August 4, 2020 School of Biological Sciences College of Sciences Georgia Institute of Technology

Science and Projections for a Return to Campus

Greg Gibson

School of Biological Sciences Center for Integrative Genomics Bioinformatics Program

Joshua S. Weitz

School of Biological Sciences School of Physics Center for Microbial Dynamics & Infection Quantitative Biosciences Program jsweitz@gatech.edu

Email: jsweitz@gatech.edu Web: http://ecotheory.biology.gatech.edu

Funding, disclosures, and thank you-s

Prof. Joshua Weitz Email: jsweitz@gatech.edu Twitter: @joshuasweitz Web: ecotheory.biosci.gatech.edu

2

JSW is supported by:

- National Science Foundation Physics of Living Systems
- National Science Foundation Bridging Ecology and Evolution
- National Science Foundation Ecology of Infectious Disease
- National Science Foundation Biological Oceanography
- National Institutes of Health, NIAID
- Simons Foundation, Life Sciences Program
- Army Research Office
- Charities Aid Foundation
- The Marier Cunningham Foundation

This work is the result of ongoing interdisciplinary collaborations:

Georgia Tech TeamCollaboratorsAshley CoenenClio Andris, GTDr. Stephen BeckettDaniel CornfortDr. David DemoryAroon Chande,Marian Dominguez-MirazoJonathan DushoDr. Jeremy HarrisCeyhun Eksin, TeDr. Joey LeungGreg Gibson, CGuanlin LiMallory Harris,Andreea MagalieMichael HochbeDaniel MuratoreMontpellierRogelio Rodriguez-GonzalezSeolha Lee, GTDr. Adriana SanzBenjamin LopmoShashwat ShivamAlicia Kraal, EmConan ZhaoKristin Nelson, E

Collaborators Clio Andris, GT Daniel Cornforth, GT Aroon Chande, GT Jonathan Dushoff, McMaster Ceyhun Eksin, Texas A&M Greg Gibson, GT Mallory Harris, Stanford Michael Hochberg, Montpellier Seolha Lee, GT Benjamin Lopman, Emory Alicia Kraal, Emory Kristin Nelson, Emory Sang Woo Park, Princeton Yorai Wardi, GT

Funding, disclosures, and thank you-s

Prof. Greg Gibson Email: greg.gibson@biology.gatech.edu Blog: http://genomestake.blogspot.com/ Web: https://cig.gatech.edu/

GG is supported by:

- National Institutes of Health NIDDK, NHGRI, NIGMS
- **Helmsley Foundation**
- **Gates Foundation**

Mike Shannon

Mike Farrell

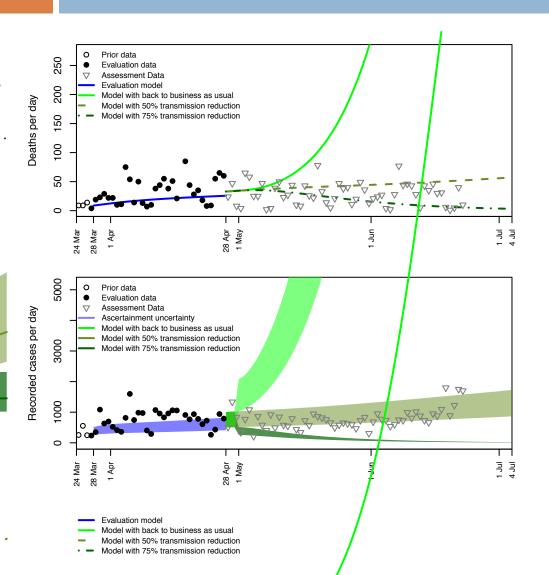
Anton Bryksin

IBB Core Directors

Dalia Gulick

JulieAnne Williamson Logistics Alex Ortiz

Emily Ryan CLIA Director


Aroon Chande Brian Liu

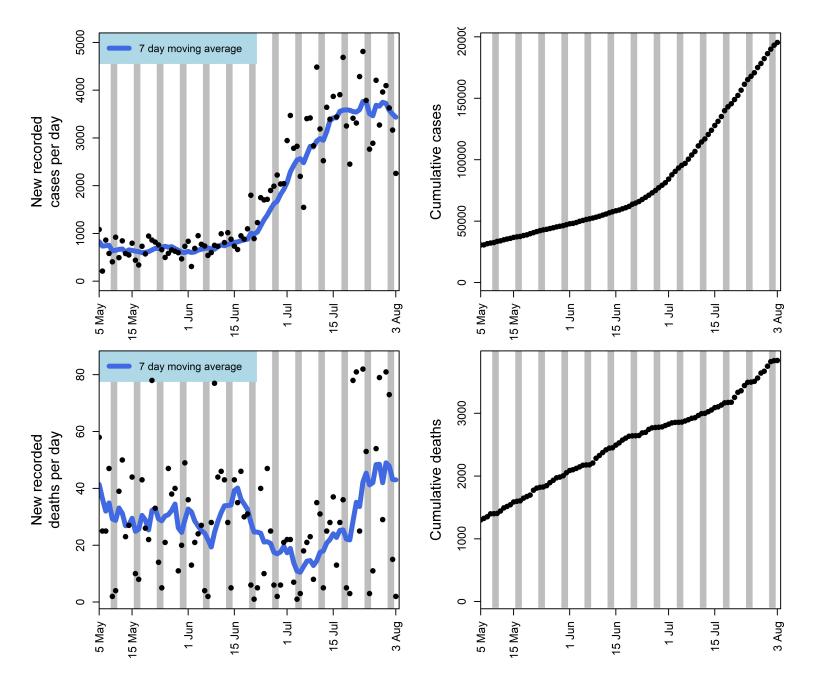
LAB: Jessica Lin, German Khunteev, Naima Djeddar, Katie Ferguson, Chase Morey, several TBN

