
exascaleproject.org

Summary

David E. Bernholdt, David Rogers
Oak Ridge National Laboratory

Software Productivity Track, ATPESC 2020

See slide 2 for
license details

2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, Mark C. Miller, Katherine M. Riley,

and James M. Willenbring, Software Productivity Track, in Argonne Training Program for Extreme Scale
Computing (ATPESC), August 2020, online. DOI: 10.6084/m9.figshare.12719834

• Individual modules may be cited as Speaker, Module Title, in Software Productivity Track…

Acknowledgements
• Additional contributors include: Patricia Grubel, Rinku Gupta, Mike Heroux, Alicia Klinvex, Jared O’Neal, David Rogers,

Deborah Stevens
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing

Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for
the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence
Livermore National Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission
laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.12719834

3

Software Under the Microscope

• Mar. 16: Neil Ferguson (Imperial College)
briefed UK Parliament on epidemiological
modeling of COVID-19 pandemic

– Epidemiological models like this helped prompt
government action, but have lots of assumptions

• April 1: Nicholas Lewis (independent climate
science researcher in UK) can’t easily see
where some of the assumptions come from –
publishes a blog article
– “Moreover, the computer code… is old, unverified,

and documented inadequately, if at all…”

https://doi.org/10.25561/77482
https://www.nicholaslewis.org/imperial-college-uk-covid-19-numbers-dont-seem-to-add-up/
https://www.nature.com/articles/d41586-020-01003-6

https://doi.org/10.25561/77482
https://www.nicholaslewis.org/imperial-college-uk-covid-19-numbers-dont-seem-to-add-up/
https://www.nature.com/articles/d41586-020-01003-6

4

The Press Picks Up the Story

https://www.foxnews.com/world/imperial-college-britain-coronavirus-lockdown-buggy-mess-unreliable
https://www.telegraph.co.uk/technology/2020/05/16/coding-led-lockdown-totally-unreliable-buggy-mess-say-experts/

“Models must be capable of passing the basic
scientific test of producing the same results given
the same initial set of parameters…otherwise,
there is simply no way of knowing whether they
will be reliable,” said Michael Bonsall, Professor
of Mathematical Biology at Oxford University.

“In our commercial reality, we would fire
anyone for developing code like this and any
business that relied on it to produce software
for sale would likely go bust,” David Richards,
co-founder of British data technology
company WANdisco, told the Daily Telegraph.

Scientists from the University of Edinburgh have further
claimed that it is impossible to reproduce the same results
from the same data using the model. The team got different
results when they used different machines, and even
different results from the same machines.
“There appears to be a bug in either the creation or re-use
of the network file. If we attempt two completely identical
runs, only varying in that the second should use the network
file produced by the first, the results are quite different,” the
Edinburgh researchers wrote on the Github file.
A fix was provided, but it was the first of many bugs found
within the program.

Headline and quotes from the Fox News article

https://www.foxnews.com/world/imperial-college-britain-coronavirus-lockdown-buggy-mess-unreliable
https://www.telegraph.co.uk/technology/2020/05/16/coding-led-lockdown-totally-unreliable-buggy-mess-say-experts/

5

What you May Not Have Heard

• April 22: Imperial collaborates with Microsoft
to refactor and clean up the code, which is
released on GitHub

• May 10: Phil Bull rebuts criticisms of the
Imperial code
– Which spurs further discussions within some

groups focused on scientific software

• May 29: CODECHECK independently
reproduces results of Imperial’s Report 9

https://github.com/mrc-ide/covid-sim/
https://philbull.wordpress.com/2020/05/10/why-you-can-
ignore-reviews-of-scientific-code-by-commercial-software-
developers/amp/
http://doi.org/10.5281/zenodo.3865491

tl;dr: Many scientists write code that is crappy stylistically,
but which is nevertheless scientifically correct (following
rigorous checking/validation of outputs etc). Professional
commercial software developers are well-qualified to
review code style, but most don’t have a clue about
checking scientific validity or what counts as good
scientific practice. Criticisms of the Imperial Covid-
Sim model from some of the latter are overstated at best.

https://github.com/mrc-ide/covid-sim/
https://philbull.wordpress.com/2020/05/10/why-you-can-ignore-reviews-of-scientific-code-by-commercial-software-developers/amp/
http://doi.org/10.5281/zenodo.3865491

6

Some Observations

• Your code is likely to live longer than you expect, and may be used in ways you
don’t expect by people you don’t know – plan for it!

• Increasingly, consequential decisions are made based on computational results
– The codes generating those results may (justifiably) be subject to greater scrutiny

• The scientific credibility of software is strongly connected to good software
engineering practices
– Documentation
– Testing, verification, and (where possible) validation
– Code readability and quality metrics

Question: Should we excuse scientific software for being “crappy stylistically”?
Hint: crappy code can hide bugs

7

Science through computing is,
at best,

as credible as the software that produces it!

8

Today, We Covered Many Topics…

• Project management
• Collaboration around software development
• Designing software for flexibility and extensibility
• Testing strategies for complex software systems
• Systematic refactoring of large, complex software systems
• Continuous integration testing
• Reproducibility

9

And there are Many More We Didn’t Have Time For

• Documentation
• Licensing
• Packaging and distribution
• Issue tracking
• Configuration and build
• Debugging strategies
• Building and sustaining communities around

software
• Software publication and citation
• Requirements gathering
• Understanding and debugging floating-point

math
• Performance and performance portability
• …

• Also important topics, but…
• Less distinction between research software

and other software
• More informational resources available
• Next-level concerns for starting researchers
• There’s only so much time in the day!

10

But you’re a researcher.
You can’t afford to spend

“all” of your time on
software engineering.

11

A Final Recommendation:
Continual, Incremental Software Process Improvement
Target: your project should include “just enough”
software engineering so that you can meet your
short-term and longer-term scientific goals effectively

1. Identify your team’s “pain points” in your
software development processes

2. Set a goal for something to improve
– Target processes and behaviors, not just tasks
– Pick something that you can address in a few

months that will give you a noticeable benefit

3. Agree on a plan to address it, identify
markers of progress and what is “done”

– Write them down

4. Work your plan, track your progress

5. When you are done, celebrate…

…then pick a new pain point to address

C
os

t

ProgressStart Finish

Old Process
New Process

The new process costs something to
implement, but it pays off over time

Productivity and Sustainability Improvement Planning
https://bssw.io/psip

A goal of BSSw.io is to provide resources for
improving your software processes. If you
find useful resources that aren’t on BSSw.io,
consider contributing. Its easy and quick.

https://bssw.io/psip
ttps://bssw.io/

	Summary
	License, Citation and Acknowledgements
	Software Under the Microscope
	The Press Picks Up the Story
	What you May Not Have Heard
	Some Observations
	Slide Number 7
	Today, We Covered Many Topics…
	And there are Many More We Didn’t Have Time For
	Slide Number 10
	A Final Recommendation: �Continual, Incremental Software Process Improvement

