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Background: The management of NSCLC has been transformed by stratified medicine. The National Lung Matrix Trial
(NLMT) is a UK-wide study exploring the activity of rationally selected biomarker/targeted therapy combinations.
Patients and methods: The Cancer Research UK (CRUK) Stratified Medicine Programme 2 is undertaking the large
volume national molecular pre-screening which integrates with the NLMT. At study initiation, there are eight drugs being
used to target 18 molecular cohorts. The aim is to determine whether there is sufficient signal of activity in any drug–bio-
marker combination to warrant further investigation. A Bayesian adaptive design that gives a more realistic approach to
decision making and flexibility to make conclusions without fixing the sample size was chosen. The screening platform is
an adaptable 28-gene Nextera next-generation sequencing platform designed by Illumina, covering the range of molecu-
lar abnormalities being targeted. The adaptive design allows new biomarker–drug combination cohorts to be incorpo-
rated by substantial amendment. The pre-clinical justification for each biomarker–drug combination has been rigorously
assessed creating molecular exclusion rules and a trumping strategy in patients harbouring concomitant actionable
genetic abnormalities. Discrete routes of pathway activation or inactivation determined by cancer genome aberrations are
treated as separate cohorts. Key translational analyses include the deep genomic analysis of pre- and post-treatment bi-
opsies, the establishment of patient-derived xenograft models and longitudinal ctDNA collection, in order to define pre-
dictive biomarkers, mechanisms of resistance and early markers of response and relapse.
Conclusion: The SMP2 platform will provide large scale genetic screening to inform entry into the NLMT, a trial explicitly
aimed at discovering novel actionable cohorts in NSCLC.
Clinical Trial ISRCTN: 38344105.
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introduction
The management of patients with non-small-cell lung cancer
(NSCLC) has been transformed in the past 10 years. The identifi-
cation of EGFR-activating mutations as a predictive biomarker
for the use of EGFR tyrosine kinase inhibitors ushered in the
era of stratified medicine in NSCLC [1]. Only 4 years elapsed
between the description of EML4-ALK fusions [2] and the regis-
tration of crizotinib for treatment of ALK fusion-positive disease.
Alongside, these therapeutic advances have been a change in the
regulatory landscape; the provisional registration of crizotinib was
based on high signals of activity in non-randomized, single-arm
studies [3]. A series of publications culminating in the data from

The Cancer Genome Atlas (TCGA) for both adenocarcinoma
and squamous cell lung cancer have considerably widened the
number of potentially treatable targets, albeit in small molecularly
defined patient cohorts [4, 5]. Efficient testing of drug–biomarker
combinations is necessary in order to unlock the true potential
for stratified medicine for NSCLC. The National Lung Matrix
Trial (NLMT), funded by Cancer Research UK in partnership
with AstraZeneca/MedImmune and Pfizer, includes many of the
potentially actionable molecular aberrations identified in NSCLC.
We describe the overarching design of the study and the selection
of agents according to molecular abnormality.

methods
The NLMT is a multi-arm non-randomized non-comparative phase II um-
brella trial in which patients are allocated to the appropriate targeted therapy
according to the molecular genotype of their cancer. The trial includes a
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common set of outcome measures for all molecularly defined cohorts with
flexibility to select a cohort-specific primary end point. In most cases, re-
sponse rate is the primary outcome but for agents whose mode of action is
likely to be principally cytostatic, progression-free survival (PFS) is preferred.
Although randomized trials make it possible to tease out the predictive and
prognostic effects of putative biomarkers for therapies, we are looking here
for robust signals of activity such as one would expect from a bona fide tar-
geted therapy. For example, the recent demonstration of a 72% response rate
and a 19-month median PFS in patients treated with crizotinib harbouring
ROS fusions [6] is very clear evidence that this drug works in this cohort of
NSCLC patients. Such data, in a very small segment of NSCLC, begin to
challenge both the practicality and the need for the traditional randomized
trial approach to obtain drug approvals. Indeed, with very small target popula-
tions, it will become essential for regulatory science to rapidly evolve if we are
to realize the magnitude of the opportunity for precision medicines in cancer.

There is an option within the trial protocol to test any of the given tar-
geted therapies on biomarker-negative patients (i.e. those with no actionable
genetic change) if there is evidence of significant activity in the biomarker-
positive population. This allows validation of the specificity of the putative
biomarker for that drug but may also detect biomarker-negative patients
who have impressive responses to the drug and whose tumours can then be
analysed to detect abnormalities that may be additional important positive
predictive biomarkers of that drug.