OTHER: Communications, Legal, Housing, Administration (Andrés Garcia, Chaouki Abdallah, Frank Neville)

This work is the result of ongoing interdisciplinary collaborations:

Georgia Projections from late April 2020 Beckett et al. (medrxiv; Weitz group)

Summary:


Model trained w/age-structured model based on deaths/hospitalizations in April.

Predictions of continued ~50% social distancing suggested multi-month 'plateau' in cases.

Yet there were always far worse alternatives, given that we remain almost entirely immunologically naieve.

Report, Code, and Preprint:

https://weitzgroup.github.io/MAGEmodel_covid19_GA/

Courtesy: Dr. Stephen Beckett (Weitz group)

Covid-19:

A global pandemic with acute effects in GA

Georgia Overall COVID-19 Status

July 6

Below you will find information reported to DPH on the total number of COVID19 tests, confirmed COVID-19 cases (PCR positive), ICU admissions, hospitalizations, and deaths attributed to COVID-19. These data are based on available information at the time of the report and may not reflect all cases or tests performed in Georgia.

	Confirmed COVID-19 Cases	Deaths i	Hospitalizations i	ICU Admissions i
	• 95.516	2,860	11,775	2,429
h	20,010			

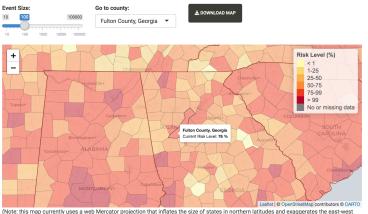
Georgia Overall COVID-19 Status

Below you will find information reported to DPH on the total number of COVID-19 tests, confirmed COVID-19 cases (PCR positive), ICU admissions, hospitalizations, and deaths attributed to COVID-19. These data are based on available information at the time of the report and may not reflect all cases or tests performed in Georgia.

Confirmed Cases	Deaths 🛈	Hospitalizations 🛈		
• 195,435	3,842	19,124	3,512	August 4

In the past month, Georgia has experienced:

- ~50% of total reported cases since inception of epidemic.
- ~40% of total hospitalizations
- ~30% of ICU admissions
- ~25% of fatalities

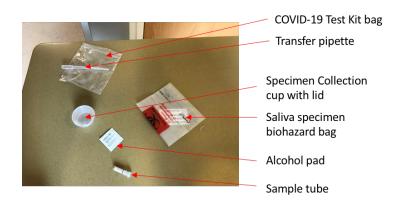

Note: severe cases/fatalities lag multiple weeks behind case reports

Takeaway: This is a critical phase of the epidemic; a default mode of 'face-to-face learning' is not feasible, today's talk will focus on the science that can help guide decision-making processes @ GT.

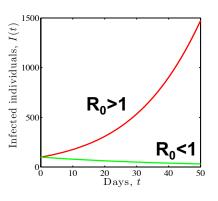
Science and Projections for the Fall Term

Part I – Model Projections

(JSW): What are the risks of a dynamic outbreak and how can individual actions (e.g., mask-wearing) and institutional efforts (e.g., testing/online learning) help reduce risk for al?


distance between states in the northern latitudes.)

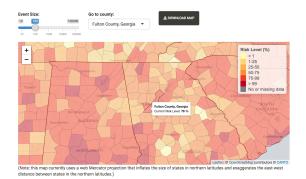
Risk dashboard (1.7M+ visitors in past month):

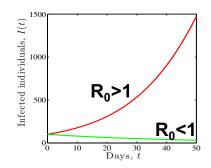

https://covid19risk.biosci.gatech.edu/

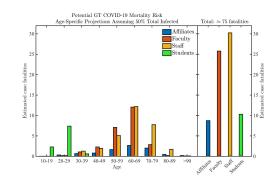
Technical Refs: Park et al. Epidemics (2020); Park et al. JRSI (2020); Weitz et al. Nature Medicine (2020).

Part 2: Testing Initiatives (GG) How can large-scale testing be used to mitigate and reduce risk for all?

