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ABSTRACT
We have carried out a haploinsufficiency (HI) screen in fission yeast using heterozygous deletion diploid
mutants of a genome-wide set of cell cycle genes to identify genes encoding products whose level
determines the rate of progression through the cell cycle. Cell size at division was used as a measure of
advancement or delay of the G2-M transition of rod-shaped fission yeast cells. We found that 13 mutants
were significantly longer or shorter (greater than 10%) than control cells at cell division. These included
mutants of the cdc2, cdc25, wee1 and pom1 genes, which have previously been shown to play a role in the
timing of entry into mitosis, and which validate this approach. Seven of these genes are involved in
regulation of the G2-M transition, 5 for nuclear transport and one for nucleotide metabolism. In addition
we identified 4 more genes that were 8–10% longer or shorter than the control that also had roles
in regulation of the G2-M transition or in nuclear transport. The genes identified here are all conserved in
human cells, suggesting that this dataset will be useful as a basis for further studies to identify rate-
limiting steps for progression through the cell cycle in other eukaryotes.
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Introduction

A more complete understanding of the eukaryotic cell cycle
requires the global identification of gene functions necessary
for cell cycle processes. To address this, near genome-wide
gene deletion libraries constructed in yeast1-4 and RNAi
approaches in Metazoa,5-12 have been used to identify genome
wide sets of cell cycle genes. In fission yeast the rod-shaped cell
and tip elongation growth pattern enables cell morphology to
be used as an indicator of advancement or delay in progress
through the cell cycle.13-16 This has allowed a comprehensive
genome-wide visual screen of 4844 haploid gene deletion
mutants (Bioneer library) of both essential and non-essential
genes for elongated and small cell phenotypes typical of cell
cycle mutants in fission yeast 4 and has identified 538 genes as
being required for cell cycle progression. Deletion mutants of
513 genes were either delayed or blocked in cell cycle progres-
sion and had an elongated cell phenotype while a further 25
deletion mutants advanced cells through the cell cycle and
showed a small cell phenotype.1,4

One of the key questions is which of these genes act as rate-
limiting steps for cell cycle progression and so are involved in
controlling this process. Genes giving a small cell phenotype
when deleted are clearly candidates for contributing to control
of the G2-M transition as absence of their gene function

accelerates that transition.17 Another class of genes that are
candidates for being rate-limiting at the G2-M transition are
those which delay or block entry into mitosis if the function is
partly compromised.17 In this study we use haploinsufficiency,
exploiting the diploid heterozygous cell cycle gene deletion
mutants to compromise gene expression, to identify regulatory
genes that advance or delay cell cycle progression.

Screens for haploinsufficiency (HI), using mutants where
one of two gene copies in a diploid strain has been deleted, pro-
vide a powerful way to identify gene products whose level is
important for a biological process of interest.1,17-20 Rate-limit-
ing steps within a regulatory network can impose limits on bio-
logical processes such as cell cycle progression, and such steps
are potentially susceptible to a reduction in gene copy number.
In budding yeast, heterozygous gene deletion diploid mutants
usually show gene expression equivalent to half the level of the
homozygous wild-type diploid.21,22 Therefore, screening het-
erozygous gene deletion diploid mutants for haploinsufficient
genes is likely to identify rate-limiting steps for a process of
interest. To identify genes that are HI for cell cycle progression
we screened the heterozygous gene deletion diploid mutants of
both essential and non-essential cell cycle genes for an increase
or decrease in the cell size at septation, as a read-out of the tim-
ing at which cells enter mitosis.14,17 Mutants showing a delay
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or advancement into mitosis have previously identified compo-
nents of the CDK regulatory network acting at the G2-M tran-
sition.16,23 CDK1-CyclinB activity (Cdc2-Cdc13 in fission
yeast) is the key component of the mitotic control network and
is regulated by Cdc2 tyrosine 15 phosphorylation by Wee1
kinase and dephosphorylation by Cdc25 phosphatase, respec-
tively inhibiting or activating Cdc2 kinase activity.24 Cells enter
mitosis when they reach a certain cell size; changing the levels
of Wee1 or Cdc25 increases or decreases this size threshold,
demonstrating that the activity of Cdc2 is a major rate-limiting
step for cell cycle progression.25,26

