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What is Continuous Integration (CI) Testing
• Testing

– Focused, critical functionality (infrastructure), fast, independent, orthogonal, complete, … 
– Existing test suites often require re-design/refactoring for CI

• Integration
– Changes across key branches merged & tested to ensure the “whole” still works
– Develop, develop, develop, merge, merge, merge, test, test, test…NO!
– Develop, merge, test, develop, merge, test, develop, merge, test…YES!

• Continuous
– Changes tested every commit and/or pull-request (like auto-correct)

• CI generally implies a lot of automation
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Automated Testing vs. Continuous Integration (CI) Testing

• Automated Testing: Software that automatically performs tests and reliably 
detects and reports anomalous behaviors/outcomes.
– Examples: Auto-test, CTest/CDash, nightly testing, `make check’
– Potential issues: change attribution, timeliness of results, multiple branches of development

• Continuous Integration (CI): automated testing performed at high frequency 
and fine granularity aimed at preventing code changes from breaking key 
branches of development (e.g. main)
– Example: Disabled/enabled “Merge Pull Request”

button on GitHub
– Potential issues: extreme automation, test granularity,

coverage, 3rd-party services/resources 
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Examples…

Automated Nightly Testing Dashboard
Lives “next to” your development work

CI Testing
Lives embedded in your development work
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CI Testing is one part of the “Shift Left” movement in DevOps

Advantage
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What can make CI Difficult

Common situations

• Just getting started
– Many technologies/choices; often in the ”cloud”
– Solution: start small, simple, build up

• Developing suitable tests
– Many project’s existing tests not suitable for CI
– Solution: Simplify/refactor and/or sub-setting test suite

• Ensuring sufficient coverage
– Some changes to code never get tested
– Solution: tools to measure it, enforce always increasing

Advanced situations

• Defining failure for many configurations
– Bit-for-bit (exact) match vs. fuzzy match
– Solution: absolute/relative tolerances  AI/ML

• Numerous 3rd party libraries (TPLs)
– Compiling takes too long
– Solution: cache pre-built TPLs, containers

• Performance testing
– Avoid time-, space-, scaling-performance degradation
– Solution: Perf. instrumentation and scheduled testing 
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CI Resources (Where do jobs run?)

• Free Cloud Resources (many free on GitHub,
BitBucket, GitLab, etc.)
– Travis-CI, Circle-CI, AppVeyor, Azure Pipelines,…
– All launch a VM (Linux variants, Windows and OSX)

• Constrained in time/size, config. (e.g. GPU type/count)
• Not always suitable for large, HPC projects due to need

for longer than usual time to run

• Site-local Resources
– Examples: Bamboo @ LLNL, Jenkins @ ANL, Travis+CDash @ NERSC, etc.
– ECP Program: GitLab-CI @ ANL, LANL, LLNL, NERSC, ORNL, SNL

• Create your own by setting up resources/services
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Examples…

You

github.com

travis-ci.com

Your code 
repository

Your CI 
Resources
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ECP CI Resources

• ECP investing in GitLab for complex-wide CI

• Non-GitLab projects mirror into GitLab

• Complex-wide Federation via OSTI
– Many hurdles still to overcome
– Manual federation possible…but non-trivial

• Documentation and on-boarding help
– https://ecp-ci.gitlab.io
– email me, miller86@llnl.gov for on-boarding contacts

https://ecp-ci.gitlab.io/
mailto:miller86@llnl.gov
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Getting started with CI

• What configuration is most important?
– Examples: gcc, icc, xlc? MPI-2 or MPI-3? Python 2, 3 or 2 & 3?

• What functionality is most important?
– Examples: vanilla numerical kernels? OpenMP kernels? GPU kernels? All of these?

• Good candidates…
– A “hello world” example for your project
– Once you’ve got the basics working, its easy to build up from there
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https://github.com/betterscientificsoftware/hello-numerical-world
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Getting started with CI:

Setting up CI

Example .travis.yml file
(also doing coverage analysis)

Service Interface
Travis repo YAML file [& repo scripts] /.travis.yml in

root of repo

GitLab Web page configurator +
repo YAML file [& repo scripts]

/.gitlab-ci.yml 
in
root of repo

Bamboo Web page configurator +
repo scripts

.

.

.
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Getting started with CI: Example .travis.yml file
(also doing coverage analysis)

Specify environment

Commands to run test 

Keywords defined by service
provider’s YAML docs



15

travis-ci.com codecov.io
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After Hours Hands-on Lesson – YouTube Video

• Follow QR code to GitHub repository
– You can do this exercise entirely in your browser on GitHub

• Fork the repo

• Create .travis.yml using 

• Submit Pull Request (PR)

• Increase coverage
– Change ‘check’ to “check_all”

• Update the PR and observe coverage change

• Extra credit…fail PR if coverage drops
– Hint: read codecov.io docs

https://youtu.be/QE4RFp8lGiQ
https://github.com/betterscientificsoftware/hello-numerical-world-atpesc-2020
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