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SUMMARY
Intravital imaging of BRAF-mutant melanoma cells containing an ERK/MAPK biosensor reveals how the
tumor microenvironment affects response to BRAF inhibition by PLX4720. Initially, melanoma cells respond
to PLX4720, but rapid reactivation of ERK/MAPK is observed in areas of high stromal density. This is linked
to ‘‘paradoxical’’ activation of melanoma-associated fibroblasts by PLX4720 and the promotion of matrix
production and remodeling leading to elevated integrin b1/FAK/Src signaling in melanoma cells. Fibro-
nectin-rich matrices with 3–12 kPa elastic modulus are sufficient to provide PLX4720 tolerance. Co-inhibition
of BRAF and FAK abolished ERK reactivation and led to more effective control of BRAF-mutant melanoma.
We propose that paradoxically activated MAFs provide a ‘‘safe haven’’ for melanoma cells to tolerate BRAF
inhibition.
INTRODUCTION

Since the discovery of oncogenes that encoded protein kinases,

it has been hoped that inhibition of the relevant kinases would be

an effective chemotherapeutic strategy (Shawver et al., 2002).

This aspiration has become a clinical reality with the develop-

ment of inhibitors against Abl tyrosine kinase (Druker et al.,

2001, 2006), EGFR family kinases (Maemondo et al., 2010;

Mok et al., 2009; Sordella et al., 2004), and BRAF (Chapman

et al., 2011; Flaherty et al., 2010; Sosman et al., 2012). However,

agents targeting either EGFR or BRAF typically show good effi-

cacy in tumors with matching oncogenic mutations for a number

of months before genetically resistant cells dominate the tumor

and the therapy fails (Kobayashi et al., 2005; Nazarian et al.,

2010; Poulikakos et al., 2011; Poulikakos and Rosen, 2011; Villa-
Significance

Many tumors show an initial response to targeted therapies b
about how tumor cells might tolerate therapy before genetic re
cells rapidly become tolerant to PLX4720 in areas of high strom
stroma, leading to enhanced matrix remodeling. The remodele
tolerate PLX4720. We propose that this safe haven enhances t
emerges. This work highlights the need to consider the effects
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nueva et al., 2011). In the case of EGFR-mutant lung tumors, it

has been shown that resistant cells may be present even before

treatment and that these are at a strong selective advantage dur-

ing therapy (Inukai et al., 2006; Maheswaran et al., 2008; Rosell

et al., 2011; Turke et al., 2010). However, the situation in BRAF-

mutant melanoma treated with BRAF inhibitors is less clear.

There is significant variability in the magnitude of initial response

to BRAF inhibition (Chapman et al., 2011; Sosman et al., 2012)

and genetically resistant sub-clones have not been detected

prior to treatment in tumors that show modest responses. It

has been proposed that non-cell autonomous mechanisms

involving HGF production by the tumor stroma may drive resis-

tance (Straussman et al., 2012; Wilson et al., 2012). However,

it is not clear how selective pressure would act on the genetically

stable stroma to promote the emergence of resistant disease.
efore genetic resistance emerges; however, little is known
sistance dominates. We show how BRAF-mutant melanoma
a. We demonstrate that PLX4720 has an effect on the tumor
d matrix then provides signals that enable melanoma cells to
he population of cancer cells from which genetic resistance
of targeted therapies on the tumor microenvironment.
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Figure 1. Melanoma Cells Respond to PLX4720 Heterogeneously In Vivo

(A and B) Growth curves of the indicated melanoma cells in vitro (A) and in vivo (B) treated with DMSO (0.1% in vitro and 4% in vivo) or PLX4720 (1 mM in vitro and

25 mg/kg in vivo). Data in (A) are represented as mean ± SD.

(C and D) Intravital longitudinal imaging of 5555-EKAREV-NLS tumors through an imaging window. The mouse was gavaged PLX4720 (25 mg/kg) every 24 hr,

and images were acquired before and 4 hr after the first, second (Day 1), and third (Day 2) gavage. ERK activities in (D) were quantified and shown as mean ± SD.

Scale bars represent 100 mm.

(legend continued on next page)
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Establishing the chronology of biochemical responses to

targeted therapy and biological changes elicited within the

context of complex tumor microenvironments remains chal-

lenging. BRAF exerts its effects through activation of ERK/

MAPK signaling. The activity of ERK/MAPK can be monitored

in live tissue using a biosensor construct containing two fluoro-

phores, a long flexible linker, an ERK/MAP kinase binding site,

an optimal substrate site for the kinase, and a phospho-threo-

nine binding domain (Harvey et al., 2008; Komatsu et al.,

2011). When the substrate site is phosphorylated, it engages in

an intra-molecular interaction with the phospho-threonine bind-

ing domain, leading to an overall change in the conformation of

the molecule and a change in fluorescence resonance energy

transfer (FRET) between the two fluorophores (Komatsu et al.,

2011). This system enables the biochemical response to BRAF

inhibition to be monitored with single cell resolution in vivo.

Genetically engineered syngeneic hosts additionally provide

the ability to depict the tumor stroma (Muzumdar et al., 2007).

These technologies can be combined with intravital imaging

windows to longitudinally track both the biochemical response

to BRAF inhibition and the distribution of the tumor stroma

(Janssen et al., 2013).

RESULTS

In Vivo Model of Extrinsic Resistance to BRAF Inhibition
To study responses to BRAF inhibition in a syngeneic tumor

microenvironment, we tested the response of BRAF and NRAS

mutant C57/BL6 mouse melanoma cell lines to the BRAF inhib-

itor PLX4720. Two different BRAF mutant lines, 5555 and 4434,

were sensitive to PLX4720 whereas, as expected, the NRAS

mutant cells (C790) were refractory to PLX4720 in vitro (Fig-

ure 1A). We next tested the response of these cells to PLX4720

when growing as tumors in syngeneic mice. To our surprise,

both BRAF-mutant melanoma cell lines were refractory to

PLX4720 (Figure 1B). This unexpected result suggested to us

that these cells might represent amodel to probe non-cell auton-

omous mechanisms of resistance of PLX4720. Furthermore,

they may represent the small subset of BRAF-mutant melanoma

that exhibit only a small response to vemurafenib.