Results and discussion

We have carried out a haploinsufficiency screen of the genome
wide set of cell cycle genes 4 to identify genes that are rate-limit-
ing for cell cycle progression. Based on our initial results a fur-
ther 31 genes, which did not have a typical cell cycle deletion
phenotype, were also screened (see Table S1A column D, Mate-
rials and Methods for details). We measured cell length at sep-
tation for each of the diploid heterozygous gene deletion
mutants and found a total of 85 mutants that showed a statisti-
cally significant deviation in cell length at septation from the
control using Analysis of Variance (ANOVA) and Tukey post
hoc tests (see Materials and Methods, Table S1B). The majority
of these strains showed only small differences compared to the
control. To focus on genes exhibiting the most significant
effects we set a cut off in cell length at division of 10% longer or
shorter than the control both for the mean and median values
and identified 13 such genes (10% gene set) (Table 1, Fig. 1,
Table S1B). Using esyN (http://www.esyn.org) 27 and the high

confidence physical interaction data set from Pombase (http://
www.pombase.org) together with GO slim term annotations
these 13 genes were categorised into the following functional
groups: i) Regulation of the G2-M transition (7 genes),
ii) Nuclear cytoplasmic transport (5 genes) and iii) Nucleotide
metabolism (one gene). Given that the HI group of genes
included 4 previously identified HI genes cdc2, cdc25, wee1 and
pom1, all of which encode components of the rate-limiting
CDK regulatory network,17,28 we concluded that other genes in
this set are also likely to be important for the timing of the G2-
M transition.

To ensure we did not miss any relevant genes just below the
10% cut-off, which were functionally related to the 10% gene
set, we examined the biological function of genes 8–10% longer
or shorter than the control at septation. Of the 7 genes in the
8–10% range (Table S1B) we identified 4 genes (8% gene set)
that were greater than 8% longer or shorter than the control for
both the mean and the median values and were directly related
to Regulation of the G2-M Transition or Nuclear cytoplasmic
transport (Table 1). We have considered both the 10% and 8%
genes sets together as HI genes. The two categories Regulation
of the G2-M transition and Nuclear cytoplasmic transport,
included genes encoding products that physically interact in
pathways or complexes (Fig. 2), further emphasizing the
importance of these genes for cell cycle progression.

All 17 strains were checked by PCR to confirm they were
deleted for the correct gene, and all non-essential gene deletion
mutants were checked to confirm that they had not become
homozygous at the deletion locus (Table S1C, D). We carried
out qPCR to estimate the mRNA levels encoded by a single
copy of each HI gene, and found that the transcript level in all

Table 1. Haploinsufficient gene set.

Gene
Gene E
or V

% Deviation from
control mean

% Deviation from
control median GO slim term biological process Gene function

SPAC212.05c V 0 0 control Pseudogene
dea2 E C31.94 C29.28 GO:0055086-nucleobase-containing small molecule

metabolic process
adenine deaminase

nup184 V C23.46 C23.43 GO:0006913 – nucleocytoplasmic transport GO:0006605 –
protein targeting

nucleoporin

nsp1 E C19.29 C18.17 GO:0006913 – nucleocytoplasmic transport GO:0042254 –
ribosome biogenesis

nucleoporin

nup97 E C18.92 C16.86 GO:0006913 – nucleocytoplasmic transport nucleoporin Nic96 homolog
cdc13 E C16.78 C16.72 GO:0007346 – regulation of mitotic cell cycle G2/M B-type cyclin
nup186 E C15.82 C13.34 GO:0006913 – nucleocytoplasmic transport nucleoporin Nup186
cdc25 E C15.55 C15.85 GO:0007346 – regulation of mitotic cell cycle M phase inducer tyrosine

