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Quantifying evolutionary dynamics 
from variant-frequency time series
Bhavin S. Khatri1,2

From Kimura’s neutral theory of protein evolution to Hubbell’s neutral theory of biodiversity, 
quantifying the relative importance of neutrality versus selection has long been a basic question in 
evolutionary biology and ecology. With deep sequencing technologies, this question is taking on a new 
form: given a time-series of the frequency of different variants in a population, what is the likelihood 
that the observation has arisen due to selection or neutrality? To tackle the 2-variant case, we exploit 
Fisher’s angular transformation, which despite being discovered by Ronald Fisher a century ago, has 
remained an intellectual curiosity. We show together with a heuristic approach it provides a simple 
solution for the transition probability density at short times, including drift, selection and mutation.  
Our results show under that under strong selection and sufficiently frequent sampling these 
evolutionary parameters can be accurately determined from simulation data and so they provide a 
theoretical basis for techniques to detect selection from variant or polymorphism frequency time-series.

Understanding the interplay between stochastic and deterministic forces in systems with different reproduc-
ing variants is a theme that arises, and has importance, in many different scientific fields1 including language  
evolution2,3, protein evolution4,5, the evolution of biodiversity6–8 and population genetics9,10. In particular, this 
question has formed the basis of the neutralist-selectionist debate in protein evolution, centred around Kimura’s 
neutral theory and Hubbell’s neutral theory of biodiversity. With the advent of increasingly sophisticated deep 
sequencing technologies, the frequency of different variants, or polymorphisms, can now be tracked over time 
with high resolution. These time-series contain information that could allow very sensitive detection of the rela-
tive strength of stochastic drift and selection. Current methods to detect selection, that wholly or partially require 
the analysis of synonymous versus non-synonymous substitutions, such as the McDonald-Kreitman test11 or 
dN/dS12, are not applicable here, since by definition these variants have yet to have fixed in the population and 
their application can lead to misleading results13. Although methods to detect selection from such time-series 
has attracted much attention recently14–19, the bottleneck has been the computational complexity of numerically 
solving the stochastic dynamics. However, an analytical solution for the stochastic dynamics would enjoy the 
great advantage of direct evaluation of the likelihood function, allowing very efficient calculation of maximum 
likelihood parameters or Bayes factors.

To address this goal, we present accurate analytical solutions to a fundamental and long-standing question in 
population genetics, given the possibility of only two reproducing variants, how does the probability distribution 
of gene frequency x(t) change over time, given it is known at a prior time point x0 =​ x(0), subject to small number 
fluctuations (genetic or neutral drift), selection (competition) and mutation. We address this question in the 
context of the Wright-Fisher (WF) model, which is the canonical model of stochastic dynamics incorporating 
all these features. Although, there have been numerical approaches15,20 based on series solutions21,22 of the WF 
model, these are only valid in the long-time limit where variants will be close to fixation/loss. However, it is of 
greater practical concern, for example from longitudinal sampling of virus populations23, to find solutions valid 
in the short-time limit, where intermediate changes in polymorphism frequency are observed. The solution of 
Voronka and Keller24, which uses an asymptotic ray approximation, is valid at short times, but their approach 
lacks simplicity and is unwieldy requiring switching between different solutions in a time-dependent manner.

We present a simple short-time asymptotic calculation of the TPDF in closed form for neutrality, selection 
and mutation, which has intuitive appeal as it exploits Fisher’s angular transformation25. This is the natural 
co-ordinate for Wright-Fisher stochastic dynamics26 and removes the difficulty of a co-ordinate dependent diffu-
sion constant to give simple Brownian motion, at the cost of introducing a non-linear and unstable effective con-
vective force. We show that this force in angular space is directly related to the flux of probability to the fixation 
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and loss boundaries in normal frequency space, which exists despite there being no convection of individual 
trajectories of the frequency of variants. This is an example of flux without convection, as previously discussed27, 
but in the context of population dynamics. Despite being discussed by Fisher many years ago, Fisher’s angular 
transformation has not attracted much attention, likely because of the, at first sight, complicated unstable force 
that arises. We introduce a heuristic approach to overcome this fundamental difficulty, which assumes a Gaussian 
solution with time-dependent variance calculated from the local derivative of the convective force. We demon-
strate that this theory can be used to accurately determine all three evolutionary parameters from simulated data, 
when under strong selection and sufficiently frequent sampling.

Results
Fisher’s angular transformation and the mechanics of neutral drift.  The diffusion approximation22, 
of the Wright-Fisher model describes the stochastic dynamics of variant frequency x (=​n/N, where n is the num-
ber of copies of a given variant and N the total population):
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where p (x, x0; t) is the transition probability density function (TPDF), or Green’s function, of gene frequency given 
an initial condition p (x, x0; 0) =​ δ (x −​ x0) and M (x) =​ sx (1 −​ x) +​ μ1 (1 −​ x) −​ μ2x is the mean change in variant 
frequency per generation, due to selection and mutation and D (x) =​ x (1 −​ x)/2N is half the variance of the variant 
frequency between generations. This equation is derived, for fixed N, in the large N limit from a Master equation 
of discrete populations of each variant22. Here s is the selection coefficient, where s =​ (W1 −​ W0)/W0 ≈​ F1 −​ F0, so 
s >​ 0 means selection favours variant 1 over variant 0, where W and F are the (Wrightian) fitness and (Malthusian) 
log fitness respectively, and μ1 is the rate of mutation from variant 0 →​ 1 and μ2 the rate for variant 1 →​ 0.

