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Georgia Projections from late April 2020
Beckett et al. (medrxiv; Weitz group)

Summary:
Model trained w/age-structured model 
based on deaths/hospitalizations in April.

Predictions of continued ~50% social 
distancing suggested multi-month ‘plateau’ 
in cases.

Yet there were always far worse 
alternatives, given that we remain almost 
entirely immunologically naieve.

Report, Code, and Preprint:
https://weitzgroup.github.io/MAGEmodel_covid19_GA/
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Courtesy: Dr. Stephen Beckett (Weitz group)



Covid-19:
A global pandemic with acute effects in GA

In the past month, Georgia has experienced:
• ~50% of total reported cases since inception of epidemic.
• ~40% of total hospitalizations
• ~30% of ICU admissions
• ~25% of fatalities
Note: severe cases/fatalities lag multiple weeks behind case reports

Takeaway: This is a critical phase of the epidemic; a default mode 
of ‘face-to-face learning’ is not feasible, today’s talk will focus on the 
science that can help guide decision-making processes @ GT.
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Science and Projections for 
the Fall Term
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Part 1 – Model Projections 
(JSW): What are the risks of a dynamic 
outbreak and how can individual actions 
(e.g., mask-wearing) and institutional 
efforts (e.g., testing/online learning) help 
reduce risk for al?

Part 2: Testing Initiatives (GG)
How can large-scale testing be used to 
mitigate and reduce risk for all?

Risk dashboard (1.7M+ visitors in past month):
https://covid19risk.biosci.gatech.edu/

Technical Refs: Park et al. Epidemics (2020); Park et al. 
JRSI (2020);  Weitz et al. Nature Medicine (2020).

Part(ing) 
Thoughts: 
Action-Taking 
Amidst
Uncertainty
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Part 1 – Model Projections
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Risk of Exposure: What are the chances that one 
(or more) individuals in a group (e.g., classroom, dining 
hall, dorm, party) will have Covid-19?

Risk of a Large Outbreak: What is the risk that 
imported cases will lead to a large epidemic outbreak in 
the GT student, staff, and faculty community?

Risk of Severe Outcomes: In the event of a large 
epidemic outbreak, how might a Covid-19 outbreak 
impact the campus community?
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How can we translate data on case 
reports to something personal?
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Q: What is the chance that one (or more) 
individuals are infected in a group?

2% Chance

10% Chance

50% Chance

90% Chance

0.0061% chance 0.061% chance 0.6% chance 5.9% chance  45% chance

0.061% chance 0.6% chance 5.9% chance  45% chance
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Risk = 1� (1� p)n

Higher per-capita 
risk, even small 
events may include 
one (or more) 
Covid-19 infecteds.

Lower per-capita risk, 
large events may 
include one (or more) 
Covid-19 infected even 
when it seems hardly 
anyone is sick.



Risk of Exposure:
Classrooms and Gatherings
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Large gatherings are problematic for 
multiple reasons:

• Increased likelihood that someone in a group 
has Covid-19 (perhaps asymptomatically).

• More potential interactions to spread, i.e., the 
number of ‘contacts’ scales with n2 (where n is 
the group size).

• Harder to contact trace; close contacts in a 
gathering are not easy to reconstruct.

Risk assessment: 

Covid-19 Risk Assessment Calculator (joint w/Prof. Clio Andris and ABiL)
Website: https://covid19risk.biosci.gatech.edu/



Risk of Exposure
Associated with Gatherings
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Large gatherings are problematic for 
multiple reasons:

• Increased likelihood that someone in a group 
has Covid-19 (perhaps asymptomatically).

• More potential interactions to spread, i.e., the 
number of ‘contacts’ scales with n2 (where n is 
the group size) – super-spreading.

• Harder to contact trace; close contacts in a 
gathering are not easy to reconstruct.



Risk of Exposure
Associated with Gatherings
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Large gatherings are problematic for 
multiple reasons:

• Increased likelihood that someone in a group 
has Covid-19 (perhaps asymptomatically).

• More potential interactions to spread, i.e., the 
number of ‘contacts’ scales with n2 (where n is 
the group size) – super-spreading.

