for CF pa-
tients in The Netherlands (8). Interestingly, gene editing by
CRISPR-mediated homologous recombination in primary pa-
tient-derived organoids (PDOs) can repair the CFTR mutation
and function, implying the potential application of such a gene
correction approach to single-gene hereditary defects (121).
Hereditary multiple intestinal atresia (HMIA) is another auto-
somal recessive disorder characterized by bowel obstructions.
Pathogenic mutations in the tetratricopeptide repeat domain 7A
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Fig. 2. Diverse applications of organoid tech-
nology. Schematic diagram summarizing var-
ious applications of organoids in many areas,
including developmental biology, disease
modeling, precision medicine, regenerative
medicine, toxicology, drug discovery studies,
host-microbiome interactions, gene editing,
multiomics, and phylogenetic studies.
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(TTC7A) have been identified (117). Patient-derived intestinal
organoids showed activation of the RhoA kinase pathway and
apicobasal polarity inversion, which could be restored by
adding RhoA kinase inhibitor (Y-27632) (13). Similarly, liver
organoids derived from patients with �1-antitrypsin (A1AT)
deficiency and Alagille syndrome can also recapitulate the in
vivo pathology, where accumulation of misfolded precipitates
of A1AT protein in hepatocytes and biliary defects were
observed respectively (51).

Cerebral organoids have been used to model human micro-
cephaly, a genetic disease caused by a mutation in CDK5RAP2,
where organoids generated from patient-derived iPSCs were
smaller with reduced progenitor regions (71). Forebrain or-
ganoids have been used to model a genetic condition that
causes lissencephaly (smooth brain), which showed defects in
progenitors and Wnt signaling (9, 53). Brain organoids could
also be relevant models for neurodegenerative diseases such as
Alzheimer’s disease (AD), the most common type of dementia,
characterized by extracellular deposition of misfolded amy-
loid-� (A�)-containing plaques and intracellular neurofibril-
lary tangles (NFTs) (43, 153). Raja et al. (108) have developed
a scaffold-free culture method to generate iPSC-derived brain
organoids from patients with familial AD, which could repro-
duce several AD pathologies, like A� aggregation, hyperphos-
phorylated tau protein, and abnormalities of endosomes. Treat-
ment of these patient organoids with �- and �-secretase inhib-
itors can significantly reduce the A� and tau pathology,
demonstrating the potential of using human brain organoids for
drug discovery in AD (108). More recently, mini-brains have
further been used to model Parkinson’s disease (PD) (132).
These organoids were generated from midbrain floor plate
NPCs containing midbrain dopaminergic neurons (mDANs)
that resemble key features of the human midbrain to produce
and secrete dopamine. PD PDOs carrying LRRK2-G2019S
mutation recapitulated main features of the disease with de-
creased number and complexity of mDANs. In parallel, Kim et
al. (65) have generated isogenic midbrain hiPSCs-derived
organoids by introducing heterozygous LRKK2-G2019S point
mutation using the CRISRP/Cas9 system to model PD. Tran-
scriptome analysis of control versus mutant organoids identi-
fied thioredoxin-interacting protein as the key factor to mediate
the LRRK2-G2019S pathological phenotype (65).

In addition, iPSC-derived retinal organoids carrying a mu-
tation in CEP290 have been used to model Leber congenital
amaurosis, a ciliopathy that leads to inherited blindness. By
restoring the expression of full-length CEP290, cilia length and
protein trafficking in cilium were restored (100). Human PSC-
derived lung bud organoids have also been used to model
intractable pulmonary fibrosis by introducing mutation in
HPS1, leading to accumulation of ECM and mesenchymal
cells reminiscent of the features of fibrotic lung disease (18).
Together, these results highlight the advantage of the 3D
organoid-based culture system for studying genetic diseases.