Fokker-Planck equations with co-ordinate dependent diffusion constants such as Eqn. 1 have the property 
that space is explored at different rates dependent on the position in the domain; using this intuition, and inspired 
by the Mahalanobis distance28 from statistics, Antonelli et al.26, suggested the natural definition of length for a 
stochastic process be related to the differential θ = ∑ g x xd d dij ij

i j2 , where gij is a metric tensor and taken to be the 
inverse of the covariance matrix gij. In one-dimension, this is simply dθ2 =​ dx2/g2(x), which represents the (differ-
ential) mean square distance traversed in equal times and g2 ~ D (x) the co-ordinate dependent diffusion constant. 
As the diffusion constant of random drift is D (x) =​ x(1 −​ x)/2N, we choose = −g x x x( ) (1 ) , so the natural 
stochastic distance is simply
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This is Fisher’s angular transformation25,29.
To examine the underlying mechanics of neutral drift, we focus on the case where there is no selection (s =​ 0) 

or mutation (μ1 =​ μ2 =​ 0). Carrying out Fisher’s angular transformation, we arrive at
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This is the form of the equation studied by Fisher25 for the relaxation of variation in a population. We see that in 
Fisher’s angular representation, there arises an effective convective force, which as shown in Fig. 1 is unstable and 
so drives diffusers to fixation or loss. Here for clarity, we use the term convection rather than drift, which is the 
term commonly used in such contexts for Brownian motion. It is simple to show that the origin of this force is the 
additive term ∂
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 from the original Fokker-Planck equation (Eqn. 1), and is the spurious convective term 
that arises in transforming between Ito and Stratonovich descriptions of stochastic dynamics30,31. To understand 
its significance, we appeal to the continuity equation ∂​tp =​ −​∂​xJ (x) (where J (x) is the probability flux) by integrat-
ing Eqn. 1 once with respect to x to give = − = − +∂
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. Here the first term is what we 
would expect by naively replacing the diffusion constant in the standard version of Fick’s law, J =​ −​D∂​xp, with its 
co-ordinate dependent version, whilst the second term represents an additional or excess flux proportional to the 
derivative of the diffusion constant, which for neutral drift is −​∂​xD (x) =​ −​(1 −​ 2x)/2N. We see that this excess 
probability flux is exactly of the same form that gives rise to the effective convective potential in Eqn. 3. So this 
shows explicitly that the co-ordinate dependent diffusion constant of neutral drift gives rise to an excess flux 
directed towards the boundaries, driving fixation for x >​ 1/2 and loss for x <​ 1/2; in the new co-ordinates this 
behaviour is manifested by simple (co-ordinate independent) Brownian motion in an effective convective poten-
tial. Examining the force in Fig. 1, for the case of s =​ 0 and μ1 =​ μ2 =​ 0 (black solid curve) we see that it is unstable, 
on average driving a variant to loss if θ (0) <​ π/2 and fixation if θ (0) >​ π/2, with a fixed point at θ =​ π/2. Note that 
despite the mean of θ having a clear directionality and subject to a convective force, once transformed back to x–
space 〈​x(t) −​ x(0)〉​ =​ 0, since for asymptotically small times, an Ito stochastic process, such as the Wright-Fisher 
process, has a differential mean square displacement which is always symmetrical about the initial frequency; this 
is not true for Stratonovich or isothermal stochastic processes27,30,31. As discussed in detail in ref. 27, it is simple to 
understand the origin of the excess probability flux to the boundaries; for example, for x <​ 1/2 diffusers travelling 
from the left have a smaller mean square displacement than diffusers travelling from the right and so there must 
be a net flux to the left passing an arbitrary point x ≠​ 1/2, as there is a greater volume of diffusers that reach this 
point from the right than from the left per unit time. So as is common to mention, the term neutral, or genetic 
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drift is a misnomer, as there is no convection/drift of individual trajectories in variant frequencies;  
however, there is a probability flux of variants moving to the boundaries, suggesting the more appropriate name, 
genetic flux.

Finally, the resulting effective force that arises from Fisher’s angular transformation, as can be seen from Fig. 1 
is in general very non-linear, particularly as θ →​ 0 or θ →​ π, where the force diverges to infinity towards either the 
fixation or loss boundaries. This can be understood, since in the frequency domain the diffusion constant tends 
zero as we approach the boundaries, which means the mean square distances diffused per unit time becomes 
increasingly small, exactly as given by Fisher’s angular transformation θ = −− xcos (1 2 )1 ; hence, although in the 
frequency domain the flux is simply linear in J(x) =​ −​(1 −​ 2x)/2N and non-zero at the boundaries, in θ-space, 
linear changes towards each of the boundaries correspond to increasingly small distances in x (see the dual-scales 
in Fig. 1), and so the force must increase as ~1/sin (θ) to compensate, in order to maintain a non-zero flux at the 
boundaries, which is necessary for fixation/loss.