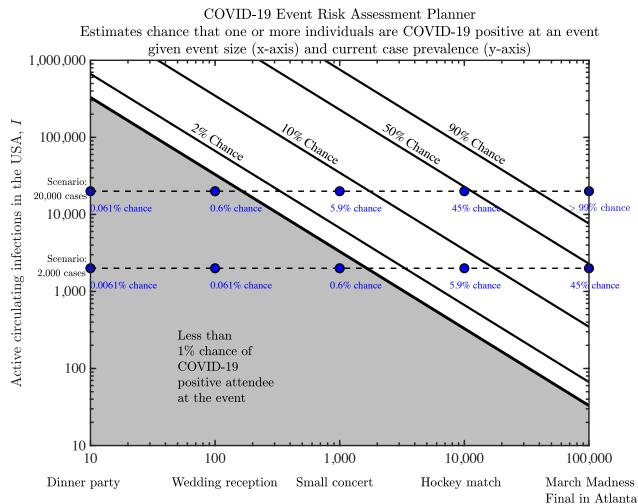
Part(ing) Thoughts: Action-Taking Amidst Uncertainty

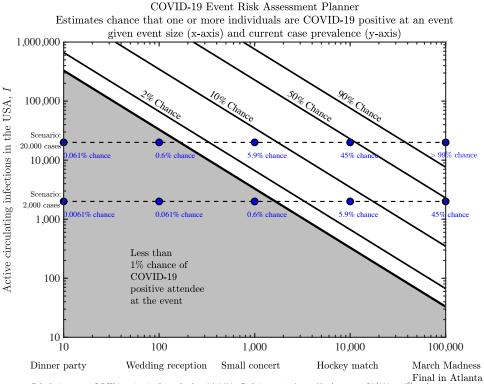


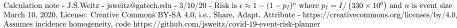

Part 1 – Model Projections


Risk of Exposure: What are the chances that one (or more) individuals in a group (e.g., classroom, dining hall, dorm, party) will have Covid-19?

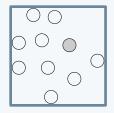
Risk of a Large Outbreak: What is the risk that imported cases will lead to a large epidemic outbreak in the GT student, staff, and faculty community?

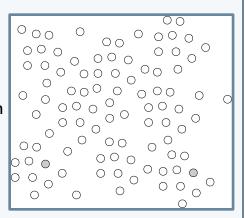

Risk of Severe Outcomes: In the event of a large epidemic outbreak, how might a Covid-19 outbreak impact the campus community?




How can we translate data on case reports to something personal?

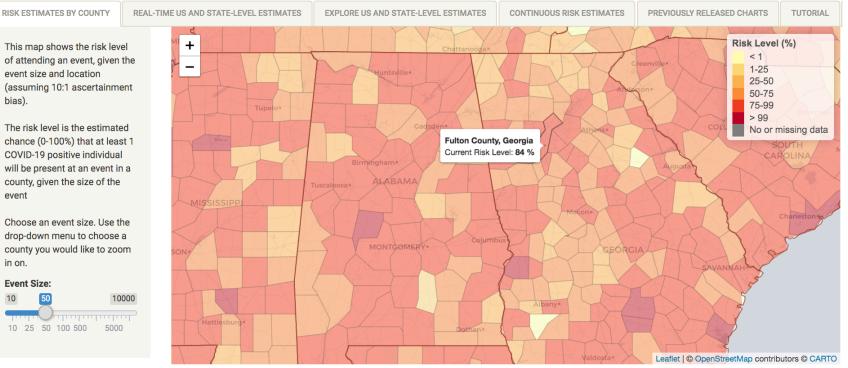
Calculation note - J.S.Weitz - jsweitz@gatech.edu - 3/10/20 - Risk is $\epsilon \approx 1 - (1 - p_I)^n$ where $p_I = I/(330 \times 10^6)$ and n is event size March 10, 2020, License: Creative Commons BY-SA 4.0, i.e., Share, Adapt, Attribute - https://creativecommons.org/licenses/by/4.0/Assumes incidence homogeneity, code https://github.com/jsweitz/covid-19-event-risk-planner


Q: What is the chance that one (or more) individuals are infected in a group?



$$Risk = 1 - (1 - p)^n$$

Higher per-capita risk, even small events may include one (or more) Covid-19 infecteds.



Lower per-capita risk, large events may include one (or more) Covid-19 infected even when it seems hardly anyone is sick.

Risk of Exposure: Classrooms and Gatherings

COVID-19 Event Risk Assessment Planning Tool

(Note: This map uses a Web Mercator projection that inflates the area of states in northern latitudes. County boundaries are generalized for faster drawing.)

Covid-19 Risk Assessment Calculator (joint w/Prof. Clio Andris and ABiL) Website: https://covid19risk.biosci.gatech.edu/

Risk of Exposure Associated with Gatherings

Large gatherings are problematic for multiple reasons:

- Increased likelihood that someone in a group has Covid-19 (perhaps asymptomatically).
- More potential interactions to spread, i.e., the number of 'contacts' scales with n² (where n is the group size) – <u>super-spreading</u>.
- Harder to contact trace; close contacts in a gathering are not easy to reconstruct.

Risk of Exposure Associated with Gatherings

Large gatherings are problematic for multiple reasons:

- Increased likelihood that someone in a group has Covid-19 (perhaps asymptomatically).
- More potential interactions to spread, i.e., the number of 'contacts' scales with n² (where n is the group size) – <u>super-spreading</u>.
- Harder to contact trace; close contacts in a gathering are not easy to reconstruct.

