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ABSTRACT OF THE DISSERTATION

Cognitive Support Features for Software Development Tools

By

Jason Elliot Robbins

Doctor of Philosophy in Infomation and Computer Science

University of California, Irvine, 1999

Professor David F. Redmiles, Chair

Software design is a cognitively challenging task.  Most software design tools provide 

support for editing, viewing, storing, sharing, and transforming designs, but lack support for the 

essential and difficult cognitive tasks facing designers.  These cognitive tasks include decision 

making, decision ordering, and task-specific design understanding.  To date, software design tools 

have not included features that specifically address key cognitive needs of designers, in part, 

because there has been no practical method for developing and evaluating these features.

This dissertation contributes a practical description of several cognitive theories relevant 

to software design, a method for devising cognitive support features based on these theories, a 

basket of cognitive support features that are demonstrated in the context of a usable software 

design tool called Argo/UML, and a reusable infrastructure for building similar features into other 

design tools. Argo/UML is an object-oriented design tool that includes several novel features that 

address the identified cognitive needs of software designers.  Each feature is explained with 

respect to the cognitive theories that inspired it and the set of features is evaluated with a 

combination of heuristic and empirical techniques.
xvii