On the other hand, as can be seen from Fig. 1, for frequencies not near the boundaries, the force is linear about 
θ =​ π/2, since the transformation itself is linear in this region; this linearity suggests Gaussian solutions in θ-space, 
and in the Supplementary Online Material we use this fact to calculate very accurate solutions for the TPDF for 
neutrality (s =​ 0) and μ1 =​ μ2 =​ 0.

However, the main advance of this paper is presentation of a more general solution, where we present a heu-
ristic methodology which tackles the non-linear effective forces with respect to θ due to selection and unequal 
mutation rates. This general solution therefore has the desirable property of being nestable, as any of the parame-
ters can be set to zero and so is of great practical use in a maximum likelihood analysis.

Fisher’s angular transformation under selection and mutation.  In the presence of selection and 
mutation, Fisher’s angular transformation results in the following partial differential equation for the TPDF q(θ, 
θ0; t):
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We see that in addition to the effective convective force of neutral drift, there are contributions from 1) mutation 
with the same θ dependence as drift but opposite sign and dependent on the population scaled sum of the muta-
tion rates 2N(μ1 +​ μ2), 2) a contribution from mutation, which goes as ~1/sin(θ) and proportional to the differ-
ence in mutation rates 2N(μ1 −​ μ2) and 3) a contribution from selection ~sin(θ) proportional to the population 
scaled selection coefficient Ns.

The mutational terms can be understood, since μ1(1 −​ x) −​ μ2x =​ (μ1 +​ μ2)(1 −​ 2x) +​ (μ1 −​ μ2) and so the first 
term has the same form as the probability flux due to drift, which as we know transforms to cot(θ), whilst the 

Figure 1.  Effective drift force in angular domain for Wright-Fisher process, where 2N f (θ) = (4Nμ − 1)
cot θ + Ns sin θ, where μ1 = μ2 = μ compared to Eqn. 5, for 4Nμ = 0 (solid lines) and 4k = 10 (dashed lines); for 
4Nμ = 1, drift and mutation exactly balance and 2N f (θ) = Ns sin(θ) (not shown). Note that the curves for Ns =​ 0 
and Ns =​ 0.1 lie almost on top of each other on the scale of the diagram. We see that the effective force switches 
from unstable when 4Nμ <​ 1 compared to 4Nμ >​ 1 which is stable, as signified by the change from positive to 
negative gradient in f when it crosses zero.
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second is a constant force in x-space, which means it must diverge as ~1/sin(θ) in θ-space, as discussed in the 
previous section due to the particular non-linearity of Fisher’s transformation. The difference in sign, compared 
to drift, of the first term arises since mutation pushes populations away from the fixation and loss boundaries. 
Further, the second term is positive if μ1 >​ μ2, as the net tendency will be for a flow of mutations into the variant, 
rather than the existing ‘wildtype’, whilst if μ1 <​ μ2 this tendency reverses sign.

The contribution of the force due to selection can also be rationalised; this force varies as ~sin(θ), which tends 
to zero as θ →​ {0, π}, which agrees with the intuition that when a variant is rare (and there are no mutations), the 
change in variant frequency is dominated by neutral drift; in particular, for θ ≪​ 1, and Ns ≫​ 1, 2N f (θ) ≈​  
−​1/θ +​ Ns θ and the forces of drift and selection are roughly in balance when Ns ~ 1/θ2 =​ 1/4x, where Fisher’s 
angular transformation is θ ≈ x4  for x ≪​ 1 – in other words when the variant frequency x ≪​ (4Ns)−1 drift dom-
inates. A similar analysis including mutation shows drift dominates for µ−

x
Ns

1 2

4
1  assuming 2Nμ1 <​ 1; as 2Nμ1 

approaches 1 from below, the critical frequency at which drift dominates becomes increasingly small. Finally, as 
is well-known from equilibrium analysis of Wright32 and recapitulated here in a dynamical setting in the angular 
domain, when the strength of mutations switches from weak to strong (2N(μ1 +​ μ2) ≫​ 1), the force switches from 
being unstable to stable (as shown in Fig. 1 for μ1 =​ μ2 =​ μ), signifying a transition from the monomorphic regime 
to the polymorphic.

Heuristic Gaussian solution.  To solve Eqn. 4 and Eqn. 5 approximately, for any value of N, s, μ1 and 
μ2, we present a heuristic approach that assumes the TPDF can be approximated by a Gaussian process with 
time-varying mean and variance; where: 1) the time-varying mean is approximated by the solution to the 
effective deterministic dynamics of the PDE Eq. 4 with initial condition θ0; and 2) the time-varying variance  
〈​〈​θ2(t)〉​〉​ =​ 〈​θ2(t)〉​ −​ 〈​θ(t)〉​2 is dependent on the local gradient of the force, which varies as a function of the solu-
tion of the mean, λ =​ f ′​(〈​θ〉​). The approach here is similar to the work by Feder et al.17 in their inference of genetic 
time-series, itself based on earlier works33–35, where a deterministic mean is used in a Gaussian approximation of 
the stochastic dynamics; however, here the key novelty is use of Fisher’s transformation, which first removes the 
difficulty of co-ordinate dependent diffusion.