Risk assessment:

Risk that one (or more) individuals has Covid-19 is $I-(1-p)^n$ where p is the circulating infection rate (we estimate from cases x ascertainment bias)

Site	Estimated infections/reported cases, No. (range) ^d
Western Washington	11.2 (6.9-19.2)
New York City metro area (New York)	11.9 (8.6-15.4)
Louisiana	15.7 (10.6-22.4)
South Florida	11.2 (6.0-19.5)
Philadelphia metro area (Pennsylvania)	6.8 (3.6-11.1)
Missouri	23.8 (14.8-34.7)
Utah	10.5 (5.5-15.5)
San Francisco Bay area (California)	9.0 (3.2-22.7)
Connecticut	6.0 (4.3-7.8)
Minneapolis-St Paul-St Cloud metro area (Minnesota)	10.2 (4.3-19.5)

Havers et al., JAMA 2020

Risk of Exposure: Associated with Gatherings

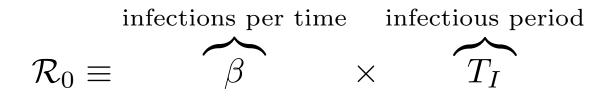
Large gatherings are problematic for multiple reasons:

- Increased likelihood that someone in a group has Covid-19 (perhaps asymptomatically).
- More potential interactions to spread, i.e., the number of 'contacts' scales with n² (where n is the group size) – <u>super-spreading</u>.
- Harder to contact trace; close contacts in a gathering are not easy to reconstruct.

Risk assessment:

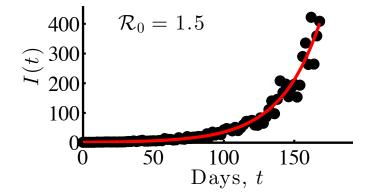
Risk that one (or more) individuals has Covid-19 is $I-(1-p)^n$ where p is the circulating infection rate (we estimate from cases x ascertainment bias)

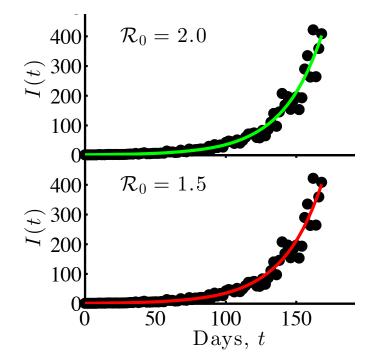
Mitigation steps:

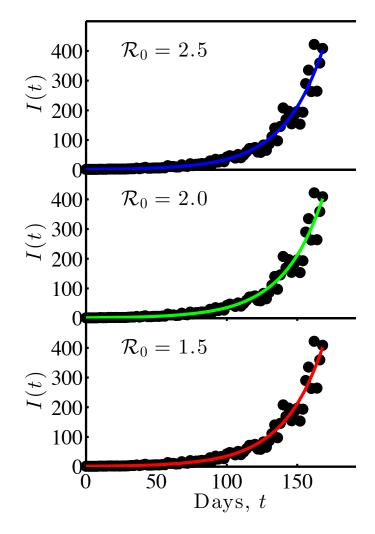

I. Reduce group sizes whenever possible (in and out of class).

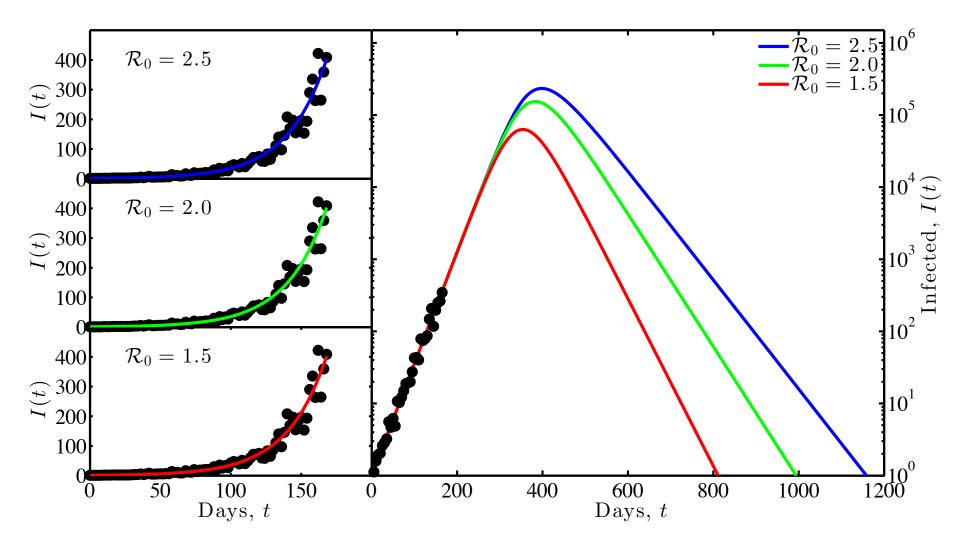
Example: Classroom of 25 has ~50% chance one or more have Covid-19.