The NLMTwill be run at all 18 UK Experimental Cancer Medicine Centres
(ECMC) with each centre operating a hub and spoke model with patients
being referred in from nearby hospitals to the centre. The pace of advances in
stratified medicine in lung cancer is such that signal of activity programmes
must be nimble, flexible and able to respond promptly to new biomarkers drug
combinations being considered. As such, the trial allows for new arms to be
entered via substantial amendment, if the international expert review panel
and Trial Management Group are convinced of the strength of the pre-clinical
data supporting the clinical combination of the biomarker and targeted agent.

This will significantly reduce the time from concept to clinical study.
One of the limitations for the development of targeted agents in small

patient populations has been the conventional approach to tumour testing
which could be described as ‘one drug–one test.’ This limitation will be over-
come in the NLMT by implementing an umbrella trial design. This approach
will facilitate a transition from a drug-centred approach that has asked ‘can a
specific therapeutic agent be given to a patient’, to a patient-centred molecu-
lar testing approach which allows the treating physician to ask ‘what is best
therapeutic agent for my patient?’

Screening of patients’ tumour biopsies through the Stratified Medicine
Programme 2 is performed on a next-generation sequencing (NGS) panel
developed and validated by Illumina, carried out in one of three dedicated
genotyping centres (Technology Hubs). At present, 28 genes are interrogated
but the platform is adaptable to allow new genomic biomarkers to be added.
Alignment of tumour DNA reads against germline is mandatory. Careful
examination of genetic databases, pre-clinical and clinical data have gener-
ated a comprehensive tiering system which ensures that only oncogenically
pertinent abnormalities are actioned. Table 1 represents the matrix of mo-
lecular cohorts with their targeted agents, together with the predicted fre-
quency of these abnormalities.

the rationale supporting the biomarker/
drug combinations in the National Lung
Matrix Trial

AZD5353
AZD5363 is potent ATP-competitive AKT inhibitor with IC50

<10 nM for all three AKT isoforms. Using a cut-off of GI50 <3 µm,

23% of a large cell-line panel were sensitive to inhibition by
AZD5363 and three quarters of these had PIK3CA mutations,
PTEN loss or HER2 amplification [9]. In vivo activity was
demonstrated in both PIK3CA mutant and PTEN inactivated
xenograft models. In a study using the PI3K inhibitor GDC-
0941, 3/3 PIK3CA amplified cell lines (trial arm F2) were highly
sensitive to inhibition and there was no co-occurrence of other
obvious oncogenic drivers [10].
Each separate mechanism resulting in AKT activation is treated

as a separate cohort. This is an important design feature of the
trial. It is unlikely that the activities of targeted agents will be the
same for each mechanism of deregulation and treating them all in
one cohort may miss the granularity of this response differential.
Furthermore, mechanisms of resistance may vary in patients who
have an initial response to therapy according to the mechanism
of initial AKT activation. Discrete cohort testing allows the speci-
fics of resistance in each molecular cohort to be defined.
All patients’ tumours in this treatment arm will need to be

proven to be KRAS wild type. KRAS was shown to be a negative
predictive biomarker for AZD5363 response [9]. There is collab-
orative inactivation of the translational repressor 4E-BP1 by both
AKT and ERK signalling [11], ERK directly inactivates TSC2 by
phosphorylation [12]. Thus, cells with dual AKT activation and
RAS mutation may still inhibit 4E-BP1 even if AKT is inhibited
(Figure 1).

AZD4547
AZD4547 is potent inhibitor of FGFR 1, 2 and 3 with IC50 values
of 0.2, 2.5 and 1.8 nM, respectively [13]. Initial data in NSCLC
patients with somatic FGFR amplifications treated with AZD4547
showed modest efficacy (8% PR, 29% SD) but failed to meet the
primary end point for continuation [14]. Not all detected FGFR
mutations will be eligible. Liao et al. engineered NIH3T3 cells to
express the range of separate mutations represented in the squa-
mous cell lung cancer TGCA [15]. Only mutations in the extra-
cellular binding domain, which mediated ligand independent
receptor dimerization and activation, and mutations in the intra-
cellular tyrosine kinase domain were transforming and tumori-
genic. Those in the trans-membrane spanning region and the
terminal portion of the molecule were not transforming, and
these two latter will be excluded from testing with the drug.