It is first most transparent to write Eqn. 4 in its equivalent stochastic differential equation (SDE) form refs 30 
and 31:
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t

f td
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where f(θ) is given by Eqn. 5 and η (t) is a Gaussian random variable with zero mean (〈​η (t)〉​ =​ 0), variance 1/N, 
and is uncorrelated with itself except at equal times (〈​η (t) η (t′​)〉​ =​ δ(t −​ t′​)/N). The first step is to calculate the 
time-varying mean of the TPDF in θ-space. Although, it is clear that in general for a non-linear SDE such as 
Eqn. 6, θ≠ 〈 〉θ〈 〉 f ( )

t
d

d
 and is, in principle, a function of all moments, we make this approximation, which we will 

see is very reasonable with respect to calculating accurate solutions for the TPDF. However, to be clear that this is 
not strictly a solution for the mean and effectively the solution to the deterministic equation, we denote the solu-
tion to Eqn. 6 with η =​ 0 as Θ​(t). Transforming the equation for Θ​ back to x–space, we have a differential equation 
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which is just the ODE for the deterministic dynamics of selection and mutation, but including the last term on 
the RHS which is an effective “deterministic” force due to neutral drift, which we will see is necessary for accurate 
solutions. The solution to Eqn. 7 is of the form X =​ C +​ A tanh (γt/2 +​ α). Transforming back to θ–space and using 
the initial condition θ0 =​ Θ​ (0), the solution Θ​ is:
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Note that this calculation for Θ​ only makes sense for short times; for long times when the argument of −cos 1 is 
greater than one, we set Θ​ =​ 0 and when the argument is less than −​1, we set Θ​ =​ π; this corresponds to loss and 
fixation in a deterministic sense, respectively.

The next step is to calculate the variance, which we motivate by considering the situation when the slope of the 
effective force is fixed to a constant λ, which gives a Gaussian solution with variance θ = −

λ
λt e( ) ( 1)

N
t2 1

2
2  

(see Supplementary Online Material). The linearity of the force characterises the Gaussian distribution and so if 
we assume that the effective convective force varies slowly over a range of theta representing the width of the 
probability density, we can then heuristically replace λ with the local derivative of the effective force λ(Θ​) in the 
variance. This approximates the local spreading of the probability density being solely due to the local derivative 
of the force giving a time varying variance:
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Note that for strong selection, the derivative of the effective convective force λ(Θ​) will be zero at certain times, as 
can be seen from the plot of the effective convective force in Fig. 1; at these time points it is simple to see that the 
variance remains well behaved as θ〈 〉〉 →λ→ t Nlim { } /0

2 , as one would expect if the effective convective force 
tends to a constant. Transforming back to x–space, and using the fact that θ θ= θp x x t q t( , ; ) ( , ; )
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where Θ​ and 〈​〈​θ2〉​〉​ are given by Eqns 8 and 10, respectively, where cos(θ0) =​ 1 −​ 2x0. This is the main result of the 
paper and is a universal and accurate formula for calculating the TPDF of 2-allele population genetics at short 
times; this result by itself will be useful for many applications including longitudinal sampling of virus popula-
tions to study intrahost evolution, since population sizes will be large and selection coefficients typically small, 
meaning even relatively infrequent sampling can be captured with Eqn. 11 as long as the times between samples 
is less than N or 1/s. However, for long times the solution does not strictly obey the boundary conditions at x =​ 0 
and x =​ 1, where the solutions develop singularities. The method of images cannot be used to meet the boundary 
conditions, as in this case as the required images have their forces reversed and so does not obey the original 
Fokker-Planck equation. In the methods we detail modifications of the theory to give well-behaved results near 
the boundaries, however, since we do not explicitly consider the nature of the solutions at these singular points, 
we expect our results will be accurate to O(τ), where τ is the mean time to fixation, which for pure drift is τ ~ N 
and including selection τ +~ Ns(1 ln( ))

s
1 36.

We plot the results for the neutral case Ns =​ 0 and μ1 =​ μ2 =​ 0 in Fig. 2 for x0 =​ 0.1 and x0 =​ 0.5, Ns =​ 10 and 
μ1 =​ μ2 =​ 0 (x0 =​ {0.1, 0.5, 0.9}) in Fig. 3 and Ns =​ 10 and 4Nμ (μ1 =​ μ2 =​ μ, x0 =​ {0.1, 0.5, 0.9}) in Fig. 4; see 
Supplementary Online Information for plots at wider range of selection coefficients and mutation rates, as well as 
at a small initial frequency x0 =​ {0.01, 0.99}. We find universally that for all parameter combinations the heuristic 
approach and the integration of the Wright-Fisher SDE (Eqn. 6) agree very well at short times compared to the 
average time for fixation/loss of a variant. This is true even when x0 is very close to 0 or 1, for sufficiently short 
times (Supplementary Online Information) and is reasonably accurate to quite long times (t ~ N or t ~ τ) for an 
initial frequency of x0 =​ 0.1 (Fig. 3A). In particular, for strong mutation and selection (Fig. 4) we see the solutions 
are good even at long times, since probability does not accumulate at the boundaries due to a mutation-selection 
balance that peaks the TPDF away from the boundaries. Note that the “deterministic” drift term in Eqn. 7 is 
necessary for accurate results, since otherwise, for example, for positive selection and arbitrarily small initial 
frequencies the mean would always increase to fixation; as Fig. 1 demonstrates, there is a critical initial frequency 
below which drift dominates selection and we expect the mean to decrease towards the loss boundary.