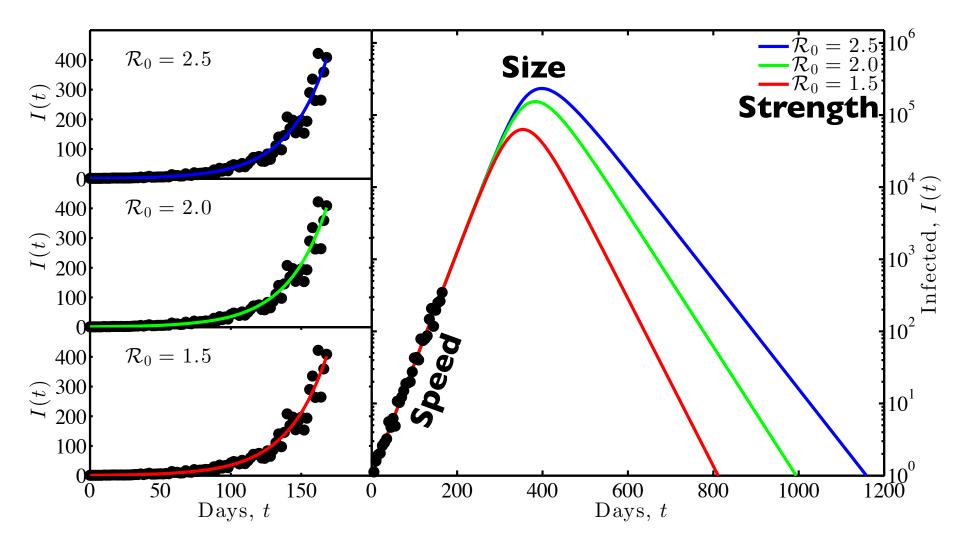
2. Mask wearing enforced in all buildings that have common spaces, even when alone (all teaching policies should be clear that individuals w/out masks cannot be in a lab/class/bldg).

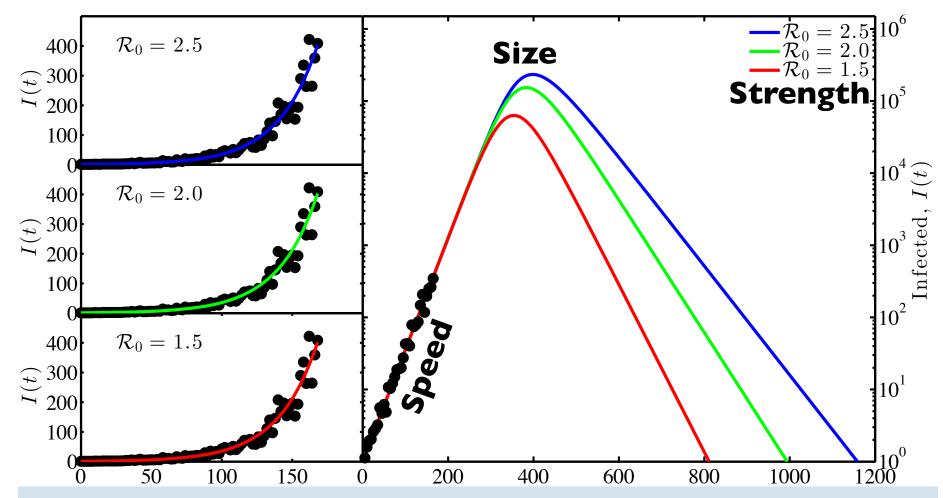

3. The safe modality for teaching right now is: **online**; until risks diminish, testing is initiated.

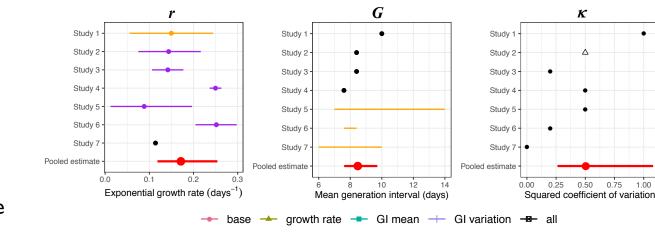

What Happens Next: Conditions for epidemic growth




Where infections per time, β , is a product of:

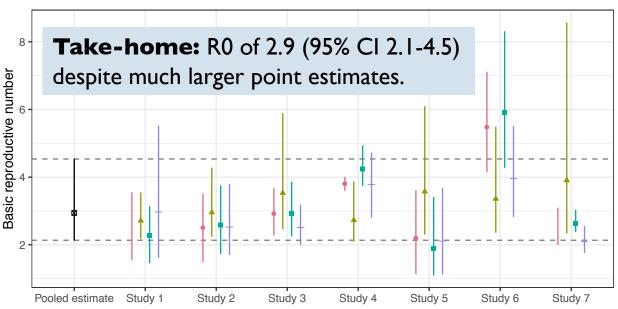

- Contacts by infectious individuals per unit time
- Probability of contact with a susceptible (S_0/N)
- Probability that the contact transmits the disease