phosphatase
cdc2 E C14.43 C12.31 GO:0007346 – regulation of mitotic cell cycle cyclin-dependent protein kinase
cdr1 V C11.63 C11.80 GO:0007346 – regulation of mitotic cell cycle NIM1 family serine/threonine

protein kinase
sal3 V C10.81 C10.87 GO:0006913 – nucleocytoplasmic transport b importin
nup45 E C8.80 C8.93 GO:0006913 – nucleocytoplasmic transport nucleoporin
cpc2 V C8.78 C8.72 GO:0002181 – cytoplasmic translation GO:0007010 –

cytoskeleton organization
RACK1 ortholog

nup189 E C8.74 C8.47 GO:0006913 – nucleocytoplasmic transport nucleoporin Nup98 and Nup96
ppa2 V ¡9.10 ¡8.94 GO:0007346 – regulation of mitotic cell cycle serine/threonine protein

phosphatase
suc1 E ¡10.86 ¡10.90 GO:0000079 – regulation of cyclin- dependent protein

serine/threonine kinase activity
cyclin-dependent protein kinase

regulatory subunit
pom1 V ¡11.06 ¡11.15 GO:0007010 – cytoskeleton organization GO:0007346 –

regulation of mitotic cell cycle
DYRK family protein kinase

wee1 V ¡16.50 ¡16.75 GO:0007346 – regulation of mitotic cell cycle M phase inhibitor protein kinase

Heterozygous gene deletion diploid strains that divide at greater than 8% longer or shorter than the control strain for both mean cell length and median cell length. ED
essential gene, VD non-essential gene.
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cases was reduced by around 50% (Table S1E, Fig. 3). This con-
firmed that for these genes there is no compensation by up-reg-
ulation of transcription from the remaining gene copy. For the
17 HI genes the mean and the median cell lengths were similar
(Table S1B, compare columns H and K) and in the following

discussion we have used the mean value when referring to cell
length. The cell cycle gene set we used for the HI screen con-
sisted of 368 (65.1%) essential genes and 197 (34.8%) non-
essential genes (Table S1A). We found that the 17 HI genes had
a similar distribution, with 10 (58.8%) essential genes and 7

Figure 1. Haploinsufficient genes. Cell length at septation of heterozygous gene deletion mutants plotted as mean cell length with SEM. The green line shows the mean
cell length of the control. n=>289 cells in at least 3 biological repeats.

Figure 2. Functional groups and physical interactions for the HI genes. Evidence codes are orange edgeD physical interaction, purple edgeD within complex interaction,
green edge D within pathway interaction, arrowhead D directed edge ie modification of a gene product by itself or another gene product, red edge D genetic interac-
tion. Black arrows indicate genes involved in processes associated with more than one functional module. Gray filled circle D 10% gene set, unfilled circle D 8% gene
set. The physical interactions were determined by esyN using Pombase high confidence interactions. The black boxes are the functional groups for the 10% gene set, the
gray box is an additional functional group for the 8% gene set. This gene is also related to Regulation of the G2-M transition.
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(41.2%) non-essential genes (Fisher’s Exact Test, Odds Ratio D
1.31, p> 0.05), suggesting that haploinsufficient cell cycle genes
are no more likely to be essential or non-essential for cell cycle
progression than the non-haploinsufficient genes.

We analyzed all 565 mutants using flow cytometric analysis.
All mutants showed a 4C DNA content profile similar to the
control; there was no evidence for a 2C or 2–4C population
that would indicate a delay in G1 or S phase (data not shown).
The failure to find any genes affecting progression through G1
or S phase may mean that gene products related to these pro-
cesses are in excess, or perhaps more likely, our analysis may
not have been sufficiently sensitive to detect the small delays or
advances in G1 or S phase to be expected in a haploinsuffi-
ciency screen.