Determination of maximum likelihood parameters.  In this section we demonstrate using simulated 
data that the heuristic method of calculating the TPDF allows accurate determination of the population genetic 
parameters of interest, effective population size, selection coefficient and mutation rate, by finding the maximum 
of the likelihood functions. We make the assumption that the true frequencies of variants or alleles is known with 
perfect accuracy, whereas in practice experimental frequencies will be determined from a sampling process from 
the true population; this issue is dealt with by Bollback et al.14, where a hidden Markov model is used to effectively 
deconvolve the true frequencies from the sampled frequencies.

Given a times series of frequencies {xi} at times {ti} the likelihood of the data is given simply by

Figure 2.  Comparison of approximate calculation of neutral Greens function (s = 0, μ1 = μ2 = 0) using heuristic 
Gaussian method (solid lines – Eqn. 11) and numerical integration of stochastic differential equation that arises 
from diffusion approximation (solid circles). (a) initial frequency x0 =​ 0.1, (b) x0 =​ 0.5.
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With the analytical formula for the TPDF in Eqn. 11, presented in the previous section, this can be directly eval-
uated very quickly.

In Fig. 5, we show the likelihood surfaces for data generated using Eqn. 6 for N =​ 10000, s =​ 0.001 (Ns =​ 10) 
and μ1 =​ μ2 =​ 0, where the underlying data is sampled with different periods Δ​t with a total period of T =​ 10000 
generations, as shown in the insets of Fig. 5. For each sampling period, it is clear from Fig. 5 that a likelihood 
ratio test would reject the null hypothesis (s =​ 0) since there is no significant likelihood at the line s =​ 0; below we 
quantify the performance of a simple likelihood ratio test using a receiver operator characteristic (ROC) plot and 
compare it to the calculation of the TPDF in Feder et al.17.

However in addition, direct calculation of the likelihood function given the data means optimum parameter 
values can be determined. From Fig. 5, we can see that for this particular time-series, the maximum likelihood 
parameters are determined correctly to within an order of magnitude. In Fig. 6, we examine in more detail the 
accuracy of estimating the effective population size and selection coefficient from the maximum of the likelihood 
function, by calculating the relative error given true values of N =​ 104 and s =​ 10−3, over 1000 replicate runs. 
This accuracy is compared to the calculation of the TPDF of Feder et al.17, which uses an approximation that 
ignores the effect of the boundary and would be expected to be inaccurate near x =​ 0 or x =​ 1; for this reason, we 
make the comparison for initial frequencies of x =​ 0.1 (Fig. 6a,c) and x0 =​ 0.5 (Fig. 6b,d). The calculation of Feder  
et al., is based on the Moran model and so to compare to simulations using the Wright-Fisher model, times in the 
Moran model need to be scaled by a half. We find that overall the calculation in this paper significantly outper-
forms the calculation of Feder et al.17 in determining the selection coefficient, with a median relative error of 10% 
to 30% for x0 =​ 0.1 and 30% to 40% for x0 =​ 0.5 compared to approximately 100% for the Feder calculation; the 
exception is for long sampling times (Δ​t =​ 2500) and x0 =​ 0.5, where the Feder calculation slightly outperforms 
the calculation in this paper, although it is not clear why at longer sampling times the Feder calculation should do 
better compared to shorter sampling times. Interestingly, the results suggest that the selection coefficient can be 
determined more accurately from time-series that sweep to fixation from a smaller initial frequency compared to 
one that starts with an intermediate frequency. In estimating the effective population size, the current calculation 
outperforms the Feder calculation for frequent sampling (Δ​t =​ 100, with a median relative error ≈​12% versus  
≈​40–50%), but performs similarly for the longer sampling times. That the effective population size is less accu-
rately determined, compared to the selection coefficient, as the sampling time Δ​t increases is easily understood 
since the selection coefficient is mainly determined from the deterministic changes in variant frequency, whilst the 
effective population size from deviations from this deterministic behaviour, caused by the spreading of the TPDF; 
increasing Δ​t means that there is less accurate sampling of these fluctuations and the accuracy of the determined 
effective population size decreases. Finally for reference, Δ​t =​ 1000 and Δ​t =​ 2500 correspond to a frequency of 
times points (relative to the timescale of change in frequency) similar to previous experimental time-series14,16.

