
exascaleproject.org

Agile Methodologies

David E. Bernholdt
Oak Ridge National Laboratory

Michael A. Heroux, James M. Willenbring
Sandia National Laboratories

Software Productivity Track, ATPESC 2020

See slide 2 for 
license details



2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, Mark C. Miller, Katherine M. Riley, 

and James M. Willenbring, Software Productivity Track, in Argonne Training Program for Extreme Scale 
Computing (ATPESC), August 2020, online. DOI: 10.6084/m9.figshare.12719834

• Individual modules may be cited as Speaker, Module Title, in Software Productivity Track…

Acknowledgements
• Additional contributors include: Patricia Grubel, Rinku Gupta, Mike Heroux, Alicia Klinvex, Jared O’Neal, David Rogers, 

Deborah Stevens
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing 

Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department 
of Energy Office of Science and the National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for 
the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. 
Department of Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence 
Livermore National Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission 
laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned 
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration 
under contract DE-NA0003525. SAND2020-8110 PE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.12719834


3

Outline

• Small Team Models, Challenges
• Agile workflow management for small teams.

– Intro to terminology and approaches
– Overview of Kanban
– Building on Kanban
– Free tools:  Trello, GitHub



4

Ideas for managing transitions and steady work.

Small Teams4



5

Small team interaction model

• Team composition:
– Senior staff, faculty: 

• Stable presence, in charge of science questions, experiments.
• Know the conceptual models well.
• Spend less time writing code, fuzzy on details.

– Junior staff, students:
• Transient, dual focus (science results, next position).
• Staged experience: New, experienced, departing.
• Learning conceptual models.
• Write most code, know details.

Large teams have 
additional interaction 
challenges, and are 
often composed of 
smaller sub-teams.



6

Small team challenges

• Heavy processes are often neither necessary nor 
appropriate
– Adopt only those processes that add value

• Ramping up new junior members:
– Background.
– Conceptual models.
– Software practices, processes, tools.

• Preparing for departure of experienced juniors.
– Doing today those things needed for retaining work value.
– Managing dual focus.



7

Initiation Setup
• Identify project 

activities
• Create initiation 

checklist

Ramp Up
• Work initiation checklist
• Initiate project activities

Ongoing 
Planning

• Kanban workflow
• Observe policies

Ongoing Work
• Conduct activities
• Observe policies

Exit Setup

• Identify final 
deliverables

• Create exit checklist

Repeat
• Start process again

Depart
• Work complete
• Work transferred
• Contribution sustained

Team Member 
Lifecycle

• Quick ramp up
• Disciplined activities
• Sustained contributions

Ramp Down
• Work exit checklist
• Leave project activities

St
ar

t

Research Team Member Lifecycle



8

Checklists & Policies

Team Member Phase
New Team Member Steady Contributor Departing Member

Checklist Policies Checklist

 New, departing team member checklists:  
 Example: Trilinos New Developer Checklist.
 Simple – prevents omissions
 https://github.com/trilinos/Trilinos/wiki/New-

Trilinos-Developers
 Steady state: Policy-driven. 

 Example: xSDK Community policies.
 https://xsdk.info/policies/

New developer checklist 
snippet

https://github.com/trilinos/Trilinos/wiki/New-Trilinos-Developers
https://xsdk.info/policies/


9

Agile Methodologies9



10

Why Agile?

• Fits the research experience better than heavier-weight approaches
– Aligns more naturally with how scientific progress is made

• Well-suited for scientific software efforts (when tailored correctly)
– Works well for small teams
– Provides meaningful, beneficial structure that promotes

• Productivity
• Productization
• Sustainability
• Flexibility in requirements
• Communication



11

What is Agile?

• Agile is not a software development lifecycle model
• I’ve seen Agile informally defined as

– I don’t write documentation
– I don’t do formal requirements, design, or really test…
– Agile is not an excuse to do sloppy work

• Some people consider agile to be synonymous with Scrum
– From Atlassian: Scrum is a framework that helps teams work together
– Scrum is Agile, Agile is not (only) Scrum
– A square is a rectangle, not all rectangles are squares
– Agile is not Kanban either



12

What is Agile?
http://agilemanifesto.org/

http://agilemanifesto.org/


13

Principles behind the Agile Manifesto

• Our highest priority is to satisfy the 
customer through early and 
continuous delivery of valuable 
software. 

• Welcome changing requirements, 
even late in development. Agile 
processes harness change for the 
customer's competitive advantage. 

• Deliver working software frequently, 
from a couple of weeks to a couple of 
months, with a preference to the 
shorter timescale.

• Business people and developers 
must work together daily throughout 
the project. 

• Build projects around motivated 
individuals. Give them the 
environment and support they need, 
and trust them to get the job done. 

• The most efficient and effective 
method of conveying information to 
and within a development team is 
face-to-face conversation. 



14

Principles behind the Agile Manifesto

• Working software is the primary 
measure of progress. 

• Agile processes promote sustainable 
development. The sponsors, 
developers, and users should be able 
to maintain a constant pace 
indefinitely. 

• Continuous attention to technical 
excellence and good design 
enhances agility. 

• Simplicity--the art of maximizing the 
amount of work not done- is 
essential. 

• The best architectures, requirements, 
and designs emerge from self-
organizing teams. 

• At regular intervals, the team reflects 
on how to become more effective, 
then tunes and adjusts its behavior 
accordingly. 



15

Getting Started with Agile

• Agile principles are not hard and fast rules
• Try adopting a few Agile practices

– Following a rigid, ill-fit framework usually leads to failure

• Kanban is a good starting framework
– Follow basic principles, add practices when advantageous
– Better than removing elements from Scrum

Scrum



16

Kanban principles

• Limit number of “In Progress” tasks
– Must be tuned by each team
– Common convention: 2n-1 tasks where n = # team members

• Productivity improvement: 
– Optimize “flexibility vs swap overhead” balance. No 

overcommitting.
– Productivity weakness exposed as bottleneck.  Team must 

identify and fix the bottleneck.
– Effective in R&D setting.  Avoids a deadline-based 

approach. Deadlines are dealt with in a different way.

• Provides a board for viewing and managing issues



17

Basic Kanban
Backlog Ready In Progress Done

• Any task idea
• Trim

occasionally
• Source for 

other columns

• Task + 
description of 
how to do it.

• Could be pulled 
when slot 
opens.

• Typically comes 
from backlog.

• Task you are working on 
right now.

• The only Kanban rule: 
Can have only so many 
“In Progress” tasks.

• Limit is based on 
experience, calibration.

• Key: Work is pulled. 
You are in charge!

• Completed 
tasks.

• Record of your 
life activities.

• Rate of 
completion is 
your “velocity”.

Notes:
• Ready column is not strictly required, sometimes called “Selected for development”.
• Other common column: In Review
• Can be creative with columns: 

– Waiting on Advisor Confirmation.
– Blocked



18

Personal Kanban

• Personal Kanban: Kanban applied to one 
person.
– Apply Kanban principles to your life.
– Fully adaptable.

• Personal Kanban: Commercial 
book/website.
– Useful, but not necessary.

http://www.personalkanban.comhttps://bssw.io/items/using-personal-kanban-for-productivity



19

Kanban tools

• Wall, whiteboard, blackboard: Basic approach.
• Software, cloud-based:

–Trello, JIRA, GitHub Issues & Project Board.
–Many more.

• I use Trello (browser, Android, iPhone, iPad).
–Can add, view, update, anytime, anywhere.
–Different boards for different contexts

• Effective when people are split on multiple projects



20

Big question: How many tasks?
• No single answer. Choose something and adjust from there.
• Personal Kanban approach: Start with 2 or 3.
• Teams: Consider 2n-1, where n=number of team members.
• Use a freeway traffic analogy:

– Does traffic flow best when fully packed?  No.
– Same thing with your effectiveness.

• Spend time consulting board regularly.
– Brings focus.
– Enables reflection, retrospection.
– Use slack time effectively.
– When you get out of the habit, start up again.
– Steers towards previously started tasks



21

Importance of “In Progress” concept for you

• Junior community members: 
–Less control over tasks.
–Given by supervisor.

• In Progress column: Protects you.
– If asked to take on another task, respond:

• Is this important enough to
–back-burner a, b, and c?
–become less efficient?

• Sometimes it is.



22

Building on Kanban
• Focus: Solve issues!

– (not add process)

• 15 minute stand-ups
– Maybe not daily

• Planning meetings
• Retrospectives
• Scrum Master
• Product Owner
• Epic, story, task
• Definition of Done



23

Building on Kanban

• Epic, Story, Task
– Formal or informal
– Start with high-level requirements
– Break down and refine when and as needed

• Close to when the work will be done
• Only for work that will take place
• Can be valuable for estimating
• There is no “correct” level of granularity

– Epics are very high level objectives
– Stories should represent an increment of value to the customer

• ”Done” criteria – understandable to user

– Tasks are the steps necessary to complete a story
• May not individually provide value to the customer



24

Building on Kanban

• User stories (optional)
– Form: As a <stakeholder>, I want <describe what is needed> so that <why do you want this?>
– Can be useful to improve communication and requirements elicitation

• In heat example:
– User stories collected

• As a developer, I want to modularize the heat equation utilities so that I can more easily make use of the utilities 
for other projects.

• As a developer, I want to be able to use multiple integration functions easily so that I can utilize the function best 
suited for the problem I am solving.



25

Building on Kanban

• Epic (derived from user stories): Refactor code for enhanced modularity
– Description: The heat equation code needs refactoring to improve modularity. Specifically, 

there are utilities that could be generalized and used with for other applications. Also, the 
integration function is currently hard-coded. In the future, we want to use alternative 
integration functions, so we should generalize the interface for this function.
• Story 1: Separate out utilities
• Story 2: Separate out integration function

• This idea needs to be socialized with stakeholders
• No staffing/funding currently available



26

Samples from Collegeville Org: Kanban Board



27

Kanban in GitHub

• GitHub supports basic Agile development workflows
– Filing issues

• @mention
– Kanban board
– Projects

• GitHub lacks more advanced features
– Dependencies between issues

• You can reference one issue in another
– Advanced notification schemes
– Custom fields

• You can create custom labels



28

Building on Kanban

• A-Team Tools: A collection of resources for understanding and 
applying lightweight agile practices to your scientific SW project
– Especially useful for

• Small teams
• Teams of teams
• Teams that frequently have members come and go

– https://betterscientificsoftware.github.io/A-Team-Tools/

https://betterscientificsoftware.github.io/A-Team-Tools/


29

Other Resources
• The Agile Samurai: How Agile Masters Deliver 

Great Software (Pragmatic Programmers), 
Jonathan Rasmusson.  
– http://a.co/eUGIe95
– Excellent, readable book on Agile methodologies.
– Also available on Audible.

• Code Complete: A Practical Handbook of 
Software Construction, Steve McConnell.
– http://a.co/eEgWvKj
– Great text on software.
– Construx website has large collection of content.

• More Effective Agile: A Roadmap for Software 
Leaders, Steve McConnell.
– http://a.co/22EPvt6
– New: A realistic view of Agile effectiveness with great advice 

for project leaders.

http://a.co/eUGIe95
http://a.co/eEgWvKj
http://a.co/22EPvt6


31

Scrum team

A Bit about Scrum: Roles

Product Owner

• Interface between 
development team and 
stakeholders.

• Responsible for defining 
and managing work 
backlog.

• Needs good domain 
knowledge.

• Needs adequate time to do 
job well.

Scrum Master

• Leads and coaches 
development team.

• Assures scrum processes 
followed.

• Needs good Scrum 
knowledge and discipline.

• Can be a developer if 
sufficient time.

Development Team

• Cross-functional group of 3 
– 9 that develops product. 

• Completes all work 
necessary to be done-done.

• Collectively need design, 
development, testing, 
documentation skills.

• Works in collaboration with 
product owner, scrum 
master.



32

RepeatRetrospectiveSprint: 1 – 3 weeks*Sprint 
Planning

A Bit about Scrum: Process

Product 
Backlog

Prioritized 
requirements, 
features of the 
product

Sprint 
Backlog

Enough work 
for sprint; 
integral 
capabilities

Daily scrum

Sprint 
Review

Increment
Product with 
new working 
features.

15-min standup
What did you do yesterday?
What will you do today?
What is blocking progress?

* Sprint planning
happens during
previous sprint



33

Team Policy
Checklists
Kanban Board

Team Management Example33



34

Step 1: Create Issues-only GitHub repo
• Go to https://github.com/username 

– Example: https://github.com/maherou

• Create new repo:
– Click on “+” (upper right).
– Select New repository…
– Give repo a name, e.g., Issues
– Select Public.  In real life, this repo is often private (requires $ or special status)
– Init with README.
– Don’t add .gitignore or license.
– Click Create Repository.

https://github.com/maherou


35

Step 2: Define Team Policy
• Create file:

– Go to new repo: Issues.
– Select <> Code tab.
– Select Create new file TeamPolicy.md

• Questions to address:
– How members support team?
– How team supports members?

• Community version: 
– http://contributor-covenant.org

• Policy is living document:
– Informal good practices added.
– Avoidable bad situations addressed.

http://contributor-covenant.org/


36

Step 3a: Create Issues

• Select the Issues tab.
• Click on New Issue.
• Type in task statement 1 (from list).

– Type in title only.

• Click Submit new issue
• Repeat.



37

Step 3b: Create Initiation Checklist

• Select the Issues tab.
• Click on New Issue.
• Select a classmate.
• Type in title: Pat Evans Initiation Checklist
• Add checklist items:

– Use syntax:
- [ ] Description

Spaces required



38

Step 4: Create Kanban Board

• Select Projects tab
• Click New Project
• Use title 

– Team Kanban board

• Add these columns:
– Backlog, Ready, In progress, In review, Done.

• Click on +Add cards (upper right).
– Move each issue to the proper Kanban column



39

Next Steps: Real Life
• Create a GitHub Org and set of repos for your team:

– Each team member has an individual repo.
– Each project has a repo.
– One special repo for issues.

• Track all work:
– Use checklists for initiation, exit, any big new effort.
– Create Kanban board. Keep it current.
– Aggregate related issues using milestones.

• Drive meetings using Kanban board.
• Adapt this approach to meet your needs.
• When you start to get sloppy, get back on track.


	Agile Methodologies
	License, Citation and Acknowledgements
	Outline
	Small Teams
	Small team interaction model
	Small team challenges
	Research Team Member Lifecycle
	Checklists & Policies
	Agile Methodologies
	Why Agile?
	What is Agile?
	What is Agile?
	Principles behind the Agile Manifesto
	Principles behind the Agile Manifesto
	Getting Started with Agile
	Kanban principles
	Basic Kanban
	Personal Kanban
	Kanban tools
	Big question: How many tasks?
	Importance of “In Progress” concept for you
	Building on Kanban
	Building on Kanban
	Building on Kanban
	Building on Kanban
	Samples from Collegeville Org: Kanban Board
	Kanban in GitHub
	Building on Kanban
	Other Resources
	A Bit about Scrum: Roles
	A Bit about Scrum: Process
	Team Management Example
	Step 1: Create Issues-only GitHub repo
	Step 2: Define Team Policy
	Step 3a: Create Issues
	Step 3b: Create Initiation Checklist
	Step 4: Create Kanban Board
	Next Steps: Real Life