The CDK1 mitotic control network

The timing of the G2-M transition is regulated by the con-
served CDK1 mitotic control network 24 and we have identified
8 HI genes involved in this process (Table 1, Fig. 2). The cell
length at septation of the 8 heterozygous deletion diploid
strains ranged between C11.6% and C16.8% (cdr1, cdc2, cdc25
and cdc13) and ¡ 9.1% and ¡16.5% (ppa2, suc1, pom1 and
wee1) longer (C) or shorter (¡) than the control (Table 1,
Fig. 1, Table S1B). The HI genes cdc2, cdc13, cdc25, and wee1
form the core of the mitotic control network.24,29,30 The Suc1
protein forms a complex with Cdc2 in fission yeast,31 and suc1
orthologues in budding yeast and frogs have been shown to
affect the phosphorylation levels of a subset of CDK1 sub-
strates.30,32, 33 The fact that reduction of suc1 gene dosage in fis-
sion yeast advances cells into mitosis suggests that Suc1
normally delays mitotic entry. It has previously been shown
that when the suc1 gene copy number in haploid cells is

increased from one to two, cells are about 20% longer at cell
division,34 supporting the idea that the level of Suc1 acts as a
rate-limiting inhibitor for mitotic entry. The two genes, pom1
and cdr1 35-38 both act in the Pom1 cell geometry pathway that
regulates CDK1 activity by inhibiting Wee1 activity, while
Ppa2 directly influences the CDK1 regulatory network through
both Wee1 and Cdc25 (Table 1, Table S1B). Ppa2 is a subunit
of the protein phosphatase PP2A, and loss of its activity in fis-
sion yeast causes cells to enter mitosis at a small cell size. In
other organisms PPA2 has been shown to be part of a
CDK1 autoregulatory feedback loop required for entry into
mitosis39,40 and in fission yeast it is also involved in nutritional
regulation of the G2-M size control.41

In addition to the genes within the mitotic control network,
we identified 2 genes, sal3 and cpc2 that affect localization and
translation efficiency of Cdc25 and Wee1 respectively. The sal3
gene (C10.8%) is a b importin required for nuclear transport
and plays a major role in Cdc25 nuclear localization, thus
affecting the timing of the G2-M transition 42 (Fig. 2). The cpc2
gene (C 8.8%) encodes the fission yeast ortholog of mammalian
RACK1 (Receptor for activated C kinase 1), a conserved ribo-
some associated protein with a central role in signaling.43 Cpc2
affects the efficient translation of a subset of proteins and may
act as a scaffold for a number of signaling pathways in fission
yeast.44,45 In the absence of Cpc2 the level of Wee1 is increased,
while the level of the Wee1 inhibitor Cdr2 is decreased, suggest-
ing that the observed increased cell length at division of both
the haploid gene deletion and diploid heterozygous gene dele-
tion mutants could be due to a delay in activation of the Cdc2
kinase at the G2-M transition.46 Cdr2 is a component of the
Pom1 pathway and in our screen showed a statistically signifi-
cant deviation in length at septation (C7.2%) to the control
(Table S1B).