We now examine the case where time series are purely due to neutral drift. In Fig. 7, we show two sample tra-
jectories for the case that N =​ 1000, s =​ μ =​ 0 and the resulting likelihood functions. For the trajectory shown in 
Fig. 7a with likelihood in Fig. 7c, a likelihood ratio test would decide in favour of the neutral hypothesis. However, 
there is some probability that by chance, such as in Fig. 7b with likelihood in Fig. 7d, trajectories will arise that 
indicate the presence of positive selection. This multiple comparison problem is common in statistical testing and 
standard multiple hypothesis methods can be used37, for example as in the field of molecular evolution, where 
the family-wise false positive rate is controlled across all tested sites in a genome38,39. Here, to assess how well the 
current calculation of the TPDF performs in rejecting the null hypothesis (s =​ 0) compared to the calculation 
of Feder et al.17, we plot in Fig. 8 the receiver operator characteristic (ROC) curve for the case where there are 

Figure 3.  Comparison of approximate calculation of the TPDF for drift and selection (Ns = 10, μ1 = μ2 = 0, 
solid lines – Eqn. 11) and numerical integration of stochastic differential equation that arises from diffusion 
approximation (solid circles). (a) initial frequency x0 =​ 0.1, (b) x0 =​ 0.5, (c) x0 =​ 0.9. Green’s functions are plotted 
at times given by fractions of τ = + Ns(1 ln( ))

s
1 , which is approximately the expected time to fixation of a 

variant which survives drift and then is driven to fixation by selection36.
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10000 sites to be tested (for example, 10000 nucleotides in a genome) using a likelihood ratio test (LRT), with 
10% of sites with a selection coefficient of s =​ 10−3 with the rest neutral (s =​ 0), where the effective population 
size is N =​ 104 (Ns =​ 10). Here, we use the LRT as a simple test statistic to assess relative performance, although 
as shown by Feder et al., the LRT is a biased statistic to reject the null-hypothesis. The ROC plot is produced by 
taking the LRT test statistics across all sites and ordering them by how strongly they reject the null hypothesis 
(favour selection) and then plots the rate of true positives vs false positives (TPR vs FPR) in the ordered list; a 
perfect ROC curve would have a vertical line from the origin to TPR =​ 1, which represents all sites under selection 
being detected correctly, followed by a horizontal line to FPR =​ 1 represent all the sites evolving neutrally. The 
ROC plots show that the calculation of the TPDF in the current paper is more sensitive to detecting selection than 
the Feder calculation, for x0 =​ 0.1, as it rises more steeply initially with a small number of false positives amongst 
the true positives. On the other hand for x0 =​ 0.5 both calculations perform worse compared to x0 =​ 0.1 with only 
a marginal improvement over the Feder calculation in the sensitivity of detecting selection. This is as expected 
as the Feder calculation is expected to be only accurate away from the boundaries (x ≠​ 0 and x ≠​ 1). In addition, 
as seen in Fig. 6, time-series of variant frequencies under selection that start with a smaller frequency can be 
detected more easily.

The heuristic solution for the TPDF (Eqn. 11) also allows the mutation rate to be a parameter. However, typ-
ically the most likely scenario when there are only two variants in the population is that mutation is weak; it is 
therefore interesting to examine whether mutation rate can be determined in this case, particularly as mutations 
will tend to have strong effects only near the boundaries. In Fig. 9, we show the likelihood surface contours for 
data generated using Eqn. 6 (shown in inset of Fig. 9) for N =​ 10000, s =​ 0.001 (Ns =​ 10) and μ =​ μ1 =​ μ2 =​ 10−5 
(4Nμ =​ 0.4). For a short sampling period of Δ​t =​ 100, we see that all the parameters are determined with reason-
able or good accuracy; the effective population size is determined with an error of 4.5%, the selection coefficient 
4% and the mutation rate 6%, on a log scale, which shows they are all estimated to the correct order of magnitude. 
However, if we increase the sampling time to Δ​t =​ 1000, while the error on the population size and selection 
coefficient are similar, we see from Fig. 9 that the likelihood function becomes almost invariant with respect to 
mutation rate, making the optimum undetermined. This arises since the longer sampling period misses the fluc-
tuations away from fixation, which provide information about the mutation rate, as seen in the time series, shown 
in the inset of Fig. 9a. So as one would expect the sampling period needs to be shorter than the inverse of the rate 
at which mutations enter the population, Nμ; even at Δ​t =​ 100 generations the sampling of these fluctuations is 
quite poor, however, still sufficient to allow a reasonable determination of the mutation rate.

On the other hand when mutation is strong, as shown in Fig. 10a, we find for a short sampling period of  
Δ​t =​ 100 a similar accuracy in determining N, s, μ. As we increase the sampling period to Δ​t =​ 1000, as shown 
in Fig. 10b, we find that the mutation rate can still be determined within an order of magnitude, unlike when 
mutations are weak.

