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1 Analytical step distribution of [1]

Hayashi’s formulation of IC-XT as in [1] is:

An(NPM) = An(0)− j
NPM∑
l=1

χnm(l)exp
[
−jφrnd(l)

]
Am(l − 1) (1)

≈ −j
NPM∑
l=1

χnmexp(−jφrnd,l) Where: φrnd,l v U(0, 2π) (2)

where An is the complex amplitude of the IC-XT of the target core n, Am
is the complex amplitude of the signal in the active core, χnm is the coupling
coefficient between cores n and m, φrnd,l is the random phase shift (0 to 2π)
at the lth phase matching point (PMP) and NPM is the total number of phase
matching points between cores n and m in the MCF.

As proved in Convergence Proof, the IC-XT Intensity distribution will follow
a 4 degrees of freedom χ2 distribution, in the following form:

fχ2,4df (x|σ) =
x

4σ4
e
−x
2σ2 (3)

where σ is the standard deviation of the gaussian random variable. This distri-
bution has a mean of 4σ2 and a variance of 8σ4.

In this model subsequent samples are independent so they can be considered
as two separate random variables.

X,Y are independent identical distributed (IID) random variables following
the distribution described in Eq.3. Because they are considered independent
they can be considered consecutive samples from the parent distribution Eq.3.
Their corresponding step (w) distribution will be pW (w):

pW (w) = pW (x− y), where W = X − Y (4)

To find the derivative of a derived distribution it is first needed to find the
cumulative density function (CDF) of the derived random variable and find its
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derivative.The CDF can be described as:

PW (w) = Pr[W ≤ w] = Pr[x− y ≤ w] (5)

= Pr[x ≤ w + y] (6)

=

∫ ∞
−∞

∫ w+y

−∞
fX,Y (x, y)dxdy. (7)

Then finding the derivative in respect of w:

pW (w) =
d

dw
PW (w) =

d

dw

∫ ∞
−∞

∫ w+y

−∞
fX,Y (x, y)dxdy (8)

=

∫ ∞
−∞

d

dw

∫ w+y

−∞
fX,Y (x, y)dxdy (9)

=

∫ ∞
−∞

d

dw

∫ w

−∞
fX,Y (t+ y, y)dtdy, where x = t+ y and dx = dt

(10)

=⇒ d

dz

∫ z

−∞
g(x, y)dx = g(z, y) Using the identity (11)

=

∫ ∞
−∞

fX,Y (w + y, y)dy (12)

=

∫ ∞
−∞

fX,Y (x, x− w)dx, where y = x− w and dy = dx (13)

=

∫ ∞
−∞

fX,Y (x, x− w)dx (14)
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For model [1], X, Y are IID, so:

fX,Y = fX(x)fY (y) for X,Y ∈ [0,∞) (15)

fX(x) = fY (y) where fX(x) =
x

4σ4
e−

x
2σ2 (16)

pw(w) =

∫ ∞
−∞

fX(x)fY (x− w)dx (17)

pw(w|w < 0) =

∫ ∞
0

fX(x)fY (x− w)dx =⇒ x− w > 0 (18)

=

∫ ∞
0

x

4σ4
e−

x
2σ2

x− w
4σ4

e−
x−w
2σ2 dx (19)

=
e
w

2σ2

16σ8

∫ ∞
0

x2 − wxe−xσ2 dx (20)

=
e
w

2σ2

16σ8

∫ ∞
0

x2e
−x
σ2 dx− w

∫ ∞
0

xe−
x
σ2 dx (21)

=
e
w

2σ2

16σ8
g(x)− wh(x) (22)

=⇒ g(x) =

∫ ∞
0

x2e−
x
σ2 dx, h(x) =

∫ ∞
0

xe−
x
σ2 dx (23)

h(x) =

∫ ∞
0

xe−
x
σ2 dx (24)

= −σ2e−
x
σ2 x
∞
0 + σ2

∫ ∞
0

e−
x
σ2 dx (25)

= −σ2e−
x
σ2 x
∞
0 − σ4e−

x
σ2
∞
0 = σ4 (26)

g(x) =

∫ ∞
0

x2e−
x
σ2 dx (27)

= −σ2e−
x
σ2 x2

∞
0 + 2σ2

∫ ∞
0

e−
x
σ2 xdx (28)

