

An Automated Software Quality Measurement Tool

Student: Mark Micallef

Course: B.Sc. (Hons) Information Technology (Computer Science)

Supervisor: Dr. Ernest Cachia

Observer: Mr. Adrian Francalanza

To my parents and sisters - for being there no matter what

In memory of Uncle Colin

An Automatic Software Quality Measurement Tool

i

Acknowledgements

I would like to thank my supervisor, Dr. Ernest Cachia for the help, patience, and

insightful advice that he provided throughout the course of this project.

A special thanks goes out to Dr. Jason Robbins, Curt Arnold, Marko Boger, Toby Baeir

and the rest of the ArgoUML development community (www.argouml.org) for helping

me get acquainted with the inner workings of ArgoUML, the UML editor which this

project extends.

Last but not least, I want to thank my closest friends Clyde, James, Daniel, Melissa, Pat

and Andrew for helping to make these four years a truly memorable experience.

An Automatic Software Quality Measurement Tool

ii

Table of Contents

ABSTRACT ... 1

1. THEORETICAL BACKGROUND... 2

1.1 INTRODUCTION... 2
1.2 QUALITY IN GENERAL.. 2

1.2.1 Ambiguity of the term ‘Quality’ ... 2
1.2.2 A Definition of Quality ... 4

1.3 SOFTWARE QUALITY.. 4
1.3.1 Why is Software Quality important? .. 4

1.4 MEASURING SOFTWARE QUALITY ... 5
1.4.1 Software Quality Attributes.. 6
1.4.2 Software Quality Attributes and the ISO-9126 Standard................................... 7
1.4.3 Objective vs. Subjective Quality Assessment.. 9
1.4.4 An Introduction to Software Quality Metrics... 11
1.4.5 Metrics and the Object-Oriented Paradigm... 14

1.5 MEASURING THE QUALITY OF OBJECT-ORIENTED DESIGNS 16
1.5.1 Why Measure the Quality of Designs?... 16
1.5.2 Measurable Structures in Object-Oriented Designs .. 17
1.5.3 What makes a good object-oriented design?.. 19

1.6 REUSABILITY OF OBJECT ORIENTED DESIGNS.. 20
1.6.1 Benefits of Reusing Designs ... 20
1.6.2 What makes designs reusable?... 21
1.6.3 What can make design reuse unsuccessful?... 21
1.6.4 Design Reuse and the Object-Oriented Paradigm... 21
1.6.5 Measuring Reuse in Object-Oriented Designs... 23

1.7 MEASURING THE REUSABILITY OF OBJECT ORIENTED DESIGNS 23
1.7.1 Overall View... 23
1.7.2 Collecting data from the designer.. 24
1.7.3 Coupling Categories .. 26
1.7.4 Design Reusability Metrics .. 28

1.8 WHAT TO EXPECT IN THE NEXT CHAPTER… ... 29

2. METHODOLOGY.. 31

2.1 INTRODUCTION... 31
2.2 LIMITS OF SCOPE OF TOOL ... 31
2.3 REPRESENTATION OF OBJECT-ORIENTED DESIGNS .. 31

2.3.1 Why UML? ... 32
2.4 CHOICE OF METRICS .. 33

2.4.1 The Structural Metrics Group .. 35
2.4.2 The Reuse Metrics Group... 38

2.5 EXTRACTING STRUCTURAL METRIC INFORMATION FROM UML DIAGRAMS 39
2.5.1 Weighted Methods per Class (WMC)... 40

An Automatic Software Quality Measurement Tool

iii

2.5.2 Depth of Inheritance Tree (DIT) .. 41
2.5.3 Number of Children.. 41
2.5.4 Coupling between Objects (CBO).. 42
2.5.5 Response for a Class (RFC)... 45
2.5.6 Lack of Cohesion of Methods ... 46

2.6 COLLECTING INFORMATION FOR THE PRICE-DEMURIJAN METRICS.......................... 46
2.6.1 Overview... 46
2.6.2 General and Specific Classes... 47
2.6.3 Related Class Hierarchies.. 47
2.6.4 Extracting Metric Information ... 49

2.7 USE OF FUNCTION POINTS FOR COMPARING DIFFERENT PROJECTS.......................... 49
2.8 WHAT TO EXPECT IN THE NEXT CHAPTER… ... 50

3. SPECIFICATION ... 51

3.1 OVERVIEW ... 51
3.2 THE ARGOUML COGNITIVE CASE TOOL ... 51
3.3 USE-CASE ANALYSIS ... 53
3.4 OVERVIEW OF REQUIRED EXTENSIONS TO ARGOUML .. 54
3.5 EXTENSION 1: UML EXTENSIONS .. 55
3.6 EXTENSION 2: GATHERING INFORMATION FOR WMC.. 55
3.7 EXTENSION 3: GATHERING INFORMATION FOR LCOM .. 55
3.8 EXTENSION 4: FUNCTION-POINTS CALCULATION .. 56
3.9 EXTENSION 5: METRICS CALCULATION ... 56
3.10 EXTENSION 6: USER INTERFACE FOR REPRESENTATION OF METRICS 57

3.10.1 Information to be presented ... 57
3.10.2 Organization of Information .. 59
3.10.3 Textual Representation... 60
3.10.4 Graphical Reports .. 60

3.11 DETAILED SPECIFICATION OF REQUIRED GRAPHS.. 60
3.11.1 Weighted Methods per Class (WMC) Histogram... 61
3.11.2 Number of Children (NOC) Scatter Graph .. 61
3.11.3 Depth of Inheritance Tree (DIT) Histogram.. 62
3.11.4 Coupling Between Objects (CBO) Histogram ... 63
3.11.5 Response for a Class (RFC) Histogram... 64
3.11.6 Lack of Cohesion of Methods (LCOM) Scatter Graph 65
3.11.6 Reuse Metrics Pie Chart .. 66
3.11.7 Averages Histogram sorted by Average... 67
3.11.8 Averages Histogram sorted by Function Points .. 67

3.12 WHAT TO EXPECT IN THE NEXT CHAPTER… ... 68

4. DESIGN.. 69

4.1 UNDERLYING DESIGN PRINCIPLES ... 69
4.2 INTEGRATION WITH ARGOUML... 69

4.2.1 ArgoUML Package Diagram ... 69
4.2.3 The NSUML API... 70
4.2.4 Key Classes in ArgoUML... 71

4.3 DESIGN ISSUES AND DECISIONS ... 71

An Automatic Software Quality Measurement Tool

iv

4.3.1 Separation of the System into Modules .. 72
4.3.2 Accessing the Tool from ArgoUML.. 73
4.3.3 Saving of Quality-Related Data ... 75
4.3.4 What data needs to be saved? .. 75
4.3.5 XML Structure for the Metrics Repository... 76
4.3.6 XML Structure for the Quality Data file .. 77

4.4 STRUCTURE OF PACKAGES ... 78
4.4.1 The org.argouml.quality Package.. 81
4.4.2 The org.argouml.quality.metrics Package ... 81
4.4.3 The org.argouml.quality.xml Package ... 85
4.4.4 The org.argouml.quality.ui Package.. 86
4.4.5 The tools Package .. 88
4.4.6 The tools.graphs Package .. 89

4.5 A CLOSER LOOK AT KEY CLASSES .. 91
4.5.1 org.argouml.metrics.Metric ... 91
4.5.2 org.argouml.metrics.Metrics.. 93
4.5.3 org.argouml.xml.XMLUtils .. 94
4.5.4 org.argouml.xml.XMLProject .. 95
4.5.5 org.argouml.xml.XMLMetrics.. 95
4.5.6 tools.graphs.Graph... 96

4.6 ALGORITHMS FOR METRIC CALCULATIONS ... 96
4.7 WHAT TO EXPECT IN THE NEXT CHAPTER… ... 97

5. IMPLEMENTATION... 98

5.1 PROOF OF COMPLETION.. 98
5.2 IMPLEMENTATION DIFFICULTIES.. 98
5.3 LIMITATIONS OF SYSTEM ... 99
5.4 POSSIBLE IMPROVEMENTS.. 99
5.5 WHAT TO EXPECT IN THE NEXT CHAPTER… ... 100

6. CONCLUSIONS.. 101

6.1 WHAT HAVE I LEARNT FROM THIS PROJECT?.. 101
6.1.1 Issues involved in Software Quality Assurance.. 101
6.1.2 Object Oriented Design.. 101
6.1.3 Learning from Mistakes ... 101
6.1.4 Value of Reuse.. 102
6.1.5 Time Management .. 102

APPENDIX A: ALGORITHMS FOR CALCULATING METRICS...................... 103

Activity Diagram for Calculating WMC ... 103
Activity Diagram for Calculating DIT .. 105
Activity Diagram for Calculating NOC .. 106
Activity Diagram for Calculating CBO... 107
Activity Diagram for Calculating RFC ... 108
Activity Diagram for Calculating LCOM.. 109
Activity Diagram for Calculating CC1 ... 110
Activity Diagram for Calculating CC2 ... 111

An Automatic Software Quality Measurement Tool

v

Activity Diagram for Calculating CC3 ... 112
Activity Diagram for Calculating CC4 ... 113
Activity Diagram for Calculating CC5 ... 114
Activity Diagram for Calculating CC6 ... 115
Activity Diagram for Calculating CC7 ... 116
Activity Diagram for Calculating CC8 ... 117

APPENDIX B: BIBLIOGRAPHY... 118

USER DOCUMENTATION.. 120
INTRODUCTION... 121
USING ARGOUML ... 121
FEATURES PROVIDED ... 121

Metric Calculation .. 121
Collection of Metric Information .. 122
Metrics Repository .. 122
Function Points Calculation ... 122
Effort Prediction.. 123
Graphical Representation ... 123

ACCESSING THE QUALITY MEASUREMENT FEATURES ... 123
The Quality Menu.. 124
The Class Popup Menu ... 124
The <<General>> Stereotype for Classes ... 125
The <<Reuse-Related>> Stereotype for Associations ... 125

RUNNING A QUALITY TEST .. 126
THE METRICS ANALYSIS MODULE... 126

An Overview of the Metrics Analysis Module Interface.. 127
The Metrics Tree and the View Selector ... 128
Viewing Metric Results.. 130
The Metric Description Tab .. 130
The Project Summary Tab... 132
The Detailed Results Tab .. 134
The Suggestions Tab.. 135

A QUICK OVERVIEW OF GRAPHS ... 135
Introduction... 135

COLLECTING EXTRA INFORMATION FOR LCOM AND WMC.................... 139

COMPARING RESULTS WITH PROJECTS IN THE REPOSITORY................ 140

THE FUNCTION POINTS MODULE ... 142

Calculating the Function Points of the current Project.. 142
Adding and Removing Functions .. 143
Answering General System Characteristics (GSC) Questions................................ 145
Predictive Metrics ... 146

An Automatic Software Quality Measurement Tool

vi

Table of Figures

FIGURE 1 - DIFFERENT CONCEPTS OF A QUALITY CAR .. 3
FIGURE 2 - THE RELIABILITY HIGH-LEVEL ATTRIBUTE AND IT'S LOW-LEVEL SUB-ATTRIBUTES

... 6
FIGURE 3 - THE SUB-ATTRIBUTES OF THE ATTRIBUTES DEFINED BY ISO-9126..................... 9
FIGURE 4 - THE USE OF METRICS IN AN ORGANIZATION.. 12
FIGURE 5 - INCREASE IN COST OF CORRECTING A REQUIREMENTS DEFECT BY PHASE OF

DISCOVERY [MIL98] .. 17
FIGURE 6 - THE METRICS TO BE EVALUATED BY THE SYSTEM (DESCRIPTIONS BELOW)....... 34
FIGURE 7 - ILLUSTRATING HOW DIT READINGS CAN BE MADE FROM UML CLASS

DIAGRAMS ... 41
FIGURE 8 - ILLUSTRATING HOW NOC VALUES CAN BE OBTAINED FROM UML CLASS

DIAGRAMS ... 42
FIGURE 9- UNIDIRECTIONAL ASSOCIATIONS .. 43
FIGURE 10- BI-DIRECTIONAL ASSOCIATIONS ... 43
FIGURE 11- ILLUSTRATION OF COMPOSITIONS IN USE... 44
FIGURE 12- AGGREGATIONS - A RESEARCHER NEED NOT BE PART OF A RESEARCH TEAM.44
FIGURE 13- GENERALIZATIONS.. 45
FIGURE 14 - ILLUSTRATING HOW TO CLASSIFY A CLASS AS BEING GENERAL 47
FIGURE 15 - ILLUSTRATING THE USE OF THE <<REUSE-RELATED>> STEREOTYPE 48
FIGURE 16 - AN ELABORATED EXAMPLE ILLUSTRATING THE USE OF THE UML EXTENSIONS

DEFINED IN THIS SECTION. .. 49
FIGURE 17 - A SCREENSHOT OF ARGOUML .. 52
FIGURE 18 - A USE-CASE ANALYSIS OF THE QUALITY MEASUREMENT TOOL 53
FIGURE 19 - THE RECOMMENDED STRUCTURE OF THE METRICS REPOSITORY..................... 58
FIGURE 20 - AN EXAMPLE OF WHAT THE WMC HISTOGRAM MIGHT LOOK LIKE................ 61
FIGURE 21 - AN EXAMPLE OF THE GRAPHICAL REPRESENTATION OF NOC......................... 62
FIGURE 22 - AN EXAMPLE OF THE DIT HISTOGRAM .. 63
FIGURE 23 - AN EXAMPLE OF THE CBO HISTOGRAM... 64
FIGURE 24 - AN EXAMPLE RFC HISTOGRAM.. 65
FIGURE 25 - AN EXAMPLE OF THE LCOM SCATTER GRAPH .. 66
FIGURE 26 - AN EXAMPLE REUSE METRICS PIECHART... 67
FIGURE 27 - PACKAGE DIAGRAM FOR ARGOUML ... 70
FIGURE 28 - A HIERARCHICAL DIAGRAM OF THE SYSTEM MODULES 72
FIGURE 29 - XML STRUCTURE FOR THE METRICS REPOSITORY.. 76
FIGURE 30 - STRUCTURE OF XML QUALITY-INFO FILE... 77
FIGURE 31 - AN HIGH-LEVEL VIEW OF THE PACKAGES OF THE SYSTEM 79
FIGURE 32 - THE ORG.ARGOUML.QUALITY PACKAGE ... 81
FIGURE 33 - CLASS DIAGRAM FOR THE ORG.ARGOUML.QUALITY.METRICS PACKAGE........... 82
FIGURE 34 - THE ORG.ARGOUML.QUALITY.XML PACKAGE.. 85
FIGURE 35 - A CLASS DIAGRAM OF THE ORG.ARGOUML.QUALITY.UI PACKAGE 87
FIGURE 36 - THE TOOLS PACKAGE.. 89
FIGURE 37 - THE TOOLS.GRAPHS PACKAGE... 90

An Automatic Software Quality Measurement Tool

vii

FIGURE 38 - ACTIVITY DIAGRAM FOR CALCULATING WMC.. 104
FIGURE 39 - ACTIVITY DIAGRAM FOR CALCULATING DIT ... 105
FIGURE 40 - ACTIVITY DIAGRAM FOR CALCULATING NOC... 106
FIGURE 41 - ACTIVITY DIAGRAM FOR CALCULATING CBO... 107
FIGURE 42 - ACTIVITY DIAGRAM FOR CALCULATING CBO ... 108
FIGURE 43 - ACTIVITY DIAGRAM FOR CALCULATING LCOM .. 109
FIGURE 44 - ACTIVITY DIAGRAM FOR CALCULATING CC1.. 110
FIGURE 45 - ACTIVITY DIAGRAM FOR CALCULATING CC2 .. 111
FIGURE 46 - ACTIVITY DIAGRAM FOR CALCULATING CC3 .. 112
FIGURE 47 - ACTIVITY DIAGRAM FOR CALCULATING CC4 .. 113
FIGURE 48 - ACTIVITY DIAGRAM FOR CALCULATING CC5 .. 114
FIGURE 49 - ACTIVITY DIAGRAM FOR CALCULATING CC6 .. 115
FIGURE 50 - ACTIVITY DIAGRAM FOR CALCULATING CC7 .. 116
FIGURE 51 - ACTIVITY DIAGRAM FOR CALCULATING CC8 .. 117
FIGURE 52 - A SNAPSHOT OF THE METRICS TREE UNDER THE "METRIC-CENTRIC" VIEW. 129
FIGURE 53 - A SNAPSHOT OF THE METRICS TREE IN "ATTRIBUTE CENTRIC" VIEW 129
FIGURE 54 - THE METRIC DETAILS TAB.. 131
FIGURE 55 - A DIALOG BOX DESCRIBING HOW THE SELECTED METRIC EVALUATES THE

SELECTED ATTRIBUTED. ... 131
FIGURE 56 - THE PROJECT SUMMARY TAB.. 133
FIGURE 57 - PRESSING THE GRAPHICAL RESULTS BUTTON WILL BRING UP A MENU OF

AVAILABLE GRAPHS FOR YOU TO CHOOSE FROM... 133
FIGURE 58 - THE DETAILED RESULTS TAB .. 134
FIGURE 59 - THE USER CAN SORT THE ROWS IN THE TABLE BY ANY OF THE 3 FIELDS....... 135
FIGURE 60 - THE SUGGESTIONS TAB FOR THE DIT METRIC .. 135
FIGURE 61 - ONE OF THE GRAPHS IN THE SYSTEM .. 136
FIGURE 62 - THE HELP TEXT FOR THE GRAPH SHOWN ABOVE (DIT)................................. 137
FIGURE 63 - INPUTTING COHESION INFORMATION.. 139
FIGURE 64 - INPUTTING COMPLEXITY INFORMATION ... 140
FIGURE 65 - A SUMMARY OF THE PROJECT NSUML WITH RESPECT TO THE WMC METRIC

... 141
FIGURE 66 - THE FUNCTION POINTS MODULE ... 143
FIGURE 67 - ADDING A NEW FUNCTION.. 144
FIGURE 68 - AN EXAMPLE WITH 5 FUNCTIONS RESULTING IN 34 FUNCTION POINTS (UFC)

... 145
FIGURE 69 - THE GENERAL SYSTEM CHARACTERISTICS TAB .. 146
FIGURE 70 - THE PREDICTIVE METRICS TAB... 147

An Automatic Software Quality Measurement Tool Abstract

Page 1 of 147

Abstract

Software quality remains a very subjective and at times vague, notion. However it is a

fact that most serious developers and the majority of software users require some form of

qualitative measure for the software systems they are concerned with. Software quality

assurance can be carried out at various stages of the software development process but

this project deals with the measurement of the quality of object-oriented designs. The

implemented system will allow the user to design any system using the Unified Modeling

Language (UML) and then provide quality readings from different perspectives of the

system. It is worth noting that it is virtually impossible to come up with a quality scale to

gauge the quality of systems. i.e. The project will not produce a result such as “The

system is considered to be 85% good quality.” This is mainly due to the fact that when

asking for a quality system, conflicts and contradictions tend to occur (e.g. trying to

develop a highly reusable system that is very efficient). In the light of this fact, the

system will not gauge the quality of the system on a predefined scale but rather provide

the user metric readings that provide different views of the quality characteristics of the

system in question. The user will use the tool to identify potential problem areas and fix

them before the project goes into implementation stage.