Figure 3. mRNA expression levels for the HI gene set. Graph showing the mRNA expression level for each the HI gene in the heterozygous deletion diploid strain com-
pared to the homozygous control strain (100%) normalized to act1 mRNA. The green line denotes 50% of the control mRNA level.
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Previous studies, using reduction of function mutants of
eIF4F subunits or the protein synthesis inhibitor cyclohexi-
mide, have also identified a link between translation efficiency
and the translation of components of the CDK1 network;
Cdc25, Wee1 and Cdc13.47-51 To see if any of these genes were
HI for cell cycle progression we measured cell size at septation
of the heterozygous gene deletion diploid mutants of eIF4A
(SPAC1006.07), eIF4E (tif45), eIF4G (tif471) and the RNA heli-
case sum3/ded1/moc2. None of the 4 mutants showed a statisti-
cally significant deviation in cell length at septation from the
control. This suggests that a reduction of gene copy number
did not reduce gene function sufficiently to affect the transla-
tion efficiency of cdc2, cdc13 or cdc25, and that these particular
genes, although necessary for translation, are not HI for cell
cycle progression. Regulating the translation efficiency of genes
in the mitotic control network may work by directly regulating
translation of genes regulating CDK activity or indirectly, for
example through signaling pathways linking growth rate, moni-
tored by translation efficiency, to the CDK network.

The 8 HI genes we have identified here all affect the timing
of the G2-M transition and are rate-limiting for entry into
mitosis. In addition Sal3 and Cpc2 are also potential candidates
for linking other processes such as protein localization and
translation efficiency to the regulation of the G2-M transition.

Nuclear transport

Six HI genes encoded nucleoporins, nup184 (C 23.5%), nup97
(C18.9%), nsp1 (C19.3%) nup186 (C15.8%) nup45 (C 8.8%)
and nup189 (C 8.7%) (Table 1, Fig. 1, Fig. 3, Table S1B). The
nuclear pore complex (NPC) consists of around 30 subunits
and studies have shown that its basic structure is very similar
in different organisms including fission yeast. There are 3
major groups of nucleoporins; membrane nucleoporins which
link the NPC to the inner and outer nuclear membranes, scaf-
fold nucleoporins that form the structure of the pore and FG
(phenylalanine glycine) nucleoporins, which are required for
transport selectivity.52-54 Five of the nucleoporins identified in
this study, Nup186, Nup184, Nup97 (scaffold nucleoporins),
Nsp1 and Nup45, (FG nucleoporins) are clustered together
across the central core region of the nuclear pore.53 Nsp1,
Nup97 and Nup45 are subunits of the Nic96 sub-complex iden-
tified in humans and budding yeast.55 This complex is required
for nuclear pore assembly,56 and haploid fission yeast mutants
deleted for either nsp1 or nup97 cells arrest as ungerminated
spores, probably because a number of different cellular pro-
cesses dependent on nuclear cytoplasmic transport are affected.
However, when the gene dosage of either of these genes is
reduced in diploid cells, cells are viable but show a cell cycle
delay. Nup45 is also a Nic96 subunit, but unlike Nsp1 and
Nup97, the nup45 gene deletion mutant has a cell cycle pheno-
type in haploid cells as well as in the heterozygous gene deletion
diploid mutant.4,57 The remaining Nic96 complex subunit
Nup44 also has a cell cycle deletion phenotype in haploid cells
and in our study showed a statistically significant deviation in
cell length at septation (C7.1%) compared to the control
(Table S1B). These data suggest that when the Nic96 complex
is compromised, as in diploid heterozygous gene deletion
mutants of nsp1, nup97, nup45 or nup44, or in the haploid

deletion mutants of nup45 and nup44, it is primarily the cell
cycle function that is affected.

The only nucleoporin we identified that is not found in the
NPC central core was Nup189,58 which undergoes autocleavage
to form 2 distinct nucleoporins (known as Nup189N or Nup98
and Nup189C or Nup96), although in fission yeast this cleavage
is not essential for cell viability.59 Nup189N/Nup98 is an FG
nucleoporin located in the outer ring of the nuclear pore, while
Nup189C/Nup96 is a scaffold nucleoporin.