Infectious diseases. The 3D organoid technology offers
excellent models for the study of host-pathogen interaction in
different human infectious diseases involving viruses, bacteria,
and protozoan parasites. For instance, cerebral organoids have
recently been adopted to study the mechanisms of microceph-
aly caused by Zika virus infection that showed overall smaller
sizes of infected organoids compared with controls, which is
consistent with the pathology observed in patients (20, 40,

107). Treatment strategies have further been explored in these
Zika-infected organoids to prevent the effects of Zika virus
infection on neural progenitors (161, 170). Intestinal organoids
also present valuable models to study a number of infectious
diseases. For instance, by using human primary intestinal
organoids, scientists suggested that human intestinal tract may
serve as an alternative infection route for Middle East respira-
tory syndrome coronavirus (MERS-CoV), which has caused a
major human respiratory infection outbreak in 2012 (169).
Human enteroids (organoids derived from small intestine) have
also been used to study norovirus, where nitazoxanide treat-
ment showed great inhibition of norovirus replication through
activation of cellular antiviral response, indicating the thera-
peutic potential (33). Other viral infection studies using or-
ganoid systems include rotavirus and enteric adenovirus using
intestinal organoids, herpes simplex virus 1 and cytomegalo-
virus in cerebral organoids, and BK virus infection in human
kidney organoids (29).

Organoids are also increasingly popular for modeling para-
sitic infections. In 2018, Heo et al. (45) showed that microin-
jection of Cryptosporidium parvum into human intestinal and
lung organoids allows the parasites to propagate within the
organoids and complete its complex life cycle, which was not
possible previously in conventional 2D culture systems. Sim-
ilarly, Toxoplasma gondii has been shown to successfully
infect and propagate in bovine and porcine small intestinal
organoids (25).

3D organoid constructs have also been employed to inves-
tigate the relationship between infectious pathogens and cor-
responding cancers. For instance, epidemiological association
between Helicobacter pylori and stomach cancers has been
investigated through coculture of the pathogen with gastric
organoids (7). Similarly, fallopian tube organoids were used to
model the long-term impact of Chlamydia trachomatis infec-
tions in the human epithelium that may contribute to the
development of ovarian cancer (64). Other uses of intestinal
organoids to model bacterial pathogenesis include Escherichia
coli, Vibrio cholerae, Clostridium difficile, and Shigella (29).
Very recently, primary human intestinal organoids have been
used to study the genotoxic pks� E. coli carrying the colibac-
tin-producing pks pathogenicity island (104). Long-term expo-
sure of the pks� E. coli induces a distinct mutational signature
that is absent from organoids exposed to the isogenic pks-
mutant bacteria. Importantly, the same mutational signature is
detected in a subset of colorectal cancer (CRC), implying that
exposure to pks� E. coli may be the direct cause of the
mutational signature.

Cancers. For many years, immortalized human cancer-de-
rived cell lines were the fundamental in vitro models for cancer
studies. Patient-derived xenografts (PDXs) have subsequently
been developed to better model tumor tissue architecture and
heterogeneity in vivo. Despite being physiological, PDXs are
very costly and time-consuming. The emergence of organoid
technology in recent years has opened up an unprecedented
approach to model human cancers in vitro. Organoids derived
from different mouse or human tumors have now been widely
adopted for the study of different types of cancer. CRC or-
ganoids were first established from different anatomic sites and
displayed distinctive sensitivities to Wnt3a and R-spondin
(118). Human liver cancer organoids were derived from pa-
tients by extensive refinement of medium conditions to expand
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the three common subtypes: hepatocellular carcinoma, cholan-
giocarcinoma, and combined hepatocellular-cholangiocarci-
noma (16). Long-term maintenance and enrichment of pancre-
atic ductal adenocarcinoma (PDAC) organoids have also been
established from mouse and human primary tissues that retain
the histoarchitecture and phenotypic heterogeneity of the pri-
mary tumors (14, 48, 127). In addition, primary breast cancer
organoids have been reported to faithfully recapitulate the
corresponding parent tumors in morphology, histopathology,
hormone receptor status, and mutational landscape (112). Or-
ganoids of other cancer types have also been subsequently
established, including gastric (78, 90, 93, 126), prostate (39),
ovarian (69), brain (22), bladder (74), kidney (15), lung (114),
and esophageal cancers (77).