AZD2014
AZD2014 is an ATP-competitive, selective mTOR kinase inhibi-
tor targeting both mTORC1 (rapamycin-sensitive) and mTORC2
(rapamycin-insensitive) complexes [16, 17]. AZD2014 is molecu-
larly different from rapalogues and achieves more profound
mTORC1 inhibition, in particular, inhibiting phosphorylation of
the rapamycin-insensitive site on 4E-binding protein 1 (4E-BP1)
(T37/46). AZD2014 also inhibits mTORC2 and has a broader
range of growth inhibitory activity in vitro across tumour types
compared with rapalogues. mTORC1 inhibition reduces S6K1 ac-
tivation which negatively represses mTORC2; thus, mTORC1 in-
hibition releases mTORC2 from S6K1-mediated inhibition and
activates AKT via mTORC2-mediated phosphorylation of Ser473
[18] (Figure 1). Inhibition of mTORC2 is therefore important
because it prevents the activation of AKT via phosphorylation on
Ser473 consequent upon inhibition of mTORC1 by rapalogues.
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Patients with TSC1, TSC2 or LKB1 (STK11) tumour mutations
will be eligible for treatment with AZD2014.
The TSC1/2 heterodimer is a GTPase-activating protein which

maintains Rheb in its inactive GDP-bound form. Rheb is the up-
stream activator of mTOR. Hence, when TSC1 or TSC2 activity is
lost through mutation, Rheb becomes activated which in turn acti-
vates mTOR. TSC mutant cell lines were highly sensitive to inhib-
ition by AZD2014 with all mutants having a GI50 of <1 µM and
8/10 TSC1 mutants having a GI50 <200 nM (AstraZeneca, intern-
al data). A recent clinical study has demonstrated that mTOR in-
hibitors have significant activity in TSC mutant disease. A patient
with anaplastic thyroid cancer who relapsed after surgery and
subsequent chemoradiation had an 18-month response to the
mTORC1 inhibitor everolimus. Sequencing this patient’s tumour
DNA revealed a TSC2mutation [19].
Loss of LKB1 function phenocopies TSC2 mutation

(Figure 1). LKB1 is critical in the activation of AMPK in situa-
tions of cellular energy stress, such as hypoglycaemia, which
increases the AMP/ATP ratio [20]. AMPK activates TSC2, so
when LKB1 is lost, TSC2 is less efficiently activated. mTOR acti-
vation causes activation of HIF-1α and this upregulates lysyl

oxidase (LOX) activity. This is a key enzyme stabilizing the
extracellular matrix via oxidation of lysine residues on collagen
and elastin, and such stabilization is important in mediating the
process of hypoxia-induced metastasis. Knock-down of LOX in
LKB1 mutant cells resulted in reduced anchorage independent
cell growth and migration [21]. The LOX inhibitor BAPN had
no activity in LKB1 wild-type models but reduced tumour
number and volume in LKB1 mutant models.

palbociclib
Palbociclib is a highly selective inhibitor of CDK4/6 kinase
activity (IC50 = 11 nM; Ki = 2 nM. Palbociclib has selectivity for
CDK4/6, with little or no activity against a large panel of 34 other
protein kinases [22].
p16, a product of the CDKN2A locus, is the key inhibitor of

the cyclinD1/CDK4 heterodimer (Figure 2). When this dimer is
activated, either by homozygous deletion of CDKN2A or amplifi-
cation of CDK4 or Cyclin D1, Rb becomes phosphorylated. When
further phosphorylated by CDK2/Cyclin E, this removes the
inhibitory activity of RB upon E2F1, resulting in the liberation of
E2F and the passage of cancer cells through the G1/S checkpoint.