To understand the lack of response of 5555 and 4434 cells to

PLX4720 in vivo, we reasoned that it would be important to

monitor the BRAF signaling with single cell resolution. We engi-

neered 5555 and 4434 cells to express an ERK/MAP kinase

biosensor located in the nucleus—called EKAREV-NLS (Fig-

ure S1A). The EKAREV biosensor faithfully monitored changes

in ERK/MAP kinase signaling in response to TPA and either

BRAF or MEK inhibitors (Figures S1B–S1E). In contrast, ‘‘para-

doxical’’ activation of ERK/MAPK activity is observed in NRAS

mutant cells treated with PLX4720 (Figures S1C and S1F). We

further confirmed that changes in FRET signal are absolutely

dependent upon the phospho-acceptor site in the biosensor

(Figures S1G and S1H).
(E) Intravital images of 5555-EKAREV-NLS subcutaneously grown in C57BL/6_RO

and PLX4720 for 3 days, respectively. Left: all host cells (Tomato). Right: ERK ac

(F) Distribution and histogram of ERK activity in control and PLX4720-treatedmice

host cell density (low and high stroma) and analyzed.

Bars in the scatterplots indicate mean ± SD. See also Figure S1.
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We next generated tumors using 5555-EKAREV-NLS cells; in

some cases, these were adjacent to titanium imaging windows

that allow longitudinal imaging of the same tumor (Janssen

et al., 2013). Intravital imaging revealed considerable heteroge-

neity in EKAREV FRET signal (Figures 1C–1F, S1I, and S1J).

These data are supported by ppERK immunohistochemical anal-

ysis (Figure S1K). To gain insight into the lack of effect of

PLX4720 on tumor growth, we performed longitudinal imaging

of tumors before and during PLX4720 treatment. The results

showed that the high EKAREV FRET signal was reduced 4 hr af-

ter administration of PLX4720 (Figures 1C and 1D). These data

suggest that PLX4720 can access the tumor and achieve the

reduction in ERK/MAPK activity expected based on the in vitro

analysis in Figures S1C–S1E. However, within 1 day, high levels

of EKAREV FRET signal returned even though PLX4720 was

administered daily (Figure 1C). Analysis of the distribution of

EKAREV signal after 3 days of PLX4720 treatment suggested

that only a small proportion of 5555 cells show a stable reduction

in ERK/MAPK activity (Figures 1E and 1F). These cells were typi-

cally located in regions with low levels of host cells, which were

demonstrated based on of their expression of the mTomato

transgene. To more robustly test this observation, we seg-

mented images of PLX4720 treated tumors into regions with

high or low levels of mTomato signal (Figure S1L). Figure 1F

shows that regions with low levels of stromal cells had signifi-

cantly lower levels EKAREV FRET signal (similar data were ob-

tained in 4434 tumors; Figure S1M). These data demonstrate

BRAF mutant 5555 and 4434 tumors show a short-lived

biochemical response to PLX4720. Further, the rapid re-activa-

tion of ERK/MAPK and adaptation of these tumors to PLX4720

is correlated with stromal density.

Melanoma-Associated Fibroblasts Are Sufficient to
Confer Tolerance to BRAF Inhibition
We sought to establish a culture system that re-capitulated the

PLX4720 tolerance that we observed in vivo. The behavior of

pure spheroids of melanoma cells was compared with that of

equivalent sized tumor pieces when embedded in a collagen

matrix. Figures 2A and 2B show that pure melanoma spheroids

were highly sensitive to PLX4720, with the appearance of

many nuclear fragments indicating cell death. In contrast, mela-

noma explants from either subcutaneous tumors or experi-

mentally established lung metastases were unresponsive to

PLX4720 (Figures 2A and 2B). Even in the presence of drug, mel-

anoma cells retained healthy nuclear architecture and invasive

capability. Thus, the spheroid model recapitulates the stroma-

dependent PLX4720 tolerance observed in vivo. It also formally

excludes any problems relating to drug access that might

confound interpretation of the in vivo data.

We next sought to identify the stromal cell type that might be

responsible for the adaptive behavior of 5555 and 4434 mela-

noma. Immunohistochemical staining of 5555 and 4434 tumors

revealed low number of infiltrating lymphocytes and neutrophils,
SA26-mTmGmice. Upper and lower images are frommice treated with DMSO

tivity in 5555 cells. Scale bars represent 500 mm.

. In PLX4720-treatedmice, cells are separated into two groups according to the
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Figure 2. Stromal Cells Provide Invasive and Pro-survival Signals, and the System Adapts to the Drug Within 12 Hours

(A and B) Various types (indicated above in each panel) of 5555 melanoma spheroids/tumor explants were embedded into collagen gels and treated with 0.1%

DMSO (upper panels) or 1 mMPLX4720 (lower panels) for 24 hr. 5555 cells are depicted in green, stromal cells/MAFs inmagenta, and representative DAPI-stained

images are also shown (A), and the ratio of DAPI-positive debris and melanoma nucleus was calculated as a cell death indicator (B). Spheroid, 5555 pure

(legend continued on next page)
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and there was no clear relationship between the location of

blood vessels and ppERK signals (Figure S2A). However, both

macrophages and stromal fibroblasts were abundant in both

DMSO- and PLX4720-treated tumors (Figure S2A). We therefore

explored whether melanoma-associated fibroblasts (MAFs) or

macrophages might be sufficient to confer drug tolerance on

melanoma cells. Two isolates of MAFs were established from

patients (designated MAF1 and MAF2, Figures S2B and S2C)

and their effect on the response of 5555 and 4434 cells to

PLX4720 was tested. Figures 2A, 2B, and S2D show that co-

culture of either MAF1 or MAF2 with melanoma cells conferred

tolerance of PLX4720 and invasive behavior. This effect was

significantly dependent on close proximity of the two cell types

becauseMAFconditionedmedia hadonly partial ability to reduce

PLX4720-induced cell death (Figures 2A, 2B, S2E, and S2F).