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 2 of 147

1. Theoretical Background

1.1 Introduction

This section will give the reader an insight to the theoretical principles involved in the

conception, design and implementation of this project. The content here however is not

meant to describe what decisions where taken and why. Such information will be

presented in future chapters.

1.2 Quality in General

Quality – arguably one of the most ambiguous terms in popular and professional

vocabularies. Is a Porsche a higher quality car than say a Volkswagen is? Is a state-of-

the-art hi-fi of higher quality than the cheap stereo system I have at home? Similarly, is

the latest 3D-graphics generation software costing thousands of dollars better than a

shareware 2D paint package? From a popular viewpoint the answer to these questions

may very well be yes. However, if one was to approach the interpretation of the term

quality from the engineering or management perspective, we would see that things are

not as straightforward as they seem.

1.2.1 Ambiguity of the term ‘Quality’

Quality is by nature a multi-faceted concept that means different things to different

people. The concept of quality depends highly on the entity of interest, the viewpoint on

that entity, and the quality attributes of that entity. A good quality car for a family would

probably be one that has enough room for all the members of the family, has an

economical engine and is safe in the event of a collision with another car. On the other

hand, a good quality car to a racecar driver would be one that is lightweight, has high-

acceleration, good brakes etc.

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 3 of 147

Figure 1 - Different concepts of a quality car

Also, the term quality tends to be used at different levels of abstraction. A manager

might instruct a designer to design a good-quality mobile phone and he would be

referring to quality in the broadest sense of the word. On the other hand, the designer

will probably have a more specific concept of a good-quality mobile phone including

attributes such as reliable communications and an attractive exterior. These attributes can

also probably be re-explained at a lower level of abstraction.

Lastly, the term quality has been made a part of our daily language and it is used very

liberally to describe a seemingly endless number of entities (cars, movies, software, etc).

Consequently widespread views of the term may be very different from its use in

professions where it is approached from the engineering or management perspective.

This also contributes to the ambiguity of the term especially in cases where say software

developers interact with their would-be customers.

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 4 of 147

1.2.2 A Definition of Quality

Crosby [CRO79] defines quality as the level to which a product conforms to its

requirements. This implies that the requirements must be clearly and unambiguously

stated in such a way that they cannot be misunderstood. Measurements can then be taken

during the production of a product to determine the level of conformance to those

requirements. Then by this definition, if a Porsche conforms to all the requirements of a

Porsche, then it is a quality car. Similarly if a Volkswagen conforms to all the

requirements of a Volkswagen then it too is a quality car.

1.3 Software Quality

We now switch our attention to a more specific topic – the quality of software. This

section will discuss why the development high quality of software is becoming

increasingly important, the nature of quality in software as well as different approaches to

measuring and improving software quality.

1.3.1 Why is Software Quality important?

Four Marines were killed when their Osprey crashed on December 11th 2000 on approach

to the Marine Corps Air Station New River, North Carolina. An enquiry concluded that

the crash was caused by the failure of a hydraulic system component compounded by an

anomaly in the vehicle's computer software. [CNN01a]

Between 1985 and 1987, seven people died while receiving radiation therapy from a

medical linear accelerator at a Texas hospital. Investigations revealed that software

controlling the apparatus caused the accidents. If the operator entered an unusual but

nonetheless possible sequence of commands, the computer controls would put the

machine’s internals into an erroneous and very hazardous state, subjecting patients to a

massive overdose. [JAC90]

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 5 of 147

In June 1996, the Ariane 5 satellite launcher malfunction was caused by a faulty software

exception routine resulting from a bad 64-bit floating point to 16-bit integer conversion.

[ARI96]

These stories are not everyday occurrences but they nonetheless illustrate the high degree

to which we now let computer software influence our lives. Businesses now conduct

core transactions amongst themselves via software. Modern cars have embedded

computer systems controlling various aspects of their functions. People routinely entrust

their money to an ATM whilst making deposits. Airplanes are now capable of taking off

and landing with little or minor contributions from pilots.

It seems that people and businesses are naturally resolving to solve and problems they

have by building computer systems to deal with them. This is not in itself a harmful

trend but as a consequence, software developers are under incredible pressure to deliver

increasingly large systems in proportionately less time. Thus insuring the delivery of

high-quality software is becoming an increasingly important goal in the life-cycle of

software developed by serious companies.

1.4 Measuring Software Quality

The question remains: How can Software Quality be measured? The software

development lifecycle produces a number of artifacts from specification documents

through to the finished implementation and accompanying documentation. If we take the

definition of software quality to be the degree to which the finished product conforms to

its specifications, one possible way of measuring quality could be to ensure every one of

these artifacts is still inline with specifications as it is produced. If for example, the

design is inconsistent with specifications then the software development cycle is not

allowed to continue until the design conforms to specifications.

This approach seems to make sense. However, it is at too high a level of abstraction to be

of much use. If user-requirements consisted solely of functions to be offered by the

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 6 of 147

system, it would just be a matter of checking that each required function has been

implemented. This scenario rarely materializes. Users usually add ‘magic’ phrases like

“the system should be efficient” or “the system should be maintainable”. How exactly

does one verify that a system is efficient or that a system is maintainable? Before

attempting to answer that question, we will look at quality attributes.

1.4.1 Software Quality Attributes

Software quality attributes are a high-level a set of attributes of a software product by

which its quality is described and evaluated. A software quality attribute may be refined

into multiple levels of sub-attributes. There is also the concept of high-level quality

attributes and low-level quality attributes. High-level quality attributes are at a high level

of abstraction or generalization that can usually be broken down into sub-attributes. For

example, the attribute reliability can be broken down into the sub-attributes Maturity,

Fault-Tolerance, and Recoverability. Achieving these more specific sub-attributes will

mean achieving the overall attribute of reliability. The sub-attributes can occasionally be

again divided into sub-sub-attributes. This forms a tree of attributes starting from the

most general (and high-level) attribute at the root and the most specific (and low-level)

attributes at the bottom.

Reliability

Maturity Fault-Tolerance Recoverability

Figure 2 - The Reliability high-level attribute and it's low-level sub-attributes

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 7 of 147

1.4.2 Software Quality Attributes and the ISO-9126 Standard

ISO-9126 is a Software Product Evaluation Standard published by the International

Standards Organization (ISO) in 1991. In it, the ISO claims that software quality can be

defined using the following attributes:

Functionality

A set of attributes that bear on the existence of a set of functions and their specified

properties. The functions are those that satisfy the stated or implied needs of the client.

Reliability

A set of attributes that bear on the capability of software to maintain its level of

performance under stated conditions for a stated period of time.

Usability

A set of attributes that bear on the effort needed for use, and on the individual assessment

of such use by a stated or implied set of users.

Efficiency

A set of attributes that bear on the relationship between the level of performance of the

software and the amount of resources used, under stated conditions.

Maintainability

A set of attributes that bear on the effort needed to make modifications to the finished

system.

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 8 of 147

Portability

A set of attributes that bear on the ability of software to be transferred from one

environment to another.

With the ISO-9126 being an international standard, I have to be critical of the fact that

reusability was omitted from this list. Given the obvious benefits reuse is known to give

(chapter 1.6.1), it should follow that making a software product (or parts of it) reusable

will make it a better quality product. Also, this quality will be transferred to new systems

where the current product is reused.

It is worth noting that the attributes defined above can be broken down into further sub-

attributes as shown below.

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 9 of 147

Reliability

Maturity Fault-Tolerance Recoverability

Functionality

Suitability Accuracy Interoperability Compliance Security

Usability

Understandability Learnability Operability

Efficiency

Time Behavior
Resource
Behavior

Maintainability

Analyzability Changeability Stability Testability

Portability

Adaptability Installability Conformance Replaceability

Figure 3 - The sub-attributes of the attributes defined by ISO-9126

1.4.3 Objective vs. Subjective Quality Assessment

It is fair to say that the software engineering community’s understanding of software

quality is a long way from the required level of refinement and standardization.

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 10 of 147

Consequently, we are at a stage where there are many arguments for and against different

measurement methodologies. There two main schools of thought in this area: there are

those who believe that quality assessment is to be an objective process whilst others

believe that quality is inherently a subjective concept and thus the process used to

measure it should follow course.

Supporters of objective quality assessment argue that metrics can provide an unbiased

assessment of the different facets of quality such as reusability, flexibility,

understandability, functionality, extendibility or effectiveness.

On the other hand, those who believe that quality measurement should be subjective

emphasize the necessity of design guidelines and a development culture that encourages

simplicity, intuitiveness and understandability of software designs to humans. They also

argue that quality depends on its context and that metrics cannot provide accurate

numbers for the many viewpoints one can have on an application domain. Quality, they

say, can only be measured relative to a particular viewpoint.

My personal viewpoint on this (objective vs. subjective measurement) is that I believe in

the objective powers of metrics but also appreciate the fact that quality is a multi-faceted

concept that means different things to different people. I propose that objective metrics

be used as the primary tool for assessing quality. The individual users (companies) of

metrics can assign different weights to the metrics they use in order to measure quality

from their viewpoint. For example, my company’s quality policies may define a quality

product as being highly reusable whiles another company might define a quality product

as being highly portable. It is simply a case of the first company assigning more

weighting to metrics that measure reusability and the latter assigning more weighting to

metrics that measure portability. This is of course an over-simplified example but it

serves its purpose in illustrating my viewpoint on this topic.

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 11 of 147

1.4.4 An Introduction to Software Quality Metrics

The word ‘metrics’ strikes fear into the heart of many people involved in software

engineering. The reason for this being that many people still consider software

engineering to be an undisciplined craft rather than a profession where rigorous

mathematical tools may (and need to) be utilized. Even people who agree with metric

usage disagree amongst themselves with regards to what metrics should be used and how

they should be interpreted. Therefore, the first step to making use of metrics should

involve assessing a number of available metrics and choosing a suite for use according to

a company’s quality objectives. This exercise has been carried out for this project and is

described in chapter 2.

With that being said, one important question crops up: “What do we measure?” There

are essentially three measurable entities: products, processes, and people. The term

‘products’ refers to the artifacts produced during the software development life cycle.

One possible approach to quality assessment could be to verify that each of these artifacts

is of a high-level of quality. A different approach could entail the study and refinement

of processes involved in the life cycle of a product. For example, one can study the

process by which requirements are gathered and transformed into specifications. Good

and bad trends can be identified enabling management to impose rules on the process

thus increasing the likelihood of having higher-quality specifications. Finally, one must

not forget that people are an integral part of the software development process. One

could also take the approach of actually measuring the performance of individuals or

groups in a company. However, this could bring about various ethical considerations and

should be implemented with caution.

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 12 of 147

Metrics
Suite

People

Processes

Products

Non-intrusive collection of data

Management

Results, trends,
reports, etc

Modifications

Figure 4 - The use of metrics in an organization

As shown in figure 4 above, metric data-collection should be a non-intrusive process.

Designers, developers and other people involved in the life cycle should be left to go

about their business without having to consciously contribute to the data-collection

process.

At the end of the day, if used properly, metrics allow us to:

o Quantitatively define success and failure, and/or the degree of success or failure for a

product, process or person.

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 13 of 147

o Identify and quantify improvement, lack of improvement or degradation in the

performance of a product, process or person.

o Make meaningful and useful managerial and technical decisions.

o Identify trends.

o Make quantified and meaningful estimates.

On the other hand, metrics can easily be misused. Firstly, those gathering metrics must

be aware of items that may influence the metrics they are gathering. For example, one

must be aware of the Heisenberg effect whereby it was observed that initial

improvements in a process of production might only be happening because of the

obtrusive observation of that process and not because of a change in working conditions.

The same could be said for a software development environment. If programmers know

that management is collecting metrics, their initial reaction will be to be more careful and

to increase the quality of their work. Taking an exaggerated example, management may

also be giving employees free coffee to make them more content. Care must be taken not

to correlate the increase in quality (due to the Heisenberg effect) with the free coffee.

Another way in which metrics could be misused is by making comparisons between two

products based only on their similarities. Bernard [BER00] observes that meaningful

comparisons can only be made if both the similarities and dissimilarities of the products,

processes or people being compared are taken into account.

Metrics must be correlated with reality before any meaningful decisions can be taken. It

is important that one does not simply look at the numbers on paper and take a decision

based on them. The numbers must first be confirmed as being realistic.

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 14 of 147

1.4.5 Metrics and the Object-Oriented Paradigm

While metrics for the traditional functional decomposition and data analysis design

approach measure the design structure and/or data structure independently, object-

oriented metrics must be able to focus on the combination of function and data as an

integrated object [CHI94]. The object-oriented paradigm introduces new concepts and

structures that traditional metrics will fail to measure. This is not to say that pre-OO

metrics are now obsolete but rather that we need to utilize new object-oriented metrics

along with selected traditional metrics. At this point, it is worth taking a look at the new

features presented by the object-oriented paradigm and why traditional metrics do not

measure them.

Localization is the process of placing items in close physical proximity to each other.

This process was not introduced by the object-oriented paradigm but rather the object-

oriented paradigm localizes information differently to other paradigms. More

specifically, functional decomposition processes localize information around functions;

data-driven approaches localize information around data whilst object-oriented

approaches localize information around objects. In most conventional software,

localization is based on functionality and therefore a great deal of metrics gathering has

traditionally focused largely on functions and functionality. Also, units of software were

functional in nature, thus metrics focusing on component interrelationships emphasized

functional interrelationships such as module coupling. In object-oriented software

however, localization is based on objects. This means that although we may speak of the

functionality offered by an object, at least some of our metrics gathering effort must

recognize the object as the basic unit of software.

Encapsulation is the binding together of a collection of items. In traditional paradigms,

encapsulation consisted of records, arrays, procedures, functions, subroutines etc.

Object-oriented languages offer higher level of encapsulation through classes (Java,

C++), packages (Java, C++, Ada) and modules (Modula 3) to name a few. Objects

encapsulate, knowledge of state¸ advertised capabilities, corresponding algorithms to

accomplish these capabilities, other objects, exceptions, constants, and concepts.

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 15 of 147

Encapsulation has an impact on metrics in the sense that the basic unit will no longer be

the subprogram but rather the object. Also, we will have to modify our thinking on

characterizing and estimating systems.

Information hiding is the suppression (or hiding) of details. The main concept here is

that we show only that information which is necessary to accomplish our immediate

goals. Some may tend to conclude that encapsulation and information hiding are one and

the same. This is not the case since for example an item may be encapsulated but may

still me totally visible. Since this is mainly an object-oriented paradigm feature, new

metrics are needed for measuring it.

Inheritance is a mechanism whereby on object acquires characteristics from one or more

other objects. The amount of inheritance used in a hierarchy will affect high-level quality

attributes such as efficiency and reusability. It is thus important that inheritance metrics

be included in object-oriented projects.

Abstraction is a mechanism for focusing on the important details of a concept or item,

while ignoring the inessential details. It is a relative concept in the sense that as we move

to higher levels of abstraction we ignore more and more details thus providing a more

general view of a concept or item. As we move to lower levels of abstraction we

introduce details and provide a more specific view of a concept or item. There different

types of abstraction, namely functional abstraction, data abstraction, process abstraction,

and object abstraction. In object abstraction, objects are treated as high-level entities.

We know what functionality they offer but we don’t usually care how they implement it

(black box principle). Traditional metrics will not measure object abstraction properties

and thus new object-oriented metrics are required.

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 16 of 147

1.5 Measuring the Quality of Object-Oriented Designs

This section aims to show sufficient motive for measuring the quality of object-oriented

designs (as opposed to simply testing a finished product) and to introduce foundational

concepts related to the topic.

1.5.1 Why Measure the Quality of Designs?

Why would a company want to measure the quality its designs? Why not simply wait for

the implemented software package and then subsequently perform testing, fix bugs and

release it to market? Let us assume for a moment that there are numerous companies that

are using this method and that their software is being released to market fully functional

with a minimal number of undiscovered/uncorrected defects. It is worth asking these

companies a number of questions: What did it cost to develop that software? What

proportion of man-hours was spent on fixing defects as opposed to the actual

development? How many of the defects discovered during testing needed major sections

of the software to be redesigned? Did these changes in design have a ripple effect on the

rest of the project? Did the number of entries in the bug list seem to grow instead of

shrink when you started to fix errors?

The consensus in the industry is that there is a direct correlation, which relates the cost of

detecting and correcting a fault, with the timing of identifying the fault. Simply stated,

the earlier that a fault is detected and removed, the cheaper it is to fix. Testing the

product after implementation is complete is almost the worst (worst being not doing any

testing at all) and most expensive way to find and fix defects in the product. Testing

individual modules as they are developed would be a step forward but why stop there?

Why not review and inspect the quality of a design before actual implementation

commences? Using this reasoning, one could rightly argue that quality assurance should

start from the requirements stage. Don Mills [MIL98] presents research showing that

over 55% of errors of a project are introduced during the requirements stage. Figure 5

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 17 of 147

below shows the estimated cost of fixing a defect that occurred at requirements stage

depending on the stage it is found and fixed.

Ideally, software quality assurance procedures should be carried out on each stage of the

development life cycle but the scope of this project lies solely in evaluating the quality

of object-oriented designs.

0 2000 4000 6000 8000 10000

Cost ($)

Operation

Acceptance Test

Testing

Coding

Design

Requirements

P
h

as
e

Min
Max

Figure 5 - Increase in cost of correcting a requirements defect by phase of discovery [MIL98]

1.5.2 Measurable Structures in Object-Oriented Designs

The metrics that will be used in this project should measure principle structures that, if

improperly designed, will negatively affect the quality attributes of the design and

subsequently the code. This aim of this section is to identify these structures and describe

how they may affect the quality of the overall design. However, this section will not

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 18 of 147

present the metrics that operate on these structures. The metrics are presented in section

2.4.