• Harder to contact trace; close contacts in a 
gathering are not easy to reconstruct.

Risk assessment: 
Risk that one (or more) individuals has Covid-19 is 
1-(1-p)n where p is the circulating infection rate 
(we estimate from cases x ascertainment bias)

Table 3. Estimated Number of Infections Based on Seroprevalence Estimates and Comparison With the Number of Reported Cases as of the Last Date of Specimen Collection for 10 Sites

Site Catchment description
Catchment
population, No.

Estimated
seroprevalence, %
(95% CI)a

Cases reported by
date of last specimen
collection, No.b,c

Estimated cumulative
infections, No. (95% CI)

Estimated
infections/reported
cases, No. (range)d

Western Washington King, Snohomish, Pierce, Kitsap,
Grays Harbor counties

4 273 548 1.1 (0.7-1.9) 4308 48 291 (29 915-82 907) 11.2 (6.9-19.2)

New York City metro area
(New York)

Manhattan, Bronx, Queens, Kings,
Nassau counties

9 260 870 6.9 (5.0-8.9) 53 803 641 778 (464 896-826 070) 11.9 (8.6-15.4)

Louisiana Statewide 4 644 049 5.8 (3.9-8.2) 17 030 267 033 (179 725-382 205) 15.7 (10.6-22.4)

South Florida Miami-Dade, Broward, Palm Beach,
Martin counties

6 345 345 1.9 (1.0-3.2) 10 525 117 389 (63 453-204 955) 11.2 (6.0-19.5)

Philadelphia metro area
(Pennsylvania)

Bucks, Chester, Cumberland, Delaware,
Lancaster, Montgomery, Philadelphia
counties

4 910 139 3.2 (1.7-5.2) 22 987 156 633 (82 981-254 836) 6.8 (3.6-11.1)

Missouri Statewide 6 110 800 2.7 (1.7-3.9) 6794 161 936 (100 828-235 877) 23.8 (14.8-34.7)

Utah Adults aged ≥19 y (statewide) 2 173 082 2.2 (1.2-3.4) 4493e 47 373 (26 294-74 537) 10.5 (5.5-15.5)

San Francisco Bay area
(California)

Alameda, Contra Costa, San Francisco,
San Mateo, Marin, Santa Clara counties

6 662 454 1.0 (0.3-2.4) 7151 64 626 (22 652-162 564) 9.0 (3.2-22.7)

Connecticut Statewide 3 562 989 4.9 (3.6-6.5) 29 287 176 012 (128 624-232 307) 6.0 (4.3-7.8)

Minneapolis-St Paul-St Cloud
metro area (Minnesota)

Anoka, Benton, Carver, Chisago, Dakota,
Goodhue, Hennepin, Isanti, Le Sueur,
McLeod, Mille Lacs, Ramsey, Rice, Scott,
Sherburne, Stearns, Steele, Washington,
Wright counties

3 857 479 2.4 (1.0-4.5) 8880 90 651 (37 803-173 587) 10.2 (4.3-19.5)

a Standardized to the age and sex distribution of the counties in each region from which most specimens
originated. All estimates are adjusted for test performance characteristics (specificity, 99.3%; 95% CI,
98.3%-99.9%; sensitivity, 96.0%; 95% CI, CI 90.0%-98.9%).

b Information from USA Facts.22

c Dates of last specimen collection, by site, were western Washington: April 1, 2020; New York City metro area:
April 1, 2020; Louisiana: April 8, 2020; south Florida: April 10, 2020; Philadelphia metro area: April 25, 2020;
Missouri: April 25, 2020; Utah: May 3, 2020; San Francisco Bay area: April 27, 2020; Connecticut: May 3, 2020;

Minneapolis-St. Paul-St. Cloud metro area: May 12, 2020.
d Estimated number of times greater for infections suggested by seroprevalence estimates compared with

reported cases. Range derived from 95% CIs of seroprevalence estimates.
e The number of specimens for persons aged 0-18 y was inadequate, and those aged <18 y were excluded from the

analysis. Estimates are for adults aged !19 y. Case report data were not available by age in all cases and were
estimated by publicly reported age grouping.
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collection, No.b,c
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New York City metro area
(New York)
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Bucks, Chester, Cumberland, Delaware,
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4 910 139 3.2 (1.7-5.2) 22 987 156 633 (82 981-254 836) 6.8 (3.6-11.1)