Table 1. NLMTmolecular cohorts and estimated prevalence rates

Molecular cohorts and initial estimated prevalence rates AZD4547 AZD2014 Palbociclib Crizotinib Selumetinib

+ docetaxel

AZD5363 AZD9291

Arm A Arm B Arm C Arm D Arm E Arm F Arm G

A1: FGFR2/3 mutation—NSCLC [4, 5] ADC <1.0%
SCC 4.0%

✓

B1: TSC1/2 mutation—NSCLC [4] ADC <1.0%

SCC 2.7%

✓

B2: LKB1 mutation—NSCLC [4, 5] ADC 8.8%
SCC 1.6%

✓

C1: Proficient Rb and p16 loss—SCC [4] SCC 29.0% ✓

C2: Proficient Rb and p16 loss—ADC [4] ADC 19.6% ✓

C3: Proficient Rb and CDK4 amplification—NSCLC
[4, 5]

ADC 7.0%
SCC
<1.0%

✓

C4: Proficient Rb and CCND1 amplification—
NSCLC [4, 5]

ADC 5.0%
SCC
12.0%

✓

C5: Proficient Rb and KRAS mutation—ADC [5] ADC 25.8% ✓

D1: Met amplified—NSCLC ADC 2.7%
SCC 1.4%

✓

D2: ROS1 rearranged—NSCLC [6] ADC 1.7%
SCC
<1.0%

✓

E1: NF1 mutation—SCC [4] SCC 5.8% ✓

E2: NF1 mutation—ADC [4] ADC 4.6% ✓

E3: NRAS mutation—ADC [7] ADC 0.7% ✓

F1: PIK3CA mutation—SCC [8] SCC 11.0% ✓

F2: PIK3CA amplification—SCC [4] SCC 15.0% ✓

F3: PI3K/AKT deregulation
PI3KCA mutation and amplification—ADC [8] ADC 2.0% ✓

PTEN mutation and loss (ADC) [5] ADC 3.0%
AKT1 mutation (NSCLC) [4, 5] ADC 0.5%

SCC 0.5%
F4: PTEN loss and mutation—SCC [4] SCC 20.0% ✓

G1: EGFR mutation and T790M +NSCLC ADC 8%
SCC <1%

✓
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In patients whose cancers harbour one of these three molecular
abnormalities and would be eligible for treatment with palbociclib,
it must be demonstrated that their cancer harbours no concomitant
loss of Rb function. In a panel of ovarian cancer cell lines, Rb-
proficient cells with low p16 expression (by message or protein ex-
pression) were the most sensitive to palbociclib, and no other ana-
lysed biomarkers pertaining to CDK4/6 signalling were informative

[23]. Expression profiles of cells classified by response to palbociclib
demonstrated 117 differentially expressed genes between sensi-
tive and resistant lines: CDKN2Awas the most significant gene.
KRAS mutant adenocarcinoma represents a significant molecu-

lar cohort of lung adenocarcinoma. It was demonstrated that loss
of CDK4 activity was synthetically lethal with KRAS mutation in
lung adenocarcinoma [24]. This effect was specific: it was not seen
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Figure 1. Key signalling pathways targeted in the National Lung Matrix Trial.
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in vivo with knock-down of the other CDKs and was not seen in
other mutant KRAS expressing tissues including the pancreas.
Palbociclib was shown to have significant activity in KRASmutant
genetically engineered mouse models. The mechanism of synthet-
ic lethality appeared to be due to the re-induction of senescence.
KRAS mutation causes oncogene-induced senescence and for the
development of the full malignant phenotype, KRAS mutant cells
must bypass senescence. Thus, CDK4 inhibition is expected to
abrogate this bypass in patients whose lung cancers harbour an
intact Rb signalling pathway and a KRASmutation. Activated RAS
induces the formation of senescence-associated heterochromatin
foci by activating GSK3β which phosphorylates the histone chap-
erone HIRA facilitating its localization to PML nuclear bodies
[25]. AKT activation inhibits RAS-mediated oncogene-induced
senescence in part through the inhibitory phosphorylation of
GSK3β at serine 9 [26]. Thus, a molecular exclusion for this arm is
concomitant abnormalities which result in AKT activation, such
as PIK3CA mutation, PTEN loss or AKT mutation.

crizotinib
Crizotinib is a potent inhibitor of both MET and ROS1. There is
already clear evidence of activity of crizotinib in patients with
tumour MET amplification [27] or ROS1-rearranged lung cancer
[6]. These arms as well as adding to the global database of prelim-
inary activity of this drug in these cohorts will also provide access
for patients with these actionable molecular aberrations.