Furthermore, we excluded a role for EGFR and c-Met in medi-

ating MAF-dependent PLX4720 tolerance (Figures S2G and

S2H). Co-culture with macrophages was unable to confer drug

tolerance on melanoma cells (Figure S2I). These data establish

fibroblastic stromal is sufficient to confer tolerance to PLX4720.

We next investigated the activity of ERK/MAPK signaling in

melanoma spheroids. FRET imaging with EKAREV-NLS shows

heterogeneous ERK activity in 5555 explants and 5555/MAF

co-culture spheroids (Figure S2J, and similar results with 4434

cells in Figure S2K). There was markedly reduced signal/noise

of the EKAR biosensor in the explant/spheroid center; therefore,

we excluded these regions from our subsequent analyses. We

performed time-lapse imaging of spheroid co-cultures before

and after the addition of PLX4720. Figures 2C–2E and Movie

S1 reveal a marked decrease in EKAREV signal 30 min after

the addition of the drug. However, within 12 hr, the EKAREV

signal had returned to the level prior to drug addition. This was

similar to the in vivo results. In pure melanoma spheroids, the

EKAREV signal was stably decreased until cells began to die

(the variable FRET signal in apoptotic cultures cannot reliably

be interpreted). To exclude the possibility of drug metabolism

or drug degradation, we re-added PLX4720 after 12 hr andmoni-

tored the response. Strikingly, co-cultures that had been

exposed to PLX4720 for 12 hr were completely refractory to

the addition of more PLX4720, while importantly, they remained

sensitive to the addition of the MEK inhibitor PD184352 (Figures

2F and 2G). These data demonstrate that co-cultures of mela-

noma cells and MAFs switch from BRAF-dependent ERK

signaling to BRAF-independent ERK signaling in just 12 hr.

PLX4720ActivatesMAFs, Leading toMatrix Remodeling
The data above do not fit with existingmodels of drug resistance.

The adaptation is too quick to be genetic and unlike the relief of
spheroids made in vitro; explant, tumor explants of 5555 grown subcutaneously in

induced lung metastasis of 5555 in C57BL/6_ROSA26-mTmGmice; +MAF1/2, 55

made in vitro were treated with conditioned media from MAFs. Data in (B) are re

(C–E) 5555/4434-EKAREV-NLS andMAF1/2-mCherry co-cultured spheroids were

images in (C) indicate 5555 nuclei (gray) and MAF2 (magenta), and lower images

seven representative cells are shown in (D), and ERK activities at time �30 min, +

mean ± SD. Scale bar represents 100 mm.

(F and G) 5555/4434-EKAREV-NLS and MAF1/2 co-cultured spheroids in collag

with PLX4720 (1 mM) or PD184352 (1 mM). Representative images of 5555 co-cu

4434 before and after re-treatment were quantified and shown as scatterplots w

Scale bars represent 100 mm. See also Figure S2 and Movie S1.
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negative feedback described, the mechanism that we observe

cannot be mediated by melanoma cells alone (Lito et al.,

2012). We therefore hypothesized that PLX4720 might be having

an effect on the tumor stroma. To test this, we engineered MAFs

to contain the EKAREV-NLS biosensor and also express

mCherry to enable them to be distinguished from melanoma

cells. Spheroid co-cultures of 5555 and MAFs were imaged

before and during the response to PLX4720. Strikingly, EKAREV

FRET signal increased in MAF shortly after the addition of

PLX4720 (Figures 3A–3C and S3A and Movie S2). As expected,

EKAREV signal in the melanoma cells decreased immediately

after the addition of the drug. ERK activation in MAFs by

PLX4720 was confirmed by western blotting (Figure S3B).

PLX4720 also slightly increased MAF proliferation (Figure S3C).

We next tested whether PLX4720 might modulate the function

of MAFs. A key feature of fibroblastic stroma is its ability to

remodel the extracellular matrix (Kalluri and Zeisberg, 2006).

This can be assayed using collagen gel contraction assays and

imaging of collagen fibers by second harmonic generation

(SHG) (Calvo et al., 2013). PLX4720 enhanced the matrix

remodeling capability of both MAF1 and MAF2 and increased

phosphorylation of the key regulator of actomyosin contractility,

MLC2/MYL9 (Figures 3D and 3E). PLX4720 also induced

dynamic protrusions in MAFs (Figure 3F and Movie S3) and

promoted the formation of dense collagen fibrils (Figure 3G).

In contrast to MAFs, PLX4720 did not promote significant gel

contraction by normal fibroblasts (Figure S3D). This indicates

that some prior level of activation is likely to be required for

PLX4720 to modulate fibroblast function.

To obtain a global perspective on how PLX4720 affects

MAFs, we performed microarray analysis. This revealed coordi-

nated upregulation of the expression of many extracellular

matrix (ECM) molecules in PLX4720-treated MAFs (Figures

S3E and S3F; Table S1). The upregulation of thrombospondin-

1 (THBS1) and tenascin-C (TNC) were confirmed using quantita-

tive immunofluorescence (Figure 3H). In contrast, the expression

of soluble growth factors previously implicated in resistance to

BRAF inhibitors was largely unchanged (Figure S3E).