In object-oriented design, there are five key structures that should be measured: Classes,

Messages, Cohesion, Coupling, and Inheritance.

A class is a template from which objects can be created. This set of objects shares a

common structure and a common behavior manifested by the set of methods. Classes

play a major role in the object-oriented paradigm. The way in which classes are designed

will affect the overall understandability of a system making it easier or more difficult to

maintain. The reusability of a system could also be affected by the way classes are

designed. For example, classes with a large number of methods would tend to be more

application-specific thus reducing the reuse value of the overall system.

A message is a request that an object makes of another object to perform an operation.

The operation executed as a result of receiving a message is called a method. It is

important to study the message flow between objects because this will affect the

understandability, maintainability and testability of a system. The more complex the

message flows between objects are, the less understandably and maintainable the system

is. This will also make the system more difficult to test.

Cohesion is the degree to which methods within a class are related to one another and

work together to provide well-bounded behavior. Effective OO designs maximize

cohesion because they promote encapsulation. The degree of cohesion in a system will

affect the system’s efficiency and reusability. A high degree of cohesion in a system

indicates that most classes are self-contained thus increasing the efficiency of the system

because fewer messages will be passed between objects. Self-contained classes can

easily be plugged in for reuse in another system since they do not depend on other classes

to function.

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 19 of 147

Coupling is a measure of the strength of association established by a connection from

one entity to another. Coupling between classes occurs through the use of one class’

methods and attributes by another class and through inheritance. Since good object-

oriented design requires a balance between coupling and inheritance, inheritance

couplings are usually not taken into account when evaluating the degree of coupling in a

system. Coupling will affect the efficiency and reusability of a system. Strong coupling

complicates a system, thus making it less efficient. A designer should strive to design a

system with the weakest possible links between classes. This will also make individual

classes within the system more reusable.

Inheritance is a mechanism whereby on object acquires characteristics from one or more

other objects. Inheritance can reduce the complexity of a system by reducing the number

of methods and attributes in child classes, but this abstraction of objects can make

maintenance and design difficult. One can look at the inheritance characteristics of a

system from two viewpoints: the depth of the inheritance tree and the breadth of the

inheritance tree. The deeper a class is in the inheritance tree, the more methods it is

likely to inherit thus making it more difficult to predict its behavior. In a general deeper

trees constitute greater design complexity but a balance needs to be struck because the

greater the use of inheritance, the greater the reuse of methods and attributes in higher-

level classes. Analyzing the breadth of the inheritance tree of a project would involve

looking at the number of immediate children of particular classes. This is an indicator of

the potential influence a class can have on the design and on the system. The more

children a class has, the higher the amount of reuse in that design but then again, a large

number of children could indicate the improper abstraction of the parent class.

1.5.3 What makes a good object-oriented design?

The question “what makes a good object-oriented design?” does not have a clear usable

answer. Creating a good object-oriented design involves combining the features of the

object-oriented paradigm to create a fine balance between all the quality attributes of

interest to the particular designer. Maximizing the value of all quality attributes that are

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 20 of 147

important to a company is virtually impossible since some attributes invariably contradict

(or conflict with) each other. For example, a company cannot expect its developers to

create a system and make its classes highly reusable without compromising on the

efficiency of these classes. This is due to the fact that in most cases, reusable classes are

general and thus will not be optimized to specific applications. Management has to be

made aware of the numerous conflicts and contradictions involved in asking for good

object-oriented designs so as not to expect the impossible from their designers and

developers.

This project will attempt to provide a tool that will allow project managers to keep track

of the quality of their designs by the use of various metrics described in section 2.4.

1.6 Reusability of Object Oriented Designs

The British Computer Society’s (BCS) Software Reuse Specialist Group defines the aim

of Software Reuse as:

“The planned use of Software Artifacts in the solution to multiple problems.”

Many people would think that software reuse involves the reuse of code libraries in new

projects. However, code is not the only available artifact produced in the software

development process. Requirement specifications, designs and test plans are all artifacts

that could potentially be fully or partially reused in different projects. For the purposes of

this project, we are only interested in the reuse of object-oriented designs and how this

can be measured, however reusable designs often map directly to reusable classes of

implemented code.

1.6.1 Benefits of Reusing Designs

There are a number of benefits to be gained from reusing designs:

o Productivity is increased because designers do not re-invent the wheel

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 21 of 147

o Performance can be increased by having an expert define key blocks

o Correctness is increased because portions of design have been proven in the past

o Predictability is increased because reused modules statistics are known.

1.6.2 What makes designs reusable?

A design is reusable in a new project if it has functional commonality with the new

project. Also, a design is more reusable if the user (designer) can customize it.

1.6.3 What can make design reuse unsuccessful?

There are various reasons why design reuse may not be possible or economically feasible.

For example, in order for a design to be reused, it must be designed in a flexible manner.

In many cases this will result in lost performance with respect to both space and time

complexities since the implementation of a flexible design will obviously consume more

space than that of a design that solves only one particular problem. Similarly, the

algorithm will not be optimized towards a particular problem thus increasing time

complexity.

Also, designing for reuse takes up more time and effort. Usually, there is a good return

on this investment but project deadlines and budgets sometimes make it impossible to

dedicate enough time and resources for a project to be designed with reuse in mind.

1.6.4 Design Reuse and the Object-Oriented Paradigm

The object-oriented paradigm exhibits major differences in the way a system is designed

when compared to its procedural equivalent. Do the methods and concepts facilitated by

the object-oriented paradigm encourage reuse?

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 22 of 147

Lewis [LEW91] points out that the most prominent feature offered by object-oriented

languages is encapsulation. Encapsulation capabilities create self-contained objects,

which are easily incorporated into a new design. The data-based decomposition of

objects resulting in class-hierarchies and inheritance, promotes reuse far more than the

top-down approach. Greater abstraction is the key to a greater reusability, and object

based languages provide abstraction far better than procedural languages.

Lewis and his colleagues go on to carry out a detailed empirical study and manage to

come up with a few interesting conclusions. The first conclusion is as follows:

“The object-oriented paradigm substantially improves productivity, although a
significant part of this improvement is due to the effect of reuse.”

This is very interesting. Following this conclusion, one may also state that reuse is an

inherent property of the object-oriented paradigm. Hence it makes perfect sense for a

company making use of this paradigm to invest in formal training of staff in reuse

techniques. According to Lewis’ conclusion, the increased productivity gained would

make up a significant part of the improvement gained collectively due to the other

features offered by the object-oriented paradigm.

The following conclusions were also reached by the same study:

1. Software-reuse improves productivity no matter which language paradigm is

used.

2. Language differences are far more important when programmers reuse than
when they do not.

3. The Object-Oriented paradigm has a particular affinity to the reuse process.

These conclusions seem to “scream out” that reuse is good and that object-oriented

methodologies are a much better way to go if you want to reuse software artifacts.

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 23 of 147

1.6.5 Measuring Reuse in Object-Oriented Designs

Not much work has been done in the evaluation of reusability of designs. However, Price

and Demurijan [PRI97] came up with an interesting method of measuring the degree of

reusability of a design through the analysis of different types of coupling. This method is

described in detail in section 1.7 below.

1.7 Measuring the Reusability of Object Oriented Designs

This section describes a method developed by Price and Demurijan [PRI97] for

measuring the reusability of object-oriented designs. The method attempts to combine the

subjective nature of software design with the objective nature of mathematical metrics.

1.7.1 Overall View

The method provides a set of metrics that work on any object-oriented design irrespective

of the domain of the system being designed. There are three steps involved:

1. Allowing the designer to design a system

2. Collecting subjective data from the designer

3. Use objective metrics on subjective data in order to come up with analysis

results.

As you can see, the process is not totally automated. It still requires some input

(explained below) by the designer. However, in my opinion this is a good point since

subjective and domain-specific reasoning is being taken into account. Actually, this

feature is what allows this method to be a generic one over all designs in all domains.

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 24 of 147

1.7.2 Collecting data from the designer

It is safely assumed that the designer is equipped with domain-specific knowledge. Also,

it would be very helpful if the designer had an idea of what systems were to be designed

in future. There are two types of data that need to be collected from the system designer.

General and Specific Classes

Firstly, all the classes in the system must be categorized as general or specific. General

classes are classes that are expected to be reused in future projects. These can either be

domain independent classes (such as a GUI component) or domain specific classes that

can be reused in other applications in the same domain. An example of the latter might

be patient class in a hospital system when the designer knows that another system in the

medical domain (e.g. Dentist application) may be developed in future.

Specific classes are application-specific classes that are not intended tot be reused in other

projects.

Related Class Hierarchies

Secondly, the designer also needs to separate his/her classes into hierarchies and specify

which hierarchies are related to each other.

Definition: A class hierarchy is defined as being related to another if they are related

in concept and are expected to be reused together in future systems.

As an example, take the three hierarchies presented in the diagram below. These

hierarchies form part of a software system for the ministry of health. The designer

calculates that there is a strong possibility that the hierarchy Item and the hierarchy

Record will be reused together in future. Maybe his/her company is thinking of

developing a system for a small private clinic. This would be a very different to the

“ministry of health” system but the mentioned class-hierarchies may still be reused.

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 25 of 147

Moreover, they probably “have to” be reused together since the Prescription class may

need to make use of the Prescription_R class.

It is worth noting that the hierarchy Organization is not marked as been related to any

other hierarchy. Reasons for this may and will vary but at the end of the day, to the

method, it doesn’t make a difference why hierarchies are related or not. The designer is

being trusted as the person with the right knowledge to make these decisions. Hence we

are capturing subjective data.

Item

Visit Prescription Test Record

Medical_R Prescription_R Financial_R

Department

Organization

Hospital Unit

Pharmacy Lab Nursing

RELATED HIERARCHIES

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 26 of 147

1.7.3 Coupling Categories

This method’s foundation lies in checking the couplings (dependencies) between

different types of classes in different hierarchies. Not all dependencies between classes

are bad for reuse. Dependencies between classes that are meant to be reused together are

not a hindrance to reuse. In fact, they add more value to a design because a larger portion

of the design is reused.

To this extent, it is worth listing the different types of coupling that could occur and

define what (if any) effect they have on the reuse value of a design. The creators of the

method also make suggestions of what can be done in the case of undesirable coupling.

There are eight types of coupling between classes. In the explanations below the letter G

is read as “General Class” whilst the letter S is read as “Specific Class”. Also, the

notation “S G” is read “Specific class depending on a General Class”.

Type 1: G G among related hierarchies

A dependency from a general class to another general class in a related hierarchy is not a

hindrance to reuse. Actually, increasing these couplings in a design yields a potential for

more reuse.

Type 2: G G among unrelated hierarchies

Although both classes in this coupling are reusable classes, they are not meant to be

reused together in future systems. This is an undesirable situation because we cannot use

one of the classes in a different system without having to import the other one as well.

It is recommended to move the dependency to their specific descendent classes that are

most relevant. Create new classes if necessary.

Type 3: G S among related hierarchies

In this case, the class that may be reused in future (the general class) depends on a

specific class. The specific class is not meant to be reused in future so this is an

undesirable form of coupling.

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 27 of 147

The designer should attempt to move the destination to an appropriate general ancestor of

the specific class.

Type 4: G S among unrelated hierarchies

This is very similar to a type 3 coupling only it is more undesirable because the

dependency is between unrelated hierarchies.

The designer is advised to try to move the source of the coupling to an appropriate

specific descendent class.

Type 5: S G among related hierarchies

This form of coupling does not impede reuse because the class depending on another

class is a specific one. However, we might be able to increase the value of reuse by

moving the source to an appropriate general ancestor. This would convert the coupling

into a type-1 coupling.

Type 6: S G among unrelated hierarchies

A type-6 coupling has absolutely no effect on the value of reuse of a design. There are

also no transformations that can be done in order to maybe increase the value of reuse of

the design.

Type 7: S S among related hierarchies

Although this form of coupling is no hindrance to reuse, the designer could both the

source and destination of the coupling to general ancestors. If this is possible, it would

convert the coupling into a type-1 coupling – the most desirable form of coupling.

Type 8: S S among unrelated hierarchies

Not only is this situation not a hindrance to reuse but it is also the ideal form of coupling

between unrelated classes. If there must be couplings between unrelated hierarchies, we

should push the designer to create these couplings between specific classes.

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 28 of 147

Summary of Coupling Categories

The following table summarizes the information given above.

Effect on Reuse Value Recommended Action / Comments

1 Neutral / Positive Increasing these couplings in a design yields a potential

for more reuse.
2 Negative Attempt to move the source and destination of the

dependency to more specific descendent classes that
are most relevant. Create new classes if necessary.

3 Negative Attempt to move the destination of the coupling to an
appropriate ancestor class.

4 Negative Attempt to move source of coupling to an appropriate
specific descendant class.

5 Neutral Attempting to move the source to an appropriate
general ancestor will convert the coupling to a type-1
coupling.

6 Neutral
7 Neutral Attempting to move both the source and destination to

General ancestors will convert the coupling into a type-
1 coupling.

8 Neutral Ideal situation for coupling between unrelated
hierarchies.

1.7.4 Design Reusability Metrics

The creators of the method propose a set of metrics, which take the form of eight

summations that correspond to the eight types of coupling given above. Coupling is

defined as an inter-hierarchy dependency that results when a method of one hierarchy

uses methods or instance variables of another hierarchy. We use the term Coupling

Counts (CC) to represent these interactions between hierarchies. The metrics are defined

as follows:

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 29 of 147

i
x

j

m

i
GGCC j∑∑ ==

=
11

1 i
y

j

m

i
GSCC j∑∑ ==

=
11

5

i
x

j

n

i
GGCC j∑∑ ==

=
11

2 i
y

j

n

i
GSCC j∑∑ ==

=
11

6

i
x

j

m

i
SGCC j∑∑ ==

=
11

3 i
y

j

m

i
SSCC j∑∑ ==

=
11

7

i
x

j

n

i
SGCC j∑∑ ==

=
11

4 i
y

j

n

i
SSCC j∑∑ ==

=
11

8

where

m: # of hierarchies which are related to this one
n: # of hierarchies which are not related to this one
x: # of General classes in this hierarchy
y: # of Specific classes in this hierarchy

GjGi: # of couplings from the j-th General class to all General classes in the ith

hierarchy

GjSi: # of couplings from the j-th General class to all Specific classes in the ith

hierarchy

SjGi: # of couplings from the j-th Specific class to all General classes in the ith

hierarchy

SjSi: # of couplings from the j-th Specific class to all Specific classes in the ith

hierarchy

1.8 What to expect in the next chapter…

This chapter has hopefully instilled in the reader the motivation for measuring software

quality and has also introduced the main topics needed to equip him/her with enough

theoretical background to understand the rest of this document. So far however, the

information has been of a very general and abstract nature. In the next chapter, the

content will have the narrower focus of applying the general information and theory

presented in this chapter to the more specific task at hand: creating a software quality

measurement system. Chapter 2 is a chapter where decisions are made with regards to

An Automatic Software Quality Measurement Tool Chapter 1 - Theoretical Background

Page 30 of 147

quality attributes that are going to be evaluated, metrics that are going to be calculated,

and how information for these metrics can be extracted from UML. In some cases, UML

will be found not to provide enough information for the scope of this project and

lightweight extensions will have to be defined. Also, the concept of function points is

introduced and their use in this project explained.

An Automatic Software Quality Measurement Tool Chapter 2 - Methodology

Page 31 of 147

2. Methodology

2.1 Introduction

The end-goal of this project is to design and implement a tool that analyses the quality of

object-oriented designs. However, decisions need to be taken: What are the limits of

scope of the tool? How will designs be represented? Will the design-notation language

need to be extended? What metrics are to be used to analyze the designs and what

quality attributes do they measure? How will the information for these metrics be

extracted from the chosen design notation? Will the tool make an emphasis on any

particular quality attributes? How will the tool allow the user to compare the current

project with previously completed projects? The purpose of this section is to answer

these questions and lay the foundations for the specification, design and implementation

of the tool itself.

2.2 Limits of Scope of Tool

The final implemented tool will be able to analyze an object-oriented design by

extracting the required data to calculate a number of object-oriented metrics. The tool

will provide the user with information about each metric such as the quality attributes that

it evaluates and how to interpret its readings. Graphical reports should also be generated

so as to give the user a clear overall view of his/her project. The tool should also provide

a way of comparing the current project with other projects, which have been previously

analyzed by the same tool.

2.3 Representation of Object-Oriented Designs

The first decision that must be taken before going any further concerns the notation to be

used to represent designs. It was decided that the designer is to communicate his/her

design to the system using the Unified Modeling Language (UML). The Unified

An Automatic Software Quality Measurement Tool Chapter 2 - Methodology

Page 32 of 147

Modeling Language is a language that unifies the industry’s best engineering practices

for modeling systems [ALH98] and allows the designer to specify a system by making

use of nine different types of diagrams. The tool will only analyze a subset of these

diagrams depending on the metrics that are going to evaluate the system. A description

of these diagrams will given in the methodology section after the metrics have been

introduced.

2.3.1 Why UML?

There are various reasons why UML was chosen as the notation for design. Firstly, UML

is inherently related to the object-oriented paradigm and thus fits in with the goals of this

project. Secondly, UML is considered to be a notational approach that does not define

how to organize development tasks. Therefore, it can be tailored to different

development situations thus making the tool usable by any development team making use

of the object-oriented paradigm.

Usage of UML is very widespread and is expected to keep growing. This means benefits

this project in various ways. Firstly, there is a wealth of existing designs, which can be

feed into the system for analysis consequently making it easy to build a repository of

projects for comparison with future projects. Secondly, any users of the system who need

to be trained in UML will probably see it as a plus due to the fact that they can make use

of their newly acquired knowledge in other places of work.

UML is also considered to be able to completely describe a system’s structural view,

behavioral view, implementation view, environment view and user view. Therefore it

does not limit the designer from expressing the system’s design in any way. The tool will

of course not be analyzing all the diagrams provided by UML but a select view as

describe in the methodology section.

Finally, UML is an extensible language, a feature that comes in useful in this project

since some of the reuse metrics being used will need certain parameters to be included in

An Automatic Software Quality Measurement Tool Chapter 2 - Methodology

Page 33 of 147

the design. The extension of UML in this project has been kept to a bare minimum so as

to preserve the standard form of UML thus enabling the analysis of previously designed

systems.