Missouri Statewide 6 110 800 2.7 (1.7-3.9) 6794 161 936 (100 828-235 877) 23.8 (14.8-34.7)

Utah Adults aged ≥19 y (statewide) 2 173 082 2.2 (1.2-3.4) 4493e 47 373 (26 294-74 537) 10.5 (5.5-15.5)

San Francisco Bay area
(California)

Alameda, Contra Costa, San Francisco,
San Mateo, Marin, Santa Clara counties

6 662 454 1.0 (0.3-2.4) 7151 64 626 (22 652-162 564) 9.0 (3.2-22.7)

Connecticut Statewide 3 562 989 4.9 (3.6-6.5) 29 287 176 012 (128 624-232 307) 6.0 (4.3-7.8)
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originated. All estimates are adjusted for test performance characteristics (specificity, 99.3%; 95% CI,
98.3%-99.9%; sensitivity, 96.0%; 95% CI, CI 90.0%-98.9%).
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d Estimated number of times greater for infections suggested by seroprevalence estimates compared with
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Risk of Exposure:
Associated with Gatherings
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Large gatherings are problematic for 
multiple reasons:

• Increased likelihood that someone in a group 
has Covid-19 (perhaps asymptomatically).

• More potential interactions to spread, i.e., the 
number of ‘contacts’ scales with n2 (where n is 
the group size) – super-spreading.

• Harder to contact trace; close contacts in a 
gathering are not easy to reconstruct.

Risk assessment: 
Risk that one (or more) individuals has Covid-19 is 
1-(1-p)n where p is the circulating infection rate 
(we estimate from cases x ascertainment bias)

Mitigation steps:

1. Reduce group sizes whenever 
possible (in and out of class).

Example: Classroom of 25 has ~50% 
chance one or more have Covid-19.

2. Mask wearing enforced in all 
buildings that have common 
spaces, even when alone (all 
teaching policies should be clear 
that individuals w/out masks 
cannot be in a lab/class/bldg).

3. The safe modality for teaching 
right now is: online; until risks 
diminish, testing is initiated.



What Happens Next:
Conditions for epidemic growth
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Where infections per time, b, is a product of:

• Contacts by infectious individuals per unit time

• Probability of contact with a susceptible (S0/N)

• Probability that the contact transmits the disease

R0 ⌘
infections per timez}|{

� ⇥
infectious periodz}|{

TI
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Tentative conclusion: We can measure the ‘speed’, but
inferring the ‘strength’ (and by extension, predicting 

the ‘size’) of an epidemic is harder.
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Figure 1: Comparisons of the reported parameter values with our pooled esti-
mates. We inferred point estimates (black), uniform distributions (orange) or confidence
intervals (purple) for each parameter from each study, and combined them into pooled esti-
mates (red; see text). Open triangle: we assumed  = 0.5 for Study 2 which does not report
generation-interval dispersion.

t(µ = 0, � = 1, ⌫ = 4) assumes a priori that between-study variance is large, while weak
priors (e.g. half-Cauchy(0,5)) can lead to poor mixing.

We run 4 independent Markov Chain Monte Carlo chains each consisting of 500,000
burnin steps and 500,000 sampling steps. Posterior samples are thinned every 1000 steps.
Convergence is assessed by ensuring that the Gelman-Rubin statistic is below 1.01 for all
hyperparameters [24]; trace plots and marginal posterior distribution plots are presented in
Appendix. 95% confidence intervals are calculated by taking 2.5% and 97.5% quantiles from
the marginal posterior distribution for each parameter.

3 Results

Fig. 1 compares the reported values of the exponential growth rate r, mean generation in-
terval Ḡ, and the generation-interval dispersion  from di↵erent studies with the pooled
estimates that we calculate from our multilevel model. We find that there is a large uncer-
tainty associated with the underlying parameters; many models rely on stronger assumptions
that ignore these uncertainties. Surprisingly, no studies take into account how the variation
in generation intervals a↵ects their estimates of R0: all studies assumed fixed values for ,
ranging from 0 to 1.

Fig. 2 shows how propagating uncertainty in di↵erent combinations would a↵ect estimates
and CIs for R0. For illustrative purposes, we use our pooled estimates, which may represent
a reasonable proxy for the state of knowledge as of January 23–26 (Fig. 2A). Comparing
the models that include only some sources of uncertainty to the “all” model, we see that
propagating error from the growth rate (which all but one of the studies reviewed did)
is absolutely crucial: the middle bar (“GI mean”), which lacks growth-rate uncertainty,
is relatively narrow. In this case, propagating error from the mean generation interval
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Figure 3: Sensitivity of the reported R0 estimates with respect to our pooled
estimates of the underlying parameters. We replace the reported parameter values
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variation). The pooled estimate of R0 is calculated from the joint posterior distribution
of µr, µG, and µ (all); this corresponds to replacing all reported parameter values with
our pooled estimates, which gives identical results across all studies. Horizontal dashed
lines represent the 95% confidence intervals of our pooled estimate of R0. The reported
R0 estimates (base) have been adjusted to show the approximate 95% confidence interval
using the probability distributions that we defined if they had relied on di↵erent measures
for parameter uncertainties.

4 Discussion

Estimating the basic reproductive number R0 is crucial for predicting the course of an out-
break and planning intervention strategies. Here, we use a gamma approximation [21] to
decompose R0 estimates into three key quantities (r, Ḡ, and ) and apply a multilevel
Bayesian framework to compare estimates of R0 for the novel coronavirus outbreak. Our
results demonstrate the importance of accounting for uncertainties associated with the un-
derlying generation-interval distributions, including uncertainties in the amount of dispersion
in the generation intervals: our analysis of individual studies shows that assuming too nar-
row a generation-interval distribution can make the estimate of R0 overly sensitive to the
estimates of the exponential growth rate r.
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Step 1: estimate 
latent uncertainty in 
‘parameters’.

Step 2: incorporate 
different types of 
uncertainty into R0 
estimates by study or 
as part of a ‘pooled’ 
estimate (using a 
Bayesian multi-level 
model)

Take-home: R0 of 2.9 (95% CI 2.1-4.5) 
despite much larger point estimates.

Pooled estimates via a speed-strength relationship 
(technically using generation intervals)

Park et al., J. Roy. Soc. Interface (2020)

Sang Woo Park Jonathan Dushoff

r G k

In other words, estimates of R0 must depend on the assumptions about the exponential
growth rate r and the shape of the generation-interval distribution g(⌧).

Here, we use the gamma approximation framework [21] to (i) characterize the amount of
uncertainty present in the exponential growth rates and the shape of the generation-interval
distribution and (ii) assess the degree to which these uncertainties a↵ect the estimate of R0.
Assuming that generation intervals follow a gamma distribution with the mean Ḡ and the
squared coe�cient of variation , we have

R0 =
�
1 + rḠ

�1/
. (2)

This equation demonstrates that a generation-interval distribution that has a larger mean
(higher Ḡ) or is less variable (lower ) will give a higher estimate of R0 for the same value
of r.

2.3 Statistical framework

As most studies do not report their estimates of the exponential growth rate, we first re-
calculate the exponential growth rate that correspond to their model assumptions. We do
so by modeling reported distributions of the reproductive number R0, the mean generation
interval Ḡ, and the generation-interval dispersion parameter  with appropriate probability
distributions; we used gamma distributions to model values reported with confidence inter-
vals and uniform distributions to model values reported with ranges. For example, Study 3
estimated R0 = 2.92 (95% CI: 2.28–3.67); we model this estimate as a gamma distribution
with a mean of 2.92 and a shape parameter of 67, which has a 95% probability of containing
a value between 2.28 and 3.67 (see Table 2 for a complete description). For each study i, we
construct a family of parameter sets by drawing 100,000 random samples from the probabil-
ity distributions (Table 2) that represent the estimates of R0i and the assumed values of Ḡi

and i and calculate the exponential growth rate ri via the inverse of Eq. 2:

ri =
Ri

0i � 1

iḠi
. (3)

This allows us to approximate the probability distributions of the estimated exponential
growth rates by each study; uncertainties in the probability distributions that we calculate
for the estimated exponential growth rates will reflect the methods and assumptions that
the studies rely on.