Interestingly, we noticed that PLX4720 increased expression

of platelet-derived growth factor receptor (PDGFR) a in MAFs

(Figure S3E), and previous work has shown that stromal fibro-

blasts are dependent on PDGFR signaling (Erez et al., 2010;

Kalluri and Zeisberg, 2006; Pietras et al., 2008).We hypothesized

that PLX4720 might activate MAFs by enhancing the activity of

PDGFRa- and Ras-dependent signaling through the ‘‘paradoxi-

cal’’ activation of CRAF (Hatzivassiliou et al., 2010; Heidorn et al.,

2010; Nazarian et al., 2010; Poulikakos et al., 2010; Villanueva

et al., 2010). Therefore, we investigated the effect of inhibiting
C57BL/6_ROSA26-mTmGmice; lung mets, tumor explants of experimentally-

55 and MAF co-culture spheroid made in vitro; +MAF1/2-CM, 5555 spheroids

presented as mean ± SD. Scale bars represent 100 mm.

embedded in collagen gels and treatedwith PLX4720 (1 mM) at time = 0. Upper

indicate ERK activity (FRET/CFP) in 5555 cells. Kymographs of ERK activity in

30 min, +4 hr, and +12 hr are quantified and shown in (E) as scatterplots with

en gels were treated with PLX4720 (1 mM) for 12 hr, followed by re-treatment

ltured with MAF1 are shown in (F) and ERK activities (FRET/CFP) in 5555 and

ith mean ± SD (G).
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Figure 3. PLX4720 Paradoxically Activates

Melanoma-Associated Fibroblasts

(A–C) 5555-EKAREV-NLS and MAF1/2-EKAREV-

NLS-mCherry co-cultured spheroids were em-

bedded in collagen gels and treated with PLX4720

(1 mM) at time = 0. Upper images in (A) indicate

5555 andMAF2 nuclei (gray) andMAF2 (magenta),

and lower images indicate ERK activity (FRET/

CFP) in 5555 and MAF2 (pointed by arrowheads)

before (�30 min) and after (+30 min) treatment.

Kymographs of ERK activity in five representative

MAF2 cells are shown in (B), and ERK activities

at time �30 min, +30 min, +4 hr, and +12 hr are

quantified and shown in (C) as scatterplots with

mean ± SD. Scale bar represents 100 mm.

(D) Immunoblotting for indicated proteins in

MAF1/2 treated with different concentrations of

PLX4720 (0–3 mM).

(E) Representative images and quantification of

gel contraction by MAF1/2 treated with different

concentrations of PLX4720 (0–3 mM). Histograms

show quantification of three independent experi-

ments (mean ± SD).

(F) Motion analysis of MAF1/2 in the gel contrac-

tion assay treated with 0.1% DMSO or PLX4720

(1 mM), in which three different time points are

shown overlain in red (10 hr), green (11 hr), and

blue (12 hr). Scale bars represent 100 mm.

(G) Representative images of MAF2 and second

harmonic generation (SHG) in the gel contraction

assay. Local SHG intensities around MAFs

were calculated and quantified by normalizing

to the background signals. Each dot indicates

SHG signal from a single MAF, and bars indicate

mean ± SD. Scale bars represent 100 mm.

(H) Immunostaining of non- permeabilized MAF2

(in magenta) with anit-thrombospondin-1 (THBS1)

and anti-tenascin-C (TNC) antibodies, treated with

DMSO (0.1%) or PLX4720 (1 mM) for 24 hr. Relative

fluorescence intensity of THBS1 and TNC are

quantified and shown (mean ± SD).

Scale bars represent 100 mm. See also Figure S3

and Movies S2 and S3.
PDGFR on both basal and PLX-induced matrix remodeling by

MAFs. Figure S3G shows that both basal and PLX4720-induced

MAF activity were greatly reduced by imatinib and sunitinib,
Cancer Cell 27, 574–5
two kinase inhibitors that target PDGFR

in common. These experiments demon-

strate that PLX4720 enhances RTK-

dependent functions of MAFs.

ECM Composition and Stiffness
Cooperate to Provide Tolerance to
PLX4720
The data above show that PLX4720 elicits

changes in matrix production and remod-

eling by MAFs. To test if the ECM was

sufficient to modulate the response of

melanoma cells to PLX4720, we varied

both matrix composition and matrix stiff-

ness. Figure S4A shows that fibronectin

(FN) consistently reduces the effect of
PLX4720 on both 5555 and 4434 melanoma cells. Other

matrix components, including THBS1/2 and TNC, have more

variable effects between the two cell lines. In addition to matrix
88, April 13, 2015 ª2015 The Authors 579
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Figure 4. ECMs and Rigid Substrates Mediate Drug Tolerance through Integrin b1-FAK Activation

(A and B) 5555-mEGFP (in green) were seeded on polyacrylamide / bis-acrylamide gels with different stiffness (0.2, 3 and 12 kPa) coated with the indicated ECMs

(ECMmixture contains FN, TNC, THBS1, and THBS2). Twenty-four hours after treatment with DMSO (0.1%) or PLX4720 (1 mM), cells are stained with propidium

iodide (PI, in magenta). PI signals from the same experiments with 5555/4434-YFP-NLS were quantified in (B) (mean ± SD). Scale bars represent 100 mm.

(C) 5555 cells cultured on the fibronectin-coated gels with the indicated stiffness were stained with a phospho-FAK antibody. The area of pFAK positive adhesion

is quantified (mean ± SD). Scale bars represent 100 mm.

(D) 5555 cells co-cultured with or without MAF1 on collagen gels were treated with DMSO (0.1%) or PLX4720 (1 mM) for 24 hr and stained with a phospho-FAK

antibody. The area of pFAK positive adhesion in 5555 cell is quantified and shown as mean ± SD.

(legend continued on next page)
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composition, matrix stiffness affects the behavior of cancer cells.

Therefore, we combined variations in matrix composition and

matrix stiffness. Polyacrylamide gels ranging from 0.2 kPa

(similar to adipose tissue) to 12 kPa (similar to stiff tumors or

muscle) were coated with either collagen I, FN, or a combination

of FN, THBS1/2, and TNC. Melanoma cells on low stiffness

collagen I showed high levels of cell death following BRAF inhi-

bition (Figures 4A and 4B). However, this was greatly abrogated

if cells were cultured on FN matrices with either 3 kPa or 12 kPa

stiffness, with the most impressive cell survival on 12 kPa FN-,

THBS1/2-, and TNC,containing matrices (Figures 4A and 4B).

These data demonstrate that an appropriate matrix composition

and stiffness can render BRAF-mutant melanoma cells insensi-

tive to PLX4720.