In HeLa cells, nucleoporins have been implicated in the
G2-M transition as a knockdown of Nsp1/Nup62 (Nic96 sub-
unit) causes a G2-M arrest,60 possibly as a result of altered
localization of factors regulating the G2-M transition. It has
also been shown that disassembly of the NPC at mitosis by
CDK1 dependent phosphorylation of the GLFG repeats in
Nup98 (Nup189N/Nup98 in S. pombe) is important for nuclear
envelope breakdown and mitotic progression.61 Nucleoporins
may also have roles that are independent of their role in nuclear
transport. The Nic96 complex, for example, also affects chro-
mosome segregation and spindle orientation56,60 and in bud-
ding yeast has a role ensuring equal segregation of nuclear pore
complexes (NPCs) to daughter cells.62,63 Other studies in
human cells have shown that nucleoporins may function as
transcription factors regulating genes with a cell cycle related
function.64 Nuclear transport also plays a central role during
ribosome biogenesis,65 so it is possible that these haploinsuffi-
cient nucleoporins mainly affect translation and have an indi-
rect effect on cell cycle progression.

All the nuclear transport genes identified in this screen are
conserved in other eukaryotes 66 (http://www.pombase.org/ ),
and as mentioned earlier, Sal3 (C10.8%) (Table 1, Fig. 1, Fig. 2)
encodes a b importin regulating nuclear transport of Cdc25.42

Based on these results for Sal3 we propose that the nucleopore
proteins identified here affect nuclear import or export of com-
ponents of the CDK regulatory network.

Other genes affecting the timing of entry into mitosis

The HI gene dea2, encodes an adenine deaminase (C31.9%)67

(Table 1, Figs. 1–3, Table S1B). Fission yeast adenine deami-
nases are related to the eukaryotic adenosine deaminases,
which play a key role in the adenine salvage pathway (http://
www.ebi.ac.uk/interpro/entry/IPR006330), and are involved in
adenine catabolism.67 Because of its role in adenine catabolism
in fission yeast a reduction in the level of Dea2 may lead to an
imbalance between de novo synthesis, salvage and degradation
of purines, which could affect both DNA replication and repair
directly or indirectly via nucleotide/deoxynucleotide levels. A
number of other genes involved in nucleotide metabolism
(adk1, hpt1, dut1, dcd1, tmp1, and dfr1), although not haploin-
sufficient, have been identified as cell cycle genes,4 supporting
the idea that levels of nucleotide intermediates are important
for progress through the cell cycle. In HeLa cells the
impairment of adenosine deaminase leads to high levels of
dATP, which is an inhibitor of ribonucleotide reductase
(RNR).68,69 In fission yeast the large subunit of RNR, encoded
by cdc22 and the small subunit encoded by suc22, are both
essential for DNA replication and cell viability.70 However nei-
ther gene was identified in this study as HI either for the G2-M
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transition or progression through G1 or S phase (data not
shown) nor did either gene show a statistically significant devi-
ation in cell length at septation from the control. Flow cytome-
try showed that cells with reduced dea2 gene dosage did not
cause an obvious delay in G1 or S phase progression (Fig. S1),
suggesting that the dea2 heterozygous gene deletion strain is
delayed in the G2 phase of the cell cycle. Perhaps when expres-
sion of dea2 is only partially compromised (Fig. 3), RNR has
sufficient activity to allow a doubling of DNA during S phase
but that error prone DNA synthesis occurs due to increased
levels of dATP, leading to activation of the DNA damage
checkpoint and a delay of entry into mitosis. Alternatively S
phase maybe extended with DNA replication continuing at a
low level below our level of detection, due to reduced activity of
RNR and activation of the DNA replication checkpoint to delay
onset of mitosis.