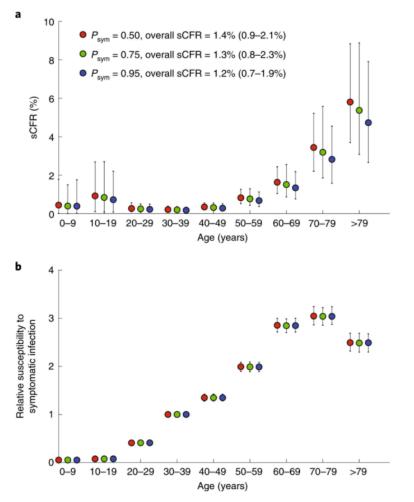
Tentative conclusion: We can measure the 'speed', but inferring the 'strength' (and by extension, predicting the 'size') of an epidemic is harder. Pooled estimates via a speed-strength relationship (technically using generation intervals) Park et al., J. Roy. Soc. Interface (2020) Sang Woo Park

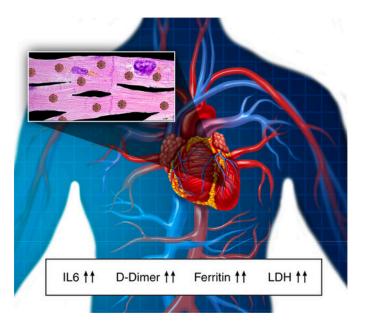
Jonathan Dushoff



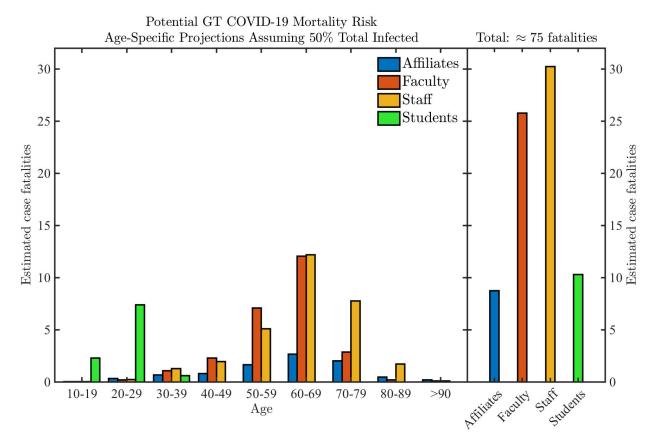
Step I: estimate

'parameters'.


latent uncertainty in


$$\mathcal{R}_0 = \left(1 + \kappa r \bar{G}\right)^{1/\kappa}$$

The Many Impacts of Covid-19: Severity and Age


From: Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China

Increasing evidence of myocardial damage (Clerkin et al., Circulation, 2020)

Risk of Severe Outcomes: A Community of Students, Staff, and Faculty

Take-away: this scenario is based on an <u>unmitigated</u> epidemic at full campus capacity; and highlights the need for action-taking. Assumes 50% infection of the community, with age-stratified risk, but not including co-morbidity information; data on age distributions from GT IRP. Analysis based on ICL and HK analysis of age-stratified risk.

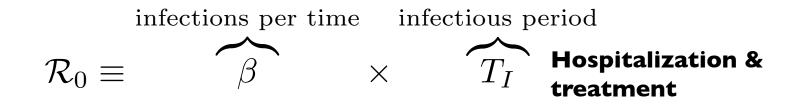
Risk of Severe Outcomes: A Community of Students, Staff, and Faculty

Covid-19 has many kinds of severe outcomes:

- Lung/cardiac damage (perhaps 'silently').
- Long-term health problems (breathing, and damage to other tissue function).
- Extended hospitalization.
- Increased fatality with age.

Take-away: Per-capita, staff and faculty are at greater risk, but students can also have severe outcomes; strategy should be to take steps to <u>reduce</u> transmission.

Mitigation steps:


I. Operate as liberally as possible with respect to starting w/online teaching as default.

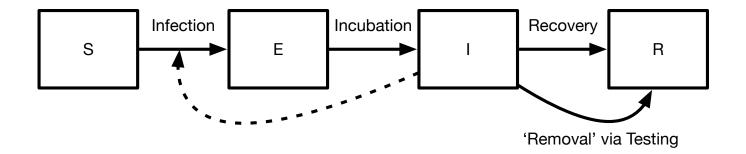
2. Consider reducing in-person interactions whenever possible, shift-work, reducing density

3. Baseline R0 ~ 3 implies need >67% aggregate reduction to halt an initial outbreak.

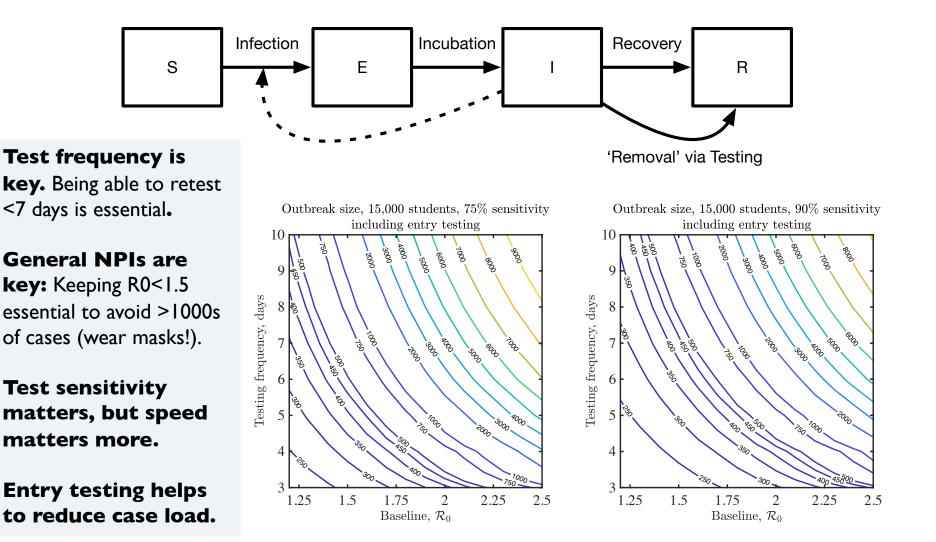
<u>4.We are all in this together:</u> protect each person to protect us all.