= −σ2e−
x
σ2 x2

∞
0 + 2σ2h(x) (29)

= −σ2e−
x
σ2 x2

∞
0 + 2σ2σ4 (30)

= 2σ6 (31)

pw(w|w < 0) =
e
w

2σ2

16σ8
g(x)− wh(x) (32)

=
e
w

2σ2

16σ8
2σ6 − wσ4 (33)

=
e
w

2σ2

16σ4
2σ2 − w (34)
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Figure 1: Experimental and theoretical step distribution for CW

X,Y are IID so, X − Y d
= Y −X (

d
= means identically distributed). Therefore,

pW (w = a) = pW (w = −a). This shows that pW (w) is symmetrical at w = 0:

∴ pW (w) =
e−
|w|
2σ2

16σ4
2σ2 + |w| (35)

Even though an analytical formulation for the step distribution has been found,
the analysis has been done in dB because of the fact that the linear step distri-
bution largely varies with σ, making it not easy to compare the experimental
results for modulation that had not converged yet to the χ2 distribution to the
the distribution described in Eq.35. Even when the IC-XT converged to the
χ2 and the theoretical σ parameter has been found, the theoretical step distri-
bution and the one derived from the experimentally measured one. This can
be clearly seen in Fig.1, This is due to the fact that the model from which the
theoretical distribution is derived considers subsequent samples independent.
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2 IC-XT dB intensity distribution

The PDF of a function (y) of a single continuous random variable (x) in the
form:

y = g(x) (36)

where g(x) is a monotonically increasing function with unique inverse (x =
g−1(y)) can be found as:

fY (y) = fX
[
g−1(y)

] ∣∣∣∣dg−1(y)

dy

∣∣∣∣ (37)

So considering as fX(x) Eq.3 and g(x) the linear to dB transorfamtion, which
is a monotonically increasing with unique inverse.

fX(x) =
x

4σ4
e
−x
2σ2 (38)

g(x) = 10log10(x) (39)

y = g(x) (40)

g−1(y) = 10(
x

10
) (41)

dg−1(y)

dy
= 10

x
10−1log(10) (42)

Substituting into Eq.37:

fY (y) =
10

y
10

4σ4
exp

[
−10( y10 )

2σ2

]
10

y
10−1log(10) (43)

=
log(10)

4σ4
10( y

10+
y
10−1)exp

[
−10( y10 )

2σ2

]
(44)

=
log(10)

4σ4
10( y5−1)exp

[
−10( y10 )

2σ2

]
(45)

The IC-XT distribution in dB will follow Eq.45.

Unfortunately, an analytical expression for the moments of the distribution
cannot be found, due to the divergence of the integral. Still Monte Carlo analysis
will be performed in section ??.

2.1 Step distribution

Using part of the analysis performed above, we can find the step distribution
for the IC-XT intensity in dB. Eq.17 shows that the derived distribution of a
difference of two independent random variables is:

pw(w) =

∫ ∞
−∞

fX(x)fY (x− w)dx (46)
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Figure 2: PDF of samples generated with different σ and theoretical fitting

Substituting fX(x) and fY (y) with Eq.45, we get:

pw(w) =

∫ ∞
−∞

log(10)

4σ4
10( x5−1)exp

[
−10( x

10 )

2σ2

]
· log(10)

4σ4
10( x−w5 −1)exp

[
−10( x−w10 )

2σ2

]
(47)

=
log(10)2

16σ8

∫ ∞
−∞

10( 2x−w
5 −2)exp

−10( x
10 )
(

1 + 10(− w
10 )
)

2σ2

 dx (48)

=
log(10)2

16σ8
10(−w5 −2)

∫ ∞
−∞

10( 2x
5 )exp

−10( x
10 )
(

1 + 10(− w
10 )
)

2σ2

 dx (49)

Unfortunately the integral does not converge, and therefore a closed form rep-
resentation of the dB step distribution is not feasible.

2.2 Monte Carlo Analysis

Even though the analytical analysis of the distribution moments was not pos-
sible, a Monte Carlo Analysis has been performed. Multiple observations of
synthetic IC-XT following the model presented in [1] have been generated and
their PDF plotted Fig.2. This shows that the synthetic data are perfectly de-
scribed by the analytical representation in Eq.45.