Integrin b1 and FAK Signaling Leads to ERK
Re-activation in Melanoma Cells
Increasing the stiffness of fibronectin matrices lead to the re-

organization of integrin b1 into focal adhesions and elevated

pFAK levels (Figures 4C and S4B). Furthermore, treatment of

co-cultures with PLX4720 led to the relocation of active integrin

b1 into fibrillar adhesions and increased pFAK signals (Figures

4D and S4C). To determine if the changes in integrin organization

and FAK signaling are relevant for the adaptation of melanoma-

MAF co-cultures to PLX4720, we investigated the effect of

combined PLX4720 treatment and experimental perturbation

of integrin b1 and FAK. Combination of PLX4720 with either

integrin b1 or FAK depletion led to prevention of ERK/MAPK

re-activation and synergistic induction of cell death (Figures

4E–4G, S4D, and S4E).

We next investigated whether combining BRAF inhibition with

pharmacological targeting of signaling downstream of integrin

b1 would be effective. Multiple FAK inhibitors (PF573228,

PF562271, FAKi14) prevented the re-activation of ERK/MAPK

signaling in melanoma/MAF co-cultured spheroids treated with

PLX4720 (Figures 5A, 5C, S5A, and S5B and Movie S4, see

also Figure 2E; all quantification is collated in Figure S5G, and

similar results with 4434 cells in Figures S5H and S5I). Treatment

of PLX4720-naive cells with FAK inhibitors alone did not lead to

reduced ERK activity (Figures 5A, 5C, S5A, and S5B). As ex-

pected, combined BRAF and MEK inhibition lead to a stable

reduction in ERK activity (Figures 5C and S5C).

In accordance with the results of EKAREV FRET imaging,

combination of PLX4720 with FAK inhibition led to synergistic

induction of cell death in the co-cultured spheroids (Figure 5D).

These combinations were equally as effective as PLX4720

combined with PD184352. Because FAK activity is often linked

to Src function, we tested the effect of two Src inhibitors in com-

bination with PLX4720. Both dasatinib and PP2 effectively pre-

vented the re-activation of ERK signaling following PLX4720

treatment (Figures 5B, 5C, and S5D andMovie S4). Furthermore,

the combination of PLX4720 and dasatinib led to significantly

increased melanoma cell death (Figure 5D). Neither FAK nor
(E) 5555-YFP-NLS (in green) transfectedwith the indicated siRNAswere co-culture

(1 mM) for 24 hr, followed by PI staining (in magenta). Scale bars represent 100 m

(F) PI signals of (E) were quantified and shown as mean ± SD (G) PI signals from s

shown as mean ± SD.

See also Figure S4.
Src inhibition reduced the viability of melanoma mono-cultures

(Figure S5J). These data demonstrate the critical role of adhe-

sion-mediated signaling via integrin b1, FAK, and Src in the

adaptive re-activation of ERK/MAPK following BRAF inhibition

in tumor/stroma co-cultures.

Both basal and PLX4720-enhanced MAF activity can be

reduced by targeting PDGFR (Figure S3G). This predicts that

PDGFR inhibition should also synergize with PLX4720 to reduce

ERK activity. We tested this by monitor EKAREV signals

following the combination of PLX4720 and imatinib (autofluores-

cence of sunitinib prevented us from testing its effect in this

assay). This combination reduced the re-activation of ERK, while

imatinib alone had no effect (Figures S5E and S5F). These data

support our hypothesis that PDGFR signaling in the stroma con-

tributes to ERK re-activation in melanoma cells.

We next tested whether BRAF and FAK inhibition would syner-

gize to control melanoma growth in vivo. 5555melanoma tumors

were allowed to reach 4–8 mm before mice began receiving

daily doses of PLX4720, PF562271, PLX4720 and PF562271,

or vehicle. Figure 5E shows that only the combination of BRAF

and FAK inhibitors led to effective control of tumor size; either

inhibitor alone had only a modest effect. PLX4720-treated tu-

mors had increased aligned fibrous ECM and FN, and this was

associated with FAK-dependent elongation of melanoma cells

(Figure 5F). These data indicate that combined BRAF and FAK

inhibition is a promising strategy for improving management of

BRAF mutant melanoma.

Stromal Support for Residual Disease in Models
Exhibiting Incomplete Responses to PLX4720
The data described above demonstrate that MAFs provide a

mechanism for mouse BRAF-mutant melanoma cell lines refrac-

tory to PLX4720 in vivo. However, the majority of human BRAF-

mutant melanoma respond well to BRAF inhibition before the

emergence of resistant disease over many months (Chapman

et al., 2011). We were interested whether our findings regarding

the role of the stroma in providing drug tolerancewere relevant to

the survival of melanoma cells in between the initial administra-

tion of BRAF inhibitors and the ultimate emergence of genetically

resistant cells. Therefore, we examined ERK/MAPK activity and

stromal changes in two models of human melanoma that exhibit

a clear response to BRAF inhibition in vivo. Figures 6A and 6B

show that A375 andWM266.4 human melanoma cells are sensi-

tive to PLX4720 both in vitro and in vivo. However, tumors did not

disappear and typically 2–4 mm of residual disease remained

during PLX4720 treatment. We hypothesized that this residual

disease may be supported by signals from the stroma. Intravital

imaging of the EKAREV biosensor revealed that the residual dis-

ease after 11–14 days of PLX4720 treatment exhibited similar

levels of ERK/MAPK signaling to the pre-treatment tumors

(Figures 6C and S6A). Based on our analysis of 5555 and 4434

models, we predict the following: there should be changes in

the stroma of PLX4720-treated A375 and WM266.4 tumors,
dwithMAF1 overnight. Then, cells were treatedwith DMSO (0.1%) or PLX4720

m.

ame experiments as in (E) using 4434 + MAF2 co-cultures were quantified and
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the melanoma cells should not be intrinsically resistant to

PLX4720 at this stage, but that they should use FAK- and Src-

dependent signaling to sustain ERK/MAPK activity and survival.

Both A375 and WM266.4 exhibited clear changes in collagen

SHG when treated with PLX4720 (Figure 6C). This is consistent

with increased matrix deposition and remodeling by fibro-

blasts. Immunohistochemical staining, and Gomori’s trichrome

staining confirmed that the residual disease was rich in fibro-

blastic stroma and had higher levels of fibrillar collagen, FN

and TNC (Figures 6D and S6A). Furthermore, conformation

specific antibodies revealed increased active integrin b1 levels

in PLX-treated tumors (Figure S6B).