Discussion
Despite, being known for almost a century, Fisher’s angular transformation, has received little attention. Under 
the transformation, the stochastic dynamics of neutral, or genetic drift, which is characterised by a co-ordinate 
dependent diffusion constant, can be transformed to simple, co-ordinate independent, Brownian motion. 
Intuitively, this transforms the co-ordinate system to one where equal mean square distances are traversed in 
equal times giving co-ordinate independent diffusion. The result, however, is an effective unstable convective 
potential or force, that drives trajectories to fixation or loss; as we show explicitly this convective potential repre-
sents the flux of diffusers to the boundaries in x–space, but not the convection, as it is simple to demonstrate there 
is no net direction or convection of individual trajectories in x–space. This is an example of flux without convec-
tion, as discussed by Lancon et al.27, but highlighted here for the first time in the context of population dynamics.

Figure 4.  Comparison of approximate calculation of the TPDF for Ns = 10 and 4Nμ = 10, where μ = μ1 = μ2 
(solid lines – Eqn. 11) and numerical integration of stochastic differential equation that arises from diffusion 
approximation (solid circles). (a) initial frequency x0 =​ 0.1, (b) x0 =​ 0.5, (c) x0 =​ 0.9. Green’s functions are plotted 
at times given by fractions of τ = + Ns(1 ln( ))

s
1 , which is approximately the expected time to fixation of a 

variant which survives drift and then is driven to fixation by selection36.
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A possible reason for Fisher’s angular transformation remaining an intellectual curiosity, is that the resultant 
convective force is non-linear and with the addition of selection becomes particularly complicated. However, we 
show for the first time that within the transformed space very accurate approximations of the 2-allele transition 
probability density of population genetics for arbitrary selection coefficient, population size and mutation rates 
between variants can be calculated. This is achieved here by introduction of a heuristic technique, similar to pre-
vious approaches17,33–35, that assumes a Gaussian distribution whose mean follows a solution to the infinite N or 
deterministic equation of motion and variance slaved to the local curvature evaluated from the mean solution. 
Together with the heuristic Gaussian approximation this represents, to the author’s knowledge, a novel general 
approach for asymptotically solving Fokker-Planck equation’s with a co-ordinate dependent diffusion constant, 

Figure 5.  Likelihood surfaces for simulated time series, where the inset of each shows the underlying time 
series (black/grey line) and its sampling (red circles); (a) sampling time Δ​t =​ 100 generations, (b) Δ​t =​ 1000 
generations, and (c) Δ​t =​ 2500 generations. The black dotted lines represent contours of Ns =​ 1 (lower contour), 
which is the boundary between weak and strong selection and Ns =​ 10 (higher contour), which is the strength 
of selection used in the simulations. The likelihoods are scaled to their maximum value for each sampling 
period and contours show lines of equal likelihood, separated by values of 0.05 in likelihood, where magenta 
is the largest likelihood and cyan the smallest likelihood; in each case the L =​ 0.05 contour corresponds 
approximately to 95% of the integral of the likelihood. The green dashed lines represent the parameter values 
used to generate the simulated data, while the red dashed lines represent those values that maximise the 
likelihood; the maximum likelihood parameters are (a) N* =​ 1.8 ×​ 104, and s* =​ 1.3 ×​ 10−3, (b) N* =​ 1.7 ×​ 104, 
and s* =​ 1.1 ×​ 10−3, (c) N* =​ 2.6 ×​ 104, and s* =​ 1.3 ×​ 10−3.

Figure 6.  Distribution of relative error in determining effective population size N =​ 104 (a,b) and selection 
coefficient s =​ 10−3 (c,d) from maximum of likelihood function, as function of sampling time, calculated over 
1000 replicate simulations with initial frequency x0 =​ 0.1 (a,c) and x0 =​ 0.5 (b,d), where calculation of TPDF of 
current paper (blue circles) is compared to the calculation of Feder et al.17. The circles represent median values, 
while the error bars are the interquartile range of the distribution and not a representation of the standard error 
on determining the median.
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which result in slowly-varying potentials (or equivalently SDEs with multiplicative noise), where the solution to 
the mean behaviour is known; indeed, in 1-dimension a PDE with co-ordinate dependent diffusion can always 
be transformed to one with co-ordinate independent diffusion26,40. For more than two variants and interactions 
between loci, including recombination and linkage, the methods detailed in ref. 26, suggests via the metric ten-
sor, a potential route to finding solutions for the transition probability function. The generality of the heuristic 
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Figure 7.  Likelihood surfaces for simulated neutral time series (N =​ 1000, s =​ 0, μ =​ 0) as shown by grey/
black lines in (a,b), and sampled every 50 generations, indicated by red filled circles. The dotted lines represent 
contours of N|s| =​ 1 (lower contour) and N|s| =​ 10 (higher contour). In (c) we have the likelihood surface for the 
time series shown in (a) and we see that the likelihood is approximately centred around a selection coefficient of 
zero, given the width of the likelihood function; on the other hand in (d) we have the likelihood surface for the 
time series in (b), which has a clear shift to positive selection coefficients.

Figure 8.  Receiver operator characteristic (ROC) curve for 10000 sites with 10% of sites with a selection 
coefficient of s = 10−3 with the rest neutral (s = 0), for an effective population size of N = 104 (Ns = 10). (a) shows 
the ROC plot for x0 =​ 0.1 and (b) for x0 =​ 0.5, where the purple line is based on the TPDF calculated in this 
paper and the yellow line based on the calculation in Feder et al.17.
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Gaussian solution means that a whole host of different and previously intractable evolutionary problems could be 
addressed, including for example, frequency-dependent and fluctuating selection.

