
UNIVERSITY OF CALIFORNIA,
IRVINE

Cognitive Support Features for Software Development Tools

DISSERTATION

submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Information and Computer Science

by

Jason Elliot Robbins

Dissertation Committee:
Professor David F. Redmiles, Chair

Professor Debra J. Richardson
Professor David S. Rosenblum

1999

 1999 Jason Elliot Robbins

The dissertation of Jason Elliot Robbins is approved
and is acceptable in quality and form

for publication on microfilm:

Committee Chair

University of California, Irvine
1999
ii

DEDICATION

To

my loving wife Sua-Yu

and my family

for their love and support
iii

TABLE OF CONTENTS
Page

CHAPTER 1: Introduction 1
1.1. Background on CASE tools 1
1.2. Research Method 2
1.3. Hypothesis and Contributions 5
1.4. Organization of the Dissertation 6

CHAPTER 2: Theories of Designers’ Cognitive Needs 7
2.1. Theories of Design Decision-Making 8

2.1.1. Reflection-In-Action 8
2.1.2. Opportunistic Design 10
2.1.3. Geneplore 14

2.2. Theories of Human Memory 15
2.2.1. Associative Recall 15
2.2.2. Limited Short-Term Memory 17
2.2.3. Cognitive Fixation 19
2.2.4. Limited Knowledge 21
2.2.5. Mental Biases 22

2.3. Design Visualization Theories 23
2.3.1. Comprehension and Problem Solving 23
2.3.2. Secondary Notation 26
2.3.3. Viewing as an Acquired Skill 28

2.4. User Interface Guidelines 28
2.4.1. Style Guidelines and Usability Heuristics 28
2.4.2. Fitts’ Law 31

CHAPTER 3: Previous Work in Cognitive Features for Design Tools 33
3.1. Previous Work on Design Critiquing Systems 33

3.1.1. Definitions of Design Critiquing Systems 33
3.1.2. Previous Work on Critiquing Processes 35
3.1.3. Phases of the ADAIR Process 36
3.1.4. Comparison of Critiquing Systems 39
3.1.5. State of the Art of Critiquing Systems 48

CHAPTER 4: Proposed Cognitive Features 50
4.1. Knowledge Support Features 54

4.1.1. Design Critics and Criticism Control Mechanisms 54
4.1.2. Non-modal Wizards 59
4.1.3. Context Sensitive Checklists 64
4.1.4. Design History 67

4.2. Process Support Features 71
iv

4.2.1. Dynamic “To Do” List and Clarifiers 71
4.2.2. Opportunistic Search Utility 75
4.2.3. Opportunistic Table Views 78

4.3. Visualization Support Features 80
4.3.1. Navigational Perspectives 80
4.3.2. The Broom Alignment Tool 86
4.3.3. Model-based Layout 92

4.4. Construction Support Features 97
4.4.1. Selection-Action Buttons 97
4.4.2. Create Multiple 100
4.4.3. Visual Blender 108

CHAPTER 5: Usage Scenario 112
5.1. Scene 1: Initial Construction, Error Detection, and Correction 113
5.2. Scene 2: Cleaning up the Design to Communicate Intent 117
5.3. Scene 3: Answering Questions that Arise During Design 120
5.4. Scene 4: Considering the Important Issues 125
5.5. Scene 5: Resolving Open Issues Before Reaching a Milestone 128
5.6. Discussion 130

CHAPTER 6: Heuristic Evaluation of Cognitive Features 132
6.1. Walkthrough of “To Do” List and Clarifiers 135
6.2. Walkthrough of Non-modal Wizards 137
6.3. Walkthrough of Context Sensitive Checklists 140
6.4. Walkthrough of Design History 142
6.5. Walkthrough of Opportunistic Search Utility 143
6.6. Walkthrough of Opportunistic Table Views 146
6.7. Walkthrough of Navigational Perspectives 149
6.8. Walkthrough of Broom Alignment Tool 151
6.9. Walkthrough of Model-based Layout 154
6.10. Walkthrough of Selection-Action Buttons 157
6.11. Walkthrough of Create Multiple 159
6.12. Discussion and Validation 162

CHAPTER 7: Empirical Evaluation of
Cognitive Features 168

7.1. Pilot User Study 168
7.2. Broom User Study 171
7.3. Construction User Study 174
7.4. Classroom Usage 176
7.5. Internet Usage 179

CHAPTER 8: A Scalable, Reusable Infrastructure 184
8.1. Graph Editing Framework 185
v

8.1.1. Introduction 185
8.1.2. Design Overview of GEF 186
8.1.3. Implementation of Multiple Diagrammatic Views 189
8.1.4. Implementation of the Broom Alignment Tool 190
8.1.5. Implementation of Selection-Action Buttons 192

8.2. Argo Kernel 192
8.2.1. Introduction 192
8.2.2. Design Overview of the Argo Kernel 193
8.2.3. Implementation of Design Critics and Criticism Control
 Mechanisms 196
8.2.4. Implementation of Checklists 199
8.2.5. Implementation of Wizards 200

8.3. Views and Navigation 201
8.3.1. Introduction 201
8.3.2. Design Overview of Argo/UML Views and Navigation 202
8.3.3. Implementation of Navigational Perspectives 203
8.3.4. Implementation of the Dynamic “To Do” List and Clarifiers 204
8.3.5. Implementation of Opportunistic Table Views 205
8.3.6. Implementation of Opportunistic Search 207

8.4. Design Representation and Code Generation 209
8.4.1. Introduction 209
8.4.2. Design Overview of Design Representation and Code Generation 209
8.4.3. Implementation of the UML Meta-Model 210
8.4.4. Implementation of XMI and PGML File Formats 212
8.4.5. Implementation of Code Generation 214

CHAPTER 9: Conclusion 217
9.1. Reflections on the Approach 217
9.2. Review of Contributions 219
9.3. Potential Extensions 220

REFERENCES 222
vi

LIST OF FIGURES
Page

Figure 1-1. Freature generation approach 3

Figure 2-1. State diagram with alignment as secondary notation 27

Figure 3-1. Phases of the ADAIR critiquing process 36

Figure 4-1. Argo/C2: a design tool for C2-style architectures 50

Figure 4-2. Prefer: a requirements tool using the CoRE notation 51

Figure 4-3. Argo/UML: an OODA tool using the UML notation 52

Figure 4-4. Decision model editor 57

Figure 4-5. Critic browser window 57

Figure 4-6. Proposed graphical specification of critics and wizards 59

Figure 4-7. Context sensitive checklist 65

Figure 4-8. Argo/UML’s feedback item dismissal dialog 70

Figure 4-9. Argo/UML’s opportunistic search utility window 76

Figure 4-10. Tablular view of state machine transitions 79

Figure 4-11. (a) “Package-centric” navigational perspective,
(b) “State-centric” navigational perspective,
(c) “Transition-centric” navigational perspective 82

Figure 4-12. Argo/UML’s navigational perspective configuration window 83

Figure 4-13. Aligning and distributing objects with the broom 88

Figure 4-14. (a) Standard automated layout of a state diagram,
(b) Model-based layout of a state diagram 94

Figure 4-15. Configuring model-based layout with arbitrary constrained regions 96

Figure 4-16. Selection-action buttons on a UML class, interface, and state 98

Figure 4-17. Mock-up of window to create multiple elements by pattern name 102

Figure 4-18. Mock-up for creating design fragments by form filling 103

Figure 4-19. Mock-up of the visual blender window 109

Figure 5-1. Argo/UML initial screen 113

Figure 5-2. After placing initial classes 115

Figure 5-3. “To do” item description 116

Figure 5-4. Reorganized class diagram 118
vii

Figure 5-5. Class diagram with annotations describing data sources 119

Figure 5-6. One class diagram of many after the design has grown 121

Figure 5-7. Table view of associations and their properties 122

Figure 5-8. Aggregate classes navigational perspective 124

Figure 5-9. Mock-up of model-based layout 125

Figure 6-1. A survey question on clarifiers 163

Figure 7-1. Task for pilot study 169

Figure 7-2. Desired groupings of diagram elements 172

Figure 7-3. Mouse dragging with the broom or standard alignment tools 173

Figure 7-4. (a) Conventional diagramming task used in selection-action
button study, (b) Unconventional diagramming task 175

Figure 7-5. Number of new Argo/UML registered users by month in 1999 181

Figure 8-1. UML class diagram of GEF 187

Figure 8-2. Broom states 191

Figure 8-3. Classes implementing the Argo kernel 194

Figure 8-4. CPU load imposed by critics on a 233MHz computer with
Windows NT 197

Figure 8-5. UML class diagram of Argo checklists 199

Figure 8-6. Argo/UML main window 201

Figure 8-7. Classes implementing Argo/UML’s “to do” list 205

Figure 8-8. Classes that implement Argo/UML’s table views 206

Figure 8-9. Classes implementing Argo/UML’s opportunistic search utility 208

Figure 8-10. Some UML meta-model classes 211

Figure 8-11. Classes implementing XML file processing 215

Figure 8-12. UML class diagram of classes for code generation. 216
viii

LIST OF TABLES
Page

Table 2-1: Usability guidelines from Mac Look and Feel (Apple 1993) 29

Table 2-2: Usability guidelines from Java Look and Feel (Sun, 1999) 29

Table 2-3: Usability guidelines from Nielsen (1995) 30

Table 2-4: Usability guidelines from Constantine and Lockwood (1999) 30

Table 2-5: Usability guidelines from Shneiderman (1998) 30

Table 3-1: Selected sefinitions of critiquing systems 33

Table 3-2: Summary comparison of critiquing systems 39

Table 4-1: Summary of proposed cognitive features 53

Table 4-2: Examples of critics in Argo/UML 55

Table 6-1: Initial doctrine for Argo/UML 133

Table 6-2: Steps for using a clarifier and the “to do” item tab 135

Table 6-3: Step for using the “to do” list and the “to do” tab 135

Table 6-4: Steps for non-modal wizards 138

Table 6-5: Steps for using context sensitive checklists 140

Table 6-6: Steps for using design history 142

Table 6-7: Steps for using the opportunistic search utility 144

Table 6-8: Steps for using opportunistic table views 146

Table 6-9: Steps for using navigational perspectives 149

Table 6-10: Steps for using the broom alignment tool 151

Table 6-11: Steps for using grid-based layout 154

Table 6-12: Steps for using region-based layout 154

Table 6-13: Steps for using selection-action buttons 157

Table 6-14: Steps for creating multiple design elements by pattern 159

Table 6-15: Steps for creating multiple design elements by form 160

Table 6-16: Questionnaire results for clarifiers, “to do” list, wizards,

and checklists 164

Table 6-17: Questionnaire results for opportunistic search and table views 165
ix

Table 6-18: Questionnaire results for broom and selection-action buttons 166

Table 7-1: Known classroom usage of the Argo family 178

Table 7-2: Some quotes from Argo/UML users 182

Table 8-1: Description of broom states 191

Table 8-2: Some TEE templates for generating XMI files 213
x

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foundation under Grant No.

CCR-9624846 and Grant No. CCR-9701973. Effort also sponsored by the Defense Advanced

Research Projects Agency, Air Force Research Laboratory, Air Force Materiel Command, USAF

under agreement numbers F30602-97-2-0021 and F30602-94-C-0218, and Air Force Office of

Scientific Research under grant number F49620-98-1-0061. Additional support is provided by

Rockwell International. The U.S. Government is authorized to reproduce and distribute reprints for

Governmental purposes notwithstanding any copyright annotation thereon. The views and

conclusions contained herein are those of the authors and should not be interpreted as necessarily

representing the official policies or endorsements, either expressed or implied, of the Defense

Advanced Research Projects Agency, Air Force Research Laboratory or the U.S. Government.
xi

CURRICULUM VITAE
Jason Elliot Robbins

1988-91, 1994-97 Summer Student, and Flex-Force Engineer
Rockwell International Science Center, Thousand Oaks, CA

1992 B.S. in Computer Science, Cum Laude
University of California, Los Angeles
Major GPA: 3.9

1993 Senior Coder, CoBase Reseach Group
University of California, Los Angeles
Computer Science Dept.

1994 - 95 Teaching Assistant
ICS 52 - Systematic Software Construction
ICS 125 - Project in System Design
ICS 141 - Compilers and Interpreters
University of California, Irvine
Dept. Information and Computer Science

1995 M.S. in Information and Computer Science
University of California, Irvine
Major Emphasis: Software
Cumulative GPA: 4.00

1995 - present Graduate Student Researcher, Software Research Group
University of California, Irvine
Dept. Information and Computer Science

1999 Ph.D. in Information and Computer Science
University of California, Irvine
Software Research Group
Dissertation: “Cognitive Support Features for Software
Development Tools”
Advisor: Dr. David F. Redmiles
xii

PUBLICATIONS

Journal Publications
A Component- and Message-Based Architectural Style for GUI Software. Richard N.
Taylor, Nenad Medvidovic, Kenneth M. Anderson, E. James Whitehead, Jr., Jason E.
Robbins, Kari A. Nies, Peyman Oreizy, and Deborah L. Dubrow. IEEE Transactions on
Software Engineering. vol. 22. no. 6. June 1996. pp. 390-406. A significant revision and
extension of the ICSE'95 paper.

Extending Design Environments to Software Architecture Design. Jason E. Robbins,
David M. Hilbert, David F. Redmiles. International Journal of Automated Software
Engineering. Special issue: The Best of KBSE'96. vol. 5. 1998. pp. 261-290. A significant
revision and extension of the KBSE'96 paper.

Software Architecture Critics in the Argo Design Environment. Jason E. Robbins,
David F. Redmiles. Knowledge-Based Systems. Special issue: The Best of IUI'98. In press.
A significant revision and extension of the IUI'98 paper.

Refereed Conference Publications
Reusable Objects. David Morley, Stephen Chiu, Jason Robbins, Tim Maddux, Geoffrey
Voelker. Technology of Object-Oriented Languages and Systems (TOOLS'92). Paris,
France. March, 1992.

A Component and Message-Based Architectural Style for GUI Software. Richard N.
Taylor, Nenad Medvidovic, Ken M. Anderson, E. James Whitehead, Jr., and Jason E.
Robbins. International Conference on Software Engineering 1995 (ICSE'95). Seattle WA.
April 23-30, 1995. pp. 295-304. This paper was named one of the best papers of the
conference.

Software Architecture Design from the Perspective of Human Cognitive Needs. Jason
E. Robbins and David F. Redmiles. Proceedings of the California Software Symposium
1996. Los Angeles, California. April 17, 1997. pp. 16-27.

Visual Language Features Supporting Human-Human and Human-Computer
Communication. Jason E. Robbins, David J. Morley, David F. Redmiles, Vadim Filatov,
Dima Kononov. IEEE Symposium on Visual Languages 1996 (VL'96). Boulder, CO. Sept.
3-6, 1996. pp. 247-254.

Extending Design Environments to Software Architecture Design. Jason E. Robbins,
David M. Hilbert, and David F. Redmiles. Knowledge-Based Software Engineering 1996
(KBSE'96). Syracuse, NY. Sept. 25-28, 1996. pp. 63-72. This paper was selected as best of
conference.

Using Object-Oriented Typing to Support Architectural Design in the C2 Style.
Nenad Medvidovic, Peyman Oreizy, Jason E. Robbins, and Richard N. Taylor.
xiii

Proceedings of SIGSOFT'96: The Fourth Symposium on the Foundations of Software
Engineering (FSE-4). San Francisco, CA. October 16-18, 1996. pp. 24-32.

Argo: A Design Environment for Evolving Software Architectures. Jason E. Robbins,
David M. Hilbert, David F. Redmiles. Proceedings of the 19th International Conference
on Software Engineering (ICSE'97). Boston, MA. May 17-23, 1997. pp. 600-601.

Software Architecture Critics in Argo. Jason E. Robbins, David M. Hilbert, David F.
Redmiles. Proceedings of the 1998 International Conference on Intelligent User
Interfaces (IUI'98). San Francisco, CA. Jan. 6-9, 1998. pp. 141-144. This paper was
named one of best papers of the conference.

EDEM: Intelligent Agents for Collecting Usage Data and Increasing User
Involvement in Development. David M Hilbert, Jason E. Robbins, and David F.
Redmiles. Proceedings of the 1998 International Conference on Intelligent User
Interfaces (IUI'98). San Francisco, CA. Jan. 6-9, 1998. pp. 73-76.

Modeling C2 in the Unified Modeling Language. Jason E. Robbins, David F. Redmiles,
David S. Rosenblum. Proceedings of the California Software Symposium 1997. Irvine,
CA. Nov. 7, 1997. pp. 11-18.

Integrating Architecture Description Languages with a Standard Design Method.
Jason E. Robbins, Nenad Medvidovic, David F. Redmiles, David S. Rosenblum.
Proceedings of the 1998 International Conference on Software Engineering (ICSE'98).
Kyoto, Japan. April 19-25, 1998. pp. 209-218.

Workshop Publications
Software Architecture: Foundations of a Software Component Marketplace. E.
James Whitehead, Jr., Jason E. Robbins, Nenad Medvidovic, and Richard N. Taylor. ICSE
1995 Workshop on Software Architecture. Seattle, WA.

Using Critics to Analyze Evolving Architectures. Jason E. Robbins, David M. Hilbert,
and David F. Redmiles. Second International Software Architecture Workshop (ISAW-2).
Held in conjunction with FSE'96. San Francisco, CA. October 16-18, 1996. pp. 90-93.

Technical Reports
A Software Architecture Design Environment for Chiron-2 Style Architectures. Jason
E. Robbins, E. James Whitehead, Jr., Nenad Medvidovic, and Richard N. Taylor. January
1995. Tech Report Arcadia-UCI-95-01.

Using Critics to Support Software Architects. Jason E. Robbins, David M. Hilbert,
David F. Redmiles. April 1997. Technical Report UCI-ICS-97-18.

Supporting Ongoing User Involvement in Development via Expectation Driven
Event Monitoring. David M. Hilbert, Jason E. Robbins, David F. Redmiles. April 1997.
Technical Report UCI-ICS-97-19.
xiv

Integrating Architecture Description Languages with a Standard Design Method.
Jason E. Robbins, Nenad Medvidovic, David F. Redmiles, David S. Rosenblum. August
1997. Technical Report UCI-ICS-97-35.

FORMAL PRESENTATIONS
Software Architecture Design from the Perspective of Human Cognitive Needs. California
Software Symposium 1996. Los Angeles, CA. April 17, 1997.

Visual Language Features Supporting Human-Human and Human-Computer Communication.
IEEE Symposium on Visual Languages 1996 (VL'96). Boulder, CO. Sept. 3-6, 1996.

Extending Design Environments to Software Architecture Design. Knowledge-Based Software
Engineering 1996 (KBSE'96). Syracuse, NY. Sept. 25-28, 1996.

Argo: A Tool for Evolving Software Architectures. Nineteenth International Conference on
Software Engineering (ICSE'97). Boston, MA. May 17-23, 1997.

Software Architecture Critics in Argo. 1998 International Conference on Intelligent User
Interfaces (IUI'98). San Francisco, CA. Jan. 6-9, 1998.

Extending Design Environments to Software Architecture Design. Presented at Jet propulsion
Laboratories. Pasadena, CA. June 1997.

Modeling C2 in the Unified Modeling Language. California Software Symposium 1997. Irvine,
CA. Nov. 7, 1997.

Using Critics to Analyze Evolving Architectures. Second International Software Architecture
Workshop (ISAW-2). Held in conjunction with FSE'96. San Francisco, CA. October 16-18, 1996.

Integrating Architecture Description Languages with a Standard Design Method. EDCS Cross
Cluster Workshop. Austin, TX. Nov. 10-12. 1997.

RESEARCH PROPOSALS
Applying Design Critics to Software Requirements Engineering. (PI: D. F. Redmiles).
Submitted to the Microelectronics Innovation and Computer Research Opportunities (MICRO)
program. Funded with a one-year budget of $33,152 (includes $20,000 in matching funds from
Rockwell). August, 1997.

Open Technology for Software Evolution: Hyperware, Architecture, and Process. (PI's: R. N.
Taylor and D. F. Redmiles). Submitted to the Defense Advanced Research Projects Agency
(DARPA). Funded with a three-year budget of $2,606,666. October, 1996.

PROFESSIONAL ASSOCIATIONS
xv

Association for Computing Machinery (ACM)
IEEE Computer Society
ACM Special Interest Group on Software Engineering (SIGSOFT)
ACM Special Interest Group on Computer Human Interaction (SIGCHI)

HONORS, AWARDS, FELLOWSHIPS
Thomas J. Watson Memorial Scholar
National Merit Society Finalist
Twice elected President of UCLA's Computer Science Undergraduate

Association (UCLA's student chapter of the Association for Computing Machinery)
Tau Beta Pi (the national engineering honor society)
UCLA School of Engineering Dean's Honor List
UCLA School of Engineering Dean's Circle
MICRO Fellowship
xvi

ABSTRACT OF THE DISSERTATION

Cognitive Support Features for Software Development Tools

By

Jason Elliot Robbins

Doctor of Philosophy in Infomation and Computer Science

University of California, Irvine, 1999

Professor David F. Redmiles, Chair

Software design is a cognitively challenging task. Most software design tools provide

support for editing, viewing, storing, sharing, and transforming designs, but lack support for the

essential and difficult cognitive tasks facing designers. These cognitive tasks include decision

making, decision ordering, and task-specific design understanding. To date, software design tools

have not included features that specifically address key cognitive needs of designers, in part,

because there has been no practical method for developing and evaluating these features.

This dissertation contributes a practical description of several cognitive theories relevant

to software design, a method for devising cognitive support features based on these theories, a

basket of cognitive support features that are demonstrated in the context of a usable software

design tool called Argo/UML, and a reusable infrastructure for building similar features into other

design tools. Argo/UML is an object-oriented design tool that includes several novel features that

address the identified cognitive needs of software designers. Each feature is explained with

respect to the cognitive theories that inspired it and the set of features is evaluated with a

combination of heuristic and empirical techniques.
xvii