To formally confirm that the melanoma cells were dependent

on extrinsic signals for their tolerance of PLX4720, we re-isolated

A375 andWM266.4 cells from the residual disease that persisted

following PLX4720 treatment. Figure S6C shows that these cells

are just as sensitive to PLX4720 as parental cells when cultured

in isolation without a supportive tumor microenvironment. These

data demonstrate the persistence of residual disease is due

to cell extrinsic factors that re-activate ERK signaling by a

BRAF-independent mechanism. To further test our hypothesis,

we investigated whether the ERK signaling in residual disease

was dependent on FAK and Src function. Combination of either

PF573228 or dasatinib with PLX4720 led tomore prolonged ERK

inhibition in tumor explants (Figure S6D). Finally, we tested

whether combining BRAF and FAK inhibition would have a syn-

ergistic effect on A375 tumor burden. Established A375 tumors

(5–7 mm) were treated with PLX4720, PF562271, PLX4720,

and PF562271, or vehicle for up to 30 days. We observed that

combined BRAF and FAK inhibition led to significantly reduced

burden compared to either treatment alone (Figure 6E); indeed,

no biolumiscence signal could be detected in one mouse. Co-

targeting BRAF and FAK also triggered extensive neutrophil

and macrophage infiltration (Figure S6E). More surprisingly,

although PLX4720 controls total melanoma volume in this tumor

model, it has a minimal effect on Ki-67 positivity, whereas

PLX4720 + PF562271 leads to a clear reduction in Ki-67 positive

melanoma cells (Figures 6F and 6G). These data suggest that

PLX4720-treated tumors continue to proliferate, albeit balanced

by cell death. This would enable the evolution of resistant clones

even in a PLX4720-treated tumor that is not increasing in size.

We next investigated changes in the tumor stroma and the

effect of FAK inhibition in a patient-derived xenograft (PDX)

model. A PDX was established from a vemurafenib naive BRAF

mutant melanoma. Figure 7A shows that this grows well in

control NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice, but the

growth of this PDX was controlled by PLX4720, although sig-
Figure 5. Simultaneous Inhibition of BRAF and FAK Effectively Induce

(A–C) 5555-EKAREV-NLS and MAF1-mCherry co-cultured spheroids were embe

inhibitor 14 (1 mM), dasatinib (200 nM), PP2 (1 mM) ± PLX4720 (1 mM). ERK activitie

scatterplots with mean ± SD. Scale bars represent 100 mm.

(D) 5555-mEGFP (green) and MAF1/2-mCherry (magenta) co-cultured spheroids

(1 mM), PF562271 (1 mM), dasatinib (200 nM) ± PLX4720 (1 mM) for 48 hr. Repres

DAPI-positive debris and melanoma nucleus was calculated and shown as mea

(E and F) 5555 cells were subcutaneously allografted in C57BL/6 mice and treat

bination. Tumor growth in each group is shown in (E) (mean ± SD, nine mice in con

trichrome (collagen fibers in bright blue), and anti-fibronectin staining are shown

Enlarged view is also shown as an inset on each image. Scale bars represent 100

Movie S4.
nificant disease remained. In agreement with our analyses of

A375 and WM266.4 tumors, histological analysis of the residual

disease in PLX4720-treated mice revealed increased fibrous

ECM, higher numbers of aSMA-positive cells, and active ERK/

MAPK signaling (Figure 7B). We next explored whether this

PDX model would eventually fail PLX4720 therapy, and whether

FAK inhibition might reduce this failure. After roughly 50 days of

PLX4720 treatment, the PDX tumors began to grow, indicating

therapy failure (Figure 7C). FAK inhibition alone had no effect

on tumor growth, but when combined with PLX4720 lead to

significantly increased tumor control both at early time points

and, more importantly, after 4 months when PLX4720-treated

tumors were failing therapy (Figure 7C). No adverse effects,

such as weight loss, were observed in mice treated with

PLX4720 and PF562271 for 4 months (Figure S7A).

Alterations in Tumor Stroma and ECM in
Vemurafenib-Treated Patients
The data above demonstrate that BRAF inhibition can directly

affect the fibroblastic stroma leading to remodeled ECM and

adhesion-dependent signaling to ERK that negates the effect

of BRAF inhibition in the melanoma cells. We find histologic fea-

tures that are compatible with our experimental models in patient

samples prior to vemurafenib treatment and following disease

progression on vemurafenib (Table S2): these include changes

in the stroma and melanoma cell morphology following vemura-

fenib treatment. Figure S7B shows increased fibrous ECM

and aSMA-positive MAFs were visible in Patients 1 and 4 after

failure of BRAF inhibition. In Patient 4, there was an increase in

elongated melanoma cells. These analyses confirm that BRAF

inhibition can modulate the fibrous ECM and fibroblastic stroma

in melanoma patients. Taken together with the experimental

work, we show how an effect of BRAF inhibition on the stroma

generates a drug-tolerant microenvironment that supports

residual disease before the emergence of genetic cell intrinsic

drug resistance mechanisms (Figure 7D).

DISCUSSION

A common feature of kinase-targeted therapies is a period

of response followed by the emergence of resistant disease.