Conditions for epidemic growth also suggest opportunities for control

Where infections per time, β , is a product of:


- Contacts by infectious individuals per unit time
- Probability of contact with a susceptible (S_0/N)
- Probability that the contact transmits the disease

```
Testing & targeted isolation
```


```
Tracing/quarantine,
travel reduction,
shield immunity
```

Process engineering & PPE (masks)

Testing as Mitigation - Principles

Testing as Mitigation - Principles

Part 2 – Testing to Mitigate Spread

I. Keep the initial infection rate as low as possible

- Start with 100 cases, then steady state for the term can be kept to <10% range
- Start with 400 cases, it will be increasingly hard to control.

2. Reduce transmission rate from 1.3 to 1.5 range, to steady state (1.0) or less

- Every fraction of R_0 above I must be offset by mitigation of an equivalent fraction (e.g., shared dorms rooms is I new infection; a party could be dozens or more).
- Without testing, 100 this week becomes 150 next week, so we need to find and isolate 50 cases; if incidence is 1% and there are 10,000 students, then we have to test 5,000 a week

→ Comprehensive Testing, At Least Ix Per Week of Students (and Staff/Faculty on campus), starting at Re-entry is essential

Testing – FDA Regulations

Pooled Testing for SARS-CoV-2

	Surveillance Testing	Screening Testing	Diagnostic Testing
CLIA-Certified Laboratory	Yes	Yes	Yes
Non-CLIA-Certified Laboratory	Yes	No	No
CLIA Requirements Apply to Pooled Testing Procedure	No	Yes	Yes
Test System Must Be FDA Authorized or Offered Under the Policies in FDA's Guidance	No	Yes	Yes

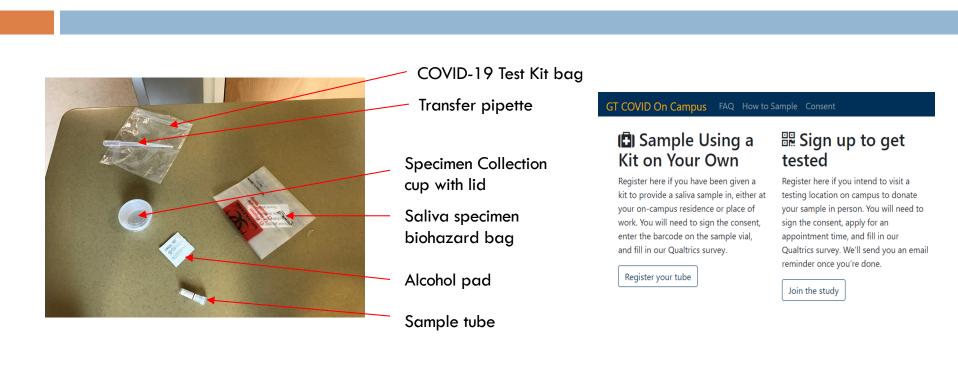
Testing – Types

- 1. Serological tests Detects your own antibodies, tells whether you've previously had SARS-CoV-2
- 2. Antigen tests Detects viral proteins, but still under development (Leavey, Finn, Lu ...)
- Isothermal tests Rapid moderate complexity diagnostic test at STAMPS (25 / day)
- 4. PCR tests Detects viral RNA, amenable to pooling, so scales to thousands per day
- Nasopharyngeal Swabs: Gold Standard, harder to process and handle safely
- Saliva: Not yet approved, but easily collected and processed and very safe

→ We're aiming for 1300 to 2500 saliva surveillance tests per day

Testing – Accuracy (and Predictive Value)

	÷	Cases (Incidents) 🔷	Controls (Unaffected)	Predicted Values (PPV/NPV) 🔷
Called Positive		90	99	0.48
Called Negative		10	9801	1
				Accuracy 🖨
				0.99

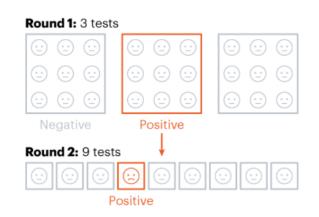

Testing – Accuracy (and Predictive Value)

÷	Cases (Incidents) 🔷	Controls (Unaffected) 🔷	Predicted Values (PPV/NPV) 🔷
Called Positive	90	99	0.48
Called Negative	10	9801	1
			Accuracy 🌲
			0.99

Same Test, 2,000 instead of 10,000: Finding True Positives requires comprehensive testing

	÷	Cases (Incidents) 🔷	Controls (Unaffected) 🖨	Predicted Values (PPV/NPV) 🔷
Called Positive		18	20	0.48
Called Negative		2	1960	1

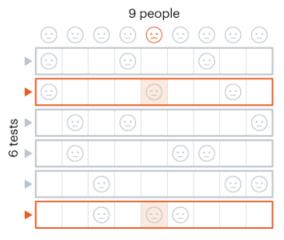
Sampling Approach



http://covidl9.biosci.gatech.edu

Pooled Testing

Method 1


Samples are mixed together in equal-sized groups and tested. If a group tests positive, every sample is retested individually.