As it can be seen from Fig.2, the distribution shape does not change with
the σ parameters but just shifts, thus only changing the mean. To prove a
Monte Carlo Simulation has been performed, where multiple observations (of
1e8 samples) for different values of σ have been generated and the correspondent
moments measured. The results have been plotted in Fig. 3. Fig. 3 empirically
prove that the σ factor only varies the mean of the distribution. Therefore only
shits the PDF. A regression process has been performed to find an analytical
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Figure 3: Moments of IC-XT Intensity with σ

representation of the trend of the mean. The mean µ can be approximated as:

µ = 20log10(σ) + 4.846. (50)

The other moments stayed constants (variance= 12.16, skewness= −0.78, kurtosis=
4.19), therefore all the central moments are constant.
The distribution of the difference between two (independent) observations (step
distribution) from distribution with constant central moments will always be the
same because the difference operation will remove the non-central information.
The step distribution in dB should therefore be independent on σ, as it can be
seen from Fig.4, the distribution is always identical independent on the σ. To
further prove that the step distribution would be constant, no matter σ (and
therefore the characteristics of IC-XT signal),we find the moments for the step
distribution with 1e8 observation for 100 different σ logspaced, and the value
were always constant, Fig.5.

The fact that the theoretical step distribution never changes allows us to
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Figure 4: Step distribution of IC-XT in dB with different σ

7



10−7 10−5 10−3 10−1 101 103 105

Value of σ

0

5

10

15

20

25

V
al

u
e

of
th

e
st

ep
d

is
tr

ib
u

ti
on

m
om

en
ts

Mean

Variance

Skewness

Kurtosis

Figure 5: Moments of step distribution with σ

clearly show the difference between experimental and theoretical step distribu-
tion independently on the source signal parameters and measurement conditions.
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3 Random Walk Step Distribution

We introduce a new model, a generalized version of the [1], in which the ran-
dom phase components are described as random walks in time. The model is
described as:

An,t(NPM) = An(0, t)− j
NPM∑
l=1

χnm(l)exp [−jφl,t]Am(l − 1) (51)

≈ −j
NPM∑
l=1

χnmexp(−jφl,t) (52)

= −j
NPM∑
l=1

χnmexp(−jφl,t−1 + γ) (53)

= −j
NPM∑
l=1

χnmexp

[
−j
(
φl,0 +

t∑
k=1

γ

)]
Where: γ v N(µ, σ2)

(54)

Where φl,0 are the theoretical phase shifts between the active and target core
at the lth phase matching point derived from the equations described in [2], µ
and σ are the mean and standard deviation of the Gaussian distributed random
variable γ respectively.

To find the step distribution in respect of the random variable γ, the derived
distribution for every possible parameter of γ and for every possible state φl,t−1,
need to be found.
Lets start finding the derived distribution for:

y = exp(−jφl,t−1 + γ) Where: γ v N(µ, σ2) (55)

= exp(−jγ1) Where: γ1 v N(µ1 = φl,t−1 + µ, σ2) (56)

= cos [γ1]− j · sin [γ1] (57)

Unfortunately a close analytical form for the real and imaginary part of the
random variable y does not seem to exist. But the analysis can continue due to
the fact that the formulation of An includes the sum of the components for all
the PMPs. Following the central limit theorem (CLT), the sum of independent
random variable with different means and variances will converge to a Gaussian
distribution with mean the sum of the means of the composing random variables
and as variance the sum of the variances. Therefore to find the total overall
distribution it is needed to find the mean and the variance of the random variable
y in respect of µ1, σ of the random variable γ1. Again an analytical solution for
the problem was not possible to be found, on the other hand a formulation of
the moments can be found using a Monte Carlo approach.
The mean and the variance of the sine and cosine of a Gaussian distributed
random variable has been found generating 40000 combinations (200 values of
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Figure 6: Mean of cos(γ1) for different µ1, σ. Surface plot with colour-map
corresponds to measured data, the red wire-frame plot correspond to the fitting

µ, σ between the support 0, 2π) of 1e6 samples each. The moments have been
plotted and a perfect fitting for each has been found.