Alternatively, human cancer can also be engineered by
introducing pathological mutations to wild-type organoids,
using gene editing tools such as gene transfer, CRISPR-Cas9,
or RNA interference methods. For instance, colorectal adeno-
ma-carcinoma sequence can be recreated by introducing driver
mutations (APC, KRAS, TP53, SMAD4, and PIK3CA) to
healthy wild-type organoids and form invasive carcinoma after
transplantation (28, 85). Further interrogation of different APC
truncating mutations in intestinal organoids revealed the criti-
cal regulatory region for pathological Wnt activation in CRCs
(96). Similarly, Seino et al. (127) modeled PDAC organoids by
engineering driver genes KRAS, CDKN2A, SMAD4, and TP53
via CRISPR-targeting, which revealed an unexpected Wnt
niche adaptive response mediated by TP53 mutations.

Unlike 2D cancer cell lines, cancer-derived organoids often
retain their tumor heterogeneity and are thus ideal for study of
tumor evolution. By comparing organoids derived from pri-
mary colorectal tumors and metastatic lesions isolated from the
same patients, Fujii et al. (38) revealed that these tumors shared
the same common origin and driver mutations, implying that
the driver mutations precede metastatic dissemination. Later
on, Roerink et al. (111) generated clonal organoids derived
from multiple single cells from three CRCs as well as from
adjacent normal intestinal crypts to study intratumor diversifi-
cation. Global mutational landscape was used to construct
phylogenetic trees, which showed extensive mutational diver-
sification in CRC cells and that most mutations were acquired
during the final dominant clonal expansion of the cancer.
Taken together, these 3D organoids present revolutionary in
vitro tools for disease modeling, phylogenetic, and drug dis-
covery studies.

Biobanking and Precision Medicine

The long-term expansion capacity of organoids has opened
possibilities for biobanking of disease-derived organoids.
These biobanks represent valuable resources for clinical appli-
cations such as omics analysis for cancer stratification and drug
screening for precision medicine. In the past few years, exten-
sive efforts have been made to establish living organoid bio-
banks derived from many different tumor types, including
colorectal (38, 150), gastric (162), liver (16, 97), pancreatic
(27), breast (112), prostate (11), lung (81, 114), glioblastoma
(56), and bladder (74) cancer. Large-scale genomic and func-
tional analysis from various studies have shown that tumor-
derived organoids can faithfully recapitulate the phenotypic
and genomic features of the primary tumors both in vitro and

in vivo after transplantation (14, 39, 73, 112, 150). Importantly,
the tumor heterogeneity and clonal dynamics were preserved
after serial passaging of PDOs, indicating that these “mini-
tumors” are genetically stable with enormous clinical applica-
bility (15). With increasing interest in the use of organoids for
disease modeling, biobanking can soon be extended beyond
cancer, such as intestinal and lung organoids for cystic fibrosis
patients and liver organoids for patients with various metabolic
diseases.

The PDOs also provide unique opportunities for precision
medicine through drug screening and drug safety test. Failure
of many drug developments in clinical trials could partly be
attributed to the inadequate evaluation of the drug toxicity at
the preclinical trial stage. The emerging 3D organoid technol-
ogy with the ability to grow matched normal and tumor PDOs
enables proper assessment of drug toxicity and the possibility
to determine the optimal and effective doses that would kill
tumor cells with minimal damage to normal tissue. For in-
stance, liver and kidney organoids would be excellent plat-
forms to evaluate potential drug-related hepatic and nephron
toxicity.

Another important clinical application of PDOs is to screen
for drug responders. In a recent study, a living PDO biobank
has been established from patients with metastatic, colorectal,
and gastresophageal cancer, with the aim to screen for a library
of 55 drugs either in phase 1 to 3 clinical trials or in clinical
practice such as epidermal growth factor receptor (EGFR),
BRAF, and phosphatidylinositol 3-kinase (PI3K)/mammalian
target of rapamycin (mTOR) inhibitors (154). The results
showed that PDOs can faithfully recapitulate drug responses
and predict clinical outcomes in patients. Another study has
generated more than 100 primary and metastatic breast cancer
PDOs for high-throughput screening of drugs targeting HER
signaling that showed high correlation with clinical drug re-
sponses (112). Similarly, Broutier et al. (16) performed a
compound screening on PDOs from hepatocellular carcinoma
and identified ERK signaling as a potential therapeutic target
for primary liver cancer. In addition, PDOs have also been used
to screen for CFTR modulators (8), drug combination strate-
gies (102), chemotherapy, and radiotherapy responses (98,
101). These findings provide supportive evidence that PDOs
are powerful, unprecedented tools for disease modeling and
drug screening, paving the way toward precision medicine.

Regenerative Medicine

Currently, organ replacement therapy of diseased or dam-
aged tissues relies largely on allogeneic transplantation. How-
ever, the shortage of matched donor tissues and complications
of life-long immunosuppression represent some of the major
challenges of organ transplantation. The recent organoid tech-
nology with high expansion capacity and genetically stable
property suggests that PDOs could potentially be explored as
alternative treatment strategies to organ transplantation. Fol-
lowing the first establishment of mouse intestinal organoids,
Yui et al. (165) have demonstrated that mouse colonic or-
ganoids could indeed be expanded and engrafted into damaged
mouse colon and formed functional crypt units. Similar results
were observed using fetal progenitor-derived small intestinal
organoids (37). Human PSC-derived intestinal organoids have
also been subsequently transplanted to mice under kidney
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capsule and showed crypt-villus structure with permeability
and peptide uptake functions, highlighting the translational
potential for treatment of short bowel syndrome and other
gastrointestinal diseases (157). Organoids can also be com-
bined with synthetic or biological (decellularized) scaffolds to
engineer intestinal grafts in vitro (36, 67, 123).

Besides intestinal organoids, mouse adult liver organoids
have also been shown to rescue liver failure and prolong the
survival rate after transplantation into fumarylacetoacetate hy-
drolase mutant mice, a mouse model for tyrosinemia type I
liver disease, or chemically damaged liver (47, 50). Similarly,
PSC-derived liver organoids were able to rescue acute liver
failure and restore the hepatic functions (95). Treatment of
common bile duct disorders has further been explored by
engineering extrahepatic biliary tree using extrahepatic cholan-
giocyte organoids (116). The resulting engineered ducts could
reconstruct the gallbladder wall and repair the biliary epithe-
lium following transplantation.

In addition, organoids could potentially be combined with
gene correction as an alternative approach to treat single-gene
hereditary degenerative diseases. For instance, as proof of
concept, gene correction of CFTR mutation in PDOs using
CRISPR/Cas9 gene editing could repair the CFTR function
(121). It will be important to explore the therapeutic potential
of other single-gene-associated degenerative diseases, such as
PD mediated by LRRK2-G2019S mutation, using gene correct-
ed-PDOs.

Although the potential of organoid applications in precision
medicine and regenerative medicine is promising and exciting,
it is important to address the safety, ethical, and legal concerns
before moving to the clinic. One of the major concerns is the
informed consent and ownership of the PDOs and the associ-
ated commercial interests. It will be important to define how
and to what extent organoids are related to donors and the
subsequent governance of any organoid-associated data, such
as all the omics data generated from PDOs. When considering

the application of organoids in regenerative medicine, it is
particularly important to address all of the safety and ethical
concerns before applying to patients. For instance, a global
regulatory consensus of stem cell products and therapies may
be needed to resolve the discrepancies of the medical regula-
tions between countries. Open dialogues between scientists,
policy-makers, and the public are also needed to decide to what
extent these technologies should be used in the clinic.

STRENGTHS AND LIMITATIONS OF 3D ORGANOID
CULTURES OVER CONVENTIONAL MODELS

Conventional 2D cell or tissue cultures have long been used
to model human development and diseases. Despite being
widely adopted in many biomedical studies, 2D cell lines
are generally considered as nonphysiological, as they are
mostly immortalized and lack tissue architecture and com-
plexity. On the other hand, genetically engineered mouse
models (GEMMs) and PDXs are considered to be improved in
vivo alternatives to model biological processes of diseases.
Although GEMMs are the current workhorses in developmen-
tal and cancer research, the production of GEMMs (from
design to generation and breeding) often takes years to estab-
lish. In addition, GEMMs cannot 100% recapitulate human
conditions (e.g., microbiome and diversity), genetics, and/or
physiology, which may impact their predictive power in as-
sessing clinical outcomes. PDXs are another step forward to
model human cancer by xenotransplantation of patient material
into immunodeficient mice, but the establishment of PDXs is
inefficient and time consuming. The newly emerged ex vivo
PDOs offer superior alternatives to cell lines, GEMMs, and
PDXs for disease modeling. Below, we discuss the advantages
and limitations of the 3D PDOs as compared with other disease
models (Table 1).

Generation of PDOs are relatively easy once the culture
condition is optimized and can be derived from limited primary

Table 1. Comparison of different in vitro and in vivo disease models

Characteristic 2D Cell Lines 3D PDOs PDXs GEMMs

Establishment efficiency Inefficient Easy Inefficient NA
Maintenance time Low Moderate Moderate to high High
Reproducibility High Medium Medium High
Cost Low Moderate to high High High
Tissue organization 2D constrains morphogenesis Self-organized in 3D resembling

in vivo architecture
Conserved; recapitulate

patient’s tissue
Conserved but murine specific

Heterogeneity Homogenous Heterogeneous Heterogeneous Heterogeneous
Cell function Limited Moderate Conserved and relevant to

human biology
Not always relevant to human

biology
Stromal microenvironment Absent Mostly absent Preserved, except for

immune cell populations
Preserved

Functional analysis Easy Easy, but could be complicated
by the presence of matrix

Easy after tissue sampling,
complex in vivo
analysis

Easy after tissue sampling,
complex in vivo analysis

Disease modeling Poor Good Good Mediocre; possible, but
challenging for some
human diseases

Scalability Easy Limited to diffusion of nutrients Limited to engraftment
efficiency

NA

High-throughput assay Easy More difficult but possible Difficult Difficult
Drug screening Not very physiological More relevant to the patient More relevant to the

patient
Not always relevant to human

diseases
Personalized medicine Not possible Possible Possible Not always possible

2D, 2-dimensional; 3D, 3-dimensional; NA, not applicable.
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tissue materials such as needle biopsies, urine (120), or bron-
chial lavage material (114). On the contrary, derivation of cell
lines from primary tissues is often inefficient and involves
extensive adaptation to the 2D culture conditions, resulting in
substantial genetic changes. Compared with immortalized cell
lines, organoids are considered superior in recapitulating the
3D architecture, heterogeneity, and cell functions of the pri-
mary tissues and hence, are more physiologically relevant for
modeling human diseases and predicting drug response. Other
models such as PDXs and GEMMs can better recapitulate
human diseases in vivo, yet they are very costly and labor- and
time-consuming, and therefore, they are not suitable for high-
throughput screening.

Although organoid technology bridges the gap between cell
lines and in vivo models, there are still limitations of the
current system. Despites being heterogeneous, most PDOs lack
surrounding stromal cells in the culture, which fail to recon-
stitute the tumor microenvironment (TME). The TME includes
not only the surrounding fibroblasts and endothelial cells but
also immune cells and ECM. Lack of TME in PDOs may
perhaps compromise the application to predict clinical out-
come. For instance, the response rate to immunotherapy (such
as checkpoint blockade) varies among tumor types despite
being promising in the clinic. A potential in vitro screening
platform will be important to predict the immunotherapy drug
response for personalized medicine. However, most PDOs
from solid tumors lack TME and are thus not suitable for such
screening. A recent study reported the generation of PDOs
from different cancer types using an air-liquid interface method
that retains fibroblasts and immune cells in the culture, which
could potentially be used for personalized immunotherapy
testing (94). However, the fibroblasts and immune cells of
these PDOs progressively decline over a 1- to 2-mo period,
indicating that they can be used only for short-term disease
modeling. Additionally, organoids generated from chordoma
patients have also been shown to contain both PD-L1-positive
tumor cells and PD-1/CD8-positive lymphocytes, and they
displayed a marked response to nivolumab treatment (124). On
the other hand, cocultures of PDOs and peripheral blood
lymphocytes have also been explored to assess the efficiency of
T cell-mediated killing of matched tumor organoids, whereas
the coculture efficiency beyond 3 days has not been tested (26).
These studies show that, with further optimization, PDOs may
have the potential for immuno-oncology investigations.

Most organoids are suspended in Matrigel and cultured in
media saturated with growth factors. The presence of Matrigel
could affect functional/biochemical assays and complicate the
cell harvesting and passaging as compared with 2D cell line
culture. Also, the enriched growth factors surrounding the
organoids may compromise the natural morphogen gradients of
the tissues. Spinning bioreactors optimized for brain organoid
culture may resolve some of these issues. However, Bhaduri et
al. (12) have recently shown that cortical organoids ectopically
activate cellular stress pathways that impair cell-type specifi-
cation and thus do not recapitulate distinct cellular subtype
identities or appropriate progenitor maturation. The data sug-
gest that the fidelity of these mini-brain organoids requires
further evaluation.

Apart from the limitations described above, there are still
some practicality issues that need to be addressed before
large-scale rollout to the clinic. For example, the high reagent

cost for PDO production makes it unlikely to be affordable by
patients or the healthcare system. Notably, scaling up of PDOs
is not as easy as it is in cell lines due to the complex 3D culture
system. Finally, developing consistent and standardized drug
screening strategies and readout is critical to reliably predict
the patient treatment outcome in the clinic.

PERSPECTIVES

Ever since the report of the first long-term expansion of
ASC-derived organoids in 2009 (119), it has become clear that
organoid technology has unique and powerful properties to
revolutionize the conventional in vitro research tools for mod-
eling human development and diseases. In particular, organoid
studies have bridged the longstanding gaps in developmental
biology and precision medicine. The 3D architecture and
heterogenous properties of organoids enable us to study cell
lineage specifications with spatial and temporal information.
The ESC/iPSC-derived organoids have opened up the possi-
bilities for gastrulation studies and regeneration of patient-
derived organs, which were largely limited by the use of
disorganized EB previously. Importantly, the establishment of
PDOs from various disease models has further bridged the
studies between basic research and precision medicine by
providing more efficient, physiological, and reliable models as
compared with PDXs and 2D cell lines. Increasing evidence
suggests that PDOs functionally recapitulate primary human
cancers, which present valuable translational tools for disease
modeling, biobanking, drug discovery, and precision medicine.
However, there is still room for improvement in the current
organoid culture. More effort will be needed to standardize the
culture protocol and to monitor the tumor heterogeneity after
prolonged culture, which can directly affect the drug screening
results. It will also be important to develop an improved
long-term expansion protocol, including the surrounding TME,
to better recapitulate the primary tumors. In addition, organoids
can also be combined with other recent bioengineering tools
such as organ-on-a-chip for microfluidic studies (131). For
instance, microfluidic devices have been used to investigate the
behavior of immune cells toward tumor cells (1). Several
studies have further developed multi-organoid approaches to
model the kinetics of metastasis and drug responses (10, 130).
Further research on the combination of organoid and engineer-
ing technologies will open up exciting avenues for the next-
generation organoid platforms to model more complex human
physiology and pathology as well as to exploit their potential in
regenerative medicine.
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