\leftarrow Single Pool "Dorfman" design

Method 4

This method uses only one round of testing. Samples are distributed into a matrix of overlapping groups.

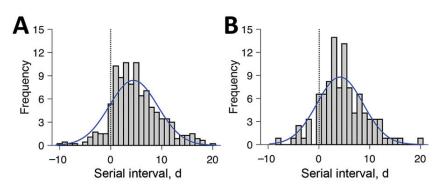
Nature July 10, 2020 (Smriti Mallapati)

Double Pool design \rightarrow

We will test 28 people in 8 pools of 7, where each person is uniquely in one pair of wells. If incidence is 1% then $\frac{1}{4}$ of sets will be positive. If incidence is 2% we switch to 6 pools of 5 If incidence is 5% we switch to 4 pools of 3, but we're all in trouble!

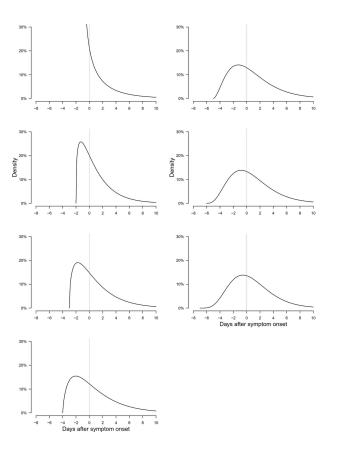
Notification

- I. Since we are performing surveillance, we cannot return individual results
- 2. If you don't hear anything, you were probably not in a positive pool


BUT it does not mean you are negative for SARS-CoV-2

- Sometimes there is no virus in a particular sample
- With pooling, sometimes the signal may dilute below the detection threshold
- We might make mistakes occasionally
- You may become positive after testing
- 3. If we infer that you are positive, either:
- Plan A: We retest your individual sample with a CLIA certified test then inform you
- Plan B: We call back members of each positive pool for a CLIA nasal swab test If you are called back, it does not mean you are positive

\rightarrow The Goal is to Identify as many True Positives as we can


Parting Thoughts

A Critical Point in Approaching Covid-19 in Younger Adults: Asymptomatic/Presymptomatic/Mild Transmission is Real

Negative serial intervals (Du et al. CDC EEID, 2020)

Takeaway: Large-scale outbreaks in adolescents and young adults are possible (N. Georgia YMCA camp; Rutgers football team, etc.); many (but not all) without symptoms, and can then cascade to the greater community.

Estimated infectious profile includes significant presymptomatic transmission (He et al., Nature Medicine, 2020)

Institutional Efforts Will not Be Enough – Collective Efforts are Needed

AUSTIN

No parties at UT Austin this fall – on or off campus – school official says

Covid-19 and Education Restart: Take-aways and Recommendations

Testing:

Arrival testing for all community members until complete; reducing the size of initial outbreak, and then use repeated, pool testing to continue to 'remove' cases from circulation and reduce outbreak size.

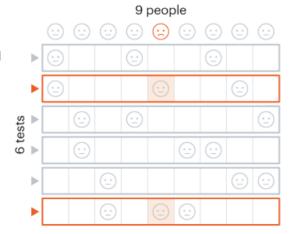
Mask-wearing:

Enforceable inside buildings, i.e., students asked to leave a room/building if necessary and return to dorm to get mask (aim for ~100% compliance). Increased distribution of disposable masks around campus.

Teaching Modality:

Online should be the default mode; hybrid can include occasional face-to-face interactions and increase as conditions warrant (but conditions currently do not warrant it).

Essential Interactions and Risk:


Reduce indoor gatherings whenever possible, consider a ban on parties, find an equivalent substitute, protect and inform essential workers (often hardest hit); devise plans to protect and respect the entire campus community.

Method 4 This method uses only one round of testing. Samples are distributed into a matrix of overlapping groups.

Outbreak size, 15,000 students, 90% sensitivity including entry testing 400 450 9 Testing frequency, days 8 6000 2000 1000 1000 300 150 6 2000 1000 4 300 3 1.25 1.5 1.75 2 2.25 2.5 Baseline, \mathcal{R}_0

Greg Gibson

School of Biological Sciences Center for Integrative Genomics Bioinformatics Program greg.Gibson@biology.gatech.edu

Joshua S. Weitz

School of Biological Sciences School of Physics Center for Microbial Dynamics & Infection Quantitative Biosciences Program jsweitz@gatech.edu