We started analysing the mean of the cosine function on γ1. From Fig.6, it
can be clearly seen that the behaviour follows the proposed fitting:

E [cos(x)] = cos(µ) · e− 1
2σ

2

where x ∼ N(µ, σ2). (58)

This behaviour is justified by the fact that when the standard deviation is small
the function will almost be deterministic, and when the variance increases (as
explained in Supplementary Material Convergence) the derived distribution will
tend to the one of the cosine of a uniform distribution over the overall support
(arcsine distibution between -1 and 1) due to property of distribution on function
with modular support (Rn, periodic). Because the derived distribution of the
cosine of a uniform distribution is symmetric around 0, the mean of cos(γ1) will
tend to zero when σ increases.
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Figure 7: Mean of sin(γ1) for different µ1, σ.
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Figure 8: Mean of cos(γ1) for different µ1, σ.

Similar analysis has been performed for the sine, Fig. 7, where the mean was
described as:

E [sin(x)] = sin(µ) · e− 1
2σ

2

where x ∼ N(µ, σ2). (59)

We now perform the analysis on the variance of the functions. Because an
analytical representation is not trivial from the data itself, to find the formula-
tion we use the identity:

Var[X] = E
[
(X − E[X])2

]
(60)

= E
[
X2
]
− E [X]

2
. (61)

We already have the mean of the derived random variable, now it is needed to
find the mean of the random variable squared.
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Figure 9: Mean of sin(γ1)2 for different µ1, σ.
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The analytical result are:

E
[
cos2(x)

]
=

1

2

[
1 + cos(2µ) · e−2σ2

]
where x ∼ N(µ, σ2) Fig.8 (62)

E
[
sin2(x)

]
=

1

2

[
1− cos(2µ) · e−2σ2

]
where x ∼ N(µ, σ2) Fig.9 (63)

Now that the mean of the square function have been found we substitute the
expectations in Eq.61 to find the variances.
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Figure 11: Variance of sin(γ1)2 for different µ1, σ.
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The variance of the cosine will follow the form:

Var [cos(x)] = E
[
cos2(x)

]
− E [cos(x)]

2
(64)

=
1

2

[
1 + cos(2µ) · e−2σ2

]
−
(
cos(µ) · e− 1

2σ
2
)2

where x ∼ N(µ, σ)

(65)

=
1

2

[
1 + cos(2µ) · e−2σ2

]
− 1

2

[
(1 + cos(2µ)) · e−σ2

]
(66)

=
1

2

[
1 + cos(2µ) · e−2σ2 − (1 + cos(2µ)) · e−σ2

]
(67)

=
1

2

[
1 + e−σ

2

(cos(2µ) · e−σ2 − 1− cos(2µ))
]

(68)

=
1

2

[
1 + e−σ

2

(cos(2µ) · (e−σ2 − 1)− 1)
]
. (69)

As it can be seen from Fig.10 the fitting is perfect. The same is done for the
sine, Fig.11.

Var [sin(x)] = E
[
sin2(x)

]
− E [sin(x)]

2
(70)

=
1

2

[
1− cos(2µ) · e−2σ2

]
−
(
sin(µ) · e− 1

2σ
2
)2

where x ∼ N(µ, σ)

(71)

=
1

2

[
1− cos(2µ) · e−2σ2

]
− 1

2

[
(1− cos(2µ)) · e−σ2

]
(72)

=
1

2

[
1− cos(2µ) · e−2σ2 − (1− cos(2µ)) · e−σ2

]
(73)

=
1

2

[
1 + e−σ

2

(cos(2µ)(1− e−σ2

)− 1)
]
. (74)

The distribution of the Complex amplitude of IC-XT will follow the following
distribution:

An,t(NPM) = X − jY (75)

Where: X v N

(
e−

1
2σ

2
NPM∑
l=1

cos(µl,t−1),
1

2

[
NPM − e−σ

2

(
NPM − (e−σ

2 − 1)

NPM∑
l=1

cos(2µl,t−1)

)])
(76)

Where: Y v N

(
e−

1
2σ

2
NPM∑
l=1

sin(µl,t−1),
1

2

[
NPM − e−σ

2

(
NPM − (1− e−σ2

)

NPM∑
l=1

cos(2µl,t−1)

)])
(77)

Where µl,t−1 corresponds to φl,t−1, therefore the previous phase value at the
lth PMP.
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Figure 12: Experimental and Model step distribution normalized

The relationship between intensity and complex amplitude is:

In,t =
∣∣An,t(NPM)

∣∣2 (78)

= Re {An,t(NPM)}2 + Im {An,t(NPM)}2 (79)

= X2 + Y 2 (80)

So it follows the sum of the square a two independent, differently distributed
Gaussian Random Variables, where X v N(µx, σ

2
x) and Y v N(µy, σ

y
x) (Note

real values of the mean and variances described before).
The PDF of the square of a Gaussian random variable is found as follow:

Z = X2 (81)

|X| =
√
Z (82)

FZ(z) = P (|X| ≤ √z) (83)

= P (−√z ≤ X ≤ √z) (84)

= FX(
√
z)− FX(−√z) (85)

fZ(z) =
dFZ(z)

dz
(86)

= fX(
√
z)− fX(−√z) (87)

=
1

2

exp

[
− 1

2

(
√
z−µx)

2

σ2
x

]
√

2πzσ2
x

+
1

2

exp

[
− 1

2

(−
√
z−µx)

2

σ2
x

]
√

2πzσ2
x

(88)

∴
1

2

1√
2πzσ2

x

(
exp

[
−1

2

(
√
z − µx)

2

σ2
x

]
+ exp

[
−1

2

(−√z − µx)
2

σ2
x

])
(89)

So the Intensity can be rewritten as:
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In,t = Zx + Zy (90)

Where: Zx v fZ(z|µx, σ2
x), Zy v fZ(z|µy, σ2

y) (91)

The derived distribution of the sum of two independent random variables is
the convolution of the 2 distribution. Unfortunately the convolution does not
converge, and therefore no analytical representation can be found.

Even though the analytical form was not able to be found an heuristic ap-
proximation of the distribution in dB as been found using Pseudo-Voigt Profile
(PVP).
The similarity between the simulated step distribution and the measured one is
noticeable, Fig.12. To prove the validity of the model analysis of the informa-
tion carried by the step distribution in dB has been performed as shown in the
journal.
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Figure 13: PDF of normalized IC-XT with different STAXT windows

4 STAXT analysis

Short Time Average Cross-Talk (STAXT) is a widely used analytical method
to analyse properties of IC-XT. It consists on averaging subsequent samples in
a moving average manner. This type of analysis is widely used in stochastic
processes to better understand the drift property of stochastic processes.
The moving average acts as a low pass filter, therefore keeping the information
about the low frequency components. When analysing a non stationary random
process, using short time average (smaller than the auto-correlation window)
keeps information about the infinitesimal drift, and keeps information about
the auto-correlation, analysis similar to the one performed in [3]. When the
moving average window is large and the process is ergodic, due to central limit
theorem the process distribution will converge to a Gaussian distribution. For
stationary processes, the window is extremely small and the CLT is applicable
immediately.
Our proposed model, as shown in convergence, is ergodic and non-stationary,

the model in [1] is both ergodic and stationary. We analyse the effect of STAXT
with different averaging windows on both processes in comparison with the
experimental data, Fig. 13. As expected the PDF of the CW and the proposed
model is not largely effected by the averaging time window, while the Model
of [1] quickly converges to a gaussian distribution following CLT. This analysis
further prove that the proposed model is valid and in agreement with analysis
such as the one performed in [3].

16



References

[1] Tetsuya Hayashi, Takashi Sasaki, and Eisuke Sasaoka. “Behavior of Inter-
Core Crosstalk as a Noise and Its Effect on Q-Factor in Multi-Core Fiber”.
In: IEICE Transactions on Communications E97.B.5 (2014), pp. 936–944.

[2] T. Hayashi et al. “Crosstalk variation of multi-core fibre due to fibre bend”.
In: 36th European Conference and Exhibition on Optical Communication.
Sept. 2010, pp. 1–3. doi: 10.1109/ECOC.2010.5621143.

[3] Tiago M. F. Alves and Adolfo V. T. Cartaxo. “Characterization of the
stochastic time evolution of short-term average intercore crosstalk in mul-
ticore fibers with multiple interfering cores”. In: Opt. Express 26.4 (Feb.
2018), pp. 4605–4620. doi: 10.1364/OE.26.004605.

17