We construct pooled estimates for each parameter (r, Ḡ, and ) using a Bayesian mul-
tilevel modeling approach, which assumes that the parameters across di↵erent studies come
from the same gamma distribution. The pooled estimates, which are represented as proba-
bility distributions rather than point estimates, allow us to average across di↵erent modeling
approaches, while accounting for the uncertainties in the assumptions they make:

ri ⇠ Gamma(mean = µr, shape = µ2
r/�

2
r),

Ḡi ⇠ Gamma(mean = µG, shape = µ2
G/�

2
G),

i ⇠ Gamma(mean = µ, shape = µ2
/�

2
),

(4)
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The Many Impacts of Covid-19: Severity and Age

Increasing evidence of 
myocardial damage (Clerkin
et al., Circulation, 2020)



Risk of Severe Outcomes:
A Community of Students, Staff, and Faculty

24

Take-away: this scenario is based on an unmitigated epidemic at full campus 
capacity; and highlights the need for action-taking. Assumes 50% infection of the 
community, with age-stratified risk, but not including co-morbidity information; data on age 
distributions from GT IRP.  Analysis based on ICL and HK analysis of age-stratified risk.



Risk of Severe Outcomes:
A Community of Students, Staff, and Faculty
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Covid-19 has many kinds of severe 
outcomes:

• Lung/cardiac damage (perhaps ‘silently’).

• Long-term health problems (breathing, and 
damage to other tissue function).

• Extended hospitalization.

• Increased fatality with age.

Take-away: Per-capita, staff and faculty 
are at greater risk, but students can also 
have severe outcomes; strategy should 
be to take steps to reduce transmission.

Mitigation steps:

1. Operate as liberally as 
possible with respect to starting 
w/online teaching as default.

2. Consider reducing in-person 
interactions whenever possible, 
shift-work, reducing density

3. Baseline R0 ~ 3 implies need 
>67% aggregate reduction to 
halt an initial outbreak.

4. We are all in this together: 
protect each person to protect 
us all.



Conditions for epidemic growth also 
suggest opportunities for control

26

Where infections per time, b, is a product of:

• Contacts by infectious individuals per unit time

• Probability of contact with a susceptible (S0/N)

• Probability that the contact transmits the disease

R0 ⌘
infections per timez}|{

� ⇥
infectious periodz}|{

TI

Testing & targeted 
isolation

Tracing/quarantine, 
travel reduction, 
shield immunity

Process engineering 
& PPE (masks)

Hospitalization & 
treatment



Testing as Mitigation - Principles
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S E I R

‘Removal’ via Testing

RecoveryInfection Incubation



Testing as Mitigation - Principles
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S E I R

‘Removal’ via Testing

RecoveryInfection Incubation

Test frequency is 
key. Being able to retest 
<7 days is essential.

General NPIs are 
key: Keeping R0<1.5 
essential to avoid >1000s 
of cases (wear masks!).

Test sensitivity 
matters, but speed 
matters more.

Entry testing helps 
to reduce case load.
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Part 2 – Testing to Mitigate Spread
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1. Keep the initial infection rate as low as possible

• Start with 100 cases, then steady state for the term can be kept to <10% range

• Start with 400 cases, it will be increasingly hard to control.

2.     Reduce transmission rate from 1.3 to 1.5 range, to steady state (1.0) 
or less

• Every fraction of R0 above 1 must be offset by mitigation of an equivalent 
fraction (e.g., shared dorms rooms is 1 new infection; a party could be dozens or 
more).