2.4 Choice of Metrics

The tool will be designed to make it easy for new metrics to be added to it if its user

requires that different aspects of the system be measured. However, a base set of

fourteen metrics has been chosen for initial implementation for the system and will be

separated into two groups: Structural Metrics and Reuse Metrics.

The Structural Metrics group contains six metrics, which between them evaluate all the

principle structures discussed in section 1.5.2 (Measurable Structures in Object Oriented

Designs).

The Reuse Metrics are coupling-based metrics that are specifically designed to measure

reuse. The reasoning behind them is explained in section 2.4.2 below.

An Automatic Software Quality Measurement Tool Chapter 2 - Methodology

Page 34 of 147

Metrics Suite

Structural
Metrics

Reuse Metrics

Lack of Cohesion
of Methods

Response for a
Class

Coupling Between
Objects

Number of
Children

Depth of
Inheritance Tree

Weighted Methods
Per Class CC1

CC2

CC3

CC4

CC5

CC6

CC7

CC8

Figure 6 - The metrics to be evaluated by the system (descriptions below)

An Automatic Software Quality Measurement Tool Chapter 2 - Methodology

Page 35 of 147

2.4.1 The Structural Metrics Group

The following metrics measure the principle structures offered by an object-oriented

design, namely class, message, coupling, cohesion, and inheritance. Chidamber and

Kemerer [CHI94] from MIT, proposed these metrics back in 1994.

Weighted Methods Per Class (WMC)

Consider a class C1, with methods m1, … mn. Let c1, … cn be the static complexity of the

methods. Then…

Chidamber and Kemerer did not define how the static complexity of each method is to be

calculated. For the purposes of this project, the static complexity (Ci) will be calculated

using McCabe’s Cyclomatic Complexity measure. This is simply a count of test cases

that are needed to test the method comprehensively.

WMC analyzes the class structure and the result has a bearing on the understandability,

maintainability, and reusability of the system as a whole. The number of methods and

the complexity involved is a predictor of how much time and effort is required to develop

and maintain the class. The larger the number of methods in a class, the greater the

potential impact on children, since children inherit all of the methods defined in a class.

Classes with large numbers of methods are likely to be more application specific, limiting

the possibility of reuse.

Churcher and Shepperd [CHU95] point out that the definition of the method count is

imprecise because it does not say whether or not to count inherited methods as belonging

to a class or not. Different interpretations of this could change the measurement

drastically. Chidamber and Kemerer clarified their position by saying that “the methods

∑
=

=
n

i

icWMC
1

An Automatic Software Quality Measurement Tool Chapter 2 - Methodology

Page 36 of 147

that require additional design effort and are defined in the class should be counted, and

those that do not, should not”.

Depth of Inheritance Tree (DIT)

The depth of inheritance of a class is its depth in the inheritance tree. If multiple

inheritance is involved, then the depth of the class is the length of the maximum path

from the node representing the class to the root of the tree. The root class has a DIT of 0.

DIT is essentially a measure of how many ancestor classes can possibly affect this class.

It is worth noting that deeper trees constitute greater design complexity, since more

methods and classes are involved. However, deeper trees also signify a greater level of

internal reuse in the system so a balance between reuse and reduced complexity needs to

be struck.

This metric primarily evaluates efficiency and reuse but also relates to understandability

and testability.

Number of Children (NOC)

NOC simply counts the number of immediate sub-classes subordinate to a particular class

in the class hierarchy. This gives an indication of the potential influence a class can have

on the design and on the system. The greater the number of children, the greater the

likelihood of improper parent abstraction, and it may be an indication of sub-classing

misuse. Again, there has to be a compromise because a greater number of children

indicate a larger degree of internal reuse of the particular class. If a class has a large

number of children, it may require more testing of the methods of that class, thus increase

the testing time. NOC, therefore, primarily evaluates efficiency, reusability, and

testability.

An Automatic Software Quality Measurement Tool Chapter 2 - Methodology

Page 37 of 147

Coupling Between Objects (CBO)

CBO for a class is a count of the number of non-inheritance related couples with other

classes. Excessive coupling between objects outside of the inheritance hierarchy is

detrimental to modular design and prevents reuse since the more independent an object is,

the easier it is to reuse in a different application. Also, the larger the number of couples a

class has, the more sensitive it is to changes in other parts of the design thus making

maintenance more difficult.

CBO has been criticized by Hitz and Montazeri [HIT96] because it assumes that all

couples are of equal strength. They claim this does not make it a sensitive enough

measure because (for example) an object using another object’s attributes constitutes a

stronger coupling than pure message passing between objects as does message passing

with a wide parameter interface vs. one with a slim interface.

Response For a Class (RFC)

RFC = |RS| where RS is the response set for the class.

RS = {Mi} ∪ {Ri}

Where: {Mi} is the set of methods in the class

And: {Ri} is the set of methods called by methods in {Mi}

Basically, RFC is a count of the methods in a particular class and the methods in other

classes that are called by the class. This gives an indication of a system’s

understandability, maintainability, and testability. If a large number of methods can be

invoked in response to a message, the testing and debugging of the object becomes more

complicated. Also, the larger the number of methods invoked by an object, the more

complex it is thus decreasing understandability and testability. It is worth noting that

worst-case values for possible responses will assist in the appropriate allocation of testing

time.

An Automatic Software Quality Measurement Tool Chapter 2 - Methodology

Page 38 of 147

Lack of Cohesion of Methods (LCOM)

Consider a class C1 with methods M1, M2, … , Mn. Let { Ii } = set of instance variables

used by method Mi. There are n such sets: { I1 }, … { In }.

LCOM = The number of disjoint sets formed by the intersection of the n sets.

LCOM uses the notion of similarity of methods. The number of disjoint sets provides a

measure for the disparate nature of methods in a class. Fewer disjoint sets imply greater

similarity of methods whilst higher number of disjoint sets indicate that the methods in

the class are not cohesive and that the class can probably be split into two or more

subclasses. Cohesiveness of methods within a class is desirable since it promotes

encapsulation of objects.

Henderson-Sellers [HEN96] evaluated the LCOM metric and criticized it due to the fact

that while large values of LCOM suggest poor cohesion, a zero value does not

necessarily indicate good cohesion.

LCOM evaluates efficiency and reusability.

2.4.2 The Reuse Metrics Group

The theory behind the reuse metrics has already been explained in section 1.7 but the

metrics are reproduced here for the sake of completion:

An Automatic Software Quality Measurement Tool Chapter 2 - Methodology

Page 39 of 147

i

x

j

m

i
GGCC j∑∑ ==

=
11

1 i
y

j

m

i
GSCC j∑∑ ==

=
11

5

i
x

j

n

i
GGCC j∑∑ ==

=
11

2 i
y

j

n

i
GSCC j∑∑ ==

=
11

6

i
x

j

m

i
SGCC j∑∑ ==

=
11

3 i
y

j

m

i
SSCC j∑∑ ==

=
11

7

i
x

j

n

i
SGCC j∑∑ ==

=
11

4 i
y

j

n

i
SSCC j∑∑ ==

=
11

8

where

m: # of hierarchies which are related to this one
n: # of hierarchies which are not related to this one
x: # of General classes in this hierarchy
y: # of Specific classes in this hierarchy

GjGi: # of couplings from the j-th General class to all General classes in the ith

hierarchy

GjSi: # of couplings from the j-th General class to all Specific classes in the ith

hierarchy

SjGi: # of couplings from the j-th Specific class to all General classes in the ith

hierarchy

SjSi: # of couplings from the j-th Specific class to all Specific classes in the ith

hierarchy

2.5 Extracting Structural Metric Information from UML Diagrams

This section goes through the structural metrics one by one and describes how the

information needed to calculate each metric could be extracted from UML notation. It

has been established that all the information required can be obtained from a combination

of class diagrams, activity diagrams, collaboration diagrams and sequence diagrams. It is

assumed that the reader has a basic knowledge of UML but specific details about

diagrams will be discussed where appropriate so as to make the solution to certain issues

as clear as possible.

An Automatic Software Quality Measurement Tool Chapter 2 - Methodology

Page 40 of 147

2.5.1 Weighted Methods per Class (WMC)

Consider a class C1, with methods m1, … mn. Let c1, … cn be the cyclomatic complexity

of the methods. Then…

∑
=

=
n

i

icWMC
1

Calculating WMC will require the information from two types UML diagrams:

1. Class Diagram

The class diagram will be used for obtaining a list of methods for each class.

By default, the cyclomatic complexity of each method will be one. However,

if there are methods for which there exists an Activity Diagram describing

changes in activity within the methods, the cyclomatic complexity for those

methods should be calculated from their Activity Diagrams.

Please note that inherited methods are not counted unless they are re-defined

in the current class.

2. Activity Diagram

Activity diagrams can be used to show the changes in activity within the

methods. They are very similar to flowcharts. If a method has an activity

diagram associated with it, its cyclomatic complexity is calculated as follows:

Cyclomatic Complexity = no. of edges – no. of nodes + 2

If a method does not have an activity diagram associated with it, then its

cyclomatic complexity is taken to be 1. This follows from the notion that in

theory, object-oriented methods are so small and specific that their complexity

can be taken to be 1.

An Automatic Software Quality Measurement Tool Chapter 2 - Methodology

Page 41 of 147

2.5.2 Depth of Inheritance Tree (DIT)

The depth of inheritance of a class is its depth in the inheritance tree. If multiple

inheritance is involved, then the depth of the class is the length of the maximum path

from the node representing the class to the root of the tree. The root class has a DIT of 0.

As shown in the example below, the DIT metric is easily measured by looking at a

particular class in a class diagram. The class Animal is the root class of the hierarchy

shown in the example and therefore has a DIT of 0. The classes below it

(DomesticAnimal, FarmAnimal, WildAnimal) have a DIT of 1 and their children in

turn have a DIT of 2.

Animal

DogCat

DomesticAnimal

PigCow

FarmAnimal

TigerLion

WildAnimalDIT = 1 DIT = 1

DIT = 2 DIT = 2

DIT = 0

Figure 7 - Illustrating how DIT readings can be made from UML Class Diagrams

2.5.3 Number of Children

NOC simply counts the number of immediate sub-classes subordinate to a particular class

in the class hierarchy. This information is easily obtainable from a class diagram as

shown below.

An Automatic Software Quality Measurement Tool Chapter 2 - Methodology

Page 42 of 147

DogCat

DomesticAnimal
NOC = 2

NOC = 0
NOC = 0

Figure 8 - Illustrating how NOC values can be obtained from UML Class Diagrams

2.5.4 Coupling between Objects (CBO)

CBO for a class is a count of the number of non-inheritance related couples with other

classes.

UML class diagrams will be needed to obtain information for calculating CBO. Class

diagrams can show the different couplings between objects. Before describing how the

CBO metric will be calculated from a class diagram, it is worth looking at the different

types of couples that can be illustrated within a UML class diagram. These are as

follows:

Associations

Associations represent relationships between two or more classes. Associations can

either be unidirectional or bi-directional.

An Automatic Software Quality Measurement Tool Chapter 2 - Methodology

Page 43 of 147

Task
Assigned To

Employee

Task
Assigned To

Employee

OR

Figure 9- Unidirectional Associations

Brother
Sibling Of

Sister

Brother
 Sibling Of

Sister

OR

Figure 10- Bi-directional Associations

Compositions

Compositions are used to indicate situations where a class contains one or more other

classes. In the example below, a Project contains 1 or more Activity objects each of

which contain 1 or more Task objects. Please note that Activity objects cannot exist

without being associated to a Project object. Therefore if a Project object is removed, the

Activity objects associated with it will also have to be removed. If activities could exist

without being associated with a project, or a project could be removed without having to

remove its activities, the relationship will no longer be a composition – it will become an

aggregation (see below).

An Automatic Software Quality Measurement Tool Chapter 2 - Methodology

Page 44 of 147

Project

Activity

Task

1

1..*

1

1..*

Figure 11- Illustration of compositions in use

Aggregations

Aggregations are very similar to compositions. They differ in the way that the classes

being contained are also able of exist on their own. So in the example below, a research

team can be made up of one or more researches, however because the relationship is an

aggregation (hollow diamond), a researcher can exist without being part of a research

team. Also, if a research team ceases to exist, its researchers can remain in existence on

their own.

Research
Team

Researcher

1..*

0..*

Figure 12- Aggregations - a researcher need NOT be part of a research team.

An Automatic Software Quality Measurement Tool Chapter 2 - Methodology

Page 45 of 147

Generalizations

Generalizations are used to illustrate inheritance. They are not used in the calculation of

CBO but they will be used in other metrics. The example below shows a hierarchy where

the general class is Animal and there are two more specific classes which inherit the

Animal class’ attributes and methods called Cat and Dog.

DogCat

Animal

Figure 13- Generalizations

CBO for a class will be calculated by counting all the relationships that a class

participates in except generalizations.

2.5.5 Response for a Class (RFC)

RFC = |RS| where RS is the response set for the class.

 And RS = { Mi } { Ri }

 Where Mi = all methods in the calss

 And { Ri } = set of methods called by Mi

Basically, we need to extract Mi and Ri from the design. Mi is easily extracted for each

class from a class diagram. However, extracting Ri will prove to be a slightly more

complicated process. The only UML diagrams that show what methods a class calls

(besides its own) are sequence diagrams and collaboration diagrams. Ri will be built

by examining all the sequence and collaboration diagrams in a project and keeping track

An Automatic Software Quality Measurement Tool Chapter 2 - Methodology

Page 46 of 147

of what external methods are being called by a particular class. Since Ri is a set,

encountering a method more than once will not affect our calculations.

2.5.6 Lack of Cohesion of Methods

Consider a class C1 with methods M1, M2, … , Mn. Let { Ii } = set of instance variables

used by method Mi. There are n such sets: { I1 }, … { In }.

LCOM = The number of disjoint sets formed by the intersection of the n sets.

The method for extracting information for this metric involves collecting additional

information from the designer. This will be done by asking the designer to indicate

which instance variables are to be used by each method. From this information, {Ii} can

be built and the metric can be calculated.

2.6 Collecting Information for the Price-Demurijan Metrics

The reuse metrics devised by Price and Demurijan described in section 1.7 are being

treated separately from the structural metrics when it comes to extracting information

UML diagrams. This decision was taken because UML does not provide all the

information need for these metrics and needs to be slightly extended.

2.6.1 Overview

The Price and Demurijian metrics were designed to evaluate the reusability of a design.

The calculation of these metrics requires that the system knows the following:

1. Which classes are General and which are specific

2. Which class hierarchies are meant to be reused together in future

3. Couplings between classes

An Automatic Software Quality Measurement Tool Chapter 2 - Methodology

Page 47 of 147

The first two items in the list are specific to this method and are therefore not catered for

in UML notation. We will have to define a simple extension to UML in order to be able

to capture the required information in a design.

2.6.2 General and Specific Classes

The concept of General and Specific classes is not currently supported in UML.

Therefore, for the purposes of this project, we will extend the UML to cater for this

concept.

As a default, all classes will be assumed to be specific. The designer should depict a

general class by stereotyping it as <<General>>.

Classic UML Class Notation Extended Notation to Depict a General Class

Class Name

attribute:Type = initialValue

operation(arg list):return type

<<General>>
Class Name

attribute:Type = initialValue

operation(arg list):return type

Figure 14 - Illustrating how to classify a class as being General

2.6.3 Related Class Hierarchies

A class hierarchy is defined as being related to another if they are related in concept and

are expected to be reused together in future systems.

We will extend UML class-diagram notation to show related class-hierarchies by adding

a new stereotype that can be used with an association. The new stereotype will be

<<Reuse-Related>>. This does not indicate a dependency or a coupling between

An Automatic Software Quality Measurement Tool Chapter 2 - Methodology

Page 48 of 147

classes. It merely indicates that the classes are related in concept and that there is a good

possibility of them being reused together in future. Therefore it follows that an

association with this stereotype must be bi-directional and the classes on each end of the

association must be <<General>> classes. Also, a class cannot be reused without its

ancestors being reused with it. Therefore this type of association must only exist between

root classes of hierarchies.

Depicting Related Class Hierarchies

Root Class 1 Root Class 2
<< Reuse-Related >>

Figure 15 - Illustrating the use of the <<Reuse-Related>> Stereotype

The following is a slightly more elaborated and specific example extracted from the

design of a hospital system. Please note that just because the root class of a hierarchy is

general, it does not mean that its children need be general too. However, it does follow

that if a class is specific, then all its descendants will be specific.

An Automatic Software Quality Measurement Tool Chapter 2 - Methodology

Page 49 of 147

<<General>>
Item

Visit
<<General>>
Prescription

Test
<<General>>

Record

Medical_R
<<General>>

Prescription_R
<<General>>
Financial_R

<< Reuse-Related >>

Figure 16 - An elaborated example illustrating the use of the UML extensions defined in this section.

2.6.4 Extracting Metric Information

If the designer makes use of the above extensions, it will be quite straightforward to

extract the required information from a design for metric calculation. Remember that the

metrics basically consist of counting the number of interactions (couplings) between

classes of different hierarchies. We then analyze the couplings with regards to the types

of classes they relate and decide on whether the coupling has a favorable, neutral or

negative impact on the reusability of the design.

Couplings are already catered for in UML by aggregations, dependencies and

compositions. We can use these relationships in class diagrams to determine the amount

of couplings. We then make use of the extensions defined above to categorize these

couplings.

2.7 Use of Function Points for Comparing Different Projects

Metrics are seldom useful in isolation. The final implemented tool will provide the

functionality of comparing different projects together but there is a decision that needs to

be taken first: How will the user know which projects are of the same (or similar) size as

An Automatic Software Quality Measurement Tool Chapter 2 - Methodology

Page 50 of 147

the current project? This is important because a metric reading has to be taken in the

context of the size of the current project.

Traditionally, project size has been estimated using the lines-of-code (LOC) metric.

However this metric is highly unreliable because the same application implemented in

different languages or even by different programmers will give different LOC readings.

Also, we are analyzing projects before they have even been implemented so the LOC

metric does not make sense.

As an alternative, project size will be quantified using function points. Function points

were proposed by Albrecht in 1979 and measure the size of a system depending on the

functions it offers. The intended use of function points was for the extraction of

productivity statistics. For example, the average number of man-hours per function point

for developing a system or the cost per function point. This makes it easier for managers

to estimate the size and cost of a project after the specification stage and thus be able to

calculate a charge for the client based on statistics that are more reliable than LOC. In

this project however, function points will be used to allow the user to compare different

projects with similar function points. The tool will provide the functionality of asking the

user questions about the functions to be provided by the system and using Albrecht’s

method to calculate the function points of the project.

2.8 What to expect in the next chapter…

Now that the theory has been introduced and the methodology defined, it is time to

concentrate on the specification of the system that is to be implemented. The next

chapter attempts to unambiguously specify the functionality that is to be provided by the

system.

An Automatic Software Quality Measurement Tool Chapter 3 - Specification

Page 51 of 147

3. Specification

3.1 Overview

A tool is required for analyzing the quality of object-oriented designs. The user will be

provide the tool with a system design in the format of UML diagrams and the tool will in

turn derive metric-measurement from that design and present the user with the results.

Information on each metric and the quality attributes it evaluates are to be presented to

the user and graphical interpretation of results is to be implemented in order to facilitate

easier metric interpretation. A metrics repository should also be implemented and the

user should be given the facility to compare metric readings from different projects.

3.2 The ArgoUML Cognitive CASE Tool

It does not make any sense to re-invent the wheel and create a UML editor from scratch.

Such a task would go beyond the scope of this project and will probably take up all the

available time itself. Instead, it was decided that an existing UML editor – ArgoUML

(www.argouml.org).

ArgoUML is the brainchild of Dr. Jason Robbins. He originally started working on the

project as part of his Ph.D. on providing cognitive support to software designers. The

project has since been released as an open-source project and at last count on June 2000,

there were 38,000 downloads. I have participated in the developer’s mailing list for more

than nine months and the project is still very active with new features being discussed

and added regularly.

The project makes use of a number of other open-source projects in order to achieve it’s

goals. The two most influential ones are:

An Automatic Software Quality Measurement Tool Chapter 3 - Specification

Page 52 of 147

o Graph Editing Framework (GEF) - a graph editing library that can be used to

construct many, high quality graph editing applications. (http://gef.tigris.org)

o Novosoft UML API (NSUML) – a representation of the UML meta-model by

java classes. (http://nsuml.sourceforge.net)

ArgoUML supports editing of all nine UML diagrams and thus provides this project with

a very solid base to which quality-measurement capabilities can be added. Since the

software is continuously under development, problems are expected to crop up but I am

confident that other people participating in the project will provide all the necessary help.

Figure 17 - A screenshot of ArgoUML

An Automatic Software Quality Measurement Tool Chapter 3 - Specification

Page 53 of 147

3.3 Use-Case Analysis

The following use-case diagram gives and graphical overview of the functionality that is

to be offered by the tool.

Designer Create/Edit
UML Designs

Reverse Engineer
UML Diagrams

ArgoUML Tool

Input Additional
Metric Information

Calculate
Function Points

Use UML
Extensions

Input Cohesion
Information

Link Methods to
Activity Diagrams

<<uses>>

<<uses>>

<<uses>>

View Metric
Results

Calculate
Metrics

Display
Results

Represent Results
Graphically

<<uses>>

<<uses>>

<<uses>>

Compare Results of
Different Projects

<
<

uses>
>

<
<

us
es

>
>

Q
u
a
l
i
t
y

M
e
a
s
u
r
e
m
e
n
t

E
x
t
e
n
s
i
o
n

<<uses>>

<<uses>> Plugs Into

Quality Assurance
Personnel

<<use
s>

>

<<uses>>

<<uses>>

Figure 18 - A use-case analysis of the quality measurement tool

An Automatic Software Quality Measurement Tool Chapter 3 - Specification

Page 54 of 147

3.4 Overview of Required Extensions to ArgoUML

This section gives a high-level view of what extensions are required to be added to

ArgoUML. Each of these extensions will be discussed in more detail below.

Firstly, since ArgoUML must be modified to collect information required for metric

calculation but is not extractable from UML. More specifically ArgoUML needs to be

extended to cater for:

1. UML extensions defined in section 2.6

2. Gathering information for linking methods to activity diagrams. This is needed

for the calculation of the Weighted Methods per Class (WMC) metric.

3. Gathering information for instance-variable usage for each method in a class.

This information will be utilized for evaluating the Lack of Cohesion of Methods

(LCOM) metric.

4. Calculation of function points for each project. This feature will be used at the

user’s discretion in order to be able to compare different projects together based

on their function point readings.

5. Metric calculation facilities.

6. User interface for presenting metric results in both text and graphical formats.

The following sections will describe each of the above in more detail.

An Automatic Software Quality Measurement Tool Chapter 3 - Specification

Page 55 of 147

3.5 Extension 1: UML extensions

ArgoUML should be extended to allow the user to make use of the UML extensions

defined in section 2.6. These UML extensions consist solely of new stereo-types:

o <General> - Used to indicate that a class is a general class in the sense that it is

expected to be reused in future systems.

o <Reuse-Related> - Used with associations to indicate that two general classes

(and the hierarchies they define) are meant to be reuse together in future systems.

3.6 Extension 2: Gathering Information for WMC

By default the WMC method takes the complexity of each method in a class to be one.

However, there will be cases where a method has had its behavior defined via one or

more Activity Diagrams. There is no notation for linking an Activity Diagram to a

method in UML and this information needs to be gathered from the user.

3.7 Extension 3: Gathering Information for LCOM

LCOM evaluates the level of cohesion of a class by determining the degree of similarity

in the sets of instance variables used by the methods of the class. Again, UML does not

provide a notation for showing which instance variables a method makes use of.

Therefore, ArgoUML is to be extended to provide functionality for the user to input this

information. This has to be done in as much a user-friendly way as possible since

providing this information is compulsory if the designer wants LCOM readings. Keep in

mind the expected amount of classes and methods in a system.

An Automatic Software Quality Measurement Tool Chapter 3 - Specification

Page 56 of 147

3.8 Extension 4: Function-Points Calculation

As described in section 2.7, the user will be given the functionality of calculating the

function points of each project. This will help the user to filter out which projects are

comparable with each other when it comes to metric interpretation. The system is to

allow the user to list the functions to be offered by that system and fill in the tables as

described in the original function points calculation method. The user should also be able

to answer the fourteen general system characteristics question thus enabling the system

to have enough information to calculate the function points for the particular project.

3.9 Extension 5: Metrics Calculation

This feature has to integrate seamlessly with ArgoUML in the sense that it will be able to

read the internal representation of the current design project and extract enough

information for the calculation of metrics. Some metrics (WMC and LCOM) need more

information than is extractable from UML diagrams so metrics calculation will have to

make use of extensions 2 (Gathering information for WMC) and 3 (Gathering

Information for LCOM).

The system should provide a reusable framework for metric calculation in the sense

that should new metrics be needed in future, it should be sufficiently easy to create new

metrics and plug them into the quality measurement system.

The following information needs to be tracked by the system for each metric:

o Number of times calculated in this project

o Average value over this project

o The highest value over this project

o The lowest value over this project

o All results for all entities in this project that the metric was calculated on

Initially, the system is to have calculation of the following metrics implemented:

An Automatic Software Quality Measurement Tool Chapter 3 - Specification

Page 57 of 147

1. Weighted Methods per Class (WMC)

2. Depth of Inheritance Tree (DIT)

3. Number of Children (NOC)

4. Coupling between Objects (CBO)

5. Response for a Class (RFC)

6. Lack of Cohesion of Methods (LCOM)

7. Coupling-Count 1 (CC1)

8. Coupling-Count 2 (CC2)

9. Coupling-Count 3 (CC3)

10. Coupling-Count 4 (CC4)

11. Coupling-Count 5 (CC5)

12. Coupling-Count 6 (CC6)

13. Coupling-Count 7 (CC7)

14. Coupling-Count 8 (CC8)

The exact definitions and implications for these methods are discussed in section 2.4

3.10 Extension 6: User Interface for Representation of Metrics

At the end of the day, the ultimate goal of improving the quality of a particular design can

only be achieved if the system can provide the user with an intuitive and friendly way of

viewing and interpreting metric results. This section explains in detail what information

is to be presented to the user and in what formats.

3.10.1 Information to be presented

The interface is to display the following information:

For each metric, the system is to display:

An Automatic Software Quality Measurement Tool Chapter 3 - Specification

Page 58 of 147

1. The name of the metric

2. A description of the metric

3. A list of quality attributes that the metric evaluates

4. The number of entities in the current project that the metric has evaluated

5. The average value of the metric over the current project

6. The highest value of the metric over the current project

7. The lowest value of the metric over the current project

8. A detailed list of entities that where evaluated by the metric, what diagrams they

appear in and the result of the metric for each entity.

9. Graphical representations of the design

For each quality attribute, the system is to describe how different values of the metric

indicate the degree of presence of that quality attribute in the design.

The system will also provide a way for comparing the values of each metric in the current

project with metrics of other projects. To this extent, a metrics repository needs to be

maintained. It should be organized by metric and each metric will have information

about all the projects it was used in.

Metrics
Repository

Metric 1 Metric nMetric 2

Project 1 Project m

Figure 19 - The recommended structure of the metrics repository

An Automatic Software Quality Measurement Tool Chapter 3 - Specification

Page 59 of 147

As shown in figure 19, the metrics repository will hold information about two entities:

metrics and projects. For each metric, the repository is to contain the following

information:

o The name of the metric

o The average value of the metric over all projects in the repository

o The number of times the metric was used throughout the projects in the repository

o The minimum value of the metric over all the projects in the repository

o The maximum value of the metric over all the projects in the repository

Also, for each project in which the metric was used, the repository should hold:

o The name of the project

o The function points of the project

o A timestamp of the last time the repository was updated with this project

o The number of times the relevant metric was used in this project

o The average value of the metric over this project

o The minimum value of the metric in this project

o The maximum value of the metric in this project

3.10.2 Organization of Information

All the information described above is to be presented to the user in a hierarchical

representation that can take one of two views:

1. Metric-Central View – Hierarchical representation is centered on metrics

grouped into the two groups Structural Metrics and Reuse Metrics.

2. Attribute-Central View – The user may wish to approach the analysis of his/her

design by starting from the quality attributes he/she wishes to evaluate and then

An Automatic Software Quality Measurement Tool Chapter 3 - Specification

Page 60 of 147

see which metrics affect each attribute. A view of the data is required to

facilitate this approach.

3.10.3 Textual Representation

All the information specified above is to be presented in textual format as clearly and

intuitively as possible. No recommendations are being made with regards to user-

interface design as yet.

3.10.4 Graphical Reports

The main strength of the system is expected to be the graphical representation of the

metric results. This is to take the form of interactive graphs plotted using the results of

the metrics as data. The graphs are expected to be interactive in that sense that since in

most case, single columns, points and lines on the graphs may represent multiple entities,

the user should be able to click on a column, point or line and get information about the

entities represented by that column. For example, a bar on a graph showing the

complexities of classes may list 10% of the classes as having unacceptable complexity.

The user should be given the facility of selecting that bar and be shown a list of the

classes. Also, each graph is to have a knowledge base linked to it whereby the user is

provided with information on how the graph should be used and interpreted.

A detailed specification of the required graphs is given in section 3.11 below.

3.11 Detailed Specification of Required Graphs

This section will describe in detail all the required graphical output of the system. Some

background information and suggestions will also be given as to how the graphs could be

interpreted by the user.

An Automatic Software Quality Measurement Tool Chapter 3 - Specification

Page 61 of 147

3.11.1 Weighted Methods per Class (WMC) Histogram

This histogram should plot complexity ranges against the number of classes whose WMC

value lies in each range. This will give the user a good overall view to recognize the

distribution of complexities over the whole project. As a rule, most classes should have a

WMC that is under 20 and it is recommended that 40 not be exceeded however each

project has its own circumstances and it is up to the quality assurance personnel to draw

conclusions and recommend changes to the design. A user should be able to select a bar

on the histogram and get a list of all the classes represented by that bar.

Figure 20 - An example of what the WMC Histogram might look like

3.11.2 Number of Children (NOC) Scatter Graph

This graph should plot the number of children of each class against its depth in the tree.

Higher DIT values indicate a trade-off between increased complexity and increased

reuse. Higher NOC values indicate increased internal reuse but also show the increased

need for testing. One point on the graph may represent more than one class so the user is

An Automatic Software Quality Measurement Tool Chapter 3 - Specification

Page 62 of 147

to be allowed to select any point and get a list of classes represented by that point. The

graph is expected to take the following form:

Figure 21 - An example of the graphical representation of NOC

3.11.3 Depth of Inheritance Tree (DIT) Histogram

The DIT histogram should plot DIT values against the percentage of classes in at each

inheritance level. Higher percentages around levels 2 and 3 would show a high level of

reuse but also indicate increase complexity. A trade-off should be reached according to

the goals of each project. As with other histograms, if a user selects a particular bar, the

classes being represented by that bar should be listed for the user.

An Automatic Software Quality Measurement Tool Chapter 3 - Specification

Page 63 of 147

Figure 22 - An example of the DIT Histogram

3.11.4 Coupling Between Objects (CBO) Histogram

This graph should plot different levels of CBO against the number of classes that have

that level of coupling. The user should use this graph to determine the distribution of

CBO over the whole project. If there are more classes at higher levels of CBO, then the

project is bound to be very difficult to understand and maintain. Also, the user can

identify which classes have high levels of coupling and take steps to reduce CBO for

those classes. As in other histograms, selecting a column will result in the user being

presented with a list of classes represented by that histogram.

An Automatic Software Quality Measurement Tool Chapter 3 - Specification

Page 64 of 147

Figure 23 - An example of the CBO Histogram

3.11.5 Response for a Class (RFC) Histogram

This graph will map ranges of RFC against the number of classes in each range. Classes

with large RFC values have a greater complexity and decreased understandability.

Testing and debugging will also be more complicated. If the user selects a column on the

histogram, the classes represented by that histogram are to be listed.

An Automatic Software Quality Measurement Tool Chapter 3 - Specification

Page 65 of 147

Figure 24 - An example RFC histogram

3.11.6 Lack of Cohesion of Methods (LCOM) Scatter Graph

The value of Lack of Cohesion of Methods (LCOM) depends on the number of methods,

so there is a maximum value possible. This graph will plot the value of LCOM for each

class against possible maximums. The closer an LCOM point is to its maximum, the less

the classes represented by that point utilize the encapsulation feature of the object-

oriented paradigm. This may also be an indication that that the class could be split into

two or more subclasses. Again, click on a point will result in the user being shown a list

of classes related to that point.

An Automatic Software Quality Measurement Tool Chapter 3 - Specification

Page 66 of 147

Figure 25 - An example of the LCOM Scatter Graph

3.11.6 Reuse Metrics Pie Chart

The reuse metrics are better looked at as a whole suite rather than as individual metrics.

The pie chart is to represent the amount of couplings in the system and how they are

distributed across the eight types of coupling defined for reuse metrics. Couplings that

are beneficial for reuse are to be color-coded in shades of green, couplings that have a

neutral effect on reusability are to be color-coded in shades of yellow whilst coupling

which are detrimental to the reusability of the design are to be color-coded in shades of

red. If the user selects a slice of the pie chart, a list of the couplings represented by that

slice are to be shown. It will be the goal of the user to minimize the proportion of red

slices and maximize the proportion of green slices in the pie chart.

An Automatic Software Quality Measurement Tool Chapter 3 - Specification

Page 67 of 147

Reuse Metrics Pie Chart

15%

8%

12%

8%

12%

15%

18%

12%

CC1

CC2

CC3

CC4

CC5

CC6

CC7

CC8

Figure 26 - An example Reuse Metrics Piechart

3.11.7 Averages Histogram sorted by Average

The user should be given the facility of viewing a histogram showing each project in the

repository and the average value of a particular metric for that project. The current

project should be placed on the graph and its bar should be a different color so as to make

it stand out. In this diagram bars are to be displayed from left to right starting from the

project with the lowest average. Clicking on a bar will give details of the project

represented by that graph.

3.11.8 Averages Histogram sorted by Function Points

This graph will be identical to the on presented in section 3.11.7 only with the bars

displayed from left to right starting with the project with the lowest function points. This

will help aid the user to compare the current project against projects with similar function

point readings.

An Automatic Software Quality Measurement Tool Chapter 3 - Specification

Page 68 of 147

3.12 What to expect in the next chapter…

With the system being specified according to the theory presented and chapter 1 and the

decisions taken in chapter 2, the next logical step would be to present the design

decisions taken with respect to the system that is to be implemented. The next chapter is

a detailed explanation of the system’s design. The structure of the system will be

presented and major design decisions will be explained…

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 69 of 147

4. Design

4.1 Underlying Design Principles

This design was created using object-oriented principles and techniques. Wherever

diagrams were needed, the Unified Modeling Language (UML) was used. It is assumed

that the reader is familiar with UML diagrams and the principles behind the object-

oriented paradigm.

4.2 Integration with ArgoUML

The specification requires that the tool be an extension to ArgoUML. To this extent it is

worth taking a look at the structure of ArgoUML and define how the tool will fit into the

picture. It is beyond the scope of this document to explain the exact inner workings of

ArgoUML. Instead, an overview of the structure of the software shall be given and any

areas of interest will be described in brief. This is being done because it will require a lot

of space to explain exactly how the software represents the diagrams and the underlying

UML metamodel.

4.2.1 ArgoUML Package Diagram

At the time of printing, standard ArgoUML consists of twelve top-level packages, which

are depicted in the package diagram in figure 27. It was decided that a new package

called quality will be added and this package contain classes related to the tool. There

will be minimal tampering with existing code – only classes in the ui (user interface)

package will be modified so as to provide a link between ArgoUML and the quality

measurement tool. This is not to say that classes in other packages will not be used.

They will just be used by classes in the quality package without any need to change

existing code.

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 70 of 147

The contents of the quality package will be discussed in a future section.

argouml

application

Cognitive

Images

kernel

language

ocl

pattern

persistence

ui

uml

util

xml

quality

Package for class of
quality-measurement tool

User interface classes will
need to be modified to
provide access to the tool

Figure 27 - Package diagram for ArgoUML

4.2.3 The NSUML API

The entities (classes, packages, methods, etc) in the UML diagrams created by ArgoUML

are represented internally using Novosoft’s NSUML API. This API is a Java

implementation of the UML 1.3 physical meta-model. Understanding this API is of

extreme importance since it is used to represent the designs that tool will analyze.

However explaining this here is beyond the scope of this document. If the reader is

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 71 of 147

interested in the inner workings of the NSUML API, more details are available at

http://nsuml.sourceforge.net/.

4.2.4 Key Classes in ArgoUML

The following is a list of classes in ArgoUML that will need to be modified in order to

provide access to the quality measurement tool. Please note that design decisions

regarding user interface, serialization of data, etc are discussed in a future section.

1. org.argouml.ui.ProjectBrowser – This class is responsible for setting up the main

user window in ArgoUML. It needs to be modified to add new menus to provide

access to the tool.

2. org.argouml.kernel.Project – This class encapsulates data and methods related to a

project of UML diagrams. It will be modified to link the project file to a

corresponding quality file.

3. org.argouml.ui.Actions – Implements classes that carry out actions related to the

user interface. Modifications are needed to add new actions related to accessing the

quality measurement tool.

4. org.argouml.ui.NavigatorPane – Implements the navigator pane in ArgoUML. A

user will be able to right-click on a class and access quality-related functions from a

popup menu. This functionality has to be taken care of in the NavigatorPane class.

4.3 Design Issues and Decisions

This section will describe the main design issues that needed to be solved and the

decisions that were taken in their respect.

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 72 of 147

4.3.1 Separation of the System into Modules

The system will be separated into 3 main modules:

Quality
Measurement Tool

Metrics Module
Functoin Points

Module
Information

Collection Module

WMC
Information
Collect ion

LCOM
Infomration
Collect ion

Metrics
Calculation

Textual
Representation with
Multi-View Support

Graphical
Results

Access to Metrics
Repository

Calculation of
Function Points

Productivity
Metrics bases on
Function Points

Figure 28 - A hierarchical diagram of the system modules

1. The information collection module will be responsible for collecting from the

user information that cannot be obtained from UML diagrams. For more details,

review the specifications of the tool.

2. The metrics module will provide the interface for metrics calculation, multi-view

textual representation of results, comparison of the current project with projects in

the metrics repository, as well as access to graphs provided by the metrics.

3. The function points module will be responsible for calculating the function

points of a system and providing very basic productivity metrics based on the

user’s cost and timing estimates.

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 73 of 147

4.3.2 Accessing the Tool from ArgoUML

It was decided that the functions offered by the tool will be accessed from ArgoUML in

the following ways…

The Quality Menu

A “Quality” pull-down menu will be added to ArgoUML’s menu bar. This will provide 2

options:

1. Accessing the function points calculation module and

2. Running a quality test on the current design. This will bring up the results and

allow the user to compare with projects in the repository as well as view graphical

representations of the data.

Access Function Points Calculation Module

Run a quality test on the current design

The Class Popup Menu

This menu is a feature of ArgoUML but a new option will be added to it for the

convenience of the tool. A user can right-click on a class and the following popup menu

will be displayed:

For inputting extra information for LCOM and WMC for this class

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 74 of 147

The first 3 options are standard ArgoUML options but the last one will be added in order

to access a module that captures extra information needed for calculating the LCOM and

WMC metrics on that class.

The <<General>> Stereotype for Classes

A new stereotype was defined for classes as part of the methodology for reusability

metrics. The user basically uses it to indicate which classes are meant to be reused in

other systems.

Stereotype for indicating a General (Reusable) Class

The <<Reuse-Related>> Stereotype for Associations

A new stereotype was defined for use with associations in class diagrams. This

stereotype is used to show that two class hierarchies (defined by the two classes at the

ends of the association as their roots) are meant to be reused together in future systems.

Stereotype for depicting related hierarchies

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 75 of 147

4.3.3 Saving of Quality-Related Data

It was decided that data files be saved using the eXstensible Markup Language (XML).

XML is the universal format for structured documents and data on the Web. It basically

provides a method for placing structured data into a text file.

Why XML? Storage of data in binary files has many pitfalls. Firstly, it is usually

platform-dependant, a pitfall better avoided seeing the interoperability requirements of

today’s software. Secondly binary files are not extensible. With XML you can come up

with a standard format for saving data, do the actual saving, extend the format of the

XML file and the old data will still be readable. Also, keeping in mind that a metrics

repository is going to be implemented, using XML is a convenient way of enabling

multiple users of the tools to make their repositories available to each other since XML is

easily transferable over the web and files can be easily merged. The fact that XML files

are basically strings also results in them being easily compressed before data is

transferred over the web for sharing.

It is up to the reader to familiarize him/herself with XML technology, as it is not feasible

to go through it here.

4.3.4 What data needs to be saved?

There are two items of data that need to be saved:

1. The metrics repository and

2. The extra information collected from the user such as function points, cohesion

information, WMC information etc.

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 76 of 147

4.3.5 XML Structure for the Metrics Repository

XML files are structured in a hierarchical system of nodes and each node has attributes

associated with it. The metrics repository will be structured as follows:

Metrics

Metric Metric Metric

Project Project Project Project Project Project

Figure 29 - XML Structure for the Metrics Repository

So there are basically 2 types of nodes (to root node is not really a node, it is just a tag):

1. Metric nodes, which encapsulated data representing a metric. Attributes are:

name, max (highest result obtained), min (lowest result obtained), results

(number of entities on which the metric was calculated in total, average.

2. Project nodes, which encapsulate summarized data about projects with respect to

their parent metric node. Attributes are: name, timestamp (time of last update in

repository), FP (function points of project), calculations (number of times the

metric (parent node) was calculated on this project), average)

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 77 of 147

4.3.6 XML Structure for the Quality Data file

The tool will save a quality-information file along with the normal ArgoUML project

files whenever the user saves his/her designs. This will be an XML file with the

following structure:

Project

FunctoinPoints
Cohesion

WMC

Functions GSCs Productivity
Estimates

Function Function GSC GSC

Figure 30 - Structure of XML Quality-Info File

8 types of nodes are used:

1. Cohesion – Has attributes that define information about methods and the

instance variables they use

2. WMC – Has attributes that link activity diagrams in a project with methods in

particular classes

3. FunctionPoints - Root Node for function points data

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 78 of 147

4. Functions – All the children of this node represent functions used in function

points calculation.

5. GSCs – Mother node for general system characteristics nodes

6. ProductiviteEstimates – Holds information about the user’s estimates on

programmer productivity and cost per function point

7. Function – Holds data about 1 function

8. GSC – Holds data about 1 general system characteristic

4.4 Structure of Packages

This section describes how the classes of the tool will be laid out in different packages

and how the individual classes will be interrelated. The following is an overall view of

the packages involved in the system. There are more packages that are part of ArgoUML

but are of no particular interest to the quality measurement tool so they have been

omitted.

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 79 of 147

org

argouml

quality

ui

metrics

ui

tools

graphs

xml

Figure 31 - An high-level view of the packages of the system

Here is a brief explanation of the packages in the above package diagram:

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 80 of 147

1. tools – This package contains ‘helper’ classes that are of importance to this

project but are reusable in other systems. This package also contains the graphs

package.

2. tools.graphs – Contains classes responsible for the graphs produced by the tool.

These classes were designed with reuse in mind so they have been placed in the

tools package.

3. org – A mother package that holds various packages. The package diagram only

displays the argouml package because it is the only package of interest to us.

4. org.argouml – The package that contains all the classes for ArgoUML. The tool

will be created in a child-package of the argouml package.

5. org.argouml.ui – Handles the user interface functions of ArgoUML. Some of the

source code in this class will need to be modified so that ArgoUML can link to

the tool.

6. org.argouml.quality – This is the package where classes that implement the

quality measurement tool will be held.

7. org.argouml.quality.metrics – Contains the metrics classes and all related

support classes.

8. org.argouml.quality,xml – Contains classes that handle parsing, serialization and

abstraction of XML files used by the quality measurement tool.

9. org.argouml.quality.ui – Contains classes that handle user interface functionality

for the quality measurement tool.

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 81 of 147

4.4.1 The org.argouml.quality Package

The org.argouml.quality package contains the classes and packages that implement the

quality measurement tools. The following diagram takes a more detailed look at this

package:

quality

metrics

ui

xml

Figure 32 - The org.argouml.quality package

4.4.2 The org.argouml.quality.metrics Package

The org.argouml.quality,metrics package contains the classes that represent metrics as

well as support classes for metric calculation. The following class diagram takes a more

detailed look at this package:

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 82 of 147

<<abstract>>
Metric

MetricResult

MtrDIT

MtrNOC

MtrCyclomaticMtrWMC

MtrCBO

MtrRFC

MtrLCOM

MtrCC1 MtrCC2 MtrCC3 MtrCC4

MtrCC5 MtrCC6 MtrCC7 MtrCC8

Metrics

Quality
Attribute

LCOMInfo

CyclomaticInfo

MethodInfo

returns

1

1..n

1 1

1

1..n

uses

11..n

uses1

1..n

evaluates

uses1

1..n

Metric Class

Other

Support Class

Colour Codes

uses

1 1

Function

GSC

Figure 33 - Class Diagram for the org.argouml.quality.metrics package

Although important classes will be explained in more detail later, here is a brief

description of the classes in the diagram:

1. Metrics – A class composed of all the metrics available to with the tool. It is

responsible for separating metrics into suites, handling basic statistics collection

and initiating procedures for updating the metrics repository with the statistics of

the current project.

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 83 of 147

2. Metric – An abstract class that implements methods that are common to all

metrics and defines abstract methods that need to be implemented by its

subclasses.

3. MtrWMC – Implements the metric Weighted Methods per Class (WMC)

4. MtrCyclomatic – Implements the Mc. Cabe’s Cyclomatic Complexity metric.

This metric is not available to the user. It is a helper metric for MtrWMC.

5. MtrDIT – Implements the metric Depth of Inheritance Tree (DIT)

6. MtrNOC – Implements the metric Number of Children (NOC)

7. MtrCBO – Implements the metric Coupling Between Objects (CBO)

8. MtrRFC – Implements the metric Response for a Class (RFC)

9. MtrLCOM – Implements the metric Lack of Cohesion of Methods (LCOM)

10. MtrCC1 – Implements the metric Coupling Count 1 (CC1)

11. MtrCC2 – Implements the metric Coupling Count 2 (CC2)

12. MtrCC3 – Implements the metric Coupling Count 3 (CC3)

13. MtrCC4 – Implements the metric Coupling Count 4 (CC4)

14. MtrCC5 – Implements the metric Coupling Count 5 (CC5)

15. MtrCC6 – Implements the metric Coupling Count 6 (CC6)

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 84 of 147

16. MtrCC7 – Implements the metric Coupling Count 7 (CC7)

17. MtrCC8 – Implements the metric Coupling Count 8 (CC8)

18. CyclomaticInfo – A support class for MtrCyclomatic – Multiple instances of this

class hold tuples of a method and the activity diagram that describes its behavior.

19. MethodInfo – A support class for MtrRFC – It basically hold information about a

single method in a sequence or collaboration diagram. Remember that RFC

counts the number of methods in a class as well as the methods it calls from other

classes. The information about methods in other classes is only available through

sequence and collaboration diagrams.

20. LCOMInfo – A support class for MtrLCOM – Multiple instances of this class

hold tuples relating methods to the instance variables they use.

21. QualityAttribute – Encapsulates the data related to a quality attribute, namely

the name of the attribute and information about why a particular metric evaluates

it. If a quality attribute is evaluated by more than one metric, a different

QualityAttribute instance needs to be created for each metric because the

information about how the metric evaluates it will change.

22. MetricResult – Metrics return their results as an instance of this class.

23. Function – Encapsulates the data of a Function with respect to function points

calculation. This class has no associations to any other classes. It is only used by

FunctionPointFrame in the org.argouml.quality.ui package.

24. GSC – Encapsulates the data of a General System Characteristic with respect to

function points calculation. This class has no associations to any other classes. It

is only used by FunctionPointFrame in the org.argouml.quality.ui package.

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 85 of 147

4.4.3 The org.argouml.quality.xml Package

This package contains classes that handle the parsing, serialization and abstraction of xml

files into higher-level objects for use by the tool. XML is user for 2 purposes:

1. To save extra quality-related data along with a project

2. As the basis of storing the Metrics Repository

The following diagram illustrates the classes in this package and there relationship to one

another:

org.argouml.quality.xml

XMLUtils

XMLMetrics

1

XMLProject

1

usesuses

11

ProjectSummary

1

*

abstracts-to

Figure 34 - The org.argouml.quality.xml package

The following is a brief explanation of the classes in the package:

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 86 of 147

1. XMLUtils – This class provides generic XML service such as loading XML files

into memory or serializing them to secondary storage.

2. XMLProject – Provides high-level services for saving projects to and loading

them from XML. The user of the this class need not know any details about XML

but rather request that details about a project be loaded, saved, updated etc and the

class will perform the low-level operations. This class makes use of the services

provided by XMLUtils.

3. XMLMetrics – Provides high-level services for manipulating data in the XML

metrics repository. Again, the user of the this class need not know any details

about XML but rather request that details about a project/metric be loaded, saved,

updated etc and the class will perform the low-level operations. This class makes

use of the services provided by XMLUtils.

4. ProjectSummary – A class that encapsulates data about a project in the metrics

repository. It is used as an abstraction of the low-level XML nodes that do the

actual storing of the data.

4.4.4 The org.argouml.quality.ui Package

The org.argouml.quality,ui package contains the classes that handle the user interface

functionality provided by the quality measurement tool. The follow is a class diagram of

the classes in this package:

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 87 of 147

org.argouml.quality.metrics

org.argouml.quality.ui

AnalysisFrame

FunctionPointFrame

DlgLCOMInfo

PnlMetrics

NodeMetric NodeProject

uses uses

11

**

1

1

1 1

Function

GSC
Other

Classes

*

14

edits edits

Figure 35 - A class diagram of the org.argouml.quality.ui package

The following is a brief explanation of the classes in the diagram:

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 88 of 147

1. AnalysisFrame – This class is responsible for displaying the Metrics Module as

well as handling all the screen events related to metric analysis.

2. PnlMetrics – A panel that will take on part of the responsibility of the work done

by AnalysisFrame.

3. NodeMetric – A node in a JTree (a class that implements a visual tree). The

default node class could not be used because the node will need to encapsulate

metric-specific data as well.

4. NodeProject - A node in a JTree (a class that implements a visual tree). The

default node class could not be used because the node will need to encapsulate

project-specific data as well.

5. FunctionPointsFrame – Responsible for displaying and handling the events of

the Function Points module in the quality measurement tool.

6. DlgLCOMInfo – A dialog that collects the extra information needed for LCOM

and WMC.

It is worth noting that the FunctionPointFrame class links to support classes in the

org.argouml.quality.metrics package. An explanation of these classes can be found in the

section describing the org.argouml.quality.metrics package.

4.4.5 The tools Package

The tools package contains the classes that were developed for this project but are

reusable:

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 89 of 147

tools

SortingTools

graphs

DispTools

Figure 36 - The tools package

There are only two classes in this package:

1. DispTools – Contains static methods that perform display-related functions such
as centering windows on the screen, etc.

2. SortingTools – Contains static methods that provide sorting functionality on a
variety of objects.

4.4.6 The tools.graphs Package

This package is used extensively in this project and was developed to represent metric

results graphically. However, extra effort was taken to make the graphs independently

reusable in any other application. They are therefore placed in this package:

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 90 of 147

tools.graphs

GraphHistogram GraphDots GraphPie GraphScatter

<<abstract>>
GraphDlgGraph

displays

1 1

Figure 37 - The tools.graphs package

Here is a brief explanation of the graphs in this package:

1. DlgGraph – A dialog that interfaces with a graph object to display it and handle

user events mainly regarding requesting help and information from the graph.

Graphs can give information to the user about how they can be interpreted.

2. Graph – An abstract class that implements methods and encapsulates data that is

common to all graphs. It also defines abstract methods that should be

implemented by each individual subclass.

3. GraphHistogram – A general-purpose histogram.

4. GraphDots – Implements the dot-graph for representing the NOC metric. Other

applications for this type of graph are probably limited but it is still reusable.

5. GraphPie – Implements a general-purpose pie chart.

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 91 of 147

6. GraphScatter – Implements a general-purpose scatter graph.

4.5 A closer look at key Classes

It is worth taking look at the key classes defined for the system. The chosen classes are

either important super-classes that provide the framework for important parts of the

system to be implemented by their sub-classes, or other classes that are responsible for

important functions in the system. Please note that only the key methods and attributes

are shown. Methods such as getter and setter methods are to be implemented as needed

by the developer.

4.5.1 org.argouml.metrics.Metric

<<abstract>>
Metric

- name : String
- desc : String
- suggestions : String
- attrs : QualityAttribute[]
- targetEntity : int
- calculationCount - int
- entities : Vector
- results : Vector
- diagrams : Vector
- average : MetricResult
- highest : Vector
- lowest : Vector
- graphs : Graph[]

+Metric(String name, String desc, int targetEntity)
+abstract calculate(Object entity) : MetricResult
+resetStats() : void
+updateStats(Object entity, MetricResult result) : void
+abstract initGraphs() : void
+getRepositoryHistogram(int sortBy) : Graph

The Metric class is the parent class of all the metrics implemented by the system. It

implements statistics-handling routines that are common to all metrics and defines

abstract methods that need to be implemented by all its subclasses.

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 92 of 147

Attributes

Attribute Name Type Description

name String The name of the metric

desc String A description of the metric

suggestions String Suggestions to the user on how to use the

metric, consequences of extreme values, etc.

attrs QualityAttribute[] An array of QualityAttribute objects

representing the quality attributes that the

metric evaluates.

targetEntity int Indicates what entity the metrics meauses

(class, method, etc)

calculationCount int A statistics variable for keeping track of the

number of times the metric was used.

entities Vector A vector of the entities (classes, methods, etc)

that the metric was calculated on.

results Vector A vector of MetricResult objects

corresponding to the entities vector.

diagrams Vector A list of diagrams representing the diagrams

in which the entities in the entities vector

exist.

average MetricResult The average value of the results of this

metric.

highest Vector A vector of entities that obtained the highest

value of the metric so far.

lowest Vector A vector of entities that obtained the highest

value of the metric so far.

graphs Graph[] An array of graphs that can be used with this

metric.

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 93 of 147

Methods

Method Name Description

Metric(String,String,int) Constructor that initializes the name, description and

targetEntity of the metric.

abstract calculate(Object) An abstract method that is to be implemented by

subclasses. The method calculates the metric of the given

object (class, method, etc) and returns a MetricResult

object.

resetStats() Resets statistical counters and vectors.

updateStats(object,

MetricResult)

Updates the statistics of this metric with the given object

and corresponding result.

abstract initGraphs() Creates graphs that interpret this metric and set the graphs

attribute.

getRepositoyHistogram(int) Creates a histogram comparing the average of this project

with other projects in the metrics repository. The

parameter defines how columns in the histogram should be

sorted.

4.5.2 org.argouml.metrics.Metrics

Metrics

+ static structuralMetrics : Metric[]
+ static resuseMetrics : Metric[]

+static calculateAll() : void
+static reset() : void
+static updateRepository() : void

The Metrics class is the class to which the tool refers to for information on the metrics

available to it. It also acts as a starting point for a quality test. ArgoUML will call the

calculateAll() method of this class to calculate all the available metrics on the current

project. The class also does some aggregate statistics maintenance.

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 94 of 147

Attributes

Attribute Name Type Description

structuralMetrics Metric[] An array consisting of a static instance of each

of the structural metrics available to the

system.

reuseMetrics Metric[] An array consisting of a static instance of each

of the reuse metrics available to the system.

Methods

Method Name Description

calculateAll() Loops through the metrics calculates each metric on the

current project whilst updating statistics in the process.

reset() Resets the statistics and counters of all metrics in the suites.

updateRepository() Updates the metrics repository with the current project.

4.5.3 org.argouml.xml.XMLUtils

XMLUtils

+ static parseFile(String filename, String docTag) : Document
+ static serialize(Document doc, String filename) : boolean

This class basically offers two services:

1. Parsing of XML files and conversion into Document (org.w3c.dom) objects

2. Serialization of Document (org.w3c.dom) objects into XML files.

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 95 of 147

Methods

Method Name Description

parseFile(String filename,

String doctag)

Parses and XML file and returns an org.w3c.dom.Document

object representing the contents of the file.

serialize(Document doc,

String filename)

Serializes an org.w3c.dom.Document into a file. It returns

true if the operation is successful and false if not.

4.5.4 org.argouml.xml.XMLProject

XMLProject

+ getAllFunctions() : Vector
+ getAllGSCs() : Vector
+ getFunctionPoints() : int
+ getEstimates(): Vector
+ setFunctions(Vector) : void
+ setGSCs(Vector) : void
+ setFunctionPoints(int) : void
+ setEstimates(Vector) : void

This class offers high-level manipulation of the XML model that saves the quality-

information file. The methods look like simple getters and setters but they will be

working at node and attribute level in XML.

4.5.5 org.argouml.xml.XMLMetrics

XMLMetrics

+updateMetric(Project p, Metric m) : void
+getMetric(String name) : Element
+getProjects(String metric) : String[]
+recalculate(String metric) : void

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 96 of 147

This class offers high-level manipulation of the XML model that saves the metrics

repository. The user of this class should be kept as high as possible with regards to

abstraction from core attributes and elements of XML. If needed, utilize helper classes

that encapsulate element data.

4.5.6 tools.graphs.Graph

<<abstract>>
Graph

- name : String
- type : String
- help : JPanel

+Graph()
+setHelp(panel : JPanel)
+setHelp(text : String)

A simple class that acts as the mother-class of all graphs. It encapsulates the name of the

graph (eg: “WMC Histogram”), the type of the graph (eg “Histogram”) and a JPanel,

which will contain help for the user regarding a particular graph. There should be getter

and setter methods for all of the instance variables as well as the 3 methods shown in the

diagram:

1. Graph() : Default constructor for all graphs

2. setHelp(JPanel) – Sets the help to the given JPanel

3. setHelp(String) – Takes the string, puts it inside the required visual components

and sets the help attribute to a panel containing thos components.

4.6 Algorithms for Metric Calculations

It was decided that the algorithms for metric calculations be explained in an appendix

since the majority of readers are not interested in the low-level implementation of the

An Automatic Software Quality Measurement Tool Chapter 4 - Design

Page 97 of 147

system. If you are interested in how the metrics are calculated, please refer to Appendix

B.

4.7 What to expect in the next chapter…

The next chapter is a short one that reflects on the implementation of the system,

difficulties encountered, its strong points and pitfalls, as well as the possibility of

improvements.

An Automatic Software Quality Measurement Tool Chapter 5 - Implementation

Page 98 of 147

5. Implementation

5.1 Proof of Completion

Proof of completion will be / has been given in the project presentation. Screenshots of

the tool are given in the user documentation (end of this document) of the tool.

5.2 Implementation Difficulties

A number of difficulties were encountered along the way:

1. There was no clear documentation regarding how diagrams are saved and

internally represented in ArgoUML so the process of getting to know this was like

a long, agonizing debugging session where I experimented with different designs

and then analyzed the contents of the variables in the program to see what was

happening.

2. ArgoUML is an open source project and development is carried out by many

individuals on a voluntary basis. This means that bugs in the system sometimes

took a long time to be solved and in some cases this set my work back because I

was relying on the bugs being fixed. There were problems with the Sequence and

Collaboration Diagram editors, which were not functioning correctly. The

Sequence Diagram editor was fixed in time but the Collaboration Diagram editor

wasn’t, thus resulting in the RFC metrics not being completely implemented.

Also, ArgoUML sometimes encounters problems with saving/loading projects.

This was particularly frustrating during testing.

3. The XML API was particularly complicated to learn for a first-time XML user. It

may seem like a simple dump of information to a file but the process involved

An Automatic Software Quality Measurement Tool Chapter 5 - Implementation

Page 99 of 147

days of getting to grips with concepts, interfaces, classes and methods before the

working version was finished.

5.3 Limitations of System

The system is by no means perfect. Nor was it meant to be so. In these projects, deadline

and delayed research often make it impossible to implement optimized algorithms and/or

user interfaces:

1. During testing, it was found that the collection of information for LCOM

(defining the set of instance variables used by each method) will prove to be a

lengthy process for medium-large projects and may not be feasible. It is

recommended that a new metric with fewer overheads be found to measure

cohesion.

2. There is plenty of space for optimization with regards to the time complexity of a

total quality check. Quality tests for larger projects with a few hundred classes

will take usually take a few minutes to complete.

3. There is no repository editor. Projects and metrics can only be added to the

repository and not edited or removed.

4. There is no printing functionality. This would prove to be very useful if a tool of

this kind were to be used in a real-life situation.

5.4 Possible Improvements

The system has plenty of space for future improvements and increases in features:

An Automatic Software Quality Measurement Tool Chapter 5 - Implementation

Page 100 of 147

1. Intelligent project-specific advice where the tool will give advice on each particular

project it analyzes, pointing out the extreme values and explaining the difficulties

they might create.

2. The tool could be improved to integrate the design process with the preceding

specifications stage by providing a framework for verification of design with

specification documents.

3. A repository browser where the user can remove/edit projects and metrics from the

metrics repository. Currently, the tool only supports the adding of new data to the

repository.

4. Snapshot features where a user will be able to keep a snapshot of metric results at

different stages of the project in order to analyze changes in metric results over time.

5. The system could be modified to allow the user to add upper and lower limits on each

metric. This could then be used as a benchmark for classes passing or failing the

quality test.

6. Printing of reports could be implemented as this would be a valuable feature if the

tool were to be used in a real-world situation.

5.5 What to expect in the next chapter…

Chapter 6 will conclude this project by reflecting on what has been learnt from the

experience of researching, specifying, designing and implementing a large project.

An Automatic Software Quality Measurement Tool Chapter 6 - Conclusions

Page 101 of 147

6. Conclusions

6.1 What have I learnt from this project?

6.1.1 Issues involved in Software Quality Assurance

This project has given me the fantastic opportunity to learn more about the ambiguous

notion of software quality. I now feel I have a deeper understanding of the issues

involved and the difficulties that exist in this area. I have a healthy respect for the sheer

size of the software quality assurance problem and cannot pretend to really understand all

facets of it. Software quality assurance should be carried out at each stage of

development cycle as well as on the processes and people of a company. This is easier

said than done with companies taking years to reach a quality standard they can be proud

of.

6.1.2 Object Oriented Design

This project has also allowed me to reinforce my knowledge of the object-oriented

paradigm especially in the area of design. Issues such as “what makes a good design”

and “how this can be achieved” are far from being formally solved but this project has

given me an insight into these issues and why there is no clear-cut way for solving them.

6.1.3 Learning from Mistakes

In a 10-credit project there is a lot of room for mistakes. This need not be a negative

experience since any mistakes made during this project provided experience and

equipped me with more mental knowledge about difficulties that may arise when working

in the software engineering industry.

An Automatic Software Quality Measurement Tool Chapter 6 - Conclusions

Page 102 of 147

6.1.4 Value of Reuse

Working with Java and OO techniques gave me a feel of what reusability is all about.

Java is packed full of modules built for reusability. For example, if I need to open a file

dialog box, I just call the existing Java version without having to create one myself.

Whereever possible, the classes in this system were designed with reuse and

maintainability in mind. For example, the graphs are reusable in other projects with

possibly different domains and the metrics framework makes it easy for new metrics to

be added to the quality measurement tool. Of course this is an extremely small scale

when compared with industry standards but over time, if you design with reuse in mind,

you’ll end up with a substantial library of reusable components that will speed up future

development.

6.1.5 Time Management

The experience of researching, designing, implementing and documenting a project of

this size has proved to be an exercise in project and time management more than an

exercise in academic skills. Although this project is dwarfed by large-scale industrial

problems, I feel I am equipped with a better understanding of managing time as a limited

resource.

An Automatic Software Quality Measurement Tool Appendix A – Algorithms

Page 103 of 147

Appendix A: Algorithms for Calculating Metrics

This section will deal with the algorithms for calculating each metric in the system. All

the algorithms are to be implemented in the calculate(Object) method of the individual

metric classes. Therefore, the algorithms will be expressed here as UML Activity

Diagrams of those methods.

These algorithms are described in an appendix because most readers will not be

interested in the low-level implementation details of the project.

Activity Diagram for Calculating WMC

The following is an activity diagram describing the algorithm for calculating WMC for a

class. The responsibility for this is split over 2 classes (metrics). This is because WMC

requires that the complexity of each method be computed.

An Automatic Software Quality Measurement Tool Appendix A – Algorithms

Page 104 of 147

Obtain List of
Methods in Class

Get Next
Method in Class

Count Edges

Count Nodes

Complexity =
Edges - Nodes + 2

WMC = 0

WMC = WMC
+ Complexity

Complexity = 1

[more methods]

[No Corresponding Activity
Diagram for Method]

[Corresponding
Activity Diagram]

[no more methods]

:MtrWMC :MtrCyclomatic

Figure 38 - Activity Diagram for calculating WMC

An Automatic Software Quality Measurement Tool Appendix A – Algorithms

Page 105 of 147

Activity Diagram for Calculating DIT

DIT = 0

Get List of Parents
(Multiple inheritance

is Supported)

tempDIT = 1 +
MtrDIT.calculate(parent)

(Recursive Call)

DIT = tempDIT

[More Parents]

[No more Parents]

[tempDIT<=DIT]

[tempDIT > DIT]

Figure 39 - Activity Diagram for calculating DIT

An Automatic Software Quality Measurement Tool Appendix A – Algorithms

Page 106 of 147

Activity Diagram for Calculating NOC

Get List of
Child Classes

NOC = Size of List
of Child Classes

Figure 40 - Activity Diagram for Calculating NOC

An Automatic Software Quality Measurement Tool Appendix A – Algorithms

Page 107 of 147

Activity Diagram for Calculating CBO

Get List of Outgoing
Associations

Get List of Outgoing
Dependencies

CBO = 0

CBO = CBO +
Number of Outgoing

Associations

CBO = CBO +
Number of Outgoing

Dependencies

Figure 41 - Activity Diagram for Calculating CBO

An Automatic Software Quality Measurement Tool Appendix A – Algorithms

Page 108 of 147

Activity Diagram for Calculating RFC

RFC = Count of
number of methods in

class

Get List of Sequence
Diagrams and

Collaboration Diagrams

Get next
Diagram

Get List of Instances
of Current Class in

Diagram

Get Next
Instance

Get Outgoing
Messages

Get Next
Outgoing Message

RFC = RFC + 1

 [More Diagrams]

[More
Instances]

[More Messages]

[Message is un-encountered
method of other class]

[else]

[else]

[else]

[else]

Figure 42 - Activity Diagram for calculating CBO

An Automatic Software Quality Measurement Tool Appendix A – Algorithms

Page 109 of 147

Activity Diagram for Calculating LCOM

LCOM = 0

Obtain List of
Methods in Class

Obtain Set of
attributes used by
current method.

Obtain
(method, attribute)

tuples

Note: If method M uses
attributes A1,A2,..An then
there will be n tuples
(M,A1), (M,A2)...(M,An)

i = 0

i = i + 1

Store set in variable
Si

Obtain sets S1
to Si

Get Next Set

Get next method

LCOM =
LCOM + (number of sets

which are disjoint to current
set)

[more methods]

[else]

[more sets]

[else]

:MtrWMC :Metrics

Figure 43 - Activity Diagram for calculating LCOM

An Automatic Software Quality Measurement Tool Appendix A – Algorithms

Page 110 of 147

Activity Diagram for Calculating CC1

Obtain Current
Hierarchy

Obtain List of
Hierarchies related to

current Hierarchy

m = number of
related hierarchies

x = number of General
classes in this hierarchy

CC1 = 0

i = 0

[i<m]

j = 0

[j<x]

curClass = j-th
General class from this

hierarchy

CC1 = CC1 + number of
couplings from curClass to

all general classes in
curHierarchy

curHierarchy = i-th
related hierarchy

j = j + 1

i = i + 1
[else]

[else]

Figure 44 - Activity Diagram for Calculating CC1

An Automatic Software Quality Measurement Tool Appendix A – Algorithms

Page 111 of 147

Activity Diagram for Calculating CC2

Obtain Current
Hierarchy

Obtain List of
Hierarchies unrelated
to current Hierarchy

n = number of
unrelated hierarchies

x = number of General
classes in this hierarchy

CC2 = 0

i = 0

[i<n]

j = 0

[j<x]

curClass = j-th
General class from this

hierarchy

CC2 = CC2 + number of
couplings from curClass to

all general classes in
curHierarchy

curHierarchy = i-th
unrelated hierarchy

j = j + 1

i = i + 1
[else]

[else]

Figure 45 - Activity Diagram for calculating CC2

An Automatic Software Quality Measurement Tool Appendix A – Algorithms

Page 112 of 147

Activity Diagram for Calculating CC3

Obtain Current
Hierarchy

Obtain List of
Hierarchies related to

current Hierarchy

m = number of
related hierarchies

x = number of General
classes in this hierarchy

CC3 = 0

i = 0

[i<m]

j = 0

[j<x]

curClass = j-th
General class from this

hierarchy

CC3 = CC3 + number of
couplings from curClass to

all specific classes in
curHierarchy

curHierarchy = i-th
related hierarchy

j = j + 1

i = i + 1
[else]

[else]

Figure 46 - Activity Diagram for calculating CC3

An Automatic Software Quality Measurement Tool Appendix A – Algorithms

Page 113 of 147

Activity Diagram for Calculating CC4

Obtain Current
Hierarchy

Obtain List of
Hierarchies unrelated
to current Hierarchy

n = number of
unrelated hierarchies

x = number of General
classes in this hierarchy

CC4 = 0

i = 0

[i<n]

j = 0

[j<x]

curClass = j-th General
class from this

hierarchy

CC4 = CC4 + number of
couplings from curClass to

all specific classes in
curHierarchy

curHierarchy = i-th
unrelated hierarchy

j = j + 1

i = i + 1
[else]

[else]

Figure 47 - Activity Diagram for calculating CC4

An Automatic Software Quality Measurement Tool Appendix A – Algorithms

Page 114 of 147

Activity Diagram for Calculating CC5

Obtain Current
Hierarchy

Obtain List of
Hierarchies related to

current Hierarchy

m = number of
related hierarchies

y = number of Specific
classes in this hierarchy

CC5 = 0

i = 0

[i<m]

j = 0

[j<y]

curClass = j-th
Specific class from this

hierarchy

CC5 = CC5 + number of
couplings from curClass to

all general classes in
curHierarchy

curHierarchy = i-th
related hierarchy

j = j + 1

i = i + 1
[else]

[else]

Figure 48 - Activity Diagram for calculating CC5

An Automatic Software Quality Measurement Tool Appendix A – Algorithms

Page 115 of 147

Activity Diagram for Calculating CC6

Obtain Current
Hierarchy

Obtain List of
Hierarchies unrelated
to current Hierarchy

n = number of
unrelated hierarchies

y = number of Specific
classes in this hierarchy

CC6 = 0

i = 0

[i<n]

j = 0

[j<y]

curClass = j-th
Specific class from this

hierarchy

CC6 = CC6 + number of
couplings from curClass to

all general classes in
curHierarchy

curHierarchy = i-th
unrelated hierarchy

j = j + 1

i = i + 1
[else]

[else]

Figure 49 - Activity Diagram for calculating CC6

An Automatic Software Quality Measurement Tool Appendix A – Algorithms

Page 116 of 147

Activity Diagram for Calculating CC7

Obtain Current
Hierarchy

Obtain List of
Hierarchies related to

current Hierarchy

m = number of
related hierarchies

y = number of Specific
classes in this hierarchy

CC7 = 0

i = 0

[i<m]

j = 0

[j<y]

curClass = j-th
Specific class from this

hierarchy

CC7 = CC7 + number of
couplings from curClass to

all specific classes in
curHierarchy

curHierarchy = i-th
related hierarchy

j = j + 1

i = i + 1
[else]

[else]

Figure 50 - Activity Diagram for calculating CC7

An Automatic Software Quality Measurement Tool Appendix A – Algorithms

Page 117 of 147

Activity Diagram for Calculating CC8

Obtain Current
Hierarchy

Obtain List of
Hierarchies unrelated
to current Hierarchy

n = number of
unrelated hierarchies

y = number of Specific
classes in this hierarchy

CC8 = 0

i = 0

[i<n]

j = 0

[j<y]

curClass = j-th
Specific class from this

hierarchy

CC8 = CC8 + number of
couplings from curClass to

all specific classes in
curHierarchy

curHierarchy = i-th
unrelated hierarchy

j = j + 1

i = i + 1
[else]

[else]

Figure 51 - Activity Diagram for calculating CC8

An Automatic Software Quality Measurement Tool Appendix B – Bibliography

Page 118 of 147

Appendix B: Bibliography

1. ABO97 - A Data Model for Object Oriented Designs, Joe Raymond Abounader,

David Alex Lamb" "Queen's University, Kingston Ontario"

2. ALH98 - UML in a Nutshell, Sinan Si Alhir, O'Reilly

3. ARI96 - Ariane 5 Flight 501 failure report, Inquiry Board,

http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html

4. BAN97 - Assessing Quality of Object Oriented Designs using a Hierarchical

Approach, Bansiya J., University of Alabama

5. BCS00 - http://www.dur.ac.uk/~dcs0elb/reuse, BCS Software Reuse

Specialist Group BCS

6. BEN99, Object-Oriented Analysis and Design using UML "Simon Bennett,

Steve Mc.Robb, Ray Farmer", Mc Graw Hill

7. BER00 - Metrics for Object-Oriented Software Engineering, Edward V. Bernard,

www.toa.com/pub/moose.htm

8. BOO94 - Object Oriented Analysis and Design with Applications, Grady Booch,

Addisson Wesley

9. CAC97 - Introduction to Software Engineering (Course Notes), Dr. Ernest

Cachia, University of Malta

10. CAR97- Assessing Design Quality From a Software Architectural Perspective,

"Carriere J, Kazman R.", Software Engineering Institute - Carnegie Mellon

University

11. CHI94 - A Metrics Suite for Object-Oriented Design, "Chidamber, Shyam and

Kemerer, Chri", IEEE Transactions on Software Engineering

12. CHU95, Towards a conceptual framework for object-oriented software metrics,

"Churcher N.I., Shepper M.J. "

13. CNN01a - "Software, hydraulics blamed in Osprey crash",

http://www.cnn.com/2001/US/04/05/arms.osprey.02/index.html, CNN

14. CRO79 - Quality is Free: The Art of Making Quality Certain, "Crosby, P.B.",

McGraw-Hill

An Automatic Software Quality Measurement Tool Appendix B – Bibliography

Page 119 of 147

15. GIR93 - Increasing design quality and Engineering Productivity Standards

through design reuse, "Girczyc E., Carlson S."

16. GUI99 - Detecting Defects in Object-Oriented Designs, Guilherme H. Travassos

et al, ACM

17. HEN96 - Software Metrics, Henderson-Sellers

18. HIT96 - Chidamber and Kemerer’s Metrics Suite – a measurement perspective,

 "Hitz M. , Montazeri B."

19. JAC90 - Risks in Medical Electronics, Jonathan Jacky, ACM

20. KAN99 - Metrics and Models In Software Quality Engineering, Dr. Stephen H.

Kan, Addisson Wesley

21. KEL97 - Object-Oriented Design Quality, Rudolf K. Keller and Alistair

Cockburn

22. LEW91 - An empirical Study of the OO Paradigm and Software Reuse, John A.

Lewis et al, ACM

23. MCL00 - Java and XML, "Brett McLaughlin, Mike Loukides", O'Reilly

24. MIL98 - In Search of the Holy Grail, Don Mills, Software Education Associates

25. PRE97 - Software Engineering - A Practitioner's Approach, Roger S. Pressman,

Mc Graw Hill

26. PRI97 - Analyzing and Measuring Reusability in OO Designs, "Price M.W.,

Demurijian S.A.", ACM

27. ROB99 – Cognitive Support Features for Software Development Tools, Robbins

J.E., University of California

28. ROS97a - Software Quality Metrics for Object-Oriented Environments,

Rosenberg L. and Hyatt L., NASA Software Assurance Technology Center

29. ROS97b - Applying and Interpreting Object-Oriented Metrics, Rosenberg L.

30. ROS98 - Software Metrics and Reliability, "Rosenberg L., Hammer Ted, Shaw

Jack"

31. SHE95 - Foundations of Software Measurement, Martin Shepperd, Prentice Hall

32. WWW01 - XML in 10 Points, W3C, http://www.w3.org/XML/1999/XML-in-

10-points

33. YEH97 - Object-Oriented Design Quality, Shai Ben-Yehuda

An Automatic Software Quality Measurement Tool User Documentation

Page 121 of 147

Introduction

This document explains how to use the features provided by the software quality

measurement tool implemented as part of this project. It is impractical to re-print the

theoretical basis behind each metric calculated by the tool but a basic description as well

as advice on how to interpret graphs will be given. It is recommended that the user read

up on the theory behind the tool from the technical documentation.

Using ArgoUML

It is beyond the scope of this document to teach the reader how to use ArgoUML to

create and edit UML diagrams. There is a user manual available for ArgoUML at

http://www.argouml.org.

Features Provided

The tool provides a number of features that come together to allow the user to gauge the

quality of object oriented designs. These are as follows:

Metric Calculation

The tool’s functionality centers around the calculation of metrics on UML diagrams.

There are two suites of tools that between them contain fourteen different metrics. The

Structural Metrics suite contains metric that measure the different structures and features

present in object-oriented designs (classes, messages, coupling, cohesion, and

inheritance) in order to evaluate a variety of attributes – there are six metrics in this suite.

The Reuse Metrics suite of metrics consists of eight coupling-based metrics aimed

specifically at evaluating the reusability of a design.

An Automatic Software Quality Measurement Tool User Documentation

Page 122 of 147

For a detailed explanation of the metrics, please refer to the technical manual.

Collection of Metric Information

Some metrics need more information than is available in UML diagrams. The tool

provides the functionality for collecting this information.

Metrics Repository

The tool automatically maintains a metrics repository in which statistical information is

accumulated over time as the tool is used to analyze different projects. All the user has to

do is tell the tool to add a project to a repository and it will be done. The user interface

provides functionality for viewing the information stored in the metrics repository.

Function Points Calculation

Function points were developed by Allan Albrecht while working at IBM in the late-

1970s. They are offer a way of calculating the size of a system based on the functionality

it offers rather than on the size of the resulting code. This has significant advantages over

lines-of-code (LOC) measurements since the same system developed in different

languages will have different LOC but the same function points. What are the relevance

of function points in this project?

It is usually useless to compare projects of different sizes together when it comes to

metrics. The tool allows users to compare different projects based on their function

points. So if I were designing a large application with 500 function points, I would look

up projects with similar function point readings in the repository for benchmarking. The

tool automates function point calculation by asking the user to answer questions about the

project as described in the original function points method.

An Automatic Software Quality Measurement Tool User Documentation

Page 123 of 147

Effort Prediction

Having calculated the function points of a system, the user can enter productivity

information such as the number of person months it takes to develop one function point,

and how much each person month costs. The tool will then provide simple estimates on

the length of time the project will take and how much it will cost. This information will

be stored when you save the project for future analysis.

Graphical Representation

For each metric, the tool provides one or more graphs that will help the user to visualize

the quality situation from the perspective of that particular metric. Each graph is

interactive in the sense that it provides project-specific information (such as a list of

classes represented by a point on a graph) and in that it provides information on how it

should be interpreted. The interpretation advice is not ‘intelligent’ advice. It is simply

hard-coded text and does not change from one project to another.

Accessing the Quality Measurement Features

Since the tool is an extension to an existing UML editor, it is worth noting how one can

access the features described above.

An Automatic Software Quality Measurement Tool User Documentation

Page 124 of 147

The Quality Menu

A “Quality” pull-down menu was added to ArgoUML’s menu bar. This provides 2

options:

3. Accessing the function points calculation module and

4. Running a quality test on the current design. This will bring up the results and

allow the user to compare with projects in the repository as well as view graphical

representations of the data.

Access Function Points Calculation Module

Run a quality test on the current design

The Class Popup Menu

This menu is a feature of ArgoUML but a new option was added to it for the convenience

of the tool. A user can right-click on a class and the following popup menu will be

displayed:

For inputting extra information for LCOM and WMC for this class

The first 3 options were standard ArgoUML options but the last one was added in order

to access a module that captures extra information needed for calculating the LCOM and

WMC metrics on that class. This is explained in detail later.

An Automatic Software Quality Measurement Tool User Documentation

Page 125 of 147

The <<General>> Stereotype for Classes

A new stereotype was defined for classes as part of the methodology for reusability

metrics. You basically use it to indicate which classes are meant to be reused in other

systems.

Stereotype for indicating a General (Reusable) Class

The <<Reuse-Related>> Stereotype for Associations

A new stereotype was defined for use with associations in class diagrams. This

stereotype is used to show that two class hierarchies (defined by the two classes at the

ends of the association as their roots) are meant to be reused together in future systems.

This need not be because they depend on each other, it could be that they are used in the

same domains or have complimentary features. It is entirely up to the designer to make

this decision.

Stereotype for depicting related hierarchies

An Automatic Software Quality Measurement Tool User Documentation

Page 126 of 147

Running a Quality Test

A quality test analyzes the current project using the 16 metrics named above and displays

the results to the user in the Metrics Analysis Module. The metrics analysis module

gives the user access to information about metrics, quality attributes, results, the metrics

repository and graphs. Running a quality test can be done by selecting Quality

Quality Test from the menu bar.

The Metrics Analysis Module

The Metrics Analysis Module is the module responsible for displaying metric-related

information. This includes:

1. Descriptions of all the metrics

2. Descriptions of the quality attributes each metric evaluates

3. Suggestions on how to interpret results

4. Metric results of the current project

5. Metric results from other projects in the Metric Repository

6. Graphical representation of results

An Automatic Software Quality Measurement Tool User Documentation

Page 127 of 147

An Overview of the Metrics Analysis Module Interface

View Selector

Metrics Tree

"Repository Update" Button Information Panel

The Metrics Analysis Module user interface consists of 4 main components:

1. The Metrics Tree – This tree displays metrics in a hierarchical view depending

on the chosen view. When the user navigates through the tree, information on the

Information Panel will be updated accordingly.

2. The Information Panel – Serves to give detailed information about the currently

selected node in the Metrics Tree.

3. The View Selector – Lets the user select which view he/she wants the metrics-

tree to represent. This will be explained below.

An Automatic Software Quality Measurement Tool User Documentation

Page 128 of 147

4. The “Repository Update” Button – This button lets the user add the current

project to the metrics repository. Once in the repository, a summary of the

metrics calculated on the project will be available in the repository so that future

projects can be compared to it.

The Metrics Tree and the View Selector

There are two views that can be represented by the metrics tree:

1. Metric-Centric View – The tree is organized around metrics and the different

suites they fall under. There are two suites of metrics: Structural Metrics and

Reuse Metrics. This view is to be used when the user is very familiar with the

metrics and what they mean. Each metric is represented by a child-node of it’s

parent suite. Also, each metric node has a “Project Repository” child-node, which

displays different projects in the repository that this metric has been calculated on.

This way, the user has immediate and transparent access to the repository with

data filtered to the chosen metric.

An Automatic Software Quality Measurement Tool User Documentation

Page 129 of 147

Metrics Suites

Metrics

Projects in Repository

Figure 52 - A snapshot of the metrics tree under the "Metric-Centric" View

2. Attribute-Centric View – The tree is organized with quality attributes as the

parent nodes. The user can choose a quality attribute node and its child-nodes

will be metrics that evaluate that quality attribute. This way user can proceed

with quality analysis from a quality-attribute viewpoint.

Quality Attributes

Metrics that evaluate the quality attribute

Figure 53 - A snapshot of the metrics tree in "Attribute Centric" View

An Automatic Software Quality Measurement Tool User Documentation

Page 130 of 147

Viewing Metric Results

The user can view all the information related to a metric by selecting the node

representing the metric in the metrics tree. This results in the information panel changing

its content to display information about the selected metric in 4 tabs:

1. Metric Information – Displays information about the metric and the quality

attributes it evaluates.

2. Project Summary – A summary of the results of the metric on the current

project. This tab also provides access to the graphs that are associated with the

metric.

3. Detailed Results – Presents detailed metric results for this project in tabulated

textual form.

4. Suggestions – General information on how to use and interpret this metric.

The Metric Description Tab

The Metric Description tab provides the following information:

1. Metric Name – The name of the metric

2. Metric Description – A description of the metric

3. Attributes – A list of attributes the metric evaluates. Selecting an attribute from

the list and pressing the button will bring up a dialog that describes

how the results of the metric could indicate the presence (or absence) of the

selected quality attribute.

An Automatic Software Quality Measurement Tool User Documentation

Page 131 of 147

Figure 54 - The Metric Details Tab

Figure 55 - A dialog box describing how the selected metric evaluates the selected attributed.

An Automatic Software Quality Measurement Tool User Documentation

Page 132 of 147

The Project Summary Tab

The Project Summary tab provides the following information:

1. Number of Calculations – The number of times the metric was used in this

project.

2. Average – The average value of this metric over all the classes in this project.

3. Highest Value – The highest value recorded for this metric in the current project.

4. Lowest Value – The lowest value recorded for this metric in the current project.

5. Graphical Results – Brings up a popup menu with a list of graphs available for

the selected metric. A more detailed explanation of graphs will be given later on

in this document.

An Automatic Software Quality Measurement Tool User Documentation

Page 133 of 147

Figure 56 - The Project Summary Tab

Figure 57 - Pressing the Graphical Results button will bring up a menu of available graphs for you to

choose from

An Automatic Software Quality Measurement Tool User Documentation

Page 134 of 147

The Detailed Results Tab

The Detailed Results tab provides a full listing of the classes in the system and the result

of the selected metric when applied to each class. The user can sort the values in the

table by any of the three fields (Diagram, Class, Value). The user can also choose to

eliminate zero-values from the table.

Figure 58 - The Detailed Results Tab

An Automatic Software Quality Measurement Tool User Documentation

Page 135 of 147

Figure 59 - The user can sort the rows in the table by any of the 3 fields

The Suggestions Tab

The suggestions tab provides the user with advice on how to interpret the possible values

of the selected metric, stating desirable ranges of the metric and warning about the

consequences of extreme values of the metric.

Figure 60 - The suggestions tab for the DIT metric

A Quick Overview of Graphs

Introduction

Graphs provide the user with different views on the numeric results produced by the

metrics over a design. Graphs for a metric can be accessed by clicking on the

An Automatic Software Quality Measurement Tool User Documentation

Page 136 of 147

 button. This will bring up a menu that allows you to select one of

the graphs available for the metric. Once you select a graph, a new window will be

brought up with the graph taking up the major portion of the screen and a help button

being included at the bottom.

Figure 61 - One of the graphs in the system

An Automatic Software Quality Measurement Tool User Documentation

Page 137 of 147

Figure 62 - The help text for the graph shown above (DIT)

It is beyond the scope of this document to explain the way graphs should be interpreted

because this information is available in the tool’s help system. The knowledge base

regarding metrics, quality attributes and graphs is very detailed and the user should be

able to understand how to use the system simply be reading up on the metrics, attributes

and graphs using the online help.

The following are a few screenshots of some of the graphs provided by the system…

An Automatic Software Quality Measurement Tool User Documentation

Page 138 of 147

An Automatic Software Quality Measurement Tool User Documentation

Page 139 of 147

Collecting Extra Information for LCOM and WMC

As previously explained, extra information needs to be collected from the user before

reliable WMC and LCOM results can be obtained. In the case of WMC, the user needs

to link methods of classes with activity diagrams that describe the behavior of those

methods. With LCOM, the user has to specify which instance variables each method in a

class uses. To access these features, right-click on a class and select Metrics Info. This

brings up the following window (tailored to the particular class):

Figure 63 - Inputting cohesion information

An Automatic Software Quality Measurement Tool User Documentation

Page 140 of 147

Figure 64 - Inputting complexity information

Assigning methods to activity diagrams or defining which instance variables a method

uses, consists of selecting the method from the combo-box and making checking the

relevant checkboxes.

Comparing Results with Projects in the Repository

If you want to compare the results of this project with respect to a particular metric, all

you have to do is click on the metric in the metrics tree and then open up it’s Project

Repository child node. This brings up a list of projects in the repository and selecting a

particular project will present a summary of the project (with respect to the selected

metric) in the information panel.

An Automatic Software Quality Measurement Tool User Documentation

Page 141 of 147

Figure 65 - A summary of the project NSUML with respect to the WMC metric

The summary lists the following information:

1. The name of the project

2. The function points of the project

3. The last time the project was updated in the repository

4. The number of times the selected metric was calculated in the project

5. The minimum value of the selected metric in the project

6. The maximum value of the selected metric in the project

7. The average value of the selected metric in the project

An Automatic Software Quality Measurement Tool User Documentation

Page 142 of 147

The Function Points Module

The Function Points module is responsible for calculating function points for the current

projects and providing some rudimentary predictive metrics on the project.

Calculating the Function Points of the current Project

To calculate the Function Points of the current project, simply choose Quality

Function Points from the menu bar. This will bring up a window with 3 tabs:

1. Identification of Functions tab – for defining the functions offered by your

project

2. General System Characteristics tab – where you answer a set of questions

about your project. The answers to these questions will result in the function

point count be adjusted accordingly.

3. Predictive Metrics tab – where you can enter your own estimates with regards to

how much time it takes to develop a function point and how much it costs. The

tool will then come up with predictive results, which will be saved along with the

project for later analysis.

An Automatic Software Quality Measurement Tool User Documentation

Page 143 of 147

Figure 66 - The Function Points Module

Adding and Removing Functions

To add a function:

1. Click on the button

2. Fill in the required fields in the newly create row in the table

3. The complexity and score fields will be calculated automatically

To remove a function:

1. Select the function you wish to remove

2. Click on the button

An Automatic Software Quality Measurement Tool User Documentation

Page 144 of 147

Figure 67 - Adding a new function

An Automatic Software Quality Measurement Tool User Documentation

Page 145 of 147

Figure 68 - An example with 5 functions resulting in 34 function points (UFC)

Answering General System Characteristics (GSC) Questions

The GSC questions serve to modify the unmodified function point count by taking into

account other generic requirements of the system. There are 14 characteristics and the

user has to give each one of them an importance factor between 0 and 5. A comments

box is included for each GSC for future reference.

An Automatic Software Quality Measurement Tool User Documentation

Page 146 of 147

Figure 69 - The General System Characteristics Tab

Predictive Metrics

This feature does not offer any fancy computing but it does serve as a way of making

estimates and saving them along with your project for future estimates. The user has to:

1. Enter the number of person months it takes to implement one function point (this

information would be obtainable from previous experience)

2. Enter the average cost per person month

The system will in turn estimate how long it will take to develop the system and how

much it would probably cost. Use of these features will get better with experience.

An Automatic Software Quality Measurement Tool User Documentation

Page 147 of 147

Figure 70 - The Predictive Metrics Tab

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