Rate-limiting steps

The idea of major rate-limiting steps controlling the rate of
progress through a pathway was first postulated over 100 years
ago.71 Since then work on metabolic control has led to the idea
that many enzymes within a metabolic pathway contribute to
flux through the pathway rather than there being a major
step.72 For the rate of progression through the cell cycle, 2
major rate-limiting steps have been identified, one at the G1-S
and one at the G2-M transition.73-76 For both of these transi-
tions the key step is activation of CDK1 activity.74,75,77 In this
study we have identified a number of genes that regulate Cdc2
activity, most of which act within the Cdc2 mitotic control net-
work (Fig. 2). These results suggest that regulation of Cdc2
kinase activity by the mitotic control network occurs at a num-
ber of different steps each contributing to the overall timing of
entry into mitosis. Other HI genes, for example cpc2, dea2 and
sal3 affect other processes as well as cell cycle progression and
these genes could be acting as major rate-limiting steps linking
processes such as translation efficiency, nucleotide levels and
localization of cell cycle regulators with cell cycle progression.
Our results suggest that regulation of cell cycle progression
depends not only on the major rate-limiting steps but is distrib-
uted further to a number of different steps, integrating multiple
input signals feeding into the major cell cycle control genes.

Our haploinsufficiency screening approach has identified
the canonical rate-limiting gene functions regulating the CDK1
mitotic control network involved in the G2 to mitosis transi-
tion, cdc2, cdc13, wee1 and cdc25. In addition we have identified
a further 4 genes, suc1, cdr1, ppa2 and pom1, all previously
shown to interact with components of the mitotic control net-
work. Of these 4 genes, suc1, cdr1 and ppa2 have not previously
been shown to be rate-limiting when their expression is
reduced in a limited way. Translation efficiency has previously
been implicated in cell cycle progression, and we have identi-
fied cpc2 that influences translation efficiency and may be rate-
limiting for levels of the CDK1 mitotic control network compo-
nents. In addition we have identified 6 genes encoding nuclear
pore complex subunits, Nup184, Nup186, Nup189N/Nup98,
Nup189C/Nup96, Nsp1, Nup97, Nup45 and Sal3 a b importin
which imports Cdc25 into the nucleus and regulates its nuclear
localization.42 We propose that nuclear transport plays a key

rate-limiting role in the regulation of the CDK1 mitotic control
network, which has not been fully recognized. Finally we have
identified Dea2 that, unexpectedly, implicates nucleotide
metabolism in regulation of the G2-M transition, perhaps via a
defect in DNA replication and activation of the DNA damage/
replication checkpoint controls.

As the number of identified open reading frames increases
in S. pombe (currently 5118 protein coding genes, http://www.
pombase.org/status/statistics ), more genes important for cell
cycle regulation can be expected to be identified. For example
new open reading frames of less than 100 amino acids identi-
fied in fission yeast and deletion of genes not included in the
Bioneer library have revealed a further 2 cell cycle genes.78,79

Further analysis of the Bioneer non-essential gene collection of
»3000 haploid deletion mutants has also identified additional
cell cycle genes. A screen for genes generating a small (wee) cell
deletion phenotype identified 18 genes (an additional 8
genes).80 A multiprocess screen uncovered 25 genes in addition
to the 538 genes previously identified, which affected the dura-
tion of the cell cycle phases but which did not have a long cell
deletion phenotype, and a further 9 genes that when deleted
result in an increased cell volume at cell division.81

As genes required for the cell cycle and its regulation are
highly conserved in eukaryotes 24 it is likely that the haploinsuf-
ficient genes identified here as new rate-limiting components of
the CDK1 mitotic network and nuclear transport, are also
important for the timing of progression through the cell cycle
in other eukaryotes. Further investigation of the role of these
genes and the identification of new cell cycle genes in both fis-
sion yeast and other eukaryotes is likely to reveal new levels of
cell cycle control and illuminate how this is linked to other cel-
lular processes such as translation and cellular localization.

Materials and methods

Media and cell growth conditions

These were as described by Moreno, Klar and Nurse82 unless
otherwise stated.