Finally, we show that these solutions of the Wright-Fisher process can sensitively detect selection and in prin-
ciple lead to accurate determination of parameter values from simulated data, given sufficiently frequent sampling 
of the underlying time-series of variant change and strong selection. As real population variant/allele frequencies 
are sampled from a larger underlying population, methods for example used in ref. 14 using a hidden Markov 
model for the true frequency of variants, would be required for an accurate statistical test.

These results have application to detecting selection in time-series data of the composition of variants, in bio-
logical evolution, language evolution and for species in ecosystems. In particular, as these results have particular 
accuracy in the asymptotic short-time limit, they will be applicable to studying selection from time-series of vari-
ants (haplotypes) in virus evolution, and potentially for single genomic sites in viruses with strong recombination, 
such as HIV, since they have large effective population sizes and short generation times, meaning even sampling 
virus populations infrequently (on the time scale of many months or years) would be accurately modelled by the 
results of this paper.

Methods
Boundary conditions.  As mentioned in the main text the solution presented by the Gaussian heuristic 
method does not obey the boundary conditions at x =​ 0 or x =​ 1, which for zero mutation rate, require the solu-
tion to be non-zero and finite at these boundary points, so that there is a non-zero flux to the fixation or loss 
boundaries (see ref. 41 for a detailed discussion); in the angular space this translates to effective absorbing bound-
ary conditions, where specifically for θ ≪​ 1 we require q(θ, θ0; t) ~ θ, since the Jacobian θ θ= ∼θ 2/sin( ) 1/

x
d
d

. A 
similar argument means that we need q(θ; θ0; t) ~ π −​ θ for π −​ θ ≪​ 1. As Eqn. 11 does not obey these boundary 
conditions it develops singularities at the boundary for long times compared to the time for fixation. To counter 
this tendency for long times, we multiply the solution in angular space by a weighting function 
θ = − −θ θ π θ θ− − −h e e( ) (1 )(1 )/ ( )/* * , which has the property that for θ ≪​ θ*, h(θ) ~ θ and for (π −​ θ) ≪​ θ*, 

h(θ) ~ π −​ θ and for other regions away from the boundary h(θ) ≈​ 1. We choose a sufficiently small value for θ* 
dependent on the strength of selection Ns and the initial frequency x0; when selection is weak on the initial vari-
ant, i.e. 4Nsu ≪​ 1, where u =​ x0 or u =​ 1 −​ x0, then we want to ensure that θ θ = −−

 u u* ( ) cos (1 2 )1  and so we 
choose θ = −− u* cos (1 2 /50)1 ; in the converse case, where selection is strong (4Nsu ≫​ 1), we choose a fixed 
θ* =​ 0.1, since in this case, if for example, x0 is close to 1 and s >​ 0, then selection tends to build up density near the 
boundary more quickly than in the neutral case and so a larger θ* is required. For intermediate values of the 
strength of selection on the initial variant we interpolate between these two values using a tanh switching func-
tion centred on zero and width 0.5 with respect to the parameter ln(4Nsu). For the case of a non-zero mutation 
rate, the boundary conditions are zero flux (J(0) =​ J(1) =​ 0) at the boundaries and we do not include this weight-
ing function; as can be seen from Eqn. 11, this means that the TPDF diverges for the transition between any finite 
frequency to x =​ 0 or x =​ 1 and so we remedy this with a pragmatic approach, where occurrences in the data of 
x =​ 0 or x =​ 1 are transformed to =x  and = −x 1 , where we choose = −10 6 , an arbitrarily small number.

Finally, instead of using the full form of the effective convective force in the theta domain, we expand the 
terms that diverges as θ →​ {0, π} to third order to give finite and well-behaved derivatives at and near the bound-
aries, so that the derivative of Eqn. 5 becomes

Figure 9.  Likelihood contour surfaces for simulated time series for parameter values, N =​ 10000, s =​ 0.001 and 
μ =​ μ1 =​ μ2 =​ 10−5 (4Nμ =​ 0.4), as shown by grey/black line in inset of each figure: (a) sampling time Δ​t =​ 100 
generations (red circles in inset) and b) Δ​ =​ 1000 generations (red circles in inset). The likelihood is scaled to 
its maximum value and contours show surfaces of equal likelihood, where magenta is the largest likelihood and 
cyan the smallest likelihood. The grey orthogonal planes are positioned at the parameter values that maximise the 
likelihood and the cut-away corresponds to the N −​ μ and s −​ μ planes; the maximum likelihood parameters are 
(a) N* =​ 1.51 ×​ 104, s* =​ 1.3 ×​ 10−3 and μ* =​ 2 ×​ 10−5 and (b) N* =​ 2.04 ×​ 104, s* =​ 1.2 ×​ 10−3 and μ* is undefined.
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This is reasonable since the solution in any case only approximately obeys the boundary conditions and this 
ensures that the variance remains well-behaved as the mean approaches the boundary.
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