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Abstract RNA-binding proteins contribute to the formation of ribonucleoprotein (RNP) granules

by phase transition, but regulatory mechanisms are not fully understood. Conserved fission yeast

NDR (Nuclear Dbf2-Related) kinase Orb6 governs cell morphogenesis in part by spatially

controlling Cdc42 GTPase. Here we describe a novel, independent function for Orb6 kinase in

negatively regulating the recruitment of RNA-binding protein Sts5 into RNPs to promote polarized

cell growth. We find that Orb6 kinase inhibits Sts5 recruitment into granules, its association with

processing (P) bodies, and degradation of Sts5-bound mRNAs by promoting Sts5 interaction with

14-3-3 protein Rad24. Many Sts5-bound mRNAs encode essential factors for polarized cell growth,

and Orb6 kinase spatially and temporally controls the extent of Sts5 granule formation. Disruption

of this control system affects cell morphology and alters the pattern of polarized cell growth,

revealing a role for Orb6 kinase in the spatial control of translational repression that enables

normal cell morphogenesis.

DOI: 10.7554/eLife.14216.001

Introduction
Many cellular processes, such as cell morphogenesis, migration, and asymmetric cell division, require

eukaryotic cells to alter polarity and growth patterns (Lalli, 2014; Tahirovic and Bradke,

2009; Woodham and Machesky, 2014; Knoblich, 2008). Understanding the conserved mechanisms

by which cells tune polarized cell growth has implications for studies of neuronal cell morphogenesis,

neurodegenerative diseases, stem cell differentiation, and cancer (Yoshimura et al.,

2006; Tahirovic and Bradke, 2009; Yamashita et al., 2010; Tanos and Rodriguez-Boulan, 2008).

The fission yeast Schizosaccharomyces pombe is an excellent model system to study cell morpho-

genesis and growth because cells have a defined cylindrical shape that enables straightforward eval-

uation of changes in growth and polarity. Under exponential growth conditions, fission yeast cells

display a paradigmatic pattern of cell growth, growing in a monopolar fashion during early inter-

phase and activating bipolar growth at the new cell tip once a minimal cell length has been achieved

Nuñez et al. eLife 2016;5:e14216. DOI: 10.7554/eLife.14216 1 of 29

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7554/eLife.14216.001
http://dx.doi.org/10.7554/eLife.14216
https://creativecommons.org/
https://creativecommons.org/
http://elife.elifesciences.org/
http://elife.elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


(Mitchison and Nurse, 1985). Further, S. pombe displays a distinct morphological response to nutri-

ent deprivation, which causes cells to divide at a shorter cell length and grow in a monopolar fashion

(Su et al., 1996; Yanagida, 2009; Yanagida et al., 2011).

The NDR (Nuclear Dbf2-Related) kinase family with roles in cell morphogenesis, cell growth and

proliferation, mitosis, and development, is highly conserved in cells ranging from yeast to mamma-

lian neurons (Verde et al., 1995; Verde et al., 1998; Zinn, 2004; Hergovich et al., 2006). In

humans, this subset of the AGC kinase group comprises NDR1 and NDR2 and the closely related

kinases LATS1 (large tumor suppressor 1) and LATS2 (Hergovich et al., 2006), which function down-

stream of the MST/Hippo kinases (Meng et al., 2016). While LATS1 and LATS2 kinases are central

to the Hippo pathway that plays a role in organ size and tumor suppression, dysregulation of NDR

kinases has been implicated in cancers such as progressive ductal cell carcinoma, melanoma, non–

small-cell lung cancer, and T-cell lymphoma (Adeyinka et al., 2002; Millward et al.,

1998; Hauschild et al., 1999; Ross et al., 2000; Cornils et al., 2010). In addition to their link to can-

cer, NDR kinases function also in neuronal growth and differentiation, dendritic branching, and den-

dritic tiling, and have been implicated in memory and fear conditioning (Emoto et al.,

2004; Zallen et al., 2000; Koike-Kumagai et al., 2009; Stork et al., 2004). Recent work has shown

that mammalian NDR1 and NDR2 promote polarity in neurons upstream of the polarity protein Par3

(Yang et al., 2014). However, the mechanisms by which NDR kinases control cell growth and polar-

ity are not fully understood. The fission yeast NDR kinase Orb6 is a central component of the con-

served morphogenesis (MOR) regulatory network (Hergovich et al., 2006). We previously showed

that NDR kinase Orb6 has a role in the establishment of cell polarity and the control of polarized cell

growth (Verde et al., 1995; Verde et al., 1998). Orb6 kinase regulates cell polarity, in part, by spa-

tially controlling conserved GTPase Cdc42 (Das et al., 2009), via inhibitory phosphorylation of

Cdc42 guanine exchange factor (GEF) Gef1 (Das et al., 2015).

Here, we describe a novel role for Orb6 kinase, genetically separable from its control of the

Cdc42 pathway, in promoting polarized cell growth by inhibiting translational repression. Transla-

tional repression, carried out in part by the assembly of cytoplasmic granules of ribonucleoprotein

eLife digest Living cells can grow to adopt a range of different shapes. For example, fission

yeast cells maintain their rod-like shape by growing from their ends and then splitting in the middle

to produce two new cells of an equal size. Like many other cells, fission yeast often responds to

shortages of nutrients or other environmental stressors by growing more slowly or stopping its

growth altogether. One way that this stress response is achieved is by preventing certain growth-

promoting proteins from being made by storing or degrading the RNA molecules that are needed

to make these proteins.

Fission yeast uses an enzyme called Orb6 to control its growth and its overall shape. This enzyme

is a kinase, meaning that it adds phosphate groups on to other proteins. Orb6 controls cell growth

in part by defining the scope of action of an important growth control factor, Cdc42. This is done by

preventing the localization of a molecule that activates Cdc42 at the wrong places of the cell

membrane, such as, for example, the cell sides.

Now, Nuñez et al. show that the Orb6 enzyme also controls growth via a completely separate

mechanism. Orb6 prevents an RNA-binding protein called Sts5 from being recruited into clusters of

RNA molecules and proteins called granules, and directs Sts5 to interact with another protein called

Rad24 instead.

Since the RNA molecules in the granules tend to end up being degraded, preventing Sts5 from

being recruited to the granules protects the RNA molecules that bind to Sts5. Many Sts5-bound

RNAs encode proteins required for cell growth, and in this manner Orb6 promotes the production

of these Sts5-controlled proteins to encourage normal cell growth.

In the future, Nuñez et al. would like to determine how Orb6 recognizes and responds to

environmental signals to control cell growth. Further studies could also explore how Sts5 and Orb6

kinase affect the assembly of RNA-protein particles that have been implicated in diseases in humans.

DOI: 10.7554/eLife.14216.002
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particles (RNPs), is a quick and reversible cellular strategy for inhibiting cell growth in response to

stress, such as nutritional deprivation, oxidative stress, or osmotic stress (Coller and Parker,

2005; Decker and Parker, 2012; Kedersha et al., 2005; Jud et al., 2008). P-bodies, stress gran-

ules, and other RNPs such as neuronal transport granules and germ granules play important roles in

mRNA regulation with implications for human diseases such as ALS, frontotemporal lobar degenera-

tion, and viral infection (Ramaswami et al., 2013; Chahar et al., 2013). P-bodies in particular con-

tain mRNA decay machinery and serve as sites of storage or degradation for mRNAs during times of

cellular stress (Decker and Parker, 2012). In this work, we describe a novel mechanism whereby

NDR kinase Orb6 negatively regulates the recruitment of mRNA-binding protein Sts5 into RNP par-

ticles and Sts5 localization to P-bodies at least in part by promoting Sts5 interaction with 14-3-3 pro-

tein Rad24. This mechanism of control prevents the degradation of mRNAs encoding proteins

important for polarized cell growth and cell morphogenesis during exponential cell growth, and pro-

motes morphological adaptation during nutritional stress.

Results

Loss of RNA-binding protein Sts5 suppresses the cell viability defects
of orb6 mutants
We observed that loss of Orb6 kinase activity by chemical inhibition of analog-sensitive Orb6-as2

kinase by the ATP analogue 1-NA-PP1 leads to cell separation defects (Figure 1A,c; B) and slow

growth, in addition to polarity defects (Das et al., 2009; Das et al., 2015). By complementation

screening of the orb6-as2 allele with mutants of other orb genes (Snell and Nurse, 1994;

Verde et al., 1995), we found that sts5 mutants (allelic to orb4; see Figure 1—figure supplement

1A) suppress the cell-separation defect associated with chemical inhibition of Orb6-as2 kinase

(Figure 1A,d; Figure 1B; Verde et al., 1995) as compared to control cells (Figure 1A,c; Figure 1B).

sts5 encodes an mRNA-binding protein with significant sequence homology to Ribonuclease II

(RNB)–domain and Ribonuclease R–domain proteins (Toda et al., 1996; Jansen et al., 2009). Clos-

est homologues of Sts5 include S. cerevisiae Ssd1 (Jansen et al., 2009), S. pombe Dis3L2, and the

human exonuclease Dis3L2, which has been associated with diseases such as Perlman syndrome and

Wilm’s tumor, as well as Rrp44/Dis3 (Figure 1C) (Malecki et al., 2013; Robinson et al., 2015;

Lv et al., 2015; Astuti et al., 2012). Sts5 and Dis3L2 contain conserved domains (cold shock

domains CSD1 and CSD2 and the S1 domain) that mediate interaction with the single-stranded RNA

substrate (Faehnle et al., 2014). However, both Sts5 and Dis3L2 lack the PIN domain and CR3 sig-

nature amino acids that are implicated in the association of Rrp44/Dis3 to the exosome (Indicated

by . in Figure 1C) (Malecki et al., 2013; Schaeffer et al., 2012; Makino et al., 2013;

Robinson et al., 2015). Furthermore, Sts5 lacks conserved amino acids involved in RNA hydrolysis

(marked by ~ in Figure 1C), indicating that it is unlikely to have exonuclease activity (Uesono et al.,

1997; Jansen et al., 2009).

Next, we investigated whether sts5D suppresses the loss of viability observed with temperature-

sensitive orb6 mutants and mutants of other components of the Orb6 pathway (Verde et al.,

1995; Verde et al., 1998). Orb6 kinase belongs to the morphogenesis (MOR) network, which

includes Nak1 kinase and its binding partner Pmo25, the scaffolding protein Mor2, and the Orb6

binding partner Mob2 (Figure 1D) (Kanai et al., 2005; Hou et al., 2003). As with orb6 mutants,

temperature-sensitive MOR mutants exhibit a loss of viability at the restrictive temperature. In a spot

growth assay, we found that the sts5-276 mutation (which truncates the sts5 gene to a short 53-bp

fragment; see Figure 1—figure supplement 1A) suppresses the temperature-sensitive growth

defect associated with orb6 mutation, as well as the growth defects of other MOR network mutants

(Figure 1E).

Finally, we tested the idea that the function of sts5 deletion in suppressing the loss of viability of

orb6 mutant cells is independent of Cdc42 GTPase. We found that sts5 deletion does not suppress

the cell rounding induced by prolonged Orb6 kinase inhibition (Figure 1—figure supplement 1B).

Further, mislocalization of the Cdc42 reporter CRIB-GFP in orb6 mutants (Tatebe et al.,

2008; Hoffman and Cerione, 2000), a hallmark of Orb6 kinase inhibition (Das et al., 2009), is not

suppressed by loss of sts5 (Figure 1—figure supplement 1C and 1D). Conversely, deletion of the

Cdc42 GEF gef1 does not suppress the loss of viability of orb6 mutants (Figure 1—figure
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Figure 1. Loss of RNA-binding protein Sts5 suppresses the cell viability defects of orb6 mutants. (A) Deletion of

sts5 suppresses the cell separation phenotype of analog-sensitive orb6-as2 mutants. (a) wild-type, (b) sts5D, (c)

orb6-as2 and (d) orb6-as2 sts5D mutants treated with 50 mM 1-NA-PP1 inhibitor for 2 hr at 32˚C. Bar = 5 mm. (B)

Septation index quantification of cells in experiment shown in A based on 3 independent experiments (N>295 per

strain). Orb6-as2 cells exhibit a significantly higher septation index as compared to control cells (P = 0.0004) and as

compared to orb6-as2 sts5D double mutants (P = 0.0011). P values were determined using analysis of variance

(ANOVA) with SPSS statistics package 22.0, followed by Tukey’s HSD test. Error bars indicate SD. (C) Sts5 protein

sequence includes the RNB domain (a.a. 531–975), with homology to the catalytic domain of E. coli ribonuclease II,

three conserved OB-fold domains that promote interaction with RNA, the CSD1 (a.a. 293–353), CSD2 (a.a. 430–

524), and S1 (a.a. 981–1031) domains. Sts5 is related to the exoribonuclease Dis3L2 that is conserved from S.

pombe to humans. ~ indicates 3 catalytic residues in RNB domain. . indicates CR3 motif residues for exosome

targeting. (D) Interactions between MOR network proteins. Mor2 serves as a scaffold that enables activation of

Mob2-bound Orb6 by the Nak1-Pmo25 complex (o indicates 2-hybrid interaction; . indicates IP interaction). (E)

sts5-276 mutation suppresses the temperature-sensitive growth of MOR mutants. The indicated cells were spotted

on YPD solid medium (approximately 5 � 104 cells in the left spots for each plate and then diluted 4-fold in each

subsequent spot) and incubated at 25˚C, 34˚C, and 36˚C for 3 days.

DOI: 10.7554/eLife.14216.003

The following figure supplements are available for figure 1:

Figure supplement 1. Loss of RNA-binding protein Sts5 does not suppresses the polarity defects observed upon

Orb6-as2 kinase inhibition.

DOI: 10.7554/eLife.14216.004

Figure supplement 2. Deletion of gef1 or dis3L2 does not suppress the growth defect observed upon Orb6-

as2 kinase inhibition.

DOI: 10.7554/eLife.14216.005
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supplement 2A), while it suppresses the polarity defect associated with Orb6 kinase inhibition

(Das et al., 2009).

Together, these results suggest that Sts5 mediates the cell separation defects and loss of viability

observed in orb6 mutants. Further, this novel role of Orb6 kinase in growth control is genetically

separable from its previously established function in the spatial control of Cdc42 GTPase.

Sts5 proteins are recruited into cytoplasmic puncta during mitosis and
during nutritional starvation
We used fluorescence microscopy to study the localization of Sts5-3xGFP. We found that during

exponential growth Sts5-3xGFP localization is mostly diffuse in the cytoplasm during interphase (I)

(Figure 2A). Sts5 coalesces into cytoplasmic puncta during mitosis as previously reported

(Vaggi et al., 2012).

We found that upon nutrient starvation Sts5-3xGFP proteins rapidly coalesce into distinct, larger

cytoplasmic puncta. Many of these puncta colocalize with P-body (Processing body) marker Dcp1-

mCherry, a component of the mRNA decapping complex (Wang et al., 2013). Sts5 localization to

the P-bodies is particularly strong during glucose deprivation (Figure 2B,b,h) and occurs also during

nitrogen starvation, although puncta appear smaller and co-localization of Sts5 with Dcp1 is partial

(Figure 2B,c,i). Conversely, Sts5 recruitment into puncta during mitosis occurs in the absence of sub-

stantial P-body formation, as visualized with P-body marker Dcp1-mCherry (Figure 2A). Consistent

with these findings, Sts5 contains a region predicted to be intrinsically disordered in the first 301

amino acids of the Sts5 protein, a feature shared by many proteins that undergo assembly into RNP

particles (Lin et al., 2015; Patel et al., 2015; Elbaum-Garfinkle et al., 2015; Wang et al.,

2014; Kato et al., 2012; Han et al., 2012) (Figure 2—figure supplement 1). These results indicate

that Sts5 proteins can organize in cytoplasmic puncta during mitosis and in response to nutritional

stress. Furthermore, these puncta co-localize with P-bodies following glucose or nitrogen starvation.

Loss of Sts5 leads to increased levels of mRNAs involved in growth
control and bipolar growth activation
It is possible that Sts5 modulates cell growth by controlling the levels of the mRNAs it binds. To

investigate the functions of Sts5-regulated transcripts, we first used microarray analysis to identify

mRNAs that are elevated (at least 1.9-fold) in sts5D mutants as compared to wild-type cells, under

exponential growth conditions (See Figure 3—source data 1). This analysis identified 140 mRNAs,

and showed significant overrepresentation of genes with roles in polarized cell growth, adhesion

and cell wall biogenesis by gene ontology enrichment analysis (Figure 3, *) (See Figure 3—source

data 1). Remarkably, we identified ssp1, cmk2, tea5/ppk2, ksg1 and lkh1, which encode protein kin-

ases with a role in the activation of bipolar cell growth (Figure 3; Figure 3—source data 1)

(Koyano et al., 2010). Intriguingly, these mRNAs encoding polarity regulators all contain a consen-

sus sequence in their 5’UTR which functions as a potential recognition sequence for targets of the S.

cerevisiae homolog of Sts5, Ssd1 (Figure 3, †) (Hogan et al., 2008) (Wanless et al., 2014). The fully

categorized list of mRNAs identified in the microarray analysis includes mRNAs involved in cell wall

biogenesis and secretion, cytoskeletal organization, nutrient transport, and meiosis (See Figure 3—

source data 1).

The mRNAs encoding proteins with known roles in polarized cell growth were selected for further

analysis by qPCR, which confirmed that sts5D cells exhibit increased levels of ssp1, cmk2, tea5/ppk2,

lkh1, efc25, and psu1 mRNA, genes with diverse functions in cell morphogenesis (Figure 4A) (Fig-

ure 3; Figure 3—source data 1). Further, we determined that Sts5-3xGFP protein co-purifies with

efc25, ssp1, and psu1 mRNAs (Figure 4B). Consistent with a functional interaction with sts5 and

orb6, ssp1 was previously identified as an extragenic suppressor of sts5 mutants (Matsusaka et al.,

1995), while psu1 functions as a multicopy suppressor of orb6 mutants (Figure 4—figure supple-

ment 1).

We chose to measure protein levels of HA-tagged Ssp1 and Myc-tagged Efc25 to gauge how

Sts5 regulation of ssp1 and efc25 mRNAs affected the levels of Ssp1 and Efc25 proteins. We deter-

mined that Ssp1 protein levels significantly increase in sts5D mutants, as compared to controls, when

cells are exposed to higher temperatures (36˚C; Figure 4C,D). Interestingly, sts5D cells display a

temperature-sensitive morphological phenotype, growing over a wider area of the cell surface and
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developing a rounded cell shape at 36˚C (Figure 4—figure supplement 2A,d). Consistent with

increased Ssp1 protein levels playing a role in promoting abnormal morphogenesis, the aberrant

morphological phenotype of sts5 mutants is partially suppressed by loss of ssp1 (Matsusaka et al.,

Figure 2. Sts5 proteins assemble into puncta during mitosis and during nutritional starvation. (A) Sts5-3xGFP

proteins coalesce into cytoplasmic particles in cells undergoing mitosis (M) but appear mostly diffuse in the

cytoplasm of growing interphase (I) cells (a, c). (b) P-body formation, as visualized by P-body marker Dcp1-mCherry

is not induced in mitotic cells. Bar = 5 mm. (B) Sts5-3xGFP proteins are recruited and colocalize with the P-body

marker Dcp1-mCherry upon growth for 1 hr in minimal medium minus glucose (b, e, h). Sts5-3xGFP recruitment

and colocalization with Dcp1-mCherry in P-bodies also occurs upon 1 hr of growth in minimal medium minus

nitrogen (c, f, i). Sts5-3xGFP recruitment was observed as early as 15 min after transfer to glucose- or nitrogen-

depleted medium. Images are deconvolved projections from 12 Z-stacks separated by a step size of 0.3 mm.

Experiment was performed using prototrophic strain FV2267. Bar = 5 mm.

DOI: 10.7554/eLife.14216.006

The following figure supplement is available for figure 2:

Figure supplement 1. Sts5 protein contains an intrinsically disordered domain.

DOI: 10.7554/eLife.14216.007
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Figure 3. mRNAs detected at higher levels in sts5D cells by microarray analysis. Total mRNA was extracted from sts5D and control cells for microarray

analysis. A complete list of mRNAs increased in sts5D cells (�1.9 fold) is shown in Figure 3—source data 1. Several of these mRNAs have established

functions in bipolar growth activation and contain putative Sts5-binding sites in their 5’ UTRs (Hogan et al., 2008; Wanless et al., 2014). *Gene

ontology enrichment analysis of terms that are significantly enriched among the set of mRNAs with sts5D/WT ratio �1.90 in the microarray results. Fold

enrichment plotted per gene ontology category among all significant terms (P<0.05, modified Fisher Exact P-value with the Benjamini P-value

correction) for Cellular Compartment (CC), Biological Process (BP) and Molecular Function (MF) Gene Ontology terms. †Sts5 binding site:

HNNYAHTCHWW (where H = A,T,C / N = A,T,C,G / Y = C,U / W = T,A).

DOI: 10.7554/eLife.14216.008

The following source data is available for figure 3:

Source data 1. Microarray analysis results.

DOI: 10.7554/eLife.14216.009
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Figure 4. Loss of Sts5 leads to increased levels of mRNAs involved in growth control and bipolar growth activation. (A) qPCR analysis confirmation that

several of these transcripts are more abundant in the sts5D strain as compared to control cells based on 3 independent experiments. Tea4 is shown as

an example of a transcript that is not altered. Housekeeping genes were nda3, act1, cdc2, and cdc22. Error bars indicate SD. (B) Interaction of ssp1,

efc25, and psu1 mRNAs with Sts5-3xGFP as established by co-immunoprecipitation with Sts5-3xGFP followed by qPCR as described in the Materials

and Methods. cdc2 is shown as an example of a transcript that does not interact with Sts5-3xGFP. Error bars indicate SD. Three independent

experiments were performed. (C) Western blotting against Ssp1-HA performed as described in Materials and Methods in WT and sts5D cells cultured in

YE medium at 25˚C and 36˚C. Tubulin levels were determined as a loading control. (D) Quantification of Ssp1-HA/Tubulin ratio normalized to WT levels

was based on 3 independent experiments. Change in Ssp1-HA level is significantly greater in sts5D cells as compared to controls at 36˚C (P = 0.034,

Student’s t-test). Error bar=SD. (E) Western blotting against Ssp1-HA performed as described in Materials and Methods in WT and edc3D and pdc1D

cells cultured in supplemented minimal medium at 30˚C. Tubulin levels were determined as a loading control. (F) Quantification of Ssp1-HA/Tubulin

ratio normalized to WT levels at 25˚C based on 3 independent experiments. Change in Ssp1-HA level is significantly greater in edc3D (P = 0.018,

Student’s t-test) and pdc1D (P = 0.0154, Student’s t-test) cells as compared to controls. Error bar = SD. (G) RNA FISH visualization of ssp1 mRNA in

fixed cells cultured for 20 min in supplemented minimal medium containing 0% glucose. Hybridization used 20-mer DNA oligos (Stellaris) labeled with

Quasar 705 fluorochromes. Bar = 5 mm.

DOI: 10.7554/eLife.14216.010

The following figure supplements are available for figure 4:

Figure supplement 1. Overexpression of Psu1 suppresses the temperature-sensitive growth defect of orb6-25 mutant cells.

Figure 4 continued on next page
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1995; Toda et al., 1996). In addition, we determined that loss of sts5 leads also to increased levels

of Myc-Efc25 proteins as compared to the control sts5+ cells (Figure 4—figure supplement 2B,C).

Taken together, these findings indicate a role for Sts5 in regulating the cellular abundance of specific

mRNAs, affecting cell morphology in particular during cell stress.

Next, we tested if loss of P-body components affects the protein levels of Ssp1. We assayed the

levels of Ssp1 protein in pdc1D and edc3D mutant cells. Both Pdc1 and Edc3 are P-body compo-

nents and bind to the mRNA decapping complex catalytic subunit Dcp2 (Fromm et al.,

2012; Wang et al., 2013). pdc1 encodes an mRNA decapping scaffolding protein and pdc1D

mutants display reduced levels of P bodies and reduced mRNA decapping (Wang et al., 2013).

edc3 encodes an enhancer of mRNA decapping and edc3D mutants display decreased decapping of

nuclear-transcribed mRNA (Fromm et al., 2012; Wang et al., 2013). We found that levels of Ssp1

protein are increased, as compared to tubulin control, in both the pdc1D and edc3D mutant back-

grounds (Figure 4E,F). This effect is seen even in the absence of starvation, during exponential cell

growth, consistent with the idea that P-body components modulate mRNA abundance even in the

absence of large P-body formation (Decker et al., 2007; Eulalio et al., 2007).

Finally, we tested if ssp1 mRNA localizes to the P-bodies during glucose starvation, using RNA

FISH methodology. We found that ssp1 mRNA readily co-localizes to Sts5- and Dcp1-containing

granules in cells re-diluted in minimal medium (EMM) lacking glucose for 20 min (Figure 4G; Fig-

ure 4—figure supplement 3A–C). Conversely, no co-localization was observed in control cells re-

diluted in growth medium containing 2% glucose (Figure 4—figure supplement 3A-C). Our data

reveal a role for Sts5 and P-body components in regulating the levels of ssp1 mRNA and Ssp1

protein.

Orb6 kinase activity inhibits Sts5 recruitment and localization to
P-bodies
To test the role of Orb6 kinase in the control of Sts5, we used the analog-sensitive orb6-as2 mutant

to determine whether loss of Orb6 kinase function alters the localization of Sts5. In orb6-as2 cells

treated with the 1-NA-PP1 inhibitor, Sts5-3xGFP rapidly coalesces into cytoplasmic puncta that

colocalize with the P-body marker Dcp1-mCherry (Figure 5A, d, h, and l; see quantification in

Figure 5B), while DMSO-treated cells exhibit diffuse cytoplasmic localization of Sts5-3xGFP and

Dcp1-mCherry (Figure 5A, c, g, and k and Figure 5B), supporting the idea that Orb6 kinase nega-

tively regulates Sts5-3xGFP recruitment into RNP granules and Sts5 co-localization with P-bodies.

Recent work has shown that the formation of RNP granules often occurs as a result of liquid-liquid

phase transition controlled by the concentration of RNP component proteins (Kroschwald et al.,

2015; Lin et al., 2015; Elbaum-Garfinkle et al., 2015; Patel et al., 2015; Kato et al., 2012;

Hyman et al., 2014; Brangwynne et al., 2009; Lee et al., 2013; Brangwynne, 2013; Becker and

Gitler, 2015). To establish if Sts5 has a role in promoting P-body formation, we inhibited Orb6-as2

kinase and measured the number of Dcp1-mCherry containing granules in the presence or absence

of Sts5. Interestingly, we found that the number of Dcp1-mCherry granules was significantly reduced

in the sts5D background, indicating that Sts5 recruitment has a role in promoting P-body formation

(Figure 6A–C). We also observed residual formation of Dcp1-mCherry dots, suggesting that Orb6

kinase can induce P-body formation via Sts5-dependent as well as Sts5-independent mechanisms.

Conversely, Dcp1-mCherry granules were not induced by DMSO or 1-NA-PP1 in orb6+ control and

sts5D cells (Figure 6—figure supplement 1A).

To test the role of Orb6 kinase in preventing the degradation of Sts5-regulated mRNAs, qPCR

analysis was performed to probe the levels of specific transcripts following Orb6-as2 kinase

Figure 4 continued

DOI: 10.7554/eLife.14216.011

Figure supplement 2. Deletion of sts5 alters cell shape and Myc-Efc25 protein levels.

DOI: 10.7554/eLife.14216.012

Figure supplement 3. Extent of colocalization between ssp1 mRNA, Sts5-3xGFP, and Dcp1-mCherry in fixed cells cultured in the presence and

absence of glucose.

DOI: 10.7554/eLife.14216.013
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inhibition with 1-NA-PP1. We found that mRNA levels of ssp1, efc25 and psu1 declined upon Orb6

kinase inhibition (Figure 6D). Consistent with the idea that Orb6 kinase prevents degradation and

translational repression of Sts5-regulated mRNAs, immunoblotting analysis showed that Ssp1-HA

protein levels decrease in orb6-as2 cells upon inhibition with 1-NA-PP1 (Figure 6E,F). Normal Ssp1-

HA protein levels were maintained in sts5D orb6-as2 cells upon inhibition of Orb6-as2 kinase, in

accordance with the findings that sts5 suppresses the viability phenotype of orb6 mutants and sts5D

cells accumulate ssp1 mRNA. These observations held true also for Ssp1-HA protein levels in tem-

perature-sensitive orb6-25 cells cultured at the non-permissive temperature (36˚C) in the presence

and absence of Sts5 (Figure 6—figure supplement 1B–D). Similarly to Ssp1-HA, Myc-Efc25 protein

levels also declined in orb6-as2 mutants grown in the presence of 1-NA-PP1 (Figure 6—figure

Figure 5. Orb6 kinase inhibits Sts5 recruitment and localization to P-bodies. (A) Loss of Orb6-as2 kinase activity

leads to Sts5-3xGFP recruitment into puncta that colocalize with the P-body marker Dcp1-mCherry. Cells were

treated with inhibitor or DMSO for 1 hr (shown) and 5 hr. Bar = 5 mm. (B) Quantification of three sets of

experiments as shown in A.

DOI: 10.7554/eLife.14216.014
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supplement 1E), and sts5D abolished the reduction of Efc25 levels in orb6-as2 mutants (Figure 6—

figure supplement 1E).

Finally, we tested if Orb6 kinase over-expression alters Sts5 recruitment and P-body formation

following glucose deprivation. Indeed, we found that cells over-expressing Orb6 kinase display

Figure 6. Orb6 kinase inhibits Sts5-dependent P-body formation and translational repression. (A) Dcp1-mCherry localization in orb6-as2 (a, c)

compared with sts5D orb6-as2 (b, d) cells grown in supplemented minimal medium in the presence of 50 mM 1-NA-PP1 (c and d) or DMSO (a and b) for

1 hr. Loss of Sts5 in the sts5D orb6-as2 strain decreases the number of P-bodies induced by Orb6 kinase inhibition. Images are deconvolved projections

from 12 Z-stacks separated by a step size of 0.3 mm. Bar = 5 mm. (B) Quantification of the experiment shown in A based on 3 independent experiments

(n > 24 cells per sample in each experiment). The number of P-bodies per cell was significantly lower in sts5D orb6-as2 cells as compared to orb6-as2

cells upon Orb6 kinase inhibition relative to DMSO-treated orb6-as2 cells (P = 0.0186, Student’s t-test). No significance difference was observed when

comparing orb6-as2 vs sts5D orb6-as2 cells treated with DMSO, P = 0.2458 (Student’s t-test). Error bars indicate SD. (C) Quantification of the

experiment shown in A based on 3 independent experiments (n > 24 cells per sample in each experiment). The total P-body fluorescence intensity per

cell was significantly lower in sts5D orb6-as2 cells as compared to orb6-as2 cells upon Orb6 kinase inhibition relative to DMSO-treated orb6-as2 cells

(P = 0.0013, Student’s t-test). No significance difference was observed when comparing orb6-as2 vs sts5D orb6-as2 cells treated with DMSO (P = 0.1837,

Student’s t-test). Error bars indicate SD. (D) mRNA levels of Sts5-regulated transcripts decrease upon Orb6-as2 kinase inhibition as compared to

control, as established by qPCR analysis based on 3 independent experiments. act1 is shown as an example of a transcript that is not altered.

Housekeeping genes were nda3, cdc2, and cdc22. Error bars indicate SD. (E) Ssp1-HA protein levels in control, orb6-as2, sts5D, and sts5D orb6-as2 cells

cultured in the presence of 50 mM 1-NA-PP1 inhibitor in supplemented minimal medium at 25˚C. Tubulin levels were determined as a loading control.

(F) Quantification of Ssp1-HA/Tubulin in 4 independent experiments, as shown in E, normalized to wild-type levels. Ssp1-HA levels are significantly

reduced upon Orb6-as2 kinase inhibition (P = 0.031), and are restored to wild-type levels in the sts5D orb6-as2 strain (P = 0.023). P values were

determined using analysis of variance (ANOVA) with SPSS statistics package 22.0, followed by Games-Howell test. Error bars indicate SD.

DOI: 10.7554/eLife.14216.015

The following figure supplements are available for figure 6:

Figure supplement 1. Orb6 kinase inhibits Sts5-dependent translational repression.

DOI: 10.7554/eLife.14216.016

Figure supplement 2. Overexpression of Orb6 inhibits Sts5 granule assembly, and Sts5 plays a role in P-body formation.

DOI: 10.7554/eLife.14216.017
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significantly smaller Sts5- and Dcp1-containing particles than control cells, following growth for 1 hr

in minimal medium without glucose (Figure 6—figure supplement 2A). Further, consistent with Sts5

having a role in promoting, at least in part, P-body formation during nutritional stress we found that

sts5D cells form significantly smaller and dimmer Dcp1-containing P bodies, as compared to control

cells, following 1 hr growth in glucose deprivation conditions (shift from 2% to 0.01% glucose) (Fig-

ure 6—figure supplement 2B–D).

Together, these findings support the idea that Orb6 kinase prevents Sts5 recruitment to Dcp1-

containing granules and attenuates P-body formation, in a manner that is at least in part Sts5-depen-

dent. Additionally, the function of Orb6 kinase activity has the effect of decreasing the degradation

of specific mRNAs.

14-3-3 protein Rad24 negatively regulates Sts5 recruitment into
cytoplasmic puncta
We performed an in-vitro kinase assay by purification of Orb6 kinase regulatory subunit Mob2, as

previously reported (Wiley et al., 2003; Das et al., 2009, 2015), using bacterially expressed Sts5.

We found that the immunoprecipitate readily phosphorylates Sts5 (Figure 7A), suggesting that

Orb6 kinase phosphorylates Sts5. Sts5 contains several putative NDR kinase consensus sequences

(Hao et al., 2008; Mazanka et al., 2008; Gógl et al., 2015) that are consistent with 14-3-3 binding

sites (RxxS) when phosphorylated (Yaffe et al., 1997). We previously showed that 14-3-3 protein

Rad24 has a role in negatively regulating another Orb6 substrate, Cdc42 GEF Gef1 (Das et al.,

2015). In order to establish whether Sts5 may be subject to regulation by Rad24, we performed a

pull-down assay to test whether Sts5 binds Rad24. This assay confirmed that Sts5-HA physically asso-

ciates with Rad24-GST and not with GST alone (Figure 7B). Consistent with Rad24 negatively regu-

lating Sts5 recruitment, we found that Sts5-3xGFP forms cytoplasmic puncta in rad24D mutants even

when cultured in rich medium (YE) in the presence of glucose (Figure 7C,D). This effect occurs in

growth conditions where cells are not starved and P-body formation is not strongly induced in either

rad24D or control cells (Figure 7C). Accordingly, we found that ssp1 mRNA levels do not signifi-

cantly change in rad24D mutants as compared to control cells (Figure 7E).

Finally, we tested the effects of Orb6 kinase activity inhibition on the association of Rad24 to

Sts5. We found that that Sts5-3xGFP association with GST-Rad24 is abrogated by inhibition of Orb6-

as2 kinase activity following exposure of orb6-as2 cells to 1-NA-PP1, and not in orb6-as2 cells

exposed to DMSO or in control orb6+ cells (Figure 7F; see quantification in Figure 7—figure sup-

plement 1). Collectively, our findings indicate that Sts5 protein associates with 14-3-3 protein Rad24

in a manner that is dependent on Orb6 kinase activity, and that this association prevents Sts5 coales-

cence into cytoplasmic puncta.

Active Orb6 kinase localization spatially anti-correlates with Sts5
recruitment into puncta in interphase cells
Orb6 kinase localization is enriched at the growing cell tips during interphase, in a manner that

depends on the pattern of growth of the cell (Figure 8A; Figure 8—figure supplement 1A,a,b,

c and B) (Verde et al., 1998). In smaller cells, which grow in a monopolar manner (M), Orb6 kinase

localization is higher at the old growing end and lower at the non-growing new end (Figure 8A, Fig-

ure 8—figure supplement 1A,a). To establish whether Orb6 kinase has a role in spatially controlling

Sts5 in interphase cells during exponential cell growth, we tested the extent of Sts5 recruitment into

small granules in smaller, monopolar cells (9.1 mm on average), which grow from the old end only.

As shown earlier (See Figure 2A), during growth in rich medium, Sts5 localization is generally dif-

fuse. However, a closer inspection indicated that most cells contain a few small Sts5 puncta

(Figure 8B). We consistently found an increase in the number and intensity of Sts5 puncta at the

non-growing end of smaller cells (Figure 8C; Figure 8—figure supplement 1A,d,e and f; Figure 8—

figure supplement 1B), indicating an inverse correlation between Orb6 kinase localization at the

growing tip and Sts5 aggregation (Figure 8A–C).

To further investigate this effect, we visualized Sts5-3xGFP in longer tea1D cells that grow from

one end only (Snell and Nurse, 1994; Verde et al., 1995). tea1D cells display monopolar Orb6-GFP

localization at the only growing cell tip (Figure 8D; Figure 8—figure supplement 2A,a). In these

cells, Sts5-3xGFP recruitment into small puncta was clearly seen increasing towards the non-growing
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Figure 7. 14-3-3 protein Rad24 negatively regulates Sts5 recruitment into puncta. (A) Orb6 kinase phosphorylates

Sts5 in vitro. Mob2-associated Orb6 kinase was immunoprecipitated for a kinase assay as described in the

Materials and Methods and incubated with bacterially expressed Sts5 in the presence of [g32P]ATP. (B)

Endogenously expressed Sts5-HA co-purifies with bacterially expressed GST-Rad24 but not with GST alone in a

pull-down assay. Three independent experiments were performed. (C) Sts5-3xGFP and Dcp1-mCherry

aggregation in 2% glucose YE in WT vs rad24D cells. Images are deconvolved projections from 12 Z-stacks

separated by a step size of 0.3 mm. Bar = 5 mm. (D) Quantification of the experiment shown in C based on 3

independent experiments (n > 27 cells per strain in each experiment). The number of Sts5 particles is significantly

higher in rad24D relative to wild-type control cells (P = 0.0005, Student’s t-test). Error bars indicate SD. (E) qPCR

analysis showing ssp1 mRNA levels are unchanged in rad24D cells compared with WT (P = 0.160) and increased in

sts5D cells compared with WT (P = 0.044). When comparing sts5D with rad24D cells, P=0.006. P values were

determined using analysis of variance (ANOVA) with SPSS statistics package 22.0, followed by Games-Howell post-

hoc test. Housekeeping genes were nda3, act1, and cdc2. Error bars indicate SD. Three independent experiments

were performed. (F) Physical association between endogenously expressed Sts5-HA and bacterially expressed

GST-Rad24 is lower upon inhibition of Orb6-as2 with 50 mM 1-NA-PP1 compared with DMSO treatment (lanes 7

and 8). Sts5-HA association with GST-Rad24 remains unchanged in wild-type cells in the presence or absence of

the inhibitor (lanes 5 and 6). GST-only control is shown in lanes 1–4.

DOI: 10.7554/eLife.14216.018

The following figure supplement is available for figure 7:

Figure 7 continued on next page
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cell tip (Figure 8E-F; Figure 8—figure supplement 2A,b–f; Figure 8—figure supplement 2B: aster-

isk marks the growing tip).

Collectively, our findings indicate that Orb6 kinase activity negatively regulates Sts5 recruitment

into cytoplasmic puncta, via interaction with 14-3-3 protein Rad24, in a manner that is spatially signif-

icant: an asymmetry of Orb6 distribution between growing and non-growing tips correlates with an

asymmetry in Sts5 recruitment.

Role of Orb6 kinase in the control of Sts5 during cell separation
Orb6 kinase activity is repressed during mitosis by the septation-initiation network (SIN), which trig-

gers cytokinesis (Kanai et al., 2005; Gupta et al., 2013, Gupta et al., 2014). SIN signaling remains

active until completion of cytokinesis, which is marked by closure of the contractile ring and a fully

formed cell septum (Garcı́a-Cortés and McCollum, 2009; Alcaide-Gavilán et al., 2014). After cyto-

kinesis, the primary septum must be degraded for cell separation to occur. The derepression of

MOR signaling, and of Orb6 activity, that results from inactivation of the SIN pathway promotes cell

separation upon completion of cytokinesis (Gupta et al., 2014). Consistent with Orb6 kinase re-acti-

vation, Sts5-3xGFP puncta dissipate when the septum is fully closed and the actomyosin contractile

ring protein Rlc1, encoding myosin II regulatory light chain (Le Goff et al., 2000; Wu et al., 2006),

disappears from the plane of cell division (Figure 8G,H; Wei et al., 2016). Orb6-GFP is still physi-

cally present at the site of cell division during septum formation and cytokinetic ring constriction

(Figure 8—figure supplement 1A,c) while it is enzymatically repressed by SIN signaling

(Kanai et al., 2005; Gupta et al., 2013, Gupta et al., 2014; Garcı́a-Cortés and McCollum,

2009; Alcaide-Gavilán et al., 2014). Consistent with a role for Orb6 kinase reactivation in mediating

Sts5-3xGFP granules dissipation, Orb6 kinase inhibition maintains Sts5-3xGFP granules even follow-

ing actin ring closure and Rlc1 disappearance (Figure 8—figure supplement 3A,B).

Supporting a role for Orb6 kinase and its substrate target Sts5 in cell separation, microarray anal-

ysis found that Sts5 negatively regulates transcripts that encode cell wall proteins with potential

functions in cell separation. Transcripts for a predicted b-1,3 glucanase (encoded by

SPBP23A10.11C) and predicted b-glucosidase Psu2 are more abundant in sts5D cells (See Figure 3—

source data 1), consistent with a role for b-1,3 glucan degradation in the primary septum during the

process of cell separation (Martı́n-Cuadrado et al., 2003). In addition, sts5D cells accumulate tran-

scripts of the transcription factor Mbx1 (See Figure 3—source data 1) that cooperates with the tran-

scription factor Ace2 to promote expression of endo-glucanase Agn1, a hydrolytic enzyme involved

in septum degradation (Suárez et al., 2015).

Thus, it is possible that Sts5 recruitment into puncta during mitosis, mediated by SIN pathway-

dependent inhibition of Orb6 kinase, functions to translationally repress mRNAs encoding cell wall

hydrolytic enzymes that would interfere with the deposition of the primary septum. Consistent with

this idea, we found that sts5D cells are prone to rupture at the site of cell separation (Figure 8—fig-

ure supplement 4A,d and B) similarly to cells that express ectopically active Orb6 during mitosis

(Gupta et al., 2013, Gupta et al., 2014).

Sts5 restrains bipolar growth activation during exponential cell
proliferation and during nutritional stress
When cultured at 25˚C, sts5D cells appear normal with a cylindrical shape (Toda et al., 1996). How-

ever, we found that sts5D cell cultures display an increased percentage of cells growing in a bipolar

fashion, as compared to similarly sized control cells, under exponential growth conditions (optical

density at 595 nm <0.4) in both rich (Figure 9A,B) as well as in minimal medium (Figure 9—figure

supplement 1A). These findings suggest that Sts5 has a function in partially constraining growth at

the new end during the exponential growth phase (OD<0.4), without affecting overall growth rates

Figure 7 continued

Figure supplement 1. Quantification of the physical association between endogenously expressed Sts5-HA and

bacterially expressed GST-Rad24.

DOI: 10.7554/eLife.14216.019

Nuñez et al. eLife 2016;5:e14216. DOI: 10.7554/eLife.14216 14 of 29

Research article Cell Biology

http://dx.doi.org/10.7554/eLife.14216.019
http://dx.doi.org/10.7554/eLife.14216


Figure 8. Role of Orb6 kinase in Sts5 granule assembly during the cell cycle. (A–F) Active Orb6 kinase localization spatially anti-correlates with Sts5

recruitment into puncta in interphase cells. A. Orb6-GFP localizes to the growing cell tip in small monopolar wild-type cells. Orb6-GFP is enriched at

the growing old cell end as compared to the non-growing new cell end. Bar = 5 mm. (B) Sts5-3xGFP aggregation increases towards the new cell end in

monopolar wild-type cells. Images are deconvolved projections from 12 Z-stacks separated by a step size of 0.3 mm. Bar = 5 mm. (C) The average

number of Sts5-3xGFP puncta per cell at the non-growing new end is significantly higher as compared to the growing old end (P<0.0001, Student’s

t-test). Error bars denote SD. Three independent experiments were performed (N = 31 cells). (D) Orb6-GFP localizes to the growing cell tip in tea1D

cells. Bar = 5 mm. (E) Sts5-3xGFP recruitment onto puncta increases towards the non-growing tip in tea1D cells. Images are deconvolved projections

from 12 Z-stacks separated by a step size of 0.3 mm. Bar = 5 mm. (F) The average number of Sts5-3xGFP puncta per cell at the non-growing end in

tea1D cells is significantly higher as compared to the growing old end (P<0.0009, Student’s t-test). Error bars denote SD. Three independent

experiments were performed (N = 24 cells). We used calcofluor staining to identify growing tips and measured monopolar tea1D cells that were

growing from the previous old end, which facilitated definitive identification of the nongrowing cell end. (G–H) Orb6 kinase activity temporally anti-

correlates with Sts5 assembly into puncta during mitosis. (G) (a, b and c) Localization of Sts5-3xGFP in cells undergoing cell division; (d, e and f)

visualization of Rlc1-Tomato; (g, h and i) calcofluor staining of cell wall and septum. Bar = 5 mm. (H) Quantification of the number of Sts5 puncta in

dividing cells during cytokinetic ring formation, ring constriction, and septation. Ring formation vs septation, P<0.0001; ring constriction vs septation,

P<0.0001; ring formation vs ring constriction P = 0.588 (N>20 cells per condition). P values were determined using analysis of variance (ANOVA) with

SPSS statistics package 22.0, followed by Tukey’s HSD post-hoc test. Three independent experiments were performed.

DOI: 10.7554/eLife.14216.020

The following figure supplements are available for figure 8:

Figure 8 continued on next page
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Figure 8 continued

Figure supplement 1. Additional images of Orb6-GFP and Sts5-3xGFP localization in monopolar WT cells and quantification of total Sts5-3xGFP

granule intensity at growing and nongrowing tips.

DOI: 10.7554/eLife.14216.021

Figure supplement 2. Additional images of Orb6-GFP and Sts5-3xGFP localization in monopolar tea1D cells and quantification of total Sts5-3xGFP

granule intensity at growing and nongrowing tips.

DOI: 10.7554/eLife.14216.022

Figure supplement 3. Orb6 kinase inhibition prevents the dissolution of Sts5-3xGFP puncta after completion of mitosis.

DOI: 10.7554/eLife.14216.023

Figure supplement 4. sts5D cells display increased cell lysis during cell separation.

DOI: 10.7554/eLife.14216.024

Figure 9. Sts5 modulates bipolar growth activation during exponential cell proliferation and during nutritional

stress. (A) sts5D cells display a delayed morphological response to nutritional stress induced by high cell density as

compared with wild type cells. Cells were stained with calcofluor. Bar = 5 mm. (B) Quantification of the percentage

of bipolar cells in control versus sts5D cells in the experiment depicted in A. Percentage bipolar cells was

significantly higher in sts5D cells versus control cells during exponential growth (OD600 <0.4) (P = 0.0013, Student’s

t test) and at OD600 = 1.4 (P<0.0001, Student’s t test), OD600 = 3 (P<0.0001, Student’s t test), and OD600 = 4.5

(P = 0.0003, Students’ t test). Error bars indicate SD. At least 3 independent experiments were performed (N>64

for each strain per cell density condition). Cells undergoing cell division were not included. (C) Quantification of

cell size (defined as cell length at division) in control versus sts5D cells in the experiment depicted in A. Cell size

was significantly longer in sts5D cells versus control at OD600 = 1.4 (P<0.0001, Student’s t test), OD600 = 3

(P<0.0001, Student’s t test), and OD600 = 4.5 (P<0.0001, Student’s t test). Error bars indicate SD. At least 3

independent experiments were performed (N>16 for each strain per cell density condition).

DOI: 10.7554/eLife.14216.025

The following figure supplement is available for figure 9:

Figure supplement 1. Increased bipolarity of sts5D vs wild-type cells is not due to changes in cell size or overall

cell growth.

DOI: 10.7554/eLife.14216.026
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(Figure 9—figure supplement 1B) or cell length at division, which are the same as control cells

(Figure 9C).

Since the pattern of cell growth is altered by nutritional stress, inhibiting bipolar growth activation

and increasing the percentage of monopolar cells, (Su et al., 1996; Yanagida, 2009;

Yanagida et al., 2011) we hypothesized that Sts5 recruitment into puncta, a form of RNP granules,

might have an adaptive role to modulate the morphological response during nutritional starvation.

As cell density increases, S. pombe cells respond to limiting nutrient availability by entering mitosis

at a shorter cell size (Costello et al., 1986; Su et al., 1996; Yanagida, 2009; Yanagida et al.,

2011). We found that, whereas wild-type cells divide at a shorter length upon starvation induced by

high cell concentration, as determined by optical absorbance at 595 nm (Figure 9), sts5D cells main-

tain a longer length at cell division as cell concentration increases (Figure 9A,C). Similarly, a higher

proportion of sts5D mutants continue to activate bipolar growth, as compared to wild-type cells at

the same concentration (Figure 9B). These observations suggest that Sts5 has a role in partially con-

straining bipolar cell growth, a function that is important for cellular adaptation to nutrient limitation.

Consistent with this idea, we find that sts5D cells display decreased viability after prolonged starva-

tion (I.N. and F.V., unpublished observation).

Collectively, our results indicate that NDR kinase Orb6 inhibits the recruitment of mRNA-binding

protein Sts5 into cytoplasmic puncta by promoting its interaction with 14-3-3 protein Rad24. Further,

Orb6 kinase has a role in negatively controlling P-body formation, in a manner that is at least in part

Sts5-dependent. This mechanism controls the levels of mRNAs encoding proteins important for

polarized cell growth and cell separation. During interphase, Orb6 inhibits Sts5 recruitment in a man-

ner that is biased towards the old end in small cells, thus promoting normal cell morphogenesis and

partially constraining extensile growth at the second, newer cell tip. Extensive Sts5 recruitment into

smaller puncta during mitosis and into larger RNP granules during nutritional stress may allow

proper septum deposition and modulates morphological adaptation to limiting nutrient availability.

Discussion
In this article, we define a novel mechanism that spatially regulates polarized cell growth and cell

morphology in fission yeast during exponential cell proliferation and in response to environmental

stressors, such as increased temperature or cell density. Under exponential growth conditions, fis-

sion yeast grow in a monopolar fashion during early interphase and activate growth at the new cell

tip once a minimal cell length has been achieved. Different control mechanisms cooperate in the

activation of the second tip, a process known as NETO (New End Take Off), including the microtu-

bule-dependent Tea1 complex (Martin and Arkowitz, 2014; Sawin and Nurse, 1998; Martin et al.,

2005; Tatebe et al., 2005), the availability of Cdc42 regulators (Coll et al., 2003; Tatebe et al.,

2008; Das et al., 2012), cell transcription (Vjestica et al., 2013), and a diverse array of signaling kin-

ases (Koyano et al., 2010; Matsusaka et al., 1995; Rupes et al., 1999; Koyano et al.,

2015; Grallert et al., 2013). We have previously shown that NDR kinase Orb6 promotes cell polarity

and regulates bipolar growth by spatially restricting the activation of Cdc42 GTPase, a key morphol-

ogy control factor (Das et al., 2009). We recently showed that Orb6 negatively regulates Cdc42 acti-

vation by promoting the association of Cdc42 Guanine Exchange Factor (GEF) Gef1 with 14-3-3

protein Rad24, and thus limiting Gef1 activity at the membrane (Das et al., 2015). This function has

the effect of spatially regulating Cdc42 activation, thus promoting the emergence of cell polarity.

In this article, we describe a genetically separable role for Orb6 kinase in the control of polarized

cell growth and cell separation. We report that Orb6 kinase regulates the association of mRNA-bind-

ing protein Sts5, another Orb6 substrate target, with 14-3-3 protein Rad24. This association prevents

the recruitment of Sts5 into cytoplasmic puncta (see hypothetical model in Figure 10A). Orb6 locali-

zation varies during the cell cycle, increasing at the cell tips during interphase and at the cell septum

during cell division (Verde et al., 1998; Wiley et al., 2003). In small cells that have not yet under-

gone NETO, or in the monopolar tea1D mutant cells, Orb6 is enriched at the one growing cell tip.

Consistent with a role for Orb6 in inhibiting Sts5 assembly into puncta, we have observed that Sts5-

3xGFP puncta are spatially anti-correlated with Orb6 kinase activity and are preferentially localized

near non-growing cell tips, which are depleted of Orb6 kinase (Figure 10B). Because Orb6 kinase is

enriched at growing cell tips, this method of Sts5 regulation might promote the availability of Sts5-

targeted mRNAs for translation near sites of polarized growth, while partially constraining growth at
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Figure 10. A model of spatial control of translational repression and polarized growth by Orb6 kinase and mRNA binding protein Sts5. (A) Orb6 kinase

prevents Sts5 recruitment into larger RNP granules by promoting the association between Sts5 and the 14-3-3 protein Rad24. Upon Orb6 kinase

inhibition, Sts5 proteins are recruited into larger RNP granules and co-localize with P-bodies, leading to reduced mRNA levels and translational

repression. (B) In small monopolar cells Orb6 kinase is localized at the growing old end. Sts5 recruitment in larger granules is observed at the new end,

lacking Orb6 kinase activity. In larger bipolar cells Orb6 kinase is localized at both cell tips, and Sts5 recruitment is reduced at both cell ends and

throughout the cell. During mitosis, Orb6 kinase is inactivated by the SIN pathway, which allows Sts5 recruitment into larger RNP granules and

translational repression. Once cell separation is complete, Orb6 kinase activity resumes, promoting Sts5 disassembly, translational derepression, and

cell separation.

DOI: 10.7554/eLife.14216.027

Nuñez et al. eLife 2016;5:e14216. DOI: 10.7554/eLife.14216 18 of 29

Research article Cell Biology

http://dx.doi.org/10.7554/eLife.14216.027
http://dx.doi.org/10.7554/eLife.14216


the non-growing, newer cell tip. Consistent with this idea, an increased percentage of sts5D cells

exhibit a bipolar pattern of growth, as compared to control cells of similar length.

By microarray and qPCR analysis we found that several transcripts, previously implicated in bipo-

lar growth activation, accumulate in sts5D cells. These transcripts encode the putative CAMK kinase

Cmk2, CAMKK kinase Ssp1, LAMMER kinase Lkh1, pseudokinase Tea5/Ppk2, and PDK1 kinase Ksg1,

which promote bipolar growth activation in S. pombe (Koyano et al., 2010), as well as the Ras1

GEF Efc25, which affects Cdc42 activity (Papadaki et al., 2002). In higher eukaryotes, the homo-

logues of these Sts5-regulated transcripts are also implicated in cell growth and morphology. CAMK

signaling regulates cytoskeletal organization, plays a role in neuronal development and dendritic

spine morphology, and has been shown to be increased in mouse models of cardiac hypertrophy

(Penzes et al., 2008; Passier et al., 2000). The Drosophila LAMMER kinase Doa inhibits prolifera-

tion of germ cells (Zhao et al., 2013). Also, Ras signaling has conserved roles in cytoskeletal organi-

zation with implications for cancer development (Shields et al., 2000). Activation of PI3K signaling

via PDK1 kinase has been implicated in cancer, and PDK1 has been found to regulate cell growth,

proliferation, and migration (Li et al., 2010; Mora et al., 2004).

Consistent with Orb6 kinase inhibiting the extent of Sts5 recruitment during exponential growth,

Sts5-containing cytoplasmic puncta assemble during the later stages of mitosis when Orb6 kinase

activity is blocked by the SIN pathway (Figure 10B) (Vaggi et al., 2012; Gupta et al.,

2013, Gupta et al., 2014). Sts5 recruitment during cytokinesis may function to prevent inappropri-

ate translation of proteins involved in septum degradation while the septum is still forming. Indeed,

sts5D cells lyse at the cell septum, in particular upon stress. Once cytokinesis is complete and Orb6

kinase is once again active, Sts5 localization is again diffuse in the cytoplasm, perhaps to allow

expression of hydrolases required for cell separation. Consistent with this idea, orb6 mutants delay

cell separation. We did not find obvious induction of P-body formation during mitosis or interphase,

likely preventing the degradation of Sts5-regulated transcripts that will eventually be needed for cell

separation and polarized cell growth. This result suggests that P-body independent, Sts5-containing

RNPs are formed during mitosis and that additional stress signals are required for Sts5 to seed

P-body formation under nutritional limitation conditions.

Sts5 bears closest homology to RNA exonucleases such as fission yeast Dis3L2 (Malecki et al.,

2013). In humans, hDis3L2 is of particular interest because it has been implicated in the congenital

Perlman syndrome, which confers fetal overgrowth and susceptibility to Wilms tumor (Astuti et al.,

2012). Whereas Sts5 lacks crucial amino acids required for exonuclease activity (Figure 1C)

(Malecki et al., 2013; Uesono et al., 1997), our work shows that Sts5 promotes mRNA degradation

likely by promoting the interaction of Sts5-associated transcripts with P-body components. Similar to

Sts5, Dis3L2 also localizes to P-bodies (Malecki et al., 2013), as well as the S. cerevisiae homologue

of Sts5, Ssd1 (Jansen et al., 2009; Kurischko et al., 2011). These findings suggest that, differently

from the related exonuclease Dis3 (Robinson et al., 2015), this group of RNA-binding proteins

employs a mechanism of mRNA degradation that does not involve interaction with the exosome.

However, it is likely that Sts5 and Dis3L2 have different roles in P-body assembly and/or recruitment

of mRNAs to P-bodies. Indeed, deletion of the sts5 homologue dis3L2 does not suppress the growth

defect observed upon Orb6-as2 kinase inhibition (Figure 1—figure supplement 2B). In S. cerevisiae

and C. albicans, Sts5 homologue Ssd1, with roles in cell wall hydrolysis (Jansen et al.,

2009; Wanless et al., 2014), fertility (Bourens et al., 2009), and transcription (Lee et al., 2015), has

been proposed to promote localized mRNA translation because of its enrichment at the bud site

(Kurischko et al., 2011; Lee et al., 2015). We have not observed enrichment of Sts5 at the sites of

polarized growth in S. pombe cells, which may employ a different strategy for ensuring adequate

mRNA localization in daughter cells.

Our work indicates that Sts5 may function as a seed for P-body formation under stress and upon

Orb6 kinase inhibition. P-bodies and similar RNPs have been shown to have liquid properties and

their formation has been described as condensation by a phase-separation mechanism once P-body

components reach critical concentrations (Kroschwald et al., 2015; Lin et al., 2015; Elbaum-

Garfinkle et al., 2015; Hyman et al., 2014; Brangwynne et al., 2009; Lee et al.,

2013; Brangwynne, 2013; Becker and Gitler, 2015). It has been proposed that mRNA-binding pro-

teins may play a role in the aggregation of mRNPs into larger structures, especially proteins contain-

ing intrinsically disordered domains, which have the potential to promote phase separation by

forming multiple weak protein-protein interactions (Lin et al., 2015; Patel et al., 2015; Elbaum-
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Garfinkle et al., 2015; Wang et al., 2014; Kato et al., 2012; Han et al., 2012; Malinovska et al.,

2013; Toretsky and Wright, 2014; Kroschwald et al., 2015). Thus, Sts5 may have the ability to

function in mRNP granule formation through interactions with other P-body proteins, and one func-

tion of Orb6 phosphorylation may be to limit Sts5 recuitment to prevent inappropriate seeding of

P-bodies. Consistent with this idea, Sts5 displays a predicted disordered domain at the N-terminus,

which is phosphorylated in vivo (Kettenbach et al., 2015; Carpy et al., 2014; Koch et al., 2011; Wil-

son-Grady et al., 2008). Future experiments will address how phosphorylation of this domain modu-

lates the function of Sts5 and affects its properties in vitro.

We found that Sts5 has a role in the morphological response to nutritional stress. Wild type S.

pombe cells mount characteristic morphological responses to changing environmental conditions:

increased temperature (Mitchison and Nurse, 1985), decreased nutrient availability (Costello et al.,

1986; Su et al., 1996; Yanagida, 2009; Yanagida et al., 2011), and hyper-osmotic stress decrease

the incidence of bipolar growth activation and alter overall cell dimensions (Rupes et al.,

1999; Robertson and Hagan, 2008). The mechanisms that modulate cell morphogenesis and polar-

ized cell growth in response to varying growth and environmental conditions are still poorly under-

stood. We find that sts5D mutants delay the adaptation to starvation conditions, maintaining bipolar

growth and a longer cell length as cell density increases and the medium becomes depleted of

nutrients. This effect appears to be further exacerbated at higher temperatures (36˚C), where sts5D

cells become enlarged and bloated, with increased protein levels of the CAMKK Ssp1. Our findings

indicate that sts5D mutants have defects in adapting to nutrient deprivation or temperature increase,

and fail to manifest the appropriate morphological response to varying extracellular conditions. Thus

Sts5 may integrate diverse nutritional and environmental signals to coordinate changes to the pat-

tern of cell growth.

In summary, our results support a role for NDR kinases in the spatial control of polarized cell

growth, during cell proliferation and in response to the nutritional environment by mediating the

translational availability of specific mRNAs. Future research will seek to identify nutrient-sensitive sig-

naling pathways upstream of Orb6 and define the specific roles of Orb6 kinase and Sts5 in the con-

trol of P-body assembly. Due to the conservation of these factors, this work has the potential to

open new avenues of research linking nutrient-sensitive signaling and P-body regulation with impli-

cations for studies of cancer and neurodegenerative diseases.

Materials and methods

Strains and cell culture
S. pombe strains used in this study are listed in the supplement in Supplementary file 1. All strains

used in this study are isogenic to the original strain 972. Cells were cultured in yeast extract (YE)

medium or minimal medium (EMM) plus required supplements. Prototrophic strain FV2267 was cul-

tured in unsupplemented EMM. For glucose and nitrogen starvation experiments, cells were washed

in glucose-free or nitrogen-free EMM before transfer to EMM either lacking or containing 2% glu-

cose or 0.5% nitrogen, respectively. Exponential growth was maintained for at least eight genera-

tions before experimental analysis, and genetic manipulations and analysis were carried out using

standard techniques (Moreno et al., 1991).

Isolation of the suppressor mutants from the MOR mutants
Approximately 5 � 107 cells of the nak1-125 (KP1-6D), orb6-25 (DH433-12C), or mor2-276 mutant

(DH107-4C) were spread per one YPD plate (1% yeast extract, 2% polypeptone, 2% dextrose, and

2% agar) containing 10 mg/ml Phloxine B (Sigma-Aldrich, P2759) (called YPDP plate), and the plates

were incubated at 35.5˚C for 4 days. Spontaneously developed Ts+ colonies at 35.5˚C were picked

up on YPDP plate and incubated at 35.5˚C for 3 days. To investigate the cold sensitivity and cell

morphology of the mutants, the Ts+ colonies were replica plated on 2 YPDP plates and incubated at

18˚C and 35.5˚C. In this screening, we selected Ts+ and cold sick (red colony) at 18˚C, and isolated

1, 2, or 1 sts5 mutant alleles from mor2, nak1, or orb6 mutants, respectively. Genetic linkage (allel-

ism) between the suppressors and sts5 was confirmed by tetrad analysis.
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Fluorescence microscopy
Cells expressing fluorescently tagged proteins were photographed using an Olympus fluorescence

BX61 microscope (Melville, NY) equipped with Nomarski differential interference contrast (DIC)

optics, a 100X objective (NA 1.35), a Roper Cool-SNAP HQ camera (Tucson, AZ), Sutter Lambda 10

+ 2 automated excitation and emission filter wheels (Novato, CA) and a 175 W Xenon remote source

lamp with liquid light guide. Images were acquired and processed using the Intelligent Imaging

Innovations (Denver, CO) SlideBook image analysis software and prepared with Adobe Photoshop

CC (San Jose, CA) and ImageJ64 (U. S. National Institutes of Health) (ImageJ, RRID:SCR_003070).

For measurements of Sts5-3xGFP and Dcp1-Cherry puncta, we subtracted the contribution of the

cytoplasmic background for each cell as previously described (Das et al., 2012). This process was

performed using an ImageJ plugin that sets a subtraction threshold to 3 standard deviations from

cytoplasmic-region mean. Pilot studies were used to obtain means and standard deviations to be

used for sample size estimation before determining how many cells to measure in each independent

experiment of Sts5-3xGFP or Dcp1-mCh aggregation. The following formulas were used for sample

size estimation, assuming an alpha of 0.05, beta of 0.2, and power of 0.8:

k= (n2/n1) = 1

n1 = [(s1
2 + s2

2/K)(z1 – a/2 + z1 – b

)2] / D2

D = |m2-m1| = absolute difference between two means

s1, s2 = mean variances

n1 = group 1 sample size

n2 = group 2 sample size

a = probability of type I error (set to 0.05)

b = probability of type II error (set to 0.2)

z = critical Z value for a given a or b

RNA extraction (for qPCR and microarray)
Cells were grown under normal conditions (eight generations of exponential growth) prior to the

start of the experiment. Cells were then treated in accordance with the particular experiment. The

RNA was extracted from the yeast using the ZR Fungal/Bacterial RNA MiniPrep kit (Zymo Research).

After elution of the RNA, the remaining genomic DNA was digested with TURBO DNA-free

(Ambion). The digestion of genomic DNA was confirmed by PCR amplification of the housekeeper

genes.

qPCR analysis
RNA was quantified via NanoDrop, and cDNA was prepared using the iScript cDNA Synthesis Kit

(Bio-Rad). The qPCR reaction was done with SsoFast Evagreen Supermix (Bio-Rad) using primers

design with Beacon in a Bio-Rad CFX96 Real-Time PCR system. Data was analyzed with Bio-Rad CFX

Manager 2.0 software using a regression Cq determination mode. Our housekeeper genes were

nda3, act1, cdc2, and cdc22 (depending on the experiment). Each condition was run at least in tripli-

cate and 3 independent experiments were performed.

Microarray analysis
RNA was provided to the Oncogenomics Facility (http://sylvester.org/research/shared-resources/lab-

oratory-resources/oncogenomics-core-facility) for the Bioanalyzer to assess RNA quality and amount,

followed by microarray hybridization and scanning using the Affymetrix GeneChip Yeast Genome

2.0 Array. Data was then analyzed with MEV (http://www.tm4.org/mev) (TM4 Microarray Software

Suite: TIGR MultiExperiment Viewer, RRID:SCR_001915) after conversion to RMA via RMAExpress

(http://rmaexpress.bmbolstad.com/) (RMA Express, RRID:SCR_008549).

Gene ontology enrichment analysis
Gene ontology enrichment analysis was performed using Database for Annotation, Visualization, and

Integrated Discovery (DAVID) Bioinformatics Resource 6.7 (DAVID, RRID:SCR_001881).
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Immunoprecipitation of Sts5-3xGFP and identification of associated
mRNAs
Cultures were grown of wild-type cells and sts5-3xGFP cells for harvesting. Cell pellets were broken

in breaking buffer (20 mM Tris-HCl (pH 8.0), 140 mM KCl, 1.8 mM MgCl2, 0.1% NP-40, 0.2 mg/ ml

heparin, 0.5 mM DTT, protease inhibitors (complete EDTA-free protease inhibitor cocktail tablets

(Roche Applied Science)), 100 U/ml Rnasin Plus (Promega)) with a Savant FastPrep FP120 bead

beater. The Sts5 protein was then immunoprecipitated with anti-GFP (Roche; RRID:AB_390913) and

protein G magnetic resin (Invitrogen). After extensive washing of the resin with wash buffer (20 mM

Tris-HCl (pH 8.0), 140 mM KCl, 1.8 mM MgCl2, 10% glycerol, 0.5 mM DTT, 0.01% NP-40, 10 U/ml

Rnasin Plus, and protease inhibitors in the beginning washes), the RNA was eluted from the resin by

treating the resin with proteinase K. The RNA was then purified with a spin column kit (ZR Fungal /

Bacteria RNA MiniPrep Kit, Zymo Reseach). After elution of the RNA, the remaining genomic DNA

was digested with TURBO DNAse (Ambion) and the digestion was confirmed by PCR. qPCR was

then used to determine the relative levels of target mRNA in WT (null IP) versus the Sts5-3xGFP IP.

Bacterially expressed Sts5 protein purification
Sts5 ORF (a.a. 1–1066) was tagged with N-terminal His6 by cloning into pET15b expression vector.

The construct was transformed in BL21 cells, and His6-Sts5 expression was induced by incubation

with 1mM IPTG for 1 hr. Native His6-Sts5 was purified using Ni-NTA spin columns (Qiagen) following

the manufacturers instructions. Western blot using anti-His6 antibody (Covance; AB_10063707) was

performed to confirm the purification of His6-Sts5.

Mob2-associated kinase assay
In vitro kinase assay for phosphorylation of Sts5 was performed as described in Wiley et al. (2003).

Briefly, Myc-tagged Mob2 and untagged Mob2 were expressed in S. pombe cells grown to mid-log

phase at 32˚C. Cells lysis was performed using Savant FastPrep FP120 bead beater in HB buffer (25

mm MOPS, pH 7.2, 60 mM b-glycerophosphate, 15 mM p-nitrophenyl phosphate, 15 mM MgCl2 15

mM EGTA, 1 mM dithiothreitol, 0.1 M sodium vanadate, 1% Triton X-100, 1 mM phenylmethylsul-

fonyl fluoride, and protease inhibitors (complete EDTA-free protease inhibitor cocktail tablets (Roche

Applied Science))). Extracts from cells expressing Myc-tagged Mob2 and from wild-type cells were

incubated with Protein A agarose (Sigma-Aldrich) beads bound to rabbit anti-Myc antibodies (Santa

Cruz Biotechnology; RRID:AB_631274) for 1 hr, washed twice with HB buffer, and then washed once

with kinase buffer (50 mM Tris-HCl, pH 7.5, 100 mM NaCl, 10 mM MgCl2,1 mM MnCl2). The resin

was resuspended in 25 ml of kinase buffer containing 10 mCi of [g-32P]ATP (6000 Ci/mmol) and 20

mM ATP and combined with 5 ml bacterially expressed Sts5. The kinase reaction was stopped after

20 min at 30˚C. Proteins were separated on an SDS polyacrylamide gel.

Western blot analysis of Ssp1-HA levels
The protein extraction was performed as previously described (Matsuo et al., 2006). 10-ml cultures

of exponentially growing cells were harvested by centrifuging at 5000 rpm for 5 min. The cell pellet

was first washed in 1 mL of distilled water and then resuspended in 300 mL of distilled water. Then,

300 mL of 0.6 M NaOH was added, and cells were incubated at room temperature for 10 min and

collected by centrifugation. After removing the supernatant, cells were resuspended in modified

SDS sample buffer (60 mM Tris HCl pH 6.8, 4% b-mercaptoethanol, 4% SDS, 0.01% bromophenol

blue, and 5% glycerol) and boiled for 3 min. The samples were then loaded on 4–15% Mini-PRO-

TEAN TGX gels (Biorad) for routine western analysis.

Antibodies
The primary antibodies used were mouse monoclonal anti-HA (Covance; RRID:AB_2314672), rabbit

polyclonal purified antibody c-Myc (A-14) (Santa Cruz Biotechnology, Inc.; RRID:AB_631274) rat

monoclonal anti-a-tubulin [YL1/2] (Novus Biologicals; RRID:AB_305328), mouse monoclonal anti-a-

tubulin clone B-5-1-2 (Sigma-Aldrich; AB_477579) and rabbit polyclonal anti-GST (Z-5) (Santa Cruz;

AB_631586). The secondary antibodies used were IRDye 800 conjugated anti-mouse antibody (Rock-

land Immunochemicals, Inc; RRID: RRID:AB_10703265), IRDye 800 conjugated anti-rabbit antibody

(Rockland Immunochemicals, Inc; RRID:AB_220152), and IRDye700 conjugated anti-rat antibody
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(Rockland Immunochemicals Inc.; RRID: AB_220171). The blots were analyzed using the Odyssey

Infrared Imaging system (LI-COR Biosciences).

Orb6-as2 kinase inhibition
Design and construction of the orb6-as2 analog-sensitive mutant was previously described

(Das et al., 2009). Inhibition of Orb6-as2 kinase was carried out using the ATP-analog 1-NA-PP1 (4-

Amino-1-tert-butyl-3-(1’-naphtyl) pyrazolo [3,4-d]pyrimidine; Toronto Research Chemicals) diluted in

DMSO. In liquid media, a final concentration of 50 mM 1-NA-PP1 was used to achieve Orb6-as2

kinase inhibition. In solid media, the final concentration of 1-NA-PP1 used was 10 mM.

Rad24 binding assays
Bacterially expressed GST and GST-Rad24 were bound to Glutathione linked sepharose beads or

magnetic beads (Pierce). The beads were then mixed with fission yeast protein extract from wild

type and Sts5-HA tagged strains incubated for overnight at 4˚C. The beads were then washed with

TRIS lysis buffer (50 mM TrisCl, PH 7.7; 150 mM NaCl; 5mM EDTA; 5% Glycerol; 1% Triton X; 1 mM

PMSF; complete EDTA-free protease inhibitor cocktail tablets (Roche Applied Science)) and sepa-

rated by SDS polyacrylamide gel and analyzed by western blot using mouse monoclonal Anti-HA

antibodies (Covance; RRID:AB_2314672). To inhibit Orb6 kinase, cells were incubated with either

DMSO or 50 mM 1-NA-PP1 for 15 min at 32˚C.

RNA fluorescence in situ hybridization (FISH)
The subcellular localization of ssp1 mRNA in cells expressing Sts5-3xGFP and Dcp1-mCherry was

visualized using FISH, and our method was adapted from previously described protocols

(Heinrich et al., 2013; Nilsson and Sunnerhagen, 2011; Brengues and Parker, 2007) with the fol-

lowing modifications. Custom Stellaris DNA probes targeted against ssp1 mRNA were coupled to

Quasar 705 (BioSearch Technologies). Cells were fixed with 4% paraformaldehyde for 20 min at

room temperature and washed with buffer B (1.2 M sorbitol, 100 mM KHPO4, pH 7.5) Cell walls

were digested for 30 min in spheroplast buffer (1.2 M sorbitol, 100 mM KHPO4 at pH 7.5, 20mM

vanadyl ribonucleoside complex, 20 mM b-mercaptoethanol) containing 5% Zymolyase 20T at room

temperature. Cells were pelleted (taking care to spin cells at �500 rpm for 3–5 min between washes

in steps after the Zymolyase digestion) then washed in buffer B. Cells were then incubated in 1 mL

of -80˚C methanol, stored overnight at -20˚C, incubated in 1 mL of acetone for 1 min, and then

washed twice in 1 mL of 2X SSC (0.3 M NaCl, 30 mM sodium citrate). Cells were preincubated at

37˚C in 50 ml of hybridization buffer, consisting of a 1:1 ratio of Buffer F (20% formamide, 10 mM

NaHPO4 at pH 7.0) and Buffer H (4X SSC, 4 mg/ml,1 purified BSA and 20mM vanadyl ribonuclease

complex) and 2 ml of 10-mg/ml salmon-sperm DNA (which was boiled for 3 min at 95˚C). After 1 hr

of prehybridization, 0.5 ml of 12.5 mM Quasar 705-conjugated ssp1 probe was added, and the cells

were incubated at 37˚C for 5 hr. Cells were washed two times with 2X SSC and resuspended in 2X

SSC buffer. Object-based colocalization analysis (based on the distance between centers of mass)

was performed using the ImageJ plugin JACoP (Just Another Colocalization Plugin) (Bolte and Cor-

delières, 2006). For threshold selection, we adapted a method similar to one previously described

for image threshold selection of RNA FISH images (Raj et al., 2008). Specifically, we applied a Lapla-

cian of Gaussian filter to reduce noise and highlight areas of rapid change in each cell and chose the

threshold where the histogram reached a plateau, indicating a region where above-background pix-

els can be clearly detected.

Glucose depletion in Orb6 overexpressing cells
pREP3X-Orb6- and pREP3X-carrying cells expressing Sts5-3xGFP and Dcp1p-mCherry were grown

in absence of thiamine for 18 hr at 32˚C. Cells were then washed once in minimal medium minus glu-

cose and resuspended in minimal medium containing 2% or 0% glucose and the required supple-

ments. Cultures were incubated at 32˚C for 1 hr before visualizing the localization of Sts5-3xGFP and

Dcp1-mCherry using fluorescence microscopy.
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Millward TA, Heizmann CW, Schäfer BW, Hemmings BA. 1998. Calcium regulation of Ndr protein kinase
mediated by S100 calcium-binding proteins. The EMBO Journal 17:5913–5922. doi: 10.1093/emboj/17.20.5913

Mitchison JM, Nurse P. 1985. Growth in cell length in the fission yeast Schizosaccharomyces pombe. Journal of
Cell Science 75:357–376.

Mora A, Komander D, van Aalten DM, Alessi DR. 2004. PDK1, the master regulator of AGC kinase signal
transduction. Seminars in Cell & Developmental Biology 15:161–170. doi: 10.1016/j.semcdb.2003.12.022

Moreno S, Klar A, Nurse P. 1991. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe.
Methods in Enzymology 194:795–823. doi: 10.1016/0076-6879(91)94059-L

Nilsson D, Sunnerhagen P. 2011. Cellular stress induces cytoplasmic RNA granules in fission yeast. RNA 17:120–
153. doi: 10.1261/rna.2268111

Papadaki P, Pizon V, Onken B, Chang EC. 2002. Two ras pathways in fission yeast are differentially regulated by
two ras guanine nucleotide exchange factors. Molecular and Cellular Biology 22:4598–4606. doi: 10.1128/MCB.
22.13.4598-4606.2002

Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA, Overbeek P, Richardson JA, Grant SR, Olson EN.
2000. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo.
Journal of Clinical Investigation 105:1395–1406. doi: 10.1172/JCI8551

Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, Hein MY, Stoynov S, Mahamid J, Saha S, Franzmann TM,
Pozniakovski A, Poser I, Maghelli N, Royer LA, Weigert M, Myers EW, Grill S, Drechsel D, Hyman AA, Alberti S.
2015. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162:
1066–1143. doi: 10.1016/j.cell.2015.07.047

Penzes P, Cahill ME, Jones KA, Srivastava DP. 2008. Convergent CaMK and RacGEF signals control dendritic
structure and function. Trends in Cell Biology 18:405–413. doi: 10.1016/j.tcb.2008.07.002

Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S. 2008. Imaging individual mRNA molecules
using multiple singly labeled probes. Nature Methods 5:877–879. doi: 10.1038/nmeth.1253

Ramaswami M, Taylor JP, Parker R. 2013. Altered ribostasis: RNA-protein granules in degenerative disorders.
Cell 154:727–736. doi: 10.1016/j.cell.2013.07.038
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