AZD9291
About 50%–60% of patients with EGFRmutation-positive tumours
progressing after first-line treatment on an EGFR TKI become re-
sistant via the acquisition of the secondary gatekeeper mutation
T790M. AZD9291 is an oral, potent, selective, irreversible inhibitor
of both EGFR-TKI-sensitizing and T790M resistance mutations.
In 127 assessable patients with T790M disease, a response rate of
61% and median PFS of 9.6 months was observed [28]. Patients
who have received a first-line EGFR TKI will be invited to have a
repeat biopsy on progression and, if their cancers have acquired the
T790Mmutation, treatment with AZD9291 will be offered.

selumetinib and docetaxel
Selumetinib is a potent, selective, allosteric MEK inhibitor. In a
randomized phase II study, it was demonstrated that a combin-
ation of selumetinib plus docetaxel significantly improved
response rate and PFS when compared with docetaxel alone
as second-line therapy for patients with KRAS mutant adeno-
carcinoma of the lung [29]. This combination is currently in
phase III in this setting. In the lung adenocarcinoma TCGA,
NF1 mutations were found to be significantly represented in
cancers not harbouring abnormalities of RAS, RAF or receptor
tyrosine kinases [11]. The authors specifically identified NF1 as
an important driver event in oncogene-negative adenocarcin-
oma. NF1 is a RAS GAP (Figure 1). It restricts RAS activation by
catalysing the intrinsic GTPase activity of RAS. Thus, when NF1
is inactivated by mutation, RAS becomes locked in its GTP-
bound form resulting in constitutive activation. Hence, NF1 loss
phenocopies KRASmutation and patients with such cancers can
also be considered a suitable molecular cohort to treat with the
selumetinib/docetaxel combination, which has proven benefits

in KRAS mutant disease. There is good clinical evidence for the
importance of MEK signalling in NF1 mutation. Patients with
germline inactivation of NF1 develop plexiform neurofibromas
(PNs); in a cohort of PN patients aged 3–18, all patients treated
with single-agent selumetinib demonstrated volumetric reduc-
tion in the size of their PNs [7].
In patients whose tumours harbour NRAS mutations, there

appear to be no other obvious driver mutations [30]. 5/6 NRAS
mutant lung cancer cell lines were sensitive to single-agent selu-
metinib and MEK signalling appeared to be significantly more
important than PI3K/AKT activation given the lack of effect of
GDC-0941 in these NRAS mutant lung cancer cell lines. Thus,
we will treat patients with NRAS mutant tumours as a separate
cohort with this combination.

no actionable mutation arm
A secondary objective of the trial is to offer a therapeutic option
for patients with successful screening in the trial but without
specific eligibility for one of the targeted genomic aberrations at
that moment in time. The first in a planned series of drugs that
we are testing in this cohort is MEDI4736, an anti-PDL1 mono-
clonal antibody with clear evidence of activity in patients with
NSCLC [31].

concluding remarks
The NLMT is an ambitious adaptive programme which seeks to
increase the number of actionable genetic abnormalities in
NSCLC. Key translational components include voluntary pre-
treatment biopsies to identify potential predictive biomarkers
post-treatment biopsies to ascertain mechanisms of resistance,
and the development of PDX models wherever possible. ctDNA is
being collected pre-, during and post-treatment. Repeat biopsies
can be difficult to obtain: the recent identification of the C797S
mutation in the plasma of patients with T790M mutation-positive
disease treated with AZD9291 in second line or beyond demon-
strates the utility of liquid biopsies to identify mechanisms of re-
sistance to targeted therapies [32].
Ensuring the sustainability of NLMT is important in order to

maximize the information that can be obtained from this pro-
gramme. We are in discussion with a number of other potential
pharma partners and have already discussed with our current
pharma collaborators plans for treatment of patients with p53 loss
and patients with rarer but potentially actionable mutations such
as those with ATM loss and exon 14 slipping mutations in MET.
Finally, the NLMT is clearly not the only such programme in this
therapy space. The NCI-MATCH co-operative group trial current-
ly has 10 arms: some cohorts are in common with NLMT but
NCI-MATCH also covers BRAF mutations (dabrafenib/trameti-
nib), HER2 mutations (afatinib), HER-2 amplifications (Ado-tras-
tuzumab emtansine) and c-kit mutations (sunitinib). Integrating
the data from this trial together with data from NLMT, other
key trials such as SAFIR-02 (NCT02117167) and LUNGMAP
(NCT02154490), and further data arising from national genomic
screening initiatives such as The Lung Cancer Genome Project
(Network Genomic Medicine, Cologne) and LC-SCRUM (Japan),
will allow the development of a global database of outcomes on
personalized medicines in NSCLC.
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