Gene set and cell length measurements

All strains were grown in YES liquid media at 32�C to mid
exponential growth (»2 £ 106 ¡ 8 £ 106 cells /ml). Live cells
were examined using a Zeiss Axioskop 40 with a X63 Plan
APOCHROMAT 1.4 oil immersion objective and photo-
graphed using a Zeiss Axiocam. Cell length for »30 septated
cells for the initial analysis and at least 100 septated cells for
each biological repeat was measured using pointpicker in Image
J, (Table S1B). The subset of heterozygous diploid mutants used
for this study was from the genome-wide set constructed by
The South Korean consortium including Bioneer 1 and used by
Hayles et al.4 The majority of strains in all the versions of the
Bioneer haploid libraries are derived from this diploid hetero-
zygous gene deletion library. The 17 HI strains identified in
this study were the originally constructed diploids, except for 3
strains heterozygous for deletions of cdc25, wee1 or sal3, which
were host exchanged diploids to remove a background ‘miss’
mutation.1 The working code suffix ¡0 or ¡1 (Table S1A
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column C) denotes host exchange or reconstructed deletion
respectively.

Four genes from the genome wide, 538 gene set were omit-
ted from the study for technical reasons e.g. strains were a
mixed culture or haploidised at high frequency and we included
31 genes that when deleted do not have the classical cell cycle
phenotype of long or small cells. These genes were included as
they were known to be required for the cell cycle (4 genes),
were related to genes we identified as HI genes (23 nuclear
transport related genes) or were required for the initiation of
translation (4 genes) (Table S1A column D).

Flow cytometry analysis

Flow cytometry analysis was carried out as described in,83 using
a Becton Dickinson FACScan.

PCR and primer sequences

Total RNA was isolated from S. pombe cells using the hot phe-
nol RNA extraction method84 and purified using RNeasy col-
umns (Qiagen). Contaminating genomic DNA was removed by
DNase 1 treatment (Ambion rDNase1). cDNA was synthesized
using a Superscript III Invitrogen kit (Catalog no. 18080–051)
with Oligo(dT)20 primers. qPCR reactions were carried out
using EXPRESS SYBR� GreenERTM (Invitrogen) according to
manufacturer’s recommendations in an ABI 7500 Fast qPCR
machine (annealing temp of 56�C). Levels of transcript were
quantified using a standard curve method. Two biological
repeats were carried out for each strain.

Primers used to confirm that the strain was deleted for the
correct gene are shown in Table S1C and to confirm the strain
was heterozygous for non-essential gene deletions are shown in
Table S1D. Primers used for qPCR to measure the transcript
level are shown in Table S1E. All primers were selected using
ApE-A plasmid editor v1.17.

Statistical analyses

Cell lengths from each mutant strain and wildtype measure-
ments were analyzed using R software with the core statistics
package (see Table S1B for summaries). The dataset was fitted
with an Analysis of Variance (ANOVA) model, which identi-
fied significant differences between the strains (F D 29.54,
df D 565, p <2e-16). To identify which strains contributed to
this difference, a post-hoc Tukey test was applied in order to
identify strains with significantly different cell length measure-
ments from the control strain. To determine which genes could
confidently be designated as HI we used 2 criteria: a) The distri-
bution of cell length measurements showed a statistically signif-
icant deviation from the control cell length measurements and,
b) The average cell length was �10% longer or �10% shorter
than that of the wildtype control. The implementation of this
second criterion was in order to minimise type I errors (false-
positives) and ensure that all genes designated as HI were also
likely to be biologically significant. While the 10% cut-off was
somewhat arbitrary, the range is similar to the batch-variability
of the wildtype strain (141 batches, median D 21.416 mm, low-
est batch median D 19.11 mm (10.7% shorter), highest batch

median D 23.53 mm (9.8% longer)). Additional genes function-
ally related to the HI genes are referred to within the text when
they show average lengths �8% significantly longer or �8%
significantly shorter than the control, in order to highlight simi-
lar behavior within classes of genes.

Batch effects between different experiments of the same
strain were also tested by ANOVA to validate the reproducibil-
ity of data sets and are shown in Table S1, column W.
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