
exascaleproject.org

Continuous Integration

Mark C. Miller
Lawrence Livermore National Laboratory

Software Productivity Track, ATPESC 2020

See slide 2 for 
license details



License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, Mark C. Miller, Katherine M. Riley, 

and James M. Willenbring, Software Productivity Track, in Argonne Training Program for Extreme Scale 
Computing (ATPESC), August 2020, online. DOI: 10.6084/m9.figshare.12719834

• Individual modules may be cited as Speaker, Module Title, in Software Productivity Track…

Acknowledgements
• Additional contributors include: Patricia Grubel, Rinku Gupta, Mike Heroux, Alicia Klinvex, Jared O’Neal, David Rogers, 

Deborah Stevens
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing 

Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department 
of Energy Office of Science and the National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for 
the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. 
Department of Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence 
Livermore National Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344. IM 
Release #LLNL-PRES-813357

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission 
laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned 
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration 
under contract DE-NA0003525.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.12719834


3

What is Continuous Integration (CI) Testing
• Testing

– Focused, critical functionality (infrastructure), fast, independent, orthogonal, complete, … 
– Existing test suites often require re-design/refactoring for CI

• Integration
– Changes across key branches merged & tested to ensure the “whole” still works
– Develop, develop, develop, merge, merge, merge, test, test, test…NO!
– Develop, merge, test, develop, merge, test, develop, merge, test…YES!

• Continuous
– Changes tested every commit and/or pull-request (like auto-correct)

• CI generally implies a lot of automation



4

Automated Testing vs. Continuous Integration (CI) Testing

• Automated Testing: Software that automatically performs tests and reliably 
detects and reports anomalous behaviors/outcomes.
– Examples: Auto-test, CTest/CDash, nightly testing, `make check’
– Potential issues: change attribution, timeliness of results, multiple branches of development

• Continuous Integration (CI): automated testing performed at high frequency 
and fine granularity aimed at preventing code changes from breaking key 
branches of development (e.g. main)
– Example: Disabled/enabled “Merge Pull Request”

button on GitHub
– Potential issues: extreme automation, test granularity,

coverage, 3rd-party services/resources 



5

Examples…

Automated Nightly Testing Dashboard
Lives “next to” your development work

CI Testing
Lives embedded in your development work



6

CI Testing is one part of the “Shift Left” movement in DevOps

Advantage



7

What can make CI Difficult

Common situations

• Just getting started
– Many technologies/choices; often in the ”cloud”
– Solution: start small, simple, build up

• Developing suitable tests
– Many project’s existing tests not suitable for CI
– Solution: Simplify/refactor and/or sub-setting test suite

• Ensuring sufficient coverage
– Some changes to code never get tested
– Solution: tools to measure it, enforce always increasing

Advanced situations

• Defining failure for many configurations
– Bit-for-bit (exact) match vs. fuzzy match
– Solution: absolute/relative tolerances  AI/ML

• Numerous 3rd party libraries (TPLs)
– Compiling takes too long
– Solution: cache pre-built TPLs, containers

• Performance testing
– Avoid time-, space-, scaling-performance degradation
– Solution: Perf. instrumentation and scheduled testing 



8

CI Resources (Where do jobs run?)

• Free Cloud Resources (many free on GitHub,
BitBucket, GitLab, etc.)
– Travis-CI, Circle-CI, AppVeyor, Azure Pipelines,…
– All launch a VM (Linux variants, Windows and OSX)

• Constrained in time/size, config. (e.g. GPU type/count)
• Not always suitable for large, HPC projects due to need

for longer than usual time to run

• Site-local Resources
– Examples: Bamboo @ LLNL, Jenkins @ ANL, Travis+CDash @ NERSC, etc.
– ECP Program: GitLab-CI @ ANL, LANL, LLNL, NERSC, ORNL, SNL

• Create your own by setting up resources/services



9

Examples…

You

github.com

travis-ci.com

Your code 
repository

Your CI 
Resources



10

ECP CI Resources

• ECP investing in GitLab for complex-wide CI

• Non-GitLab projects mirror into GitLab

• Complex-wide Federation via OSTI
– Many hurdles still to overcome
– Manual federation possible…but non-trivial

• Documentation and on-boarding help
– https://ecp-ci.gitlab.io
– email me, miller86@llnl.gov for on-boarding contacts

https://ecp-ci.gitlab.io/
mailto:miller86@llnl.gov


11

Getting started with CI

• What configuration is most important?
– Examples: gcc, icc, xlc? MPI-2 or MPI-3? Python 2, 3 or 2 & 3?

• What functionality is most important?
– Examples: vanilla numerical kernels? OpenMP kernels? GPU kernels? All of these?

• Good candidates…
– A “hello world” example for your project
– Once you’ve got the basics working, its easy to build up from there



12

https://github.com/betterscientificsoftware/hello-numerical-world



13

Getting started with CI:

Setting up CI

Example .travis.yml file
(also doing coverage analysis)

Service Interface
Travis repo YAML file [& repo scripts] /.travis.yml in

root of repo

GitLab Web page configurator +
repo YAML file [& repo scripts]

/.gitlab-ci.yml 
in
root of repo

Bamboo Web page configurator +
repo scripts

.

.

.



14

Getting started with CI: Example .travis.yml file
(also doing coverage analysis)

Specify environment

Commands to run test 

Keywords defined by service
provider’s YAML docs



15

travis-ci.com codecov.io



16

After Hours Hands-on Lesson – YouTube Video

• Follow QR code to GitHub repository
– You can do this exercise entirely in your browser on GitHub

• Fork the repo

• Create .travis.yml using 

• Submit Pull Request (PR)

• Increase coverage
– Change ‘check’ to “check_all”

• Update the PR and observe coverage change

• Extra credit…fail PR if coverage drops
– Hint: read codecov.io docs

https://youtu.be/QE4RFp8lGiQ
https://github.com/betterscientificsoftware/hello-numerical-world-atpesc-2020

	Continuous Integration
	License, Citation and Acknowledgements
	What is Continuous Integration (CI) Testing
	Automated Testing vs. Continuous Integration (CI) Testing
	Examples…
	CI Testing is one part of the “Shift Left” movement in DevOps
	What can make CI Difficult
	CI Resources (Where do jobs run?)
	Examples…
	ECP CI Resources
	Getting started with CI
	https://github.com/betterscientificsoftware/hello-numerical-world
	Getting started with CI:�
	Getting started with CI:�
	travis-ci.com
	After Hours Hands-on Lesson – YouTube Video