In melanoma, different genetic resistance mechanisms can

develop in the same patient (Shi et al., 2014; Van Allen et al.,

2014), often at multiple metastatic sites (Shi et al., 2014). These

data are not easily reconciled with a model of a pre-existing

genetically resistant sub-clone; thus, resistant melanoma

cells may arise after treatment with vemurafenib has begun.
s Cell Death in 5555 Cells

dded in collagen gels and treated with indicated drugs: PF573228 (1 mM), FAK

s at time�30min, +30 min, +4 hr, and +12 hr are quantified and shown in (C) as

were embedded into collagen gels and treated with 0.1% DMSO, PF573228

entative DAPI-staining images are also shown in each image, and the ratio of

n ± SD. Scale bars represent 100 mm.

ed with DMSO (4%), PLX4720 (25 mg/kg), PF562271 (50 mg/kg), or the com-

trol group and ten in other groups), and representative images of H&E, Gomori

in (F).

mm (low magnification) and 20 mm (high magnification). See also Figure S5 and
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(legend continued on next page)
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How significant numbers of BRAF-mutant cells survive therapy

prior to the emergence of genetic mutations or epigenetic

changes that enable resistance is not well understood, and

here we describe a mechanism enabling the survival of large

numbers of BRAF-mutant melanoma cells following PLX4720

treatment. This mechanism has two key features: first, the fibro-

blastic stroma is ‘‘paradoxically’’ activated by BRAF inhibition;

and second, adhesion-dependent signals from the altered tumor

microenvironment lead to BRAF-independent ERK/MAP kinase

activity.

BRAF inhibitors can promote Ras-driven signaling through

CRAF (Hatzivassiliou et al., 2010; Heidorn et al., 2010; Naza-

rian et al., 2010; Poulikakos et al., 2010; Villanueva et al.,

2010); however, it was not clear if this mechanism may act

on Ras-signaling in the stroma and how this may affect thera-

peutic efficacy. We find that PLX4720 increases ERK/MAPK

signaling, elevates matrix production, and increases MLC

phosphorylation and matrix remodeling, which is likely due to

enhancing RTK-Ras signaling. These compounds probably

act through their effects on PDGFR, which is upregulated by

PLX4720 and has previously been implicated in the function

of carcinoma-associated fibroblasts (Erez et al., 2010; Kalluri

and Zeisberg, 2006; Pietras et al., 2008). Dabrafenib is likely

to activate the fibroblastic stroma in a similar manner to

PLX4720 (Gibney and Zager, 2013; Huang et al., 2013). Inter-

estingly, we found that PLX4720 did not enhance the activity

of normal fibroblasts; this may be because they do not have

elevated RTK signaling.

The ability of MAFs to confer PLX4720 tolerance depends on

integrin b1 and FAK in the melanoma cells. Furthermore, fibro-

nectin-rich matrices of the appropriate stiffness are sufficient

to abrogate the effects of BRAF inhibition. We propose that

certain ECM environments provide ‘‘safe havens’’ for melanoma

cells to tolerate BRAF targeted therapy. Although extrinsic sig-

nals from the tumor microenvironment can support four different

BRAF-mutant melanoma cell lines in the presence of PLX4720,

the magnitude of this protective effect varied—these models re-

cruit stroma with different composition and different degrees of

activation. Therefore, the magnitude of the effect of PLX4720

on the stroma would be variable. Alternatively, melanoma cells

may differ in their ability to activate adhesion-dependent FAK

and Src to ERK/MAP kinase. Although we find no role for HGF

in our analyses, the ability of c-Met to drive Rac activation and

elongated modes of cell migration could be a point of common-

ality with the work of Strausmann et al. (Straussman et al., 2012;
(C) Intravital images of A375- andWM266.4-expressing EKAREV-NLS in nudemic

indicated days. Arrows in highmagnification images of DMSO-treated tumors indi

generation: SHG). In PLX4720-treated tumors, the regions in white squares are

histogram of ERK activities in A375 and WM266.4 tumors are shown at the b

magnification).

(D) Frozen sections of WM266.4 tumors treated with DMSO or PLX4720 for 15 da

red) antibodies. Scale bars represent 200 mm.

(E) A375 cells stably expressing firefly luciferase grown subcutaneously in nude m

or the combination. Bioluminescence from the tumors was analyzed at day 25 an

mice than other groups because the higher growth rates of these tumors meant

(F) A375 tumors treated with the indicated drug(s) for 29 days were stained with

(G) Ki-67 index was measured from three different positions in six different tumo

Data are represented asmean ± SD. Please note that necrotic areas with myeloid

See also Figure S6.
Watson et al., 2014). Furthermore, the relief of negative inhibition

that can be triggered by BRAF inhibition may also sensitize

melanoma cells to integrin/FAK-mediated ERK activation

(Lito et al., 2012, 2013).

There are currently moves to use combined blockade of

BRAF and MEK to improve outcomes in melanoma (Flaherty

et al., 2012; Wagle et al., 2014). Although this approach extends

lifespan, it is rarely curative (Larkin et al., 2014). We find that

BRAF and FAK inhibition is another promising strategy. Both

strategies are similarly effective at inducingmelanoma cell death.

In the long term, combined BRAF and FAK blockade improves

tumor control but rarely eliminates tumors entirely, and some

PDX tumors resume very slow growth after 2–3 months. The

lack of cure may reflect problems in drug access. Our results

also indicate that BRAF and Src inhibition will be effective and

recent results using a combined RAF and SRC inhibitor support

this (Girotti et al., 2015). Furthermore, because many RTKs

require signals from cell adhesions to function (Butcher et al.,

2009; Paszek et al., 2005; Sulzmaier et al., 2014), FAK targeting

may attenuate divergent signaling from cell adhesion receptors

and RTKs to cell survival and proliferation machinery, and this

may provide some benefit over simply targeting ERK signaling.

To conclude, multiple mechanisms of cell-intrinsic resistance

to melanoma have been documented. In patients, cell-intrinsic

resistance to vemurafenib typically emerges over a period of

months. The mechanisms that sustain melanoma cells in the

period between initial response and disease progression on

therapy are unclear. We describe how paradoxical activation of

the fibroblastic stroma enables matrix-derived signaling via

integrin b1 and FAK to promote ERK activation and cell survival.

This could sustain the pool of melanoma cells from which

intrinsic resistant clones emerge. We propose that by reducing

the numbers of residual melanoma cells, there would less

material from which truly resistant cells could arise. This should

lead to longer periods of progression-free survival and possibly

even cure.

EXPERIMENTAL PROCEDURES

Cells and Probes

BRAF-mutant (5555 and 4434) and NRAS-mutant (C790) mouse melanoma

cell lines were established from C57BL/6_BRAF +/LSL-BRAFV600E ; Tyr::

CreERT2+/o (Dhomen et al., 2009) and C57BL/6_NRAS +/LSL-NRASG12D ;

Tyr::Cre-A (Pedersen et al., 2013), respectively. B16F10 mouse melanoma

cell lines, and A375 and WM266.4 human melanoma cell lines were a

gift from Prof. Chris Marshall (Institute of Cancer Research, London, UK).
e. Images are frommice treated with DMSO (4%) or PLX4720 (25mg/kg) for the

cate small cages created by thick collagen fibers (detected by second harmonic

magnified and shown below. Distribution (scatterplots with mean ± SD) and

ottom. Scale bars represent 500 mm (low magnification) and 100 mm (high

ys were double-stained with anti-fibronectin (in green) and anti-tenascin-C (in

ice were treated with DMSO (4%), PLX4720 (25 mg/kg), PF562271 (50 mg/kg),

d shown (mean ± SD). (4) Please note that DMSO group (n = 4) contains fewer

that some mice were killed before day 25.

an anti-Ki-67 antibody. Scale bar represents 100 mm.

rs treated with the indicated drugs for 18–29 days.

cell infiltration in PLX4720 + PF562271 tumors were excluded from the analysis.
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Figure 7. Combinatorial Inhibition of BRAF and FAK Suppresses the Growth of Patient-Derived Xenograft
(A) Growth curves of vemurafenib-naive patient derived xenograft (PDX) in IL-2 NSG mice treated with DMSO (5%) or PLX4720 (45 mg/kg) for 22 days.

(B) Anti-phospho-ERK, anti-ERK, Gomori trichrome, and anti-aSMA staining of the fixed PDX samples treated with DMSO or PLX4720 for 22 days. Scale bars

represent 100 mm.

(C) Growth curves of PDX treated with DMSO (4%), PLX4720 (45 mg/kg), PF562271 (50 mg/kg), or the combination. Data are represented as mean ± SD, seven

mice per group.

(D) Scheme of drug tolerance mechanisms against BRAF selective inhibitors.

See also Figure S7.
Melanoma cells were maintained in DMEM (Invitrogen) with 10% fetal bovine

serum/1% PenStrep (GIBCO). The FRET biosensors for ERK/MAPK (EKAREV-

NLS/NES) was described previously (Komatsu et al., 2011) and were

introduced into the cells with PiggyBac transposon system (Wellcome Trust

Sanger Institute, Hinxton, UK).

Mouse Allograft/Xenograft Model

Animal experiments were done in accordance with UK regulations under

project license PPL/80/2368. For melanoma allograft model, 2 3 106 5555

or 4434 cells were suspended into 200 ml PBS and subcutaneously injected

in the flanks of C57BL/6 mice or C57BL/6_ROSA26_mTmG mice. After
586 Cancer Cell 27, 574–588, April 13, 2015 ª2015 The Authors
10–14 days when the cells form palpable tumors, the mice were dosed daily

by oral gavage with vehicle (4% DMSO), PLX4720 (25 mg/kg), PF562271

(50 mg/kg), or the combination. The tumor size was monitored daily by calcu-

lating length 3 width (mm2). For experimental lung metastasis, 2 3 106 5555

cells in 200 ml PBS were injected from the tail vein and, after 4 weeks, the

mice were killed and the lung tumors are examined further. For human mela-

noma xenograft model, 2 3 106 A375 or WM266.4 cells in 200 ml PBS were

subcutaneously injected in the flanks of nude mice. After about 2 weeks

when palpable tumors formed, we started further experiments. For skin-flap

tumor imaging, the mouse was anesthetized and the tumor was surgically

exposed and imaged through a coverslip with a Zeiss LSM780 inverted



microscope as described elsewhere (Giampieri et al., 2009). For biolumines-

cence imaging, nude mice bearing A375 tumors stably expressing firefly

luciferase were anesthetized, intraperitoneally injected with D-Luciferin

(150 mg/kg, PerkinElmer), and imaged under IVIS Spectrum (PerkinElmer).

Patient Samples and Patient-Derived Xenografts

Tumor sampleswere collected under theManchester Cancer ResearchCentre

(MCRC) Biobank ethics application no. 07/H1003/161+5 with full informed

consent from the patients. The work presented in this manuscript was

approved by MCRC Biobank Access Committee application 13_RIMA_01.

Metastatic melanoma tumor samples from vemurafenib-resistant patients

(nos. 1–5) and from a vemurafenib-naive patient (no. 6) were obtained imme-

diately after surgery. For PDX models, necrotic parts of the tumors were

removed and 5 3 5 3 5 mm pieces were implanted subcutaneously in the

right flanks of 5- to 6-week-old female IL-2 NSGmice.When the PDXs reached

1500 mm3 volume, they were excised, and viable tissue was dissected into

5 mm cubes and transplanted into additional mice using the same procedure.

Genomic and histological analyses had confirmed that the tumors at each

point were derived from the startingmaterial. Following transplantation, tumors

were allowed to grow to �60–80 mm3, and the mice were randomized before

initiation of treatment by daily orogastric gavage of PLX4720 (45 mg/kg),

PF562271 (50 mg/kg), vehicle (5% DMSO, 95% water), or the combination

for the indicated days.

Time-Lapse FRET Imaging of Cultured Melanoma Spheroids

Tumor spheroids cultured in collagen gel on a glass bottom dish/plate were

imaged with an LSM780 inverted microscope through 203 objective every

5 min for up to 13 hr. For the dual-emission ratio imaging, the FRET biosensor

was excited by a Chameleon Ti:sapphire Laser (Coherent Inc.) at 820 nm

excitation wavelength. The emission light was separated by beam splitters

into 463–506 nm for CFP and 515–559 nm for FRET. Details in microscopy,

data analysis, and image processing are available in the Supplemental Exper-

imental Procedures.

ACCESSION NUMBERS

The National Center for Biotechnology Information’s Gene Expression

Omnibus database accession number for the microarray data sets is

GSE63160.
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Supplemental information includes Supplemental Experimental Procedures,

seven figures, two tables, and four movies and can be found with this article
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