• Without testing, 100 this week becomes 150 next week, so we need to find and 
isolate 50 cases; if incidence is 1% and there are 10,000 students, then we have to test 
5,000 a week

→ Comprehensive Testing, At Least 1x Per Week of Students (and 
Staff/Faculty on campus), starting at Re-entry is essential



Testing – FDA Regulations
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Testing – Types

31

1. Serological tests - Detects your own antibodies, tells whether you’ve 
previously had SARS-CoV-2

2. Antigen tests - Detects viral proteins, but still under development (Leavey, 
Finn, Lu …)

3. Isothermal tests - Rapid moderate complexity diagnostic test at STAMPS (25 / 
day)

4. PCR tests - Detects viral RNA, amenable to pooling, so 
scales to thousands per day

• Nasopharyngeal Swabs:  Gold Standard, harder to process and handle safely

• Saliva:   Not yet approved, but easily collected and processed and very safe

→  We’re aiming for 1300 to 2500 saliva surveillance tests per day



Testing – Accuracy (and Predictive Value)
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Same Test, 2,000 instead of 10,000:    Finding True Positives requires comprehensive testing



Testing – Accuracy (and Predictive Value)
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Same Test, 2,000 instead of 10,000:    Finding True Positives requires comprehensive testing



Sampling Approach
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COVID-19 Test Kit bag

Transfer pipette

Specimen Collection 
cup with lid

Saliva specimen 
biohazard bag

Alcohol pad

Sample tube

http://covid19.biosci.gatech.edu



Pooled Testing
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← Single Pool “Dorfman” design

Double Pool design  →

We will test 28 people in 8 pools of 7, where each person is uniquely 
in one pair of wells. If incidence is 1% then ¼ of sets will be positive.
If incidence is 2% we switch to 6 pools of 5
If incidence is 5% we switch to 4 pools of 3, but we’re all in trouble!

Nature July 10, 2020 (Smriti Mallapati)



Notification

36

1. Since we are performing surveillance, we cannot return individual results

2. If you don’t hear anything, you were probably not in a positive pool

BUT it does not mean you are negative for SARS-CoV-2

- Sometimes there is no virus in a particular sample
- With pooling, sometimes the signal may dilute below the detection threshold
- We might make mistakes occasionally
-You may become positive after testing

3. If we infer that you are positive, either:

Plan A:  We retest your individual sample with a CLIA certified test then inform you
Plan B: We call back members of each positive pool for a CLIA nasal swab test

If you are called back, it does not mean you are positive

→ The Goal is to Identify as many True Positives as we can



Parting Thoughts
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A Critical Point in Approaching Covid-19 in Younger Adults:
Asymptomatic/Presymptomatic/Mild Transmission is Real

Negative serial intervals (Du et al. CDC EEID, 2020)

Estimated infectious profile includes significant 
presymptomatic transmission (He et al., Nature Medicine, 
2020)

Takeaway: Large-scale outbreaks in
adolescents and young adults are
possible (N. GeorgiaYMCA camp;
Rutgers football team, etc.); many (but 
not all) without symptoms, and can 
then cascade to the greater community.



Institutional Efforts Will not Be Enough –
Collective Efforts are Needed



Covid-19 and Education Restart:
Take-aways and Recommendations

40

Testing: 
Arrival testing for all community members 
until complete; reducing the size of initial 
outbreak,  and then use repeated, pool testing
to continue to ‘remove’ cases from circulation 
and reduce outbreak size.

Mask-wearing: 
Enforceable inside buildings, i.e., students asked 
to leave a room/building if necessary and 
return to dorm to get mask (aim for ~100% 
compliance). Increased distribution of 
disposable masks around campus.

Teaching Modality:
Online should be the default mode; hybrid can 
include occasional face-to-face interactions 
and increase as conditions warrant (but 
conditions currently do not warrant it).

Essential Interactions and Risk:
Reduce indoor gatherings whenever possible, 
consider a ban on parties, find an equivalent 
substitute, protect and inform essential workers 
(often hardest hit); devise plans to protect and 
respect the entire campus community.



Joshua S. Weitz
School of Biological Sciences 

School of Physics
Center for Microbial Dynamics & 

Infection
Quantitative Biosciences Program

jsweitz@gatech.edu

Greg Gibson
School of Biological Sciences 
Center for Integrative Genomics
Bioinformatics Program
greg.Gibson@biology.gatech.edu

Questions?
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