
81,9(56,7¬�'(*/,�678',�',�3,6$�

)DFROWj�GL�,QJHJQHULD�

&RUVR�GL�/DXUHD�LQ�,QJHJQHULD�,QIRUPDWLFD

Code generation starting from statecharts specified in
UML

Tiziana Allegrini

a.a. 2001/2002

 2

 3

�

�� , ���������	��
������� ��� �

�� 80/� � �����������	� �� �

���� 80/�� �

���� 0RGHOLQJ�GLDJUDPV�LQ�80/ �� �
2.2.1 Use case .. 8
2.2.2 Class.. 12
2.2.3 Packages e Objects .. 16
2.2.4 Sequence ... 18
2.2.5 Collaboration... 19
2.2.6 State .. 20
2.2.7 Activity ... 28
2.2.8 Component e deployment .. 31

�� $ ����� 80/��� ��

���� $UJR80/�GLDJUDPV �� ��

���� :RUNLQJ�ZLWK�$UJR80/�� ��
3.2.1 ArgoUML Menu Bar ... 38
3.2.2 The Navigation Pane ... 38
3.2.3 ArgoUML Editing Pane... 39
3.2.4 ArgoUML "To Do" Pane ... 40
3.2.5 ArgoUML Details Pane ... 40
3.2.6 Creating a class in ArgoUML .. 42
3.2.7 Creating statecharts in ArgoUML .. 43

��) ����� � ��������
������������ - ������
	���	� �� ��

���� 'HVLJQ�3DWWHUQ�DQG�SROLPRUILVP�� ��
4.1.1 State Pattern .. 47

���� 6WDWH�SDWWHUQ�IRU�FRGH�JHQHUDWLRQ��� ��

�� $ ����� 80/�
	���������������	 ������!��� �� ��

���� *HQHUDO�DUFKLWHFWXUH ��� ��
5.1.1 Packages.. 58
5.1.2 ArgoUML core.. 61
5.1.3 ArgoUML main window ... 63
5.1.4 Menu... 65
5.1.5 Navigator pane .. 66
5.1.6 Editor .. 67
5.1.7 Details pane... 70

�� $ ����� 80/� " $#��	����$� � ��� ��

���� *() �� ��
6.1.1 Characteristics ... 73
6.1.2 Layers ... 74
6.1.3 Editor .. 75

 4

6.1.4 Figs ... 76
6.1.5 Selections .. 76
6.1.6 Commands .. 78
6.1.7 Modes ... 78

���� 1680/ ��� ��
6.2.1 UML Metamodel implementation.. 79
6.2.2 Packages structure ... 80
6.2.3 Foundation .. 80
6.2.4 Behavioural Elements.. 81
6.2.5 Model Management... 82
6.2.6 API Description... 83
6.2.7 Accessing and modifying metaattributes.. 86
6.2.8 Accessing and modifying metaassociations.. 87
6.2.9 NSUML reflective API.. 89
6.2.10 Other libreries.. 91

�� & ���	�%��������������!��� �� ��

���� ,PSOHPHQWDWLRQ ��� ��
7.1.1 Classe Generator.. 92
7.1.2 Classe GeneratorJava... 93
7.1.3 GeneratorDisplay... 93
7.1.4 GeneratorState... 93
7.1.5 Class properties ... 96
7.1.6 State machine properties.. 97

���� *HQHUDWHG�FRGH�UHQGHULQJ ��� ���
7.2.1 Classe TabModelTarget ... 101
7.2.2 Classe TabText.. 102
7.2.3 Classe TabSrcState .. 102

���� 6KRZ�JHQHUDWH�FRGH�LQ�³6RXUFH�VWDWH´�WDE�VWULS��� ���

���� 1HZ�PHQX��*HQHUDWLRQ�VWDWHFKDUWV�� ���
7.4.1 Class ProjectBrowser... 106
7.4.2 Class UMLAction.. 108
7.4.3 Class Actions... 108
7.4.4 Class ActionGenStateFile .. 109
7.4.5 Class ClassStateGenerationDialog ... 110
7.4.6 Show the call stack from the menu... 111

�� & ����
 " � � !��� � �� ���

�� 7 ������& � �� ���

 5

��� ,QWURGXFWLRQ�

Far from 1980 many reserch groups developed some methodologies and notations for

OO analisys and design. This situation needed a standard language and notation.

About 1994, when Jacobson arrived to the Rational society, within Booch and

Rambaugh, they developed a unified language for design software, UML.

Many society were interested in UML and they built their project on UML notation,

also developed their own CASE tool.

OMG in 1998, made the standard of UML in his first version.

All CASE tools had to support the whole design process of software development and

they required some automatic function of code generation.

ArgoUML manage the automatic code generation based only on class diagrams.

§In this work we make ArgoUML be able to generating code from class diagrams and

statecharts. Code generated restricts and controls behaviuor of the object to which the

statechart is associated. We based this code generation on the pattern State architecture,

such a riusable and modular software pattern.

 6

��� 80/�VWDQGDUG�

�����80/�

During the 1980’s a number of OOA&D process methodologies and notations were

developed by different research teams. It became clear there were many common

themes and, during the 1990’s, a unified approach for OOA&D notation was developed

under the auspices of the Object Management Group. This standard became known as

the Unified Modeling Language (80/), and is now the standard language for

communicating OO concepts.

The heart of object-oriented problem solving is the construction of a model. The model

abstracts the essential details of the underlying problem from its usually complicated

real world. Several modeling tools are wrapped under the heading of the 80/, which

stands for Unified Modeling Language.

The Unified Modeling Language (UML) is a language for specifying, visualizing,

constructing, and documenting the artifacts of software systems, as well as for business

modeling and other non-software systems. The UML represents a collection of the best

engineering practices that have proven successful in the modeling of large and complex

systems.

The UML is applicable to object-oriented problem solving. Anyone interested in

learning UML must be familiar with the underlying tenet of object-oriented problem

solving -- it all begins with the construction of a model. A PRGHO is an abstraction of the

underlying problem. The GRPDLQ is the actual world from which the problem comes.

 7

Models consist of REMHFWV that interact by sending each other messages. Think of an

object as "alive." Objects have things they know (attributes) and things they can do

(behaviors or operations). The values of an object’s attributes determine its state.

&ODVVHV are the "blueprints" for objects. A class wraps attributes (data) and behaviors

(methods or functions) into a single distinct entity. Objects are instances of classes.

At the center of the UML are its eight different kinds of modeling diagrams, which we

describe here.

�����0RGHOLQJ�GLDJUDPV�LQ�80/�

In terms of the views of a model, the UML defines the following graphical diagrams:

��use case diagram

��class diagram

��behavior diagrams:

��statechart diagram

��activity diagram

��interaction diagrams:

��sequence diagram

��collaboration diagram

��implementation diagrams:

 8

��component diagram

��deployment diagram

Although other names are sometimes given to these diagrams, this list constitutes the

canonical diagram names.

These diagrams provide multiple perspectives of the system under analysis or

development. The underlying model integrates these perspectives so that a

selfconsistent system can be analyzed and built. These diagrams, along with supporting

documentation, are the primary artifacts that a modeler sees, although the UML and

supporting tools will provide for a number of derivative views.

�������8VH�FDVH�

Use case diagrams show actors and use cases together with their relationships. The use

cases represent functionality of a system or a classifier, like a subsystem or a class, as

manifested to external interactors with the system or the classifier.

Use case diagrams describe what a system does from the standpoint of an external

bserver. The emphasis is on what a system does rather than how.

A use case diagram is a graph of actors, a set of use cases, possibly some interfaces, and

the relationships between these elements. The relationships are associations between the

actors and the use cases, generalizations between the actors, and generalizations,

extends, and includes among the use cases. The use cases may optionally be enclosed

by a rectangle that represents the boundary of the containing system or classifier.

A XVH�FDVH�is a kind of classifier representing a coherent unit of functionality provided

by a system, a subsystem, or a class as manifested by sequences of messages

 9

exchanged among the system (subsystem, class) and one or more outside interactors

(called DFWRUV) together with actions performed by the system (subsystem, class).

An H[WHQVLRQ� SRLQW� is a reference to one location within a use case at which action

sequences from other use cases may be inserted. Each extension point has a unique

name within a use case, and a description of the location within the behavior of the use

case.

An actor defines a coherent set of roles that users of an entity can play when interacting

with the entity. An actor may be considered to play a separate role with regard to each

use case with which it communicates.

The standard stereotype icon for an actor is a “stick man” figure with the name of the

actor below the figure.

�

 10

There are several standard relationships among use cases or between actors and use

cases.

��Association – The participation of an actor in a use case; that is, instances of the actor

and instances of the use case communicate with each other. This is the only relationship

between actors and use cases.

�� Extend – An extend relationship from use case A to use case B indicates that an

instance of use case B may be augmented (subject to specific conditions specified in the

extension) by the behavior specified by A. The behavior is inserted at the location

defined by the extension point in B, which is referenced by the extend relationship.

��Generalization – A generalization from use case C to use case D indicates that C is a

specialization of D.

 11

�� Include – An include relationship from use case E to use case F indicates that an

instance of the use case E will also contain the behavior as specified by F. The behavior

is included at the location which defined in E.

�

 12

�������&ODVV�

A Class diagram gives an overview of a system by showing its classes and the

relationships among them. Class diagrams are static -- they display what interacts but

not what happens when they do interact.

UML class notation is a rectangle divided into three parts: class name, attributes, and

operations. Names of abstract classes, such as Payment, are in italics. Relationships

between classes are the connecting links.

Our class diagram has three kinds of relationships:

DVVRFLDWLRQ -- a relationship between instances of the two classes. There is an

association between two classes if an instance of one class must know about the other in

order to perform its work. In a diagram, an association is a link connecting two classes.

 13

DJJUHJDWLRQ -- an association in which one class belongs to a collection. An

aggregation has a diamond end pointing to the part containing the whole. In our

diagram, Order has a collection of OrderDetails.

JHQHUDOL]DWLRQ -- an inheritance link indicating one class is a superclass of the other. A

generalization has a triangle pointing to the superclass. Payment is a superclass of Cash,

Check, and Credit.

An association has two ends. An end may have a role name to clarify the nature of the

association. For example, an OrderDetail is a line item of each Order.

A navigability arrow on an association shows which direction the association can be

traversed or queried. The arrow also lets you know who "owns" the association’s

implementation; in this case, OrderDetail has an Item. Associations with no navigability

arrows are bi-directional.

The multiplicity of an association end is the number of possible instances of the class

associated with a single instance of the other end. Multiplicities are single numbers or

ranges of numbers. In our example, there can be only one Customer for each Order, but

a Customer can have any number of Orders.

This table gives the most common multiplicities.

Molteplicità Significato

0..1 Zero o una istanza

0..* o * Nessun limite al numero di istanze

1 Esattamente una

1..* Almeno una

 14

Strings in the attribute compartment are used to show attributes in classes. A similar

syntax is used to specify qualifiers, template parameters, operation parameters, and so

on (some of these omit certain terms).

An attribute is shown as a text string that can be parsed into the various properties of an

attribute model element. An operation is a service that an instance of the class may be

requested to perform. It has a name and a list of arguments. An operation is shown as a

text string that can be parsed into the various properties of an operation model element.

$VVRFLDWLRQ - Binary associations are shown as lines connecting two classifier symbols.

The lines may have a variety of adornments to show their properties. Ternary and

higher-order associations are shown as diamonds connected to class symbols by lines. A

binary association is an association among exactly two classifiers (including the

possibility of an association from a classifier to itself).

�

'HSHQGHQF\ – A dependency indicates a semantic relationship between two model

elements (or two sets of model elements). It relates the model elements themselves and

does not require a set of instances for its meaning. It indicates a situation in which a

 15

change to the target element may require a change to the source element in the

dependency. A dependency is shown as a dashed arrow between two model elements.

The model element at the tail of the arrow (the client) depends on the model element at

the arrowhead (the supplier). The arrow may be labeled with an optional stereotype and

an optional individual name.

&RPSRVLWLRQ - Composite aggregation is a strong form of aggregation, which requires

that a part instance be included in at most one composite at a time and that the

composite object has sole responsibility for the disposition of its parts. The multiplicity

of the aggregate end may not exceed one (it is unshared). See Section 3.43,

“Association End,” on page 3-71 for further details.

Composition may be shown by a solid filled diamond as an association end adornment.

Alternately, UML provides a graphically-nested form that is more convenient for

showing composition in many cases.

*HQHUDOL]DWLRQ - Generalization is the taxonomic relationship between a more general

element (the parent) and a more specific element (the child) that is fully consistent with

the first element and that adds additional information. It is used for classes, packages,

use cases, and other elements.

 16

Generalization is shown as a solid-line path from the child (the more specific element,

such as a subclass) to the parent (the more general element, such as a superclass), with a

large hollow triangle at the end of the path where it meets the more general element.

�������3DFNDJHV�H�2EMHFWV�

A package is a collection of logically related UML elements. The diagram below is a

business model in which the classes are grouped into packages.

 17

Packages appear as rectangles with small tabs at the top. The package name is on the tab

or inside the rectangle. The dotted arrows are dependencies. One package depends on

another if changes in the other could possibly force changes in the first.

Object diagrams are special kinds of class diagrams, showing instances instead of

classes. They are useful for explaining small pieces with complicated relationships,

especially recursive relationships.

The object diagram below instantiates the class diagram, replacing it by a concrete

example.

Each rectangle in the diagram corresponds to a single instance. Instance names are

underlined in UML diagrams. Class or instance names may be omitted from object

diagrams as long as the diagram meaning is still clear.

An object diagram is a graph of instances, including objects and data values. A static

object diagram is an instance of a class diagram; it shows a snapshot of the detailed

state of a system at a point in time. The use of object diagrams is fairly limited, mainly

to show examples of data structures.

 18

�������6HTXHQFH�

Class and object diagrams are static model views. Interaction diagrams are dynamic.

They describe how objects collaborate.

A sequence diagram is an interaction diagram that details how operations are carried out

-- what messages are sent and when. Sequence diagrams are organized according to

time. The time progresses as you go down the page. The objects involved in the

operation are listed from left to right according to when they take part in the message

sequence. Below is a sequence diagram for making a hotel reservation. The object

initiating the sequence of messages is a Reservation window.

 19

Each vertical dotted line is a lifeline, representing the time that an object exists. Each

arrow is a message call. An arrow goes from the sender to the top of the activation bar

of the message on the receiver’s lifeline. The activation bar represents the duration of

execution of the message.

A sequence diagram presents an Interaction, which is a set of Messages between

ClassifierRoles within a Collaboration, or an InteractionInstanceSet, which is a set of

Stimuli between Instances within a CollaborationInstanceSet to effect a desired

operation or result.

�������&ROODERUDWLRQ�

A collaboration diagram presents either a Collaboration, which contains a set of roles to

be played by Instances, as well as their required relationships given in a particular

context, or it presents a CollaborationInstanceSet with a collection of Instances and their

relationships. The diagram may also present an Interaction (InteractionInstanceSet),

which defines a set of Messages (Stimuli) specifying the interaction between the

Instances playing the roles within a Collaboration to achieve the desired result.

Collaboration diagrams are also interaction diagrams. They convey the same

information as sequence diagrams, but they focus on object roles instead of the times

that messages are sent. In a sequence diagram, object roles are the vertices and

messages are the connecting links.

 20

The object-role rectangles are labeled with either class or object names (or both). Class

names are preceded by colons (:).

Each message in a collaboration diagram has a sequence number. The top-level message

is numbered 1. Messages at the same level (sent during the same call) have the same

decimal prefix but suffixes of 1, 2, etc. according to when they occur.

�������6WDWH�

Objects have behaviors and state. The state of an object depends on its current activity

or condition. A statechart diagram shows the possible states of the object and the

transitions that cause a change in state.

Statechart diagrams represent the behavior of entities capable of dynamic behavior by

specifying its response to the receipt of event instances. Typically, it is used for

describing the behavior of class instances, but statecharts may also describe the

behavior of other entities such as use-cases, actors, subsystems, operations, or methods.

A statechart diagram is a graph that represents a state machine. States and various other

types of vertices (pseudostates) in the state machine graph are rendered by appropriate

state and pseudostate symbols, while transitions are generally rendered by directed arcs

that inter-connect them. States may also contain subdiagrams by physical containment

or tiling. Note that every state machine has a top state that contains all the other

 21

elements of the entire state machine. The graphical rendering of this top state is

optional.

A statechart diagram maps into a StateMachine. That StateMachine may be owned by

an instance of a model element capable of dynamic behavior, such as classifier or a

behavioral feature, which provides the context for that state machine. Different contexts

may apply different semantic constraints on the state machine.

Our example diagram models the login part of an online banking system. Logging in

consists of entering a valid social security number and personal id number, then

submitting the information for validation.

Logging in can be factored into four non-overlapping states: Getting SSN, Getting PIN,

Validating, and Rejecting. From each state comes a complete set of transitions that

determine the subsequent state.

 22

States are rounded rectangles. Transitions are arrows from one state to another. Events

or conditions that trigger transitions are written beside the arrows. Our diagram has two

self-transition, one on Getting SSN and another on Getting PIN.

The initial state (black circle) is a dummy to start the action. Final states are also

dummy states that terminate the action.

The action that occurs as a result of an event or condition is expressed in the form

/action. While in its Validating state, the object does not wait for an outside event to

trigger a transition. Instead, it performs an activity. The result of that activity determines

its subsequent state.

6WDWH�

A state is a condition during the life of an object or an interaction during which it

satisfies some condition, performs some action, or waits for some event. A composite

state is a state that, in contrast to a simple state, has a graphical decomposition.

Conceptually, an object remains in a state for an interval of time. However, the

semantics allow for modeling “flow-through” states that are instantaneous, as well as

transitions that are not instantaneous.

A state is shown as a rectangle with rounded corners. Optionally, it may have an

attached name tab. The name tab is a rectangle, usually resting on the outside of the top

 23

side of a state and it contains the name of that state. It is normally used to keep the name

of a composite state that has concurrent regions, but may be used in other cases as well .

A state may be optionally subdivided into multiple compartments separated from each

other by a horizontal line. They are as follows:

1DPH�FRPSDUWPHQW�

This compartment holds the (optional) name of the state as a string. States without

names are anonymous and are all distinct. It is undesirable to show the same named

state twice in the same diagram, as confusion may ensue. Name compartments should

not be used if a name tab is used and vice versa.

,QWHUQDO�WUDQVLWLRQV�FRPSDUWPHQW�

This compartment holds a list of internal actions or activities that are performed while

the element is in the state. The action label identifies the circumstances under which the

action specified by the action expression will be invoked. The action expression may

use any attributes and links that are in the scope of the owning entity. For list items

where the action expression is empty, the backslash separator is optional.

,QLWLDO�6WDWH�

The initial state is a pseudostate representing the default state of a state machine (or

composite state) when it is created. It is the state from which any initial transition is

made. As a consequence it is not permissible to have incoming transitions. An initial

state is represented on the diagram as a solid disc.

)LQDO�6WDWH�

If a transition reaches a final state, it implies completion of the activity associated with

that composite state, or at the top level, of the complete state machine. In the UML

metamodel FinalState is a child of State. Completion at the top level implies termination

 24

(i.e. destruction) of the owning object instance. The representation of a final state on the

diagram is a circle with a small disc at its center.

&RPSRVLWH�VWDWH�

A composite state is decomposed into two or more concurrent substates (called regions)

or into mutually exclusive disjoint substates. A given state may only be refined in one

of these two ways. Naturally, any substate of a composite state can also be a composite

state of either type.

A composite state is a state that contains other states (known as sub-states), allowing

hierarchical state machines to be constructed. Sub-states are placed within a composite

machine by placing them entirely within the composite state when creating them for the

first time in the editing pane.

7UDQVLWLRQ�

A transition is a directed relation between a source state (or composite state) and

destination state (or composite state). Within the UML metamodel, Transition is a sub-

class of ModelElement.

A simple transition is a relationship between two states indicating that an instance in the

first state will enter the second state and perform specific actions when a specified event

occurs provided that certain specified conditions are satisfied. On such a change of

 25

state, the transition is said to “fire.” The trigger for a transition is the occurrence of the

event labeling the transition. The event may have parameters, which are accessible by

the actions specified on the transition as well as in the corresponding exit and entry

actions associated with the source and target states respectively. Events are processed

one at a time. If an event does not trigger any transition, it is discarded. If it can trigger

more than one transition within the same sequential region; that is, not in different

concurrent regions, only one will fire. If these conflicting transitions are of the same

priority, an arbitrary one is selected and triggered.

A transition is shown as a solid line originating from the VRXUFH�state and terminated by

an arrow on the WDUJHW� state. It may be labeled by a WUDQVLWLRQ� VWULQJ� that has the

following general format:

HYHQW [JXDUG] / DFWLRQ ^ VLJQDO�

The HYHQW�VLJQDWXUH�describes an event with its arguments:

HYHQW�QDPH�‘(’ FRPPD�VHSDUDWHG�SDUDPHWHU�OLVW�‘)’

The JXDUG�FRQGLWLRQ� is a Boolean expression written in terms of parameters of the

triggering event and attributes and links of the object that owns the state machine. The

guard condition may also involve tests of concurrent states of the current machine, or

explicitly designated states of some reachable object (for example, “LQ�State1” or “QRW�

LQ�State2”). State names may be fully qualified by the nested states that contain them,

yielding pathnames of the form “State1::State2::State3.” This may be used in case same

state name occurs in different composite state regions of the overall machine.

The DFWLRQ�H[SUHVVLRQ�is executed if and when the transition fires. It may be written in

terms of operations, attributes, and links of the owning object and the parameters of the

 26

triggering event, or any other features visible in its scope. The corresponding action

must be executed entirely before any other actions are considered. This model of

execution is referred to as UXQ�WR�FRPSOHWLRQ�semantics. The action expression may be

an action sequence comprising a number of distinct actions including actions that

explicitly generate events, such as sending signals or invoking operations. The details of

this expression are dependent on the action language chosen for the model.

(YHQW�

An event is a noteworthy occurrence. For practical purposes in state diagrams, it is an

occurrence that may trigger a state transition. Events may be of several kinds (not

necessarily mutually exclusive).

An event is an observable occurrence. In the UML metamodel it is a child of

ModelElement. There are a number of different types of event that are children of

event within the UML metamodel.

SignalEvent. Associated with a signal, this event is caused by the signal

being raised.

CallEvent. Associated with an operation of a class, this event is caused by a

call to the given operation. The expected effect is that the steps of the operation

will be executed.

TimeEvent. An event cause by expiration of a timing deadline.

ChangeEvent. An event caused by a particular expression (of attributes and

associations) becoming true.

An action is represented by its name.

 27

A designated condition becoming true (described by a Boolean expression) results in a

change event instance. The event occurs whenever the value of the expression changes

from false to true. Note that this is different from a guard condition. A guard condition

is evaluated RQFH� whenever its event fires. If it is false, then the transition does not

occur and the event is lost.

The receipt of an explicit signal from one object to another results in a signal event

instance. It is denoted by the signature of the event as a trigger on a transition.

The receipt of a call for an operation implemented as a transition by an object represents

a call event instance.

The passage of a designated period of time after a designated event (often the entry of

the current state) or the occurrence of a given date/time is a TimeEvent.

The event declaration has scope within the package it appears in and may be used in

state diagrams for classes that have visibility inside the package. An event is QRW�local to

a single class.

*XDUG�

A guard is associated with a transition. At the time an event is dispatched, the guard is

evaluated, and if false, its transition is disabled. In the UML metamodel, Guard is a

child of ModelElement.�

$FWLRQ�

An action specifies an activity to do and it is the abstraction of a computational

procedure: it may change the state of an object. The action is “atomic” and it may

executed only due to a transition.

 28

There are several types of actions: CreateAction or DestroyAction, that

respectively creates and destroyes an object, and CallAction,SendAction and

ReturnAction that calls, send and return some parameters.

�������$FWLYLW\�

An activity diagram is essentially a fancy flowchart. Activity diagrams and statechart

diagrams are related. While a statechart diagram focuses attention on an object

undergoing a process (or on a process as an object), an activity diagram focuses on the

flow of activities involved in a single process. The activity diagram shows the how

those activities depend on one another.

For our example, we used the following process.

"Withdraw money from a bank account through an ATM."

The three involved classes (people, etc.) of the activity are Customer, ATM, and Bank.

The process begins at the black start circle at the top and ends at the concentric

white/black stop circles at the bottom. The activities are rounded rectangles.

An activity graph is a variation of a state machine in which the states represent the

performance of actions or subactivities and the transitions are triggered by the

completion of the actions or subactivities. It represents a state machine of a procedure

itself.

 29

Activity diagrams can be divided into object swimlanes that determine which object is

responsible for which activity. A single transition comes out of each activity,

connecting it to the next activity.

 30

A transition may branch into two or more mutually exclusive transitions. Guard

expressions (inside []) label the transitions coming out of a branch. A branch and its

subsequent merge marking the end of the branch appear in the diagram as hollow

diamonds.

A transition may fork into two or more parallel activities. The fork and the subsequent

join of the threads coming out of the fork appear in the diagram as solid bars.

�

 31

�������&RPSRQHQW�H�GHSOR\PHQW�

A component is a code module. Component diagrams are physical analogs of class

diagram. Deployment diagrams show the physical configurations of software and

hardware.

The following deployment diagram shows the relationships among software and

hardware components involved in real estate transactions.

A component diagram shows the dependencies among software components, including

the classifiers that specify them (for example, implementation classes) and the artifacts

that implement them; such as, source code files, binary code files, executable files,

scripts.

A component diagram has only a type form, not an instance form. To show component

instances, use a deployment diagram (possibly a degenerate one without nodes). A

component diagram is a graph of components connected by dependency relationships.

Components may also be connected to components by physical containment

representing composition relationships.

The physical hardware is made up of nodes. Each component belongs on a node.

Components are shown as rectangles with two tabs at the upper left.

 32

Deployment diagrams show the configuration of run-time processing elements and the

software components, processes, and objects that execute on them. Software component

instances represent run-time manifestations of software code units. Components that do

not exist as run-time entities (because they have been compiled away) do not appear on

these diagrams, they should be shown on component diagrams.

A deployment diagram is a graph of nodes connected by communication associations.

Nodes may contain component instances. This indicates that the component runs or

executes on the node. Components may contain instances of classifiers, which indicates

that the instance resides on the component. Components are connected to other

components by dashed-arrow dependencies (possibly through interfaces). This indicates

that one component uses the services of another component. A stereotype may be used

to indicate the precise dependency, if needed.

 33

��� $UJR80/��

ArgoUML was conceived as a tool and environment for use in the analysis and design

of object-oriented software systems. In this sense it is similar to many of the

commercial CASE tools that are sold as tools for modeling software systems.

ArgoUML has a number of very important distinctions from many of these tools.

ArgoUML is a powerful yet easy-to-use interactive, graphical software design

environment that supports the design, development and documentation of object-

oriented software applications. ArgoUML takes part to the family of software

applications called Computer Aided Software Engineering (CASE) tools.

ArgoUML is based directly on the UML 1.3 specification. In fact, a large part of

ArgoUML was generated automatically from the UML specification. ArgoUML is (to

the best of our knowledge) the only tool that implements the UML meta-model exactly

as specified. In contrast, current commercial tools use tools use basically the same

internal representation of the design that they used in previous versions.

The users of ArgoUML are software designers & architects, software developers,

business analysts, systems analysts and other professionals involved in the analysis,

design and development of software applications.

Main features:

2SHQ�VWDQGDUGV: XMI, SVG and PGML - ArgoUML supports open standards

extensively - UML, XMI, SVG, OCL and others.

ArgoUML is compliant with the 20*�6WDQGDUG for UML in its latest version

1.3. The code for the internal representation of an UML model is completely

 34

generated from the specification and, thus, follows it very closely. To achieve

this, a special metamodel library (NSUML) was developed by Novosofts and

made available under LGPL.

;0/ Metadata Interchange (XMI) is the standard for saving the meta-data that

make up a particular UML model. In principle this will allow you to take the

model you have created in ArgoUML and import it into another tool.

80/�GHVLJQ�HGLWLQJ - ArgoUML uses GEF, the UCI Graph Editing Framework

to edit UML diagrams. The following diagram types are supported:

Class diagrams

State machine diagrams

Activity diagrams

Use case diagrams

Collaboration diagrams

Object/Component/Deployment diagrams

Sequence diagrams

2EMHFW� &RQVWUDLQW� /DQJXDJH (OCL) is the UML standard for expressing

constraints within diagrams that express the dynamic behavior of a design. At

present OCL is quite new and not widely available. ArgoUML is one of the few

CASE tools to provide comprehensive support.

0RGHO�LQIRUPDWLRQ for static structure and use case diagrams can now be stored

to a mySQL database.

 35

Diagrams can now be exported to gif, PostScript, eps, PGML and svg. The

standard saving format for diagrams is still PGML, but it will be changed to the

upcoming standard for Scalable Vector Graphics (svg) of the W3C consortium.

�����-DYD - ArgoUML is a 100% pure Java application. This allows ArgoUML

to run on all platforms for which a reliable port of the Java2 platform is

available. Java was conceived as an interpreted language. It doesn’t have a

compiler to produce code for any particular target machine. It compiles code for

its own target, the Java Virtual Machine (JVM).

2SHQ� 6RXUFH allows to extend or customize it - ArgoUML is an open source

project. The availability of the source ensures that a new generation of software

designers and researchers now have a proven framework from which they can

drive the development and evolution of CASE tool technologies.

Cognitive features like: reflection-in-action, opportunistic design, comprehension and

problem solving - The implementation of these theories within ArgoUML is through a

number of techniques.

�����$UJR80/�GLDJUDPV�

The UML standard specifies eight principle diagrams, all of which are supported by

ArgoUML.

8VH� FDVH� GLDJUDP. Used to capture and analyse the requirements for any OOA&D

project.

&ODVV�GLDJUDP. This diagram captures the static structure of the system being designed,

showing the classes, interfaces and datatypes and how they are related. Variants of this

 36

diagram are used to show package structures within a system (the package diagram) and

the relationships between particular instances (the object diagram). The ArgoUML class

diagram provides support for class and package diagrams.

%HKDYLRU�GLDJUDPV. There are four such diagrams (or strictly speaking, five, since the

use case diagram is a type of behavior diagram), which show the dynamic behavior of

the system at all levels.

6WDWH�GLDJUDP. Used to show the dynamic behavior of a single object (class instance).

This diagram is of particular use in systems using complex communication protocols,

such as in telecommunications.

$FWLYLW\� GLDJUDP. Used to show the dynamic behavior of groups of objects (class

instance). This diagram is an alternative to the state diagram, and is better suited to

systems with a great deal of user interaction.

,QWHUDFWLRQ� GLDJUDPV. There are two diagrams in this category, used to show the

dynamic interaction between objects (class instances) in the system.

6HTXHQFH� GLDJUDP. Shows the interactions (typically messages or procedure calls)

between instances of classes (objects) and actors against a timeline. Particularly useful

where the timing relationships between interactions are important.

&ROODERUDWLRQ�GLDJUDP. Shows the interactions (typically messages or procedure calls)

between instances of classes (objects) and actors against the structural relationships

between those instances. Particularly useful where it is useful to relate interactions to

the static structure of the system.

 37

,PSOHPHQWDWLRQ� GLDJUDPV. UML defines two implementation diagrams to show the

relationship between the software components that make up a system (the component

diagram) and the relationship between the software and the hardware on which it is

deployed at run-time (the deployment diagram.

The ArgoUML deployment diagram provides support for both component and

deployment diagrams.

�����:RUNLQJ�ZLWK�$UJR80/��

At the top there is a menu bar with commands available. In the file menu you can store

the model or open another model instead. The bulk of the window comprises four sub-

windows or Panes.

The upper left part of ArgoUML, Navigator Pane, lists the diagrams and objects of the

model in one of several views. The upper right part of ArgoUML, Editing Pane, shows

one diagram at the time. You can work with the objects in the diagrams, dragging and

dropping and using the quick-links to create new objects connected to the already

present objects.

The lower right part, Details Pane, you contains various details of various objects of the

model. You select the object in one of the upper levels and choose what details you

want to examine using the tabs. The lower left part, To-Do Pane, contains a list of all

ToDo items for this model.

 38

������$UJR80/�0HQX�%DU�

Argo’s menu bar consisits of menus for File, Edit, View, Arrange, Create, Generate,

Critique, and Help.

������7KH�1DYLJDWLRQ�3DQH�

Argo’s Navigation Pane shows you the contents of your design. This element of Argo’s

UI should be familiar to anyone who has used the Microsoft Windows Explorer or any

one of a number of commercial CASE tools.

 39

The navigation pane allows the user to view the structure of the model from a number

of predefined perspectives. It also allows the user to define their own perspetives for

custom navigation of the model.

������$UJR80/�(GLWLQJ�3DQH�

Argo’s Editing Pane is the main work area. You use this pane mainly to edit diagrams.

However you can also use this pane to edit tables that list the contents of diagrams or

other design objects. Several tabs are located at the bottom of this pane to indicate the

different ways in which the main object can be viewed and edited. ArgoUML includes

an "As Diagram" tab, and if you download optional jar files you may also see tabs

labeled "As Table" and "As Metrics".

The toolbar at the top of the editing pane provides the main functions of the pane. The

default tool is the Select tool. The tools fall into four categories.

Layout tools. Provide assistance in laying out artifacts on the diagram.

Annotation tools. Used to annotate artifacts on the diagram.

Drawing tools. Used to add general graphics artifacts to diagrams.

 40

Diagram specific tools. Used to add UML artifacts specific to a particular diagram type

to the diagram.

������$UJR80/��7R�'R��3DQH�

Argo’s "To Do" Pane helps keep designers on track by reminding them of what needs to

be done. Items in the To Do pane can be personal reminders entered by the designer, but

most of them are generated by design critics. Design critics in ArgoUML continuously

analyze the design looking for incomplete or problematic areas.

������$UJR80/�'HWDLOV�3DQH�

Argo’s Details Pane allows you to edit the details of the currently selected design

element or "to do" item.

• 7R'R,WHP– Argo's ToDoItem Tab shows the description of the selected "to do"

item in the "To Do" Pane. The description consists three short paragraphs about

the problem, why this problem is likely to be important to you, and steps that

 41

you can take to resolve the problem. The ToDoItem tab will then function as a

wizard, leading you through the steps of resolving the problem.

• 3URSHUWLHV– Argo's Properties Tab shows the properties of the selected design

element. The contents of the tab pane vary depending on the type of design

element selected.

• -DYDGRFV– Argo's Javadocs Tab allows you to enter documentation on the

selected design element. Documentation templates are provided for many types

of design elements to get you started.

• 6RXUFH– Argo's Source Tab allows you to preview the Java source code that will

be generated for the selected design element. If you are using JDK (not JRE) and

have included colorize.jar in your CLASSPATH, you will see the Java

source code with keywords, constants, and comments colored differently. This

helps make the structure of the code more visible at a glance and makes the code

easier to read quickly.

• Constraints– Argo's Constraints Tab allows you to enter and view OCL

constraints on the selected design element. The Object Constraint Language

(OCL) is a simple predicate logic language that allows you to add more meaning

to your designs.

• TaggedValues– Argo's TaggedValues Tab allows you to enter and view

TaggedValues on the selected design element. TaggedValues are simple key-

value pairs that are stored with the design element, but are (usually) not

interpreted by the system.

 42

• Checklist– Argo's Checklist Tab lists questions for you to consider while making

design decisions. Some of these questions are specific, while others are more

open-ended. They are similiar to the kinds of checklists that many software

developers use in design review meetings.

• History– Argo's History Tab shows a time-ordered list of all the criticisms that

were raised by design critics and how they were resolved.

�������&UHDWLQJ�D�FODVV�LQ�$UJR80/�

The class is the dominant artifact on a class diagram. In the UML metamodel it is a sub-

class of Classifier and GeneralizableElement.

A class is represented on a class diagram as a rectangle with three horizontal

compartments. The top compartment displays the class name (and stereotype), the

second compartment any attributes and the third any operations. The last two

compartments may optionally be hidden.

Identifying class diagrams from existing materials (Vision, Use Cases etc).

Classes can be added to the untitled diagram by clicking on the class icon in the toolbar.

 43

The user can set the name of a class or association by simply selecting it and typing.

Double clicking on a name allows the name to be edited. You can double click on the

other compartments of the class to edit them.

The "Properties" tab into the details pane shows details of the selected model element.

�������&UHDWLQJ�VWDWHFKDUWV�LQ�$UJR80/�

This is what the final appearance of the State diagram inside the Enroll.argo example

will look we are finished.

Every state diagram is associated with exacltly one class. In this case, the state diagram

above is associated with the Grad class from the class diagram of Enroll.argo.

To create a new state diagram, you must first select the class that you would like to

make the state diagram for, and then choose Create-Diagrams-StateDiagram. Once this

is done, name the state diagram "Grad states". Double-click on "Grad States" to go to

the state diagram editor pane.

 44

Use to place the initial state, and to place the final states. Next, add and name the

Trigger for all of the transitions .

Adding a Composite State: A composite state contains other states. Place one of

these in the diagram and then put the "writeDissertation" and "finalDefense" states

within it.

The correct title for this category should be State Machines. This is raised as an issue to

be fixed in a future version of ArgoUML.

�

 45

���)URP�VWDWHFKDUW�WR�-DYD�FRGH�

A statechart diagram represents a state machine. The state machine belongs to an object

that is an instance of such a class of the model: this class should be able to have a

dinamic behaviour.

Statecharts represent behaviour of entities in such complex systems and they specifiy

the actions happened after an event. Next there is an example of a state machine.

If we have a class A and it has a statechart S that models its behaviour, the use of the

instance of class A is controlled by the statechart S.

In this work we extend class A in such a way that the call of the A-methods is

controlled by and only by the statechart S. Without S avery call is possible.

There are many techniques of implementing state machine, the most common implies

statements like Switch/Case for dostinguish object’s states. This solution is not scalable:

 46

if the number of states of the state machine grows, the code wil be not readable. More,

in this solution we link together the logic of the state machines and its implementation.

So, we chose to implement statecharts referring to Design Pattern
'
 State2.

�����'HVLJQ�3DWWHUQ�DQG�SROLPRUILVP�

The State pattern is an example of a tremendously useful software pattern that takes

advantage of polymorphism. The State pattern uses polymorphism to define different

behaviors for different states of an object. It is a valuable pattern to master, because it

can be used in practically any sizable application.

Separating behaviors into disparate objects makes sense when the separation takes

advantage of SRO\PRUSKLVP. Polymorphism allows two objects to be treated identically,

using the same methods, even though the objects implement these methods in quite

different ways.

Polymorphism works because the classes that implement the same method differently

both derive, at some point, from a common VXSHUFODVV. A general program is written

that operates on objects of the superclass type. The program is oblivious to the fact that

what it thinks of as a superclass object is, in reality, an object that is a member of one of

the VXEFODVV types. When the program invokes a method defined in the superclass, the

method that gets called is actually the subclass method that overrides the superclass

version.

Polymorphism allows very general programs to be written for a superclass, letting the

subclasses take care of the details. An example of this is a drawing program that can

1 See [6] and [1].
2 See [1], [8] and [11].

 47

write a loop that processes a list of graphic objects including lines, squares, and circles.

It can work from the bottom most graphic object to the top, invoking the draw() method

on each object in turn. The drawing program manages the sequence of drawing

operations, which depends on which objects are "on top." Each object, in turn, is

responsible for drawing itself. The program works on objects of type Graphic, knowing

that every Graphic object always implements the draw() method. The subclasses Line,

Square, and Circle, all derive from the superclass Graphic, and each overrides the

draw() method in its own fashion. The program can then be extended by adding an

Elipse or Rectangle class. As long as the new classes derive from Graphic, and as long

as they implement the draw() method appropriately, the basic drawing program

continues to work, unchanged.

The next part describes the state pattern and then how we use polimorfism to realize and

implement the state machine.

�������6WDWH�3DWWHUQ�

Now we describe the state pattern.

,QWHQW�

Allow an object to alter its behaviour when its internal state changes. The object will

appear to change its class.

0RWLYDWLRQV

Objects have behvaiours that depends to the system thay belong to. With this pattern,

we can control the flux of the events, taking care of leave distinct the instance of the

object and the instances of class that represent the state machine.

 48

6WUXFWXUH

Some code structure may be the next one.

class Context
{

State state = new ConcreteState1(this);
request() // Un evento e accade
{

state.handle();
}
state = AbstractState.getNextState(e);

}

abstract class AbstractState
{

static final AbstractState stateA =
new ConcreteStateA();

static final AbstractState stateB =

 49

new ConcreteStateB();
protected State();
abstract public void handle(Event e);

}

class ConcreteState1 extends State
{

public void handle(Event e)
{

oggetto.metodo_appropriato ();
}
public State getNextState(Event e)
{
return stato_appropriato;
}

}
class ConcreteState2 extends State { … }

3DUWHFLSDQWV

&RQWH[W�FODVV�

Defines the ionterface of interest to clients and it maintains�

6WDWH�FODVVHV�

The State class is an abstract class. It provides some basic behavior, but its only real

purpose is to be extended to produce one or more "real" state classes. In this case, two

state classes are defined, State1 and State2. To create additional states, you would copy

one of these classes.

abstract class AbstractState { … }
class ConcreteState1 extends AbstractState { … }
class ConcreteState2 extends AbstractState { … }
�

6WDWLF�YDULDEOH

The State class defines three variables:

 50

static State initialState;
static final State state1 = new ConcreteState1();
static final State state2 = new ConcreteState2();

The first variable is the default initial state. The first state that gets created will be stored

in that variable, in case the StateOwner object wants to use it. (It doesn’t have to.) The

next two variables create the state objects using the classes State1 and State2.

Because these variables are defined as static, they belong to the State class. In other

words, they are FODVV�YDULDEOHV, which means they belong to the class as a whole, rather

than to individual objects. Without the static keyword, they would be LQVWDQFH�

YDULDEOHV, meaning that each object created using the class (each LQVWDQFH of the class)

would have its own variable.

In general, using the static keyword means there is only one copy of the variable for the

entire class, no matter how many objects are created using that class. Such variables

generally are used for class-wide data, such as a count of the number of objects that are

created using the class.

&RQVWUXFWRU

The next significant part of the State class is the constructor, which saves the first state

created as the default initial state. The important feature of the constructor is that it is

defined as SURWHFWHG:

protected State()
{

if (initialState == null) initialState = this;
}

Because the constructor is protected, it cannot be used by other classes to create new

objects. It can only be used by the State class and by those classes that extend the State

class.

 51

Since the State class is abstract, only the subclasses have access to the constructor,

which is equivalent to making the subclass constructors private. In other words, the

subclasses can create themselves using static variables, but they can never be used at

run time to create additional objects.

In this case, the abstract State class creates the static variables state1 and state2. The

protected constructor forms a "closed loop" with these static variables. The creation of

the static variable state1 accesses the State1 constructor, which invokes the State

constructor, which is protected. The final result is that the state variables can only be

created from within the State class and its subclasses. They form a predetermined set

that is defined at compile time.

2SHUDWLRQV

The last part of the State class can define some abstract methods.

Because these methods are defined as DEVWUDFW, they have no method body. That means

they must be implemented by the subclasses that extend the State class. That,

fundamentally, is the reason for defining an abstract class in the first place -- to specify

the kinds of methods the individual states will provide, and leave the implementation up

to them.

The State class says that each state will have two methods, one for when you exit (or

leave) a state, and one for when you enter (or arrive at) a state. Although you do not

always need both methods, frequently it is helpful to have them. In multiple state

systems, the combination of leaving one state and arriving at another can completely

define the actions needed for a transition between the two states.

 52

�����6WDWH�SDWWHUQ�IRU�FRGH�JHQHUDWLRQ�

For explaining use and advantages of State pattern, we referred to an example:

modeling a access control system, such as the metropolitan one. In this area user finds a

turnstile before entering to the trains area. A turnstile is illustrated next.

In this context, we can find in the model, a class “Turnstile”.

The behaviour of a turnstile can be expressed in this way:

• If the turnstile is locked and user insert coin, turnstile becames unlock and user

can pass over.

• If the turnstile is locked and user try to pass, turnstile set an allarm.

• If the turnstile is unlocked ad user pass over, the turnstile returns locked.

• If the turnstile is unlocked and user inserts coin, turnstile may thanks!

 53

The “Turnstile” class is represented above.

The statecharts may be very simple, but in the context of “Turnstile” class, it may

became difficult recognizing the behaviour logic of the class from the implementation

of the state machine, if it had implemented as switch/case statements. Far from these

problems, we use State pattern for implementing the statechart (displayed next).

For generating some code, we assumed that the designer want represent events (such as

“Coin” and “Pass”) by operations declared in “Turnstile” class. We supposed that in the

CASE tool the designer:

1. add a class “Turnstile” in the class diagram, adding to it its attributes and

operations not directly regarding the dinamic behaviour.

 54

2. select the class and add a state diagram with complete description of events,

actions and transitions.

3. then tha CASE tool will add events and actions as operations of “Turnstile” class

in this way:

a. adding declarations of event to “Turnstile” class.

b. creating a new class “TurnstileSM” containing declarations of the events

plus actions.

The the code geration work in this way: starting from the “Turnstile” class and its

statechart, we create many classes, QDPHRI6WDWH, representing the states of statechart.

These classes implements all events and actions operations declared before in

“Turnstile” class and in “TurnstilSM” class.

Only the operations regarding that state can be called in such a QDPHRI6WDWH class.

In our example, “Turnstile” class is derived in “TurnstileSM” class, that represent the

behavioural context, then in the “TurnstileState” class (an interface) and from it we

create the classes QDPHRI6WDW� as illustrated next..

 55

All static members in “TurnstilState” class make sure that will be one and only one

instance of QDPHRIVWDWH classes in this context.

This architecture has many advantages: the dynamic behaviour of the turnstile is

separates from the context of the whole system.

The code structure generated can be the next.

 56

class Turnstile
{

attribute1;
attribute2;

public void op1();
public void op2();
public void FRLQ();
public void SDVV();

}

class TurnstileSM
{

public void FRLQ();
public void SDVV();

}

abstract class TurnstileState
{

static LockState _stlock =
new LockState();

static UnlockState _stunlock =
new UnlockState();

void SetState(TurnstileState);

public void FRLQ(TurnstileSM tc);
public void SDVV(TurnstileSM tc);

}

class LockState extends TurnstileSM
{

public void coin(TurnstileSM tc)
{

tc.SetState(_stunlock);
tc.unlock();

}

public void pass(TurnstileSM tc)
{

 tc.alarm();
}

}

class UlockState extends TurnstileSM
{

 57

public void moneta(TurnstileSM tc)
{

tc.thanks();
}

public void passaggio(TurnstileSM tc)
{

tc.SetState(_stlock);
tc.unlock();

}
}

�

The code generated is open and any change doesn’t have conseguences on the whole

system code implemented.

This structure is scalable and reusable: we add any behaviour while the system grows,

maintaining these behaviour separated from the system model.

Thi work add these functionalities to ArgoUML: we can generate java code from the

state diagram and class diagram.

 58

��� $UJR80/�FRGH�RUJDQL]DWLRQ�

�����*HQHUDO�DUFKLWHFWXUH�

The ArgoUML application consists of three main packages (each containing many

subpackages): the Novosoft UML metamodel library (NSUML), the Graph Editing

Framework (GEF), and of course, ArgoUML itself. NSUML contains all the classes

needed to represent and manipulate UML 1.3 models, GEF is responsible for visualising

these UML models as diagrams, and ArgoUML ties all this together and adds the

application logic.

The Model-View-Controller architecture is essential for any UML modelling tool. Each

project usually contains exactly one UML (user level) model, but contains many views

on the model. The various UML diagrams, the form-based property panels, even the

navigator pane (which shows the model in a tree-like structure) are all simply different

views which visualize the model from di_erent perspectives and in di_erent ways.

�������3DFNDJHV��

ArgoUML itself breaks down into several components. The graphic does not reflect the

true package names, neither the true dependencies of the packages.

 59

There are three major libraries that make up the bulk of the Argo/UML source code.

Each is made up of several Java packages. Argo/UML also contains several packages

itself.

The numbers next to each package indicate the number of classes in that package. Each

package is described below.

*()������FODVVHV���

• uci.gef (105) -- reusable graph editing framework: shapes, selections, grids,
editors, layers, commands

• uci.gef.demo (19) -- demonstrations how to use GEF
• uci.gef.event (2) -- events generated from GEF editors

 60

• uci.graph (15) -- generic interface between GEF and graph representations,
similiar to Swing’s TreeModel

• uci.util (12) -- general purpose utilities

• uci.ui (13) -- property sheet and other small user interface utilities
uci.beans.editors (4) -- custom property editors used in property sheet

80/�PHWD�PRGHO������FODVVHV���

• org.argouml.uml.Foundation.Core (26) -- from UML Semantic
Specification

• org.argouml.uml.Foundation.Data_Types (22) -- from UML
Semantic Specification

• org.argouml.uml.Foundation.Extension_Mechanisms (2) --
from UML Semantic Specification

• org.argouml.uml.Behavioral_Elements.Common_Behavior
(16) -- from UML Semantic Specification

• org.argouml.uml.Behavioral_Elements.State_Machines (20)
-- from UML Semantic Specification

• org.argouml.uml.Behavioral_Elements.Use_Cases (2) -- from
UML Semantic Specification

• org.argouml.uml.Behavioral_Elements.Collaborations (6) --
from UML Semantic Specification

• org.argouml.uml.Model_Management (5) -- from UML Semantic
Specification

• org.argouml.uml.test.omg (15) -- examples from UML Notation Guide
• org.argouml.uml.generate (3) -- placeholder for future code generation

features

$UJR�����FODVVHV���

• org.argouml.kernel (34) -- reusable framework for critics, "to do" list,
design history

• org.argouml.cognitive.checklists (4) -- framework for design
checklists�

$UJR�80/������FODVVHV���

• org.argouml.uml (1) -- Main
• org.argouml.uml.ui (111) -- Argo/UML windows, dialogs, panels,

navigational perspectives, property panels
• org.argouml.uml.visual (25) -- UML diagram definitions, UML node

and arc definitions
• org.argouml.uml.cognitive.critics (44) -- design critics
• org.argouml.uml.cognitive.critics.java (1) -- design critics
• org.argouml.uml.cognitive.critics.patterns (3) -- design

critics
• org.argouml.uml.cognitive.checklist (6) -- design checklists
• org.argouml.Images -- gif images for splash screen and toolbar icons

 61

�������$UJR80/�FRUH�

ArgoUML uses Ant as it’s main build tool. The whole build process is controlled by the

build.xml file in the main source directory.

The parser for Java reverse engineering is generated with Antlr from a customized Java

grammar.

It all begins in org.argouml.application.Main: set up main application frame

(org.argouml.ui.ProjectBrowser), the project

(org.argouml.kernel.Project), numerous classes, and finally as a background

thread: cognitive support (org.argouml.cognitive.Designer) and some more

classes. The ProjectBrowser initializes the menu, toolbar, status bar and the four

main areas:

navigation pane (org.argouml.ui.NavigatorPane),

editor pane (org.argouml.ui.MultiEditorPane),

to do pane (org.argouml.cognitive.ui.ToDoPane),

details pane (org.argouml.ui.DetailsPane).

 62

All of the uml diagrams and models in a project are contained in a single Project

instance. This class is also responsible for loading and saving diagrams and models.

An Argo Project consists of many members, each of which has its own requirements for

persistance. The UML model, the diagrams, and information about the project itself

must all be saved to a file and, of course, be restored again whenever the user reopens

the project. Since both GEF and NSUML can save and restore XML documents, Argo

only has to invoke the appropriate methods.

The abstract class ProjectMember forms an interface between Argo and the individual

member. The concrete classes ProjectMemberDiagram and ProjectMemberModel

override the save and load methods and call the approriate GEF and NSUML methods.

The ActionSaveProject.trySave method (package org.argouml.ui) is invoked whenever

the user click on the appropriate button or selects the ‘Save Project’ menu item. This

method first saves the project information in an argo-specific XML document.

 63

This is done in the same way GEF creates its XML documents: a template file (argo.tee)

specifies which member variables of the project are to be saved. Upon completion,

every ProjectMember gets a chance to save its information:

The ProjectMemberModel.save method creates an XMIWriter instance and generates an

XMI document.

The ProjectMemberDiagram.save method creates an OCLExpander instance and

generates a PGML document .

In order to avoid having several, semantically bound documents as separate fies, Argo

packs them all together into a standard ZIP-file with the extension zargo.

Restoring the state of a project from the XML documents is similar. An XMIReader is

responsible for recreating the model, and OCLExpander instances recreate the project

status and the diagrams.

�������$UJR80/�PDLQ�ZLQGRZ�

Each of the classes are designed to be subclassed. In the links, there will be a hierarchy

showing all of the classes that currently inherit from this class, and also what part of

Argo/UML’s main window they are associated with.

Throughout the code of there are groups of classes that share inheritance hierarchies,

and play a key role in how the program works.

Below is the Argo/UML main window. In the window, there are four panes. The

Navigation pane (top left), Editor pane (top right), To Do pane (bottom left), and the

Details pane (bottom right).

 64

The main ArgoUML window is the singelton ProjectBrowser, containing classes for

each of the windows panes.

The navigator pane displays the project in one of several perspectives as a tree-like

structure, enabling easy navigation. The multieditor pane is the main pane of the

application containing a diagram-specific toolbar, and of course, the GEF editor pane

displaying the active UML diagram. The details pane shows the attributes of the

currently selected model element. The todo pane displays a list design issues which

need the user’s attention. The application menu bar and status bar perform the obvious

tasks.

 65

�������0HQX�

It is based on the swing class JMenu, which requires a class implementing MenuModel

from which it gets the tree’s data.

There are many more classes that extend UMLAction, but many have been omitted for

the sake of clarity. Notice that the two images above paralell because they represent the

same actions. This diagram could be repeated for each of the menus.

 66

�������1DYLJDWRU�SDQH�

The navigator pane is shown to the left of the editor pane. It shows the user’s model in a

tree-like diagram. It is based on the swing class JTree, which requires a class

implementing TreeModel from which it gets the tree’s data.

Since the user’s model is a graph and not necessarily a tree, there are many ways

(perspectives) to represent the model in a tree-like structure. One possibility is to start

with the model, branch into the namespaces and packages (and subpackages), branching

further into the individual classes and finally to the class attributes and operations

(which are leaves in the tree).

The only real difference between the perspectives are the parent-to-child branching

rules. In the above example, the package-centric perspective has the rules ’package-

tosubpackage’, ’package-to-class’, ’class-to-attribute’, etc. These rules are implemented

in GoParentToChild classes realizing the TreeModelPrereqs interface. All the rules

known to the system are registered in the static vector NavPerspective.rules.

 67

�������(GLWRU�

The type of diagram that the figure below is displaying is a class diagram. This class

can be extended to create other types of diagrams that aren’t currently implemented

from the UML specification.

ArgoUML uses the GEF library for the various UML diagram types. GEF assumes that

the data it visualizes is structured as a graph consisting of nodes and edges.

GEF uses the GraphModel interface to access the model. The ArgoUML classes which

implement this interface must map the UML metamodel to GEF’s node-and-edge

structure.

A use-case diagram can contain the following model elements: actors, use-cases,

dependencies and generalizations. The UseCaseDiagramGraphModel must map these

metaclasses to GEF figure classes.

 68

Actors and use-cases are considered nodes, since they can exists independently.

Generalizations and dependencies are edges which connect the nodes. These figure

classes represent the metaclasses graphically in a specific diagram.

Implementing the various UML diagrams (static structure, use-case, sequence, etc.) is

suprisingly straightforward. Due to the supporting framework, only a few classes for

each diagram type are necessary. Each UML diagram type requires:

a class derived from Diagram. This class should contain member objects for each

command (usually Cmd-Subclasses) the user may trigger. ArgoUML supplies the

classes ArgoDiagram which uses the observer pattern to add listener registration

support allowing the diagram to react to changes in the model, as well as the class

UMLDiagram which adds support for a UML model (interface MNamespace as

opposed to the generic MutableGraphModel) and commands common to all UML

diagrams.

a displayable Fig subclass for each UML metamodel element which can be inserted in

the diagram.

1. a factory class realizing the GraphEdgeRenderer and

GraphNodeRenderer interfaces which can create the necessary Fig

instances on demand.

2. a adapter class realizing MutableGraphModel allowing GEF to access

and modify the UML model. Support for each type of UML diagram is

encapsulated in its own subpackage hierarchy.

 69

The associations (lines) drawn between the figures shown in the Editor pane of the

window are subclasses of FigEdgeModelElement.

From looking at the window below, figures in the Editor pane are elements of this class.

So to make a new diagram type, this class would need to be extended. In this particular

diagram, there are four instances of FigClass (shown third from the left in the above

hierarchy).

 70

�������'HWDLOV�SDQH�

The details pane is below on multieditor pane. It consists of several tabs, each of which

shows details about the currently selected object. This object can be an element in the

user’s model, a diagram or a figure. This allows the user to inspect and edit the object’s

attributes in a form-based manner.

 71

ToDo Tab is used by the todo pane to show details about the selected todo item

Properties Tab shows the attibutes and references of the currently selected model

element. Its contents is dependent on the metaclass of the element { a class has different

attribues than an actor. These different contents are encapsulated in subclasses of

PropPanel.

Documentation Tab allows the user to add textual documentation to individual model

elements. These text strings stored as tagged values in the model.

Style Tab allows the user to change appearance of the figures in the diagram. This does

not change the model in any way, only the visual representation of the model elements.

Source Tab lets the user enter implementation details directly into the model.

Constraint Tab displays the constraints linked to the selected model element.

Tagged Values Tab shows the tagged values of the selected element.

CheckList Tab is used by the cognitive support package.

The property tabs are located below in the Navigation pane. To add another tab,

TabSpawnable would have to be inherited from.

 72

 73

��� $UJR80/�OLEUDULHV�

�����*()�

GEF, the thing which is hidden in gef.jar, is responsible for displaying the graphs

and which gives you the ability to move things around. GEF used to be closely

interwoven with Argo, but is now more or less separate.

The goal of the GEF project is to build a graph editing library that can be used to

construct many, high-quality graph editing applications. Some of GEF’s features are:

Node-Port-Edge graph model that is powerful enough for the vast majority of connected

graph applications.

Model-View-Controller design based on the Swing Java UI library makes GEF able to

act as a UI to existing data structures, and also minimizing learning time for developers

familiar with Swing.

XML-based file formats based on the PGML standard (soon to support SVG).

�������&KDUDFWHULVWLFV�

The Graph Editing Framework (GEF) is a library of java classes which support the

visual representation and modification of connected graphs. It is based on the MVC

pattern and contains support for both the view and the controller, and specifies a set of

interfaces to access the model. ArgoUML uses this framework to display the UML

diagrams.

 74

In MVC the view is responsible for visualising the model to the user. GEF assumes the

model is a connected graph, although the class hierarchy could be extended to support

other models. A connected graph consists of nodes with ports, and edges may connects

ports with each other.

�������/D\HUV��

The class LayerManager and its array of Layers form the view support in GEF.

Layers are like clear sheets of plastic, each containing part of a drawing. Layed on top

of each other, they make the overall drawing. They can be hidden, locked or grayed out

individualy. LayerDiagram is a layer which contains a collection of view elements

(class Fig).

LayerPerspective extends on this by assuming that the model is a connected graph. Each

view element represents a node or an edge in the model.

 75

The class LayerPerspective accesses this model through several interfaces: GraphModel

supports traversing the graph; GraphNodeRenderer and GraphEdgeRenderer are class

factories for creating displayable Fig instances from the model’s nodes and edges.

Usually, the user interacts with the application by clicking on buttons, activating tools in

toolbars or selecting menu items in popdown menus. In Java/Swing, menu items and

buttons are represented by with objects realizing the Action interface. Whenever a user

selects a menu item oder a toolbar button, the Swing library invokes the

Action.actionPerformed method. Usually applications make use of the default

action implementation, AbstractAction, and derive their own actions from this

class.

�������(GLWRU�

The Editor class acts as a mediator that holds the other pieces together and routes

messages among them.

 76

�������)LJV�

Figs (short for figures) are the primitive shapes; for example, FigCircle draws a

circle and FigText draws text.

�

�������6HOHFWLRQV�

Selections keep track of which Figs are selected and the effect of each handle; for

example, SelectionResize allows the bounding box of a Fig to be resized, while

SelectionReshape allows individual points of a FigLine or FigPoly to be moved.

The set of figures which are currently selected is handled by the SelectionManager.

Whenever the selection changes, this class also notifies all registered SelectionListeners

(observer pattern, section 3.1) of the change. This could allow another window to

update its contents to stay synchronized with the diagram. The SelectionManager also

 77

asks the figure whether it has a Selection object. This object contains the behavoir of

afigure in its selected state.

Selection objects handle the display of handles or whatever graphics indicate that

something is selected, and they process events to manipulate the selected figure. GEF

offers several Selection subclasses, which can be extended by the application.

SelectionMove allows the user to move the figure by dragging it, but not to resize it

SelectionNoop does not allow the user do manipulate the figure.

SelectionReshape draws one handle over each point in the figure. This allows the user

to reshape the figure by moving the individual points.

SelectionResize shows the user the figure ’s bounding box with handles allowing the

user to resize the figure.

SelectionLowerRight is similar to the SelectionResize class, but only allows resizing by

dragging the lower right corner of the boudning box.

SelectionRotate allows the user to rotate the figure.

 78

�������&RPPDQGV�

Cmds (short for commands) make modifications to the Figs; for example, CmdGroup

removes the selected Figs from their Layer and adds a new FigGroup in their place.

The GEF class Cmd is an abstract superclass for all editor commands, adding command

arguments, support for \undo" and an application-global command registry. GEF

contains over 40 Cmd subclasses, supplying support for load/save commands, cut and

paste commands and commands to add and delete nodes. An application can, of course,

add new Cmd-subclasses as required.

�������0RGHV�

Modes are objects that process user input events (e.g., mouse movement and clicks)

and execute Cmds to modify the Figs; for example, dragging in ModeSelect shows a

selection rectangle, while dragging in ModeModify moves the selected objects. I have

made central those concepts that are familiar to diagram editor users and avoided those

that are unfamiliar or too abstract; for example, GEF does not use the decorator pattern

(Gamma et al., 1995) or attempt to offer general purpose constraint solving (e.g.,

Sannella, 1994).

 79

�����1680/�

�������80/�0HWDPRGHO�LPSOHPHQWDWLRQ�

Novosoft metadata framework is based on JMI specification and generated classes that

are required by JMI specification and also provides additional services like event

notification, undo/redo support, XMI support. NSMDF is local in-memory

implementation.

 80

It also provides code generated from UML 1.4 metamodel. Which could be used for

constructing applications based on UML 1.4.

NSMDF project is based upon NSUML 0.4.*, which is sill provided as separate

download. NSUML 0.4.* is being phased out.

�������3DFNDJHV�VWUXFWXUH�

The complexity of the UML metamodel is managed by organizing it into logical

packages. These packages group metaclasses that hows strong cohesion woth each other

and loose coupling with metaclasses in other packages. The Foundation and

Behavioural Elements packages are further decomposed.

�������)RXQGDWLRQ��

The Foundation package is the language infrastructure that specifies the static structure

of models. The Foundation package is decomposed into subpackages: Core, Data types

and Extension Mechanisms.

The Core package specifies the basic concepts required for an elementary metamodel

and defines an architectural backbone for attaching additional language contructs, such

as metacasses, metaassociations and metaattributes.

The Extension Mechanisms package specifies how model elements are customized and

extended with new semantics.

The Data types package defines basic data structures for the language.

 81

�������%HKDYLRXUDO�(OHPHQWV��

This Behavioural Elements package is the language superstructure that specifies

dynamic behaviour or models. The behavioural Elements package is decomposed into

the following subpackages:

Common Behaviour It specifies the core concepts required for behavioural elements.

Collaborations It specifies a behavioural context for using model elements to

accomplish a particuolar task.

UseCa ses It specifies behaviour using actors and use cases.

 82

State Machines It defines behaviour using finite-state machine transition systems.

Activity Graphs It defines a special case of a state machine that is used to model

processes

�������0RGHO�0DQDJHPHQW�

Il pacchetto Model Management offre gli strumenti per organizzare un progetto,

come, per esempio, i packages. La struttura è riportata in (UURUH�� /
RULJLQH�

ULIHULPHQWR�QRQ�q�VWDWD�WURYDWD�.

 83

�������$3,�'HVFULSWLRQ�

The main domain of ArgoUML is, of course, UML models. ArgoUML uses the

Novosoft UML API (NSUML), a java implementation of the Unified Modeling

Language 1.3 physical specification.

The Novosoft UML API contains four different groups classes representing the UML

types and metaclasses:

Primitives are UML data types with the stereotype <<primitive>>. These are mapped

directly to java classes.

NSUML maps UML data types with the stereotype <<primitive>> directly to java types

and objects.

UML primitives Java Type

Boolean boolean

Name String

 84

Integer int

UnlimitedInteger int

LocationReference String

Geometry String

Enumerations are UML data types with the stereotype <<enumeration>>.

NSUML realizes UML data types with the stereotype <<enumeration>> as final classes

with only private constructors. The names of the classes correspond to the UML name,

prefixed with a capital M.

UML enumeration NSUML Class

AggregationKind MAggregationKind

CallConcurrencyKind MCallConcurrencyKind

ChangeableKind MChangeableKind

MessageDirectorKind MMessageDirectorKind

OperationDirectionKind MOperationDirectionKind

OrderingKind MOrderingKind

ParameterDirectionKind MParameterDirectionKind

PseudostateKind MPseudostateKind

ScopeKind MScopeKind

VisibilityKind MVisibility

For each enumeration literal, public static final instances are created on initialisation.

 85

There will be exactly one (immutable) instance for each literal for the entire lifetime of

the system5, ensuring that identity comparisons and equality comparisons will always

have the same result.

Datatypes are UML data types with no stereotypes.

Datatypes have no stereotype. Each datatype is mapped to exactly one NSUML Java

Class. The class MMultiplicity has four predefined instances for the most common

UML multiplicities: M0_1, M1_1, M0_N and M1_N. These instances are defined as

static class members (accessible as MMultiplicity.M0_1, etc.).

UML data type NSUML class

Expression MExpression

ActionExpression MActionExpression

ArgListsExpression MArgListsExpression

BooleanExpression MBooleanExpression

IterationExpression MIterationExpression

MappingExpression MMappingExpression

ProcedureExpression MProcedureExpression

TimeExpression MTimeExpression

TypeExpression MTypeExpression

Multiplicity MMultiplicity

MultiplicityRange MMultiplicityRange

7DEHOOD���±�0DSSDWXUD�GHO�WLSR�³GDWDW\HV´�

Elements are UML metaclasses constituent of a UML model.

UML elements are structured in packages (foundation, core, behavior, etc). Each

element is mapped to exactly one NSUML interface and one NSUML class.

 86

The NSUML class MBaseImpl is the abstract superclass of all element classes {

likewise, all NSUML interfaces are derived from the interface MBase.

all NSUML interfaces are derived from the interface MBase.

UML element NSUML interface NSUML class

Package MPackage MPackageImpl

Class MClass MClassImpl

Attribute MAttribute MAttributeImpl

...

�������$FFHVVLQJ�DQG�PRGLI\LQJ�PHWDDWWULEXWHV�

The Novosoft UML API also contains auxiliary classes which provide event notification

support and undo/redo support.

An application should always refer to an object by its interface { never directly by its

class:

MBase cls0 = new MClassImpl(); // ok

MClass cls1 = new MClassImpl(); // also ok

MClassImpl cls2 = new MClassImpl(); // avoid this!

Element metaclasses contain metaattributes, which can be one of the primitive,

enumeration or datatype classes.

Each metaattribute is mapped to a member variable and should only be accessed by the

corresponding inspector (getAttribute or isAttribute) and mutator (prefix setAttribute)

methods.

 87

The default operation are of three kind:

Get – returning the value or a collection of values.

Set – setting the values of a objec type. This doesn’t return.

Is – querying type. This return a boolean that says if an attributes has a property.

MNameOfElement – these are the interfaces that define the methods to access to the

attributes of the model (its name is the same of the NameOfModelElement).

MNameOfModelElementImpl – these are classes that realize interfaces defined

pervious. In these classes there are attributes defining properties of the element of the

model that they represent (i.e. MOperationImpl class realize the MOperation

interface and it realize all methods defining relevant attributes).

6.2.8 $FFHVVLQJ�DQG�PRGLI\LQJ�PHWDDVVRFLDWLRQV

Two element metaclasses can be linked to each other with metaassociations. Every

metaassociation has a association role at each end. Depending of the multiplicity of the

role, different methods are used to access the association

Reference roles have a multiplicity of 0..1 or 1. They are accessed similarily to

attributes with getRolename and setRolename methods.

Bag roles are unordered with a multiplicity different from 0..1 and 1. The getRoles

method returns a collection of all the references in the role. Note that this collection is a

copy of the internal collection and can not be changed. With setRoles all the roles can

be set at once. The addRole and removeRoll methods allow adding and removing single

associations.

 88

List Roles are ordered with a multiplicity different from 0..1 and 1. In addition to the

methods bag roles offer, they also define addRole (int, OppositeRole), removeRole

(int), setRole (int, OppositeRole) and getRole (int) methods to allow accessing the roles

at specific positions in the list.

A link between two objects can be added to removed with a single method call to either

side. The status of the opposite object is implicitly updated:

MTaggedValue tv;

MModelElement me;

tv = new MTaggedValueImpl;

me = new MModelElementImpl;

tv.setModelElement(me); // (1) adds an association

me.removeTaggedValue(tv); // (2) removes it

In this example, line (1) not only modifies the status of tv, but also of me.

When modifying a reference role (with setRole), the object first checks whether a link

already exists. If this is the case, it tells the existing opposite end to remove the link

with a all to internalUnrefRole. If the call to setRole is meant to create a link (as

opposed to clearing it by passing null as a parameter), it then tells the (new) opposite

end to create the link with internalRefRole.

When setting a complete bag role or list role the difference between the old set of links

and new set of links is determined. Any links which are in the old set but not in the new

set are removed { resulting in (possibly) several calls to internalUnrefRole to

 89

update the state at the opposite end of the association. Then any new links are added

(again calling internalRefRole to update the opposite end).

������1680/�UHIOHFWLYH�$3,�

NSUML offers a orthogonal methods for accessing features (metaattributes and

metaassociations) by name. These reflective methods are slower than the direct

methods, but are often easier to use.

Depending on the type feature, not all reflective methods may be valid:

Each implementation class overrides the appropriate reflective methods. If the feature

parameter is known to the class, it reacts to the invocation by setting or getting the

feature. If the feature is unknown, the call is passed to the superclass for further

handling. If, after traversing the hierarchy, no superclass recognized the feature, an

IllegalArgumentException is throw by MBaseImpl.

 90

UHIOHFWLYH�PHWKRG�YDOLG�IRU� IHDWXUH�

Object reflectiveGetValue(String) all

void reflectiveSetValue(String, Object) all

void reflectiveAddValue(String, Object) bags and lists

void reflectiveRemoveValue(String, Object) bags and lists

 91

Object reflectiveGetValue(String, int) only lists

void reflectiveSetValue(String, int, Object) only lists

void reflectiveAddValue(String, int, Object) only lists

void reflectiveRemoveValue(String, int,
Object)

only lists

������� 2WKHU�OLEUHULHV�

2&/�

OCL is handled by Frank Finger’s OCL compiler, developed at the TU Dresden.

The purpose of the compiler is to generate code out of OCL expressions. The generated

code evaluates the OCL constraint for a model instance, i.e. a program or data base, at

runtime. Constraints formulated during analysis and design can then easily be checked

in the implementation.

While the Java code generator that is being implemented makes certain restrictions to

the OCL constructs that can be used, the other compiler modules are implemented as

close to the OCL specification of UML 1.3 as possible.

 92

��� &RGH�JHQHUDWLRQ�

In this chapter we will describes the classes added to ArgoUML core for implementing

the code generation feature.

The main work is due to the classs GeneratorState, that implements all the functions for

generating code from the statechart.

�����,PSOHPHQWDWLRQ��

Code generation in Argo/UML is supported with a language independent abstract base

class and Java-specific subclasses.

�������&ODVVH�*HQHUDWRU�

Class Generator is an abstract base class that is similar to the Visitor design pattern

(Gamma et al., 1995). However, the logic to traverse the design representation is

intermixed with node processing logic.

This class is the abstract super class that defines a code generation framework. It is

basically a depth-first traversal of the UML model that generates strings as it goes. This

framework should probably be redesigned to separate the traversal logic from the

generation logic. See the Vistor design pattern in "Design Patterns", and the Demeter

project.

Code generation strting from menu options need standard libreries (javax.swing),

meanwhile the selected classifier is returned by the interface

org.argouml.generator.ui.TableModelClassChecks.

 93

�������&ODVVH�*HQHUDWRU-DYD�

Class GeneratorJava is a Java-specific subclass that generates Java source files. It is

called by ClassGeneratorDialog.

Each of the Java-specific classes implements methods that generate source code for

design elements of a given type. Since the code generation logic is coded in Java, the

only way to customize it is by changing the code or by adding new code generation

preferences.

�������*HQHUDWRU'LVSOD\�

Class GeneratorDisplay generates simplified Java code to be displayed in the

"Source" tab and in the textual labels of UML class icons and other parts of UML

diagrams.

�������*HQHUDWRU6WDWH�

I add a new class GeneratorState inherited from GeneratorJava.

This class is called by many classes.

 94

For storing the main features of the state machine we created these variables:

static MStateMachine sm = null;
static Vector vstates = new Vector();
static Vector vevents = new Vector();
static Vector vactions = new Vector();
static Vector vtransitions = new Vector();
static Vector vguards = new Vector();

 95

String dirpath = path + cls.getName() + "_state";

Each vector stores operations; more, we have variable to store the dirpath when we

create the new classes of the structure.

Main operations are:

• String Generate(Object o)

• String GenerateFile(MClassifier cls, String path)

• String GenerateFSMFile(MClassifier cls, String path)

• boolean manageStateMachine(MClassifier cls)

• String generateHeader(MClassifier cls, String path)

• String generateClassifier(MClassifier cls)

• String generateStateHeader(String path)

• void findSMData(String commonHeader, String path)

• void generateContext(MClassifier cls, String

stateHeader, MClassifier srcClassifier, String path)

• void generateStateAbs(MClassifier cls, String

stateHeader, String path)

• void generateStates(MClassifier cls, String

stateHeader, String path)

Fra i parametri gestiti da queste funzioni, cls rappresenta la classe attuale e il

 96

�������&ODVV�SURSHUWLHV�

Then for classes and classifiers we refers to this hierarchy.

 97

�������6WDWH�PDFKLQH�SURSHUWLHV�

For state machines we refers to next class diagram.

�

 98

In GeneratorState I add some code for finding the statemachines associated to a

class:

Collection behaviors = cls.getBehaviors();
Iterator it = behaviors.iterator();
sm = null;
while (it.hasNext())
{

Object behavior = it.next();
if (behavior instanceof MStateMachine)
{

sm = (MStateMachine)behavior;
break;

}
}
if (sm instanceof MStateMachine)

trovataSM = true;

So we can load state machine’s components and generate the appropriate code.

All attributes of classifier is refferred by MMUtil class.

For the states’ properties we refer to Mstate class.

 99

MState top = sm.getTop();
Collection states = (MCompositeState)top).getSubvertices();
Iterator itstate = states.iterator();
while (itstate.hasNext())
{

 100

Object obj = itstate.next();
if (obj instanceof MState)
{

// Memorizzo gli stati
 vstates.addElement((MState)obj);
}

}
Collection trans = sm.getTransitions();
Iterator ittrans = trans.iterator();
while (ittrans.hasNext())
{

//Memorizzo le transizioni
MTransition t = (MTransition)ittrans.next();
vtransitions.addElement(t);
//Memorizzo gli eventi/trigger
MEvent e = t.getTrigger();
…
vevents.addElement(e);
//Memorizzo le azioni/effects
MAction a = t.getEffect();
…
vactions.addElement(a);
//Memorizzo le guardie
MGuard g = t.getGuard();
…
vguards.addElement(g);

}

�����*HQHUDWHG�FRGH�UHQGHULQJ�

A subclass of JPanel that can act as a tab in the DetailsPane or MultiEditorPane.

When the tab is double-clicked, this JPanel will generate a separate window of the same

size and with the same contents. This is almost like "tearing off" a tab.

Before viewing code we must select a class. This is done by TabModelTarget.

 101

�������&ODVVH�7DE0RGHO7DUJHW�

package org.argouml.uml.ui;

public interface 7DE0RGHO7DUJHW {

 public void setTarget(Object o);

 public Object getTarget();

 102

 public void refresh();

 public boolean shouldBeEnabled();

}

This interface permits to select by mouse a class to traduce and then to obtain the code

generated as a returned value.

So I start creating a new class called TabSrcState in this manner:

�������&ODVVH�7DE7H[W�

The inherited class TabText permits to generate code from a selected object (_target)

to a string (_text) that must be shown by tab strips.

Is the genText method that must be redefined to make a particular code generation code

generation.

This class contains the code generated from the class Generator.

�������&ODVVH�7DE6UF6WDWH�

$GGLQJ�D�WDE�LQ�WKH�'HWDLOV�3DQHO�

I created my TabSrcState class in org.argouml.uml.ui by copying from another

TabYYY.java. Then I registered my TabSrcState in org/argouml/argo.ini by adding a

line like:

details: TabSrcState

Immediate rendering of generated code needs GEF library. The Editor class is the forst

to be called: it allows to select method for processing events from ArgoUML’s user.

These events are propagate until Modes class that permits to find the code out of the

libraries.

 103

Referred code is in org.argouml.uml.diagram.ui.TabDiagram, in selectionCahnged()

method.

protected String genText()
{

Object modelObject = _target;
if (_target instanceof FigNode)

modelObject = ((FigNode)_target).getOwner();
if (_target instanceof FigEdge)

modelObject = ((FigEdge)_target).getOwner();
if (modelObject == null) return null;

return GeneratorState.Generate(modelObject);
}

Rendering fo generated code is created by calling GEF libraries: Editor class and the

Modes class.

In particoular we call the class TabDiagram. By the method

selectionChanged() , we pass the selected fig to setDetailTarget(), in

ProjectBrowser class.

public class TabDiagram extends TabSpawnable
{

public void selectionChanged(GraphSelectionEvent gse)
{

Vector sels = gse.getSelections();
ProjectBrowser pb = ProjectBrowser.TheInstance;
if (sels.size() == 1)

pb.setDetailsTarget(sels.elementAt(0));

 104

else
pb.setDetailsTarget(null);

}
}

The automatic load of the tabstrip id done by

org.argouml.util.ConfigLoader.

�����6KRZ�JHQHUDWH�FRGH�LQ�³6RXUFH�VWDWH´�WDE�

VWULS�

We show you how code generated is shown in the “Source state” tab strip.

User clicks on Source state tab, then we have a call to setTarget(Object):

 public void VHW7DUJHW(Object t) {

 //chiamata a setTarget di TabText (il padre)

 super.VHW7DUJHW(t);

Then from TabText we have:

 public void VHW7DUJHW(Object t) {

 _target = t;

 _parseChanges = false;

 if (_target == null) {

 _text.setEnabled(false);

 _text.setText("Nothing selected");

 _shouldBeEnabled = false;

 }

 else {

 _text.setEnabled(true);

 String generatedText = JHQ7H[W();

Then we return in TabSrcState calling generateState:

 105

 protected String JHQ7H[W() {

 Object modelObject = _target;

 if (_target instanceof FigNode)

 modelObject = ((FigNode)_target).getOwner();

 if (_target instanceof FigEdge)

 modelObject = ((FigEdge)_target).getOwner();

 if (modelObject == null) return null;

 UHWXUQ�*HQHUDWRU6WDWH�*HQHUDWH�PRGHO2EMHFW��

 }

This return is a call to GenerateState, class in which I create the code for state

machine. This return a string to TabSrcstate.

 public static String *HQHUDWH(Object o) {

 return SINGLETON.generate(o);

 }

So in TabSrcState we return a string to TabText, which is calling, and it can show the

generated text.

//public class TabSrcState

protected String JHQ7H[W() {

…

 return GeneratorState.Generate(modelObject);

//public class TabText

 public void VHW7DUJHW(Object t) {

...

 String generatedText = genText();

 if (generatedText != null) {

 _text.setText(generatedText);

 106

�����1HZ�PHQX��*HQHUDWLRQ�VWDWHFKDUWV�

The new feature of code generation is added to ArgoUML by new menu called

*HQHUDWLRQ�VWDWHFKDUWV, under the existing *HQHUDWLRQ menu.

�������&ODVV�3URMHFW%URZVHU�

&ODVV�3URMHFW%URZVHU�

This class contains all declarations and definition of alla menus in the interface. One

particoular menu is Generation(with two options: Generate selected classes and

Generate All Classes).

This menu has three options:

 107

• *HQHUDWH�VHOHFWHG�FODVVHV – for generating java code from the selected class

• *HQHUDWH�$OO�FODVVHV – for generatin java code from alla classes in the diagram

• *HQHUDWH�VWDWHFKDUW – for generating java code from the statechart regarding the

selected class

Menu creation consists in creating an javax.swing.JMenu element to which add options

of Action class.

JMenu generate =
 (JMenu)_menuBar.add(new Menu(menuLocalize("Generation")));
setMnemonic(generate,"Generate",’G’);
generate.add(ActionGenerateOne.SINGLETON);
JMenuItem genAllItem =

generate.add(ActionGenerateAll.SINGLETON);
setAccelerator(genAllItem,F7);

//Genera file con il codice
JMenuItem genStatecharts =

generate.add(Actions.GenerateStateFile);

_menuBar variable contains the menu. New menu genStatecharts calls the

operation of the Action class.

 108

�������&ODVV�80/$FWLRQ�

These classes are important for performing action in the menu Generate.

�������&ODVV�$FWLRQV�

This class contains alla declarations of alla actions invocated by methods and their

management by actionPerformed() methods.

Actions are defined as a extensions of UMLAction class.

I add the code for new actions, about generating code from state machines:

public static UMLAction GenerateStateFile =

 new
ActionGenStateFile();

 109

public static UMLAction
StateInfo = new
ActionStateInfo();

�������&ODVV�$FWLRQ*HQ6WDWH)LOH�

I structured my classes in the same way as the menu Generate Selected classes calls the

classesGenerationDialog,.

Selecting the new menu, a dialog windonw opens and here we findoptions implemented

by ClassStateGenerationDialog class. This class is declared under Actions

class and it implements code generation.

Calling the classStateGenerationDialog() class, we pass the manegement of

code generation to this dialog window.

class ActionGenStateFile extends UMLAction
{

public ActionGenStateFile()
{

super("Genera File con il codice",NO_ICON);
}

public void actionPerformed

(java.awt.event.ActionEvent actionEvent)
{

 ProjectBrowser pb = ProjectBrowser.TheInstance;
 Editor ce =

 org.tigris.gef.base.Globals.curEditor();
 Vector sels = ce.getSelectionManager().getFigs();
 java.util.Enumeration enum = sels.elements();
 Vector classes = new Vector();
 while (enum.hasMoreElements())

{
 Fig f = (Fig) enum.nextElement();
 Object owner = f.getOwner();
 if (!(owner instanceof MClass) &&

!(owner instanceof MInterface))
 continue;
 MClassifier cls = (MClassifier) owner;
 String name = cls.getName();
 if (name==null || name.length()==0)

continue;

 110

 classes.addElement(cls);
 }

ClassStateGenerationDialog cgd =
 new ClassStateGenerationDialog(classes);

 cgd.show();
 }

 public boolean shouldBeEnabled()

{
 return true;
 }
}

�������&ODVV�&ODVV6WDWH*HQHUDWLRQ'LDORJ��

As all the menu for generating code, the mine is the same: a dialog window is opened

and the user have to elect the classes to implement.

 111

�������6KRZ�WKH�FDOO�VWDFN�IURP�WKH�PHQX�

So the call stack from menu generates a file with the source code shown in

TabSrcState.

From the menu *HQHUDWLRQ�VWDWHFKDUWV we call Action class:

class ActionGenStateFile extends UMLAction
{

public void actionPerformed(ae)
{

Vector sels =
 ce.getSelectionManager().getFigs();

ClassStateGenerationDialog cgd =
 new ClassStateGenerationDialog(classes);
cgd.show();

1. Then a dialog window is opened

 112

public class ClassGenerationDialog
{

protected JButton _generateButton =
new JButton("Generate");

public ClassGenerationDialog(Vector nodes);

public void actionPerformed(ActionEvent e)
{

if (e.getSource() == _generateButton)
{

String path = ((String)_dir.getModel()
.getSelectedItem()).trim();

ProjectBrowser pb =
ProjectBrowser.TheInstance;

Project p = pb.getProject();
p.getGenerationPrefs().setOutputDir(path);

Vector nodes = _tableModel.getChecked();
int size = nodes.size();
String[] compileCmd=new String[size+1];
for (int i = 0; i <size; i++)
{

 Object node = nodes.elementAt(i);
 if (node instanceof MClassifier)
 compileCmd[i+1] =

GeneratorState.GenerateFile(
 (MClassifier) node, path);

}
 }

2. then, after click the generate button, we call the operation GenerateFile in

GenerateState class:

String GenerateFSMFile(MClassifier cls, String path)
{

String nomefile = cls.getName()+ ".java";
String pathname = path + nomefile;
String dirpath = path +cls.getName() +"_state";
trovataSM = manageStateMachine (cls);
String commonHeader =

SINGLETON.generateStateHeader(cls);
String srcClassifier =

SINGLETON.generateClassifier(cls);
if (trovataSM)
{

File cartella = new File(dirpath);
cartella.mkdir();
String nomedir=

 113

cartella.getPath()+FILE_SEPARATOR;
 String stateHeader =

 SINGLETON.generateStateHeader(nomedir);
 SINGLETON.findSMData(commonHeader, nomedir);
 SINGLETON.generateContext

 (cls, stateHeader, srcClassifier, nomedir);
 SINGLETON.generateStateAbs

(cls, stateHeader, nomedir);
 SINGLETON.generateStates

(cls, stateHeader, nomedir);
}
File f = new File(pathname);
BufferedWriter fos = null;
try
{

fos = new BufferedWriter(new FileWriter(f));
fos.write(commonHeader);
fos.write(srcClassifier);

}
catch (IOException exp) { }
finally
{

try { if (fos != null) fos.close(); }
catch (IOException exp)
{

 System.out.println("FAILED:"+f.getPath());
 }

System.out.println("-end generating all file -");
return pathname;
}

3. The two functions, generateStateHeader and generateClassifier,

creates the source code starting from the class of the model, according to the

statechart defined. Initially, the state ,achine is read by the

manageStateMachine operation, that store in vector variables the main

features of the state machine, and finally it return a boolean trovataSM. Then

we call operation that creates the files requested by State pattern:

• generateContext - generates the class “context”

• generateStateAbs - generate the class “abstract state”

• generateStates - generate the classes “concrete states”

 114

 115

��� &RQFOXVLRQV�

This work add to ArgoUML the feature of code generation starting from statechart in

the model. Code generated automatically control class behaviour according to the

statechart.

This statechart have to be defined in UML and it have to have no composite states.

The work is totally scalable and reusable: both the structures of code generated and the

code added to ArgoUML kernel. This last structure is modular.

From this work is possible generate a new release of ArgoUML or a plug-in with only

the new features.

 116

��� 7KDQNV�

I would thanks alla member of GHY�DUJRXPO mailing list,about developing ArgoUML,

that helped me much to learn the kernel architecture and the main mechanisms for

generating realeases and plug-ins.I would thaks expecially ir. J.F.J. Branderhorst that

helped me to developing a plug-in with my new feature.

 117

 118

%LEOLRJUDSK\�

[1] Armstrong Eric��+RZ�WR�LPSOHPHQW�VWDWH�GHSHQGHQW�EHKDYLRU���'RLQJ�WKH�6WDWH�

SDWWHUQ�LQ�-DYD (KWWS���ZZZ�MDYDZRUOG�FRP)

[2] De Lamotte Florent, 3UpVHQWDWLRQ�G
$UJR80/,

(KWWS���Q��Q�IUHH�IU�DUJRBSUHVHQWDWLRQ�3UHVHQWDWLRQ�KWPO)

[3] Design Patterns in Java - Reference and Example Site

(KWWS���ZZZ�IOXII\FDW�FRP�MDYD�SDWWHUQV�KWPO)

[4] Domenici Andrea, 'LVSHQVD�GL�,QJHJQHULD�GHO�6RIWZDUH

[5] Domenici Andrea, Frosini Graziano, ,QWURGX]LRQH�DOOD�SURJUDPPD]LRQH�HG�

HOHPHQWL�GL�VWUXWWXUH�GDWL�FRQ�LO�OLQJXDJJLR�&����FrancoAngeli, 1996

[6] Gamma Eric, Helm Richard, Johnson Ralph, and Vlissides John, 'HVLJQ�

3DWWHUQV, Addison-Wesley, 1995

[7] GEF - The Java Graph Editing Framework (KWWS���JHI�WLJULV�RUJ)

[8] Gomaa Hassan, 'HVLJQLQJ�FRQFXUUHQW��GLVWULEXWHG��DQG�UHDO�WLPH�DSSOLFDWLRQV�

ZLWK�80/, Addison-Wesley 2000

[9] Holub Allen, 22'HVLJQ�:RUNVKRS���$�80/�5HIHUHQFH

(KWWS���ZZZ�KROXE�FRP�FDW�RRBGHVLJQBZRUNVKRS�KWPO)

[10] Lindholm Tim, Yellin Frank. 7KH�-DYD�9LUWXDO�0DFKLQH�VSHFLILFDWLRQ,

Addison-Wesley, 1999 (KWWS���MDYD�VXQ�FRP�GRFV�ERRNV�YPVSHF)

 119

[11] Martin Robert C., 80/�7XWRULDO��)LQLWH�6WDWH�0DFKLQHV, Engineering

Notebook Column, C++ Report, June 98.

[12] NSUML - The Novosoft UML API (KWWS����QVXPO�VRXUFHIRUJH�QHW)

[13] Object Management Group, 20*�8QLILHG�0RGHOLQJ�/DQJXDJH�6SHFLILFDWLRQ

v.1.3 e v.1.4 (KWWS���ZZZ�RPJ�RUJ)

[14] Ramirez Alejandro, Vanpeperstraete Philippe, Rueckert Andreas, Odutola

Kunle e Bennett Jeremy, $UJR80/�8VHU�0DQXDO���$�WXWRULDO�DQG�UHIHUHQFH�

GHVFULSWLRQ�RI�$UJR80/, (KWWS���DUJRXPO�WLJULV�RUJ)

[15] Robbins Jason, Redmiles David, Tolke Linus e altri��7KH�$UJR80/�FDVH�WRRO�

3URMHFW�(KWWS���DUJRXPO�WLJULV�RUJ)

[16] Skinner Martin, (QKDQFLQJ�DQ�2SHQ�6RXUFH�80/�(GLWRU�E\�&RQWH[W�%DVHG�

&RQVWUDLQWV�IRU�&RPSRQHQWV, University of Berlin, Thesis, December 2001

[17] Sun Microsystems,)RUWH�IRU�-DYD�&(�*XLGH�DQG�7XWRULDO, August 2001

(KWWS���ZZZ�VXQ�FRP�IRUWH�IIM�RYHUYLHZ)

[18] Tarquini Massimiliano, -DYD�PDWWRQH�GRSR�PDWWRQH (KWWS���ZZZ�MDYD�QHW�WY)

[19] TogetherSoft, Inc., 3UDFWLFDO�80/���$�+DQGV�2Q�,QWURGXFWLRQ�IRU�'HYHORSHUV��

Copyright © 2001 (KWWS���ZZZ�WRJKHWHUVRIW�FRP)

[20] Tolke Linus, Klink Markus, &RRNERRN�IRU�GHYHORSHUV�RI�$UJR80/

(KWWS���DUJRXPO�WLJULV�RUJ